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Abstract

This survey is an introduction to well-posed linear time-invartiant (LTI) systems for non-specialists. We recall the more general
concept of a system node, classical and generalized solutions of system equations, criteria for well-posedness, the subclass of
regular linear systems, some of the available linear feedback theory. Motivated by physical examples, we recall the concepts
of impedance passive and scattering passive systems, conservative systems and systems with a special structure that belong
to these classes. We illustrate this theory by examples of systems governed by heat and wave equations. We develop local and
global well-posedness results for LTI systems with nonlinear (in particular, bilinear) feedback, by extracting the abstract idea
behind various proofs in the literature. We apply these abstract results to derive well-posedness results for the Burgers and
Navier-Stokes equations.

Key words: Well-posed linear system, operator semigroup, regular linear system, impedance passive system, heat equation,
scattering passive system, scattering conservative system, wave equation, non-linear feedback, Burgers equation, local
well-posedness, Navier-Stokes equations.

1 Overview

This is a survey about well-posed systems, intended for
newcomers to the field. Thus, no prior background on
well-posed systems is assumed andwe intend to guide the
reader through the many concepts and available results,
explaining their origin and significance as best as we can.
We assume that the reader has a basic understanding of
functional analysis and operator semigroups.

Informally speaking, a system iswell-posed if on any time
interval [τ, t], for any initial state x0 in the state space
and any input function u in a specified space of func-
tions, it has a unique state trajectory x and a unique out-
put function y, both defined on [τ, t]. Moreover, y must
belong to a specified space of functions, and both x(t)
and y must depend continuously on x(τ) and on u. This
concept is general and can be made precise for many
classes of non-linear and/or time-varying systems. How-
ever, most attention in the literature has been devoted
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to the simplest particular case, namely, linear and time-
invariant (LTI) systems, because here we have strong
tools to develop the theory. In the LTI context, if the
state space is finite-dimensional, then well-posedness is
not an issue and is usually not even mentioned. The the-
ory focuses on systems with an infinite-dimensional state
space, usually a Hilbert space. This is motivated by a va-
riety of systems described by partial differential or delay
equations, that can be shown to fit into this framework.
Establishing well-posedness is usually not a goal in it-
self but opens the way for dealing with control and/or
estimation problems by trying to mimic the rich finite-
dimensional control theory using “operators in place of
matrices” at the conceptual level. It is not easy and it
does not always work, but we keep trying.

There are now two books available on well-posed linear
systems: the monograph of Olof Staffans [65] and the re-
cent graduate lectures of Birgit Jacob and Hans Zwart
[38] (actually on a different but closely related topic). It
is not easy to write a survey “in the shadow” of these
two excellent books. We hope that our emphasis on ex-
tensions, as well as our somewhat different point of view
will be deemed a useful addition to the literature.

The authors together with Olof Staffans have published
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the survey [83] with a similar topic in 2000. So what can
justify this new survey? We hope that the following will
count: (1) In the 14 years that passed, there have been
many new results and developments, shifts in emphasis,
and we have learned a few new tricks. (2) In the survey
[83], the emphasis was on conservative linear systems,
which was an exciting new topic at that time. The sur-
vey was strictly about LTI systems only, and the same
is true about the books [65] and [38] mentioned earlier.
Here, we go beyond this framework by exporing well-
posedness results for well-posed linear systems with non-
linear feedback. Most results will be given without proof
(with citations) but we also include several new results,
and for those of course we give the proof.

This survey does not cover the following topics: exact
controllability and exact observability, stability and
stabilization, optimal control and optimal estimation.
Indeed, these topics are not directly related to well-
posedness (even though they use results about it). To
our regret, because of length constraints, we also have
to leave out topics that would have been very well suited
in this paper. One such topic is the Lax-Phillips semi-
group associated to a well-posed system (the connection
between well-posed systems theory and scattering the-
ory), for which we refer to [7,9,59,65,67,68]. Another
topic that we are compelled to leave out are the time-
varying well-posed linear systems, for which we refer to
[12,33,58,59] (an incomplete list).

It will be easier to follow the more abstract develop-
ments in the later sections of this paper if we first
introduce the main concepts (system equations, lin-
earity, time-invariance, well-posedness, impedance and
scattering passivity) and some of the results in the
finite-dimensional context. This is our aim in Section 2.

In Section 3 we give a brief overview of the main facts
known about well-posed linear time-invartiant systems
in the Hilbert space context. We give the motivation
and introduce the concept, after which we discuss the
representation of such systems via a semigroup generator
A, a control operatorB, an observation operatorC and a
transfer functionG. We recall the admissibility concepts
for B and C.

In Section 4 we introduce the larger class of LTI systems
known as system nodes. This is a simple and very use-
ful concept when we model physical systems, or when
we introduce special classes of systems, as there are al-
most no well-posedness assumptions involved, and well-
posedness can be checked at a later stage. We introduce
the concepts of classical and generalized solution of the
system equations, and discuss their properties, in par-
ticular in the well-posed case.

In Section 5 we introduce regular linear systems, a sub-
class of the well-posed ones for which there is a well-
defined feedthrough operator, that expresses the instan-

taneous effect of the input signal on the output signal.
The feedthrough operator (if it exists) is the strong limit
of the transfer function at +∞. We recall different equiv-
alent ways to express regularity, and a simpler way to
to write the system equations. We give several examples
of regular systems from the literature, including a wave
and a plate equation. We also recall the basic facts of the
linear feedback theory developed for well-posed (and in
particular, for regular) linear systems.

In Section 6 we introduce impedance passive system
nodes, scattering passive (hence well-posed) linear sys-
tems and scattering conservative systems. We explain
how systems with certain special structures (encoun-
tered in mathematical physics) belong to these special
classes. We give examples of systems with these special
structures involving the heat and wave equations.

In Section 7 we consider well-posed linear systems with
static nonlinear output feedback. These results are of
small gain type, and they guarantee the well-posedness
of the closed-loop system for certain Lipschitz constants
of the nonlinearity, or the local well-posedness for bilin-
ear feedbacks satisfying a certain estimate.

Sections 8 and 9 are devoted to examples. Using the
nonlinear feedback theory from Section 7 we prove the
global well-posedness of a system described by the Burg-
ers equation and the local well-posedness of the Navier-
Stokes equations on a bounded domain.

Acknowledgments. This work was supported mainly
by the Lorraine Region via a grant “Chercheur
d’excellence”. We also acknowledge the support of the
French National Research Agency (ANR) via the grant
11-BS03-0002 HAMECMOPSYS.

2 Well-posedness in finite dimensions

Finite-dimensional linear control theory is mainly con-
cerned with systems Σ described by equations of the
form {

ẋ(t)= Ax(t) +Bu(t)

y(t)= Cx(t) +Du(t)
, (2.1)

where u is the input signal, x is the state trajectory, y
is the output signal and A,B,C,D are matrices of ap-
propriate dimensions, dictated by the dimensions of the
vectors u(t), x(t) and y(t). We denote by U ,X and Y the
(finite dimensional) input space, state space and output
space of the system Σ, i.e., the spaces where u(t), x(t)
and y(t) are. Usually such systems are considered to
evolve over the time interval R+ = [0,∞), so that we
have an initial state x(0) and an input function u, while
the functions x and y are uniquely determined by them.
Applying the Laplace transformation (assuming that u
has one), we obtain

ŷ(s) = C(sI −A)−1x(0) +G(s)û(s) , (2.2)
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whereG(s) = C(sI−A)−1B+D is the transfer function
of the system. This is an L(U, Y )-valued analytic func-
tion defined everywhere except on σ(A), the spectrum
of A. The matrix-valued function G is rational, mean-
ing that each entry is a fraction of polynomials, and it
is proper, meaning that it has a finite limit at infinity
(which is D). We assume that this class of systems is
familiar to the reader.

We have a lot of freedom in choosing the space of func-
tions where u and y in (2.1) are. We could choose, for
example, continuous functions, differentiable functions,
various Sobolev spaces, functions of class Lp (where 1 6
p 6 ∞). However, in this survey, we mostly stick to the
choice

u ∈ L2
loc(R;U) , y ∈ L2

loc(R;Y ) .

For any interval J , we denote by PJ the operator of
truncation of a vector-valued function v defined on a
larger set than J , to J . The truncated function PJv will
sometimes (whenever this is convenient) be regarded as
being defined on all R, and having the value 0 ouside of
J . An important feature of the system Σ that we want to
emphasize is that on any finite time interval [τ, t] ⊂ R,
if the initial state x(τ) and the corresponding segment
of the input signal, P[τ,t]u are given, then we can solve
(2.1) on [τ, t] (with a unique solution). We then have[

x(t)

P[t,τ ]y

]
= Σ(t, τ)

[
x(τ)

P[t,τ ]u

]
, (2.3)

where Σ(t, τ) is a bounded linear operator from X ×
L2([τ, t];U) to X ×L2([τ, t];Y ), which can be naturally
partinioned into four components. (It is an easy exercise
to write these components explicitly.) If we restrict our
solution (the functions u, x, y) to a subinterval of [τ, t],
then (2.3) will hold also on this subinterval. This forces
the components of Σ(t, τ) to obey certain algebraic rules,
that we shall encounter later when discussing the ab-
stract definition of a well-posed linear system.

In the sequel, we denote by Sh the bilateral right shift
by h (where h ∈ R) on L1

loc(R, V ), for any Banach space
V . Thus, for h > 0, Shu is the signal u delayed by the
amount h, while for h < 0 it is u anticipated (brought
earlier) by the amount |h|. The system Σ is called linear
because the operators Σ(t, τ) are linear. The system Σ is
called well-posed because the operators Σ(t, τ) are con-
tinuous (in the linear case discussed here, this is equiv-
alent to them being bounded). The system Σ is called
time-invariant because the operators Σ(t, τ) have the
following property:[

x(t)

S−τP[t,τ ]y

]
= Σ(t− τ, 0)

[
x(τ)

S−τP[t,τ ]u

]
, (2.4)

which combined with (2.3) shows that essentially, Σ(t, τ)
depends only on the time difference t − τ . Σ should

be called a finite-dimensional linear time-invariant well-
posed system although you could not find this terminol-
ogy in the systems and control literature, and for a good
reason: all finite dimensional LTI systems are automat-
ically well-posed, as it is easy to see from the solution
formulas (that we did not write down). Thus, such sys-
tems are just called finite-dimensional LTI systems.

Now we turn our attention to finite-dimensional non-
linear time-invariant systems described by

ẋ(t) = f(x(t), u(t)) , (2.5)

y(t) = g(x(t), u(t)) , (2.6)

but for the moment we ignore (2.6) and just ask when
can we solve the differential equation (2.5). It simplifies
matters a lot if we still assume that u(t) ∈ U and x(t) ∈
X, whereU andX are finite-dimensional normed spaces.

Definition 2.1 Let f ∈ C(X × U,X), δ > 0 and let
u : [0, δ)→U be measurable. A solution of (2.5) on [0, δ)
is an absolutely continuous function x : [0, δ) → X such
that

x(t)− x(0) =

∫ t

0

f(x(σ), u(σ))dσ ∀t ∈ [0, δ) .

The following theorem is a consequence of Theorem 36
(in Appendix C) in Sontag [61]. In the sequel, for any
c > 0 we denote Bc = {x ∈ X | ∥x∥ 6 c}.

Theorem 2.2 Assume that u : R+ → U is measurable,
f ∈ C(X × U ;X) and the following two conditions hold
for every a ∈ X:

(S1) There exists a constant c > 0 and a locally inte-
grable function α : R+ → R+ such that

∥f(x, u(t))− f(y, u(t))∥ 6 α(t)∥x− y∥

for almost every t ∈ R+ and for all x, y ∈ a+Bc.
(S2) There exists a locally integrable function β : R+ →

R+ such that

∥f(a, u(t))∥ 6 β(t) , for almost every t ∈ R+ .

Then for every x0 ∈ X there exists δ > 0 and a unique
solution of (2.5) on [0, δ) satisfying x(0) = x0. (The
theorem remains valid if X is a Banach space.)

Thus, the existence of solutions can, in general, only
be guaranteed locally, i.e., on some possibly short time
interval. When the solution of (2.5) is not global, then
it necessarily “blows up” in finite time, as the following
corollary shows.

Corollary 2.3 Suppose that u and f are as in Theorem
2.2 and for some x0 ∈ X and δ > 0, [0, δ) is the maximal
interval of existence of the solution of (2.5) with x(0) =
x0. Then for every c > 0 there exists T ∈ [0, δ) such that
x(T ) /∈ Bc.
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For the proof see, for instance, Jayawardhana et al [40].

If δ < ∞ is as in Corollary 2.3, then it is called the fi-
nite escape time of the state trajectory x starting from
x0. Non-linear systems theory is plagued by finite escape
times, and one possible technique that can help is to in-
troduce an energy function that, for some reason, must
stay bounded and thus prevents the “blow up” of the so-
lutions. Energy considerations are useful in many other
respects (stability analysis, control design). This is the
next topic that we discuss.

Driven by physical examples, there has been much inter-
est in systems that are passive, which means that they
satisfy some sort of energy balance inequality. To define
this concept we need a function H ∈ C1(X;R+) called
the Hamiltonian or storage function. This is often the
physical energy stored in the system, but it does not have
to be. We also need a real-valued function S called the
supply rate defined on U × Y that is usually assumed to
be continuous. The system is called passive with respect
to the storage function H and the supply rate S if for any
functions u, x and y that solve (2.5) and (2.6), we have

d

dt
H(x(t)) 6 S(u(t), y(t)) . (2.7)

H is called proper ifH(x)→∞when ∥x∥→∞ or equiva-
lently, for any constant c > 0 the set {x ∈ X |H(x) 6 c}
is compact. There is a huge literature on passive sys-
tems, of which we cite Willems [87] (who started it all)
and van der Schaft [74].

Now we look at the linear time-invariant case. Let us
assume that U = Y and X are finite-dimensional inner
product spaces. The time-invariant system Σ from (2.1)
is called impedance passive if along solutions of (2.1),

d

dt
∥x(t)∥2 6 2Re ⟨u(t), y(t)⟩ . (2.8)

This corresponds to taking in (2.7) H(x) = 1
2∥x∥

2 and
S(u, y) = Re ⟨u, y⟩. It is easy to see that this is equivalent
to the fact that, for every x0 ∈ X and u0 ∈ U , we have

Re ⟨Ax0 +Bu0, x0⟩ 6 Re ⟨u0, Cx0 +Du0⟩ .

There is a very neat characterization of such systems
due to Staffans [63,64], who did his investigations in the
infinite-dimensional context.

Theorem 2.4 The system Σ from (2.1) is impedance
passive in the sense of (2.8) if and only if the matrix

T =

[
A B

−C −D

]

is dissipative (i.e., T + T ∗ 6 0).

It is now obvious that if Σ is impedance-passive, then A
is dissipative. This is equivalent to the fact that eAt is a
contraction for every t > 0. When D +D∗ is invertible,
then impedance passivity is equivalent to D + D∗ > 0
and

A+A∗ + (C∗ −B)(D +D∗)−1(C −B∗) 6 0 .

In the case thatD = 0, impedance passivity is equivalent
to C = B∗ and A being dissipative. It is not difficult to
check that if G is the transfer function of an impedance
passive system, then G is positive, meaning that

G(s) +G(s)∗ > 0 ∀ s ∈ C0 , (2.9)

where we have used the notation

Cα = {s ∈ C | Re s > α} .

It is easy to derive versions of the above statements that
involve weighting operators on the spaces U and Y - we
shall not waste time on this.

Now let us drop the assumption that U = Y . The time-
invariant system Σ from (2.1) is called scattering passive
if along solutions of (2.1),

d

dt
∥x(t)∥2 6 ∥u(t)∥2 − ∥y(t)∥2 . (2.10)

This corresponds to taking in (2.7) H(x) = 1
2∥x∥

2 and

S(u, y) = 1
2∥u∥

2 − 1
2∥y∥

2. It is easy to see that this is
equivalent to the fact that, for x0 ∈ X and u0 ∈ U ,

2Re ⟨Ax0 +Bu0, x0⟩ 6 ∥u0∥2 − ∥Cx0 +Du0∥2 .

It is also easy to see that Σ is scattering passive if and
only if the operators Σ(t, τ) from (2.3) are contractions.

Theorem 2.5 The system Σ from (2.1) is scattering
passive in the sense of (2.10) if and only if

A+A∗ B C∗

B∗ −I D∗

C D −I

 6 0 .

This result has been obtained by adapting a related re-
sult from Apkarian, Gahinet and Becker, [6], who have
worked in the finite-dimensional parameter-varying con-
text. The last theorem can also be derived fromTheorem
2.4, by applying it to the system Σ̃ with inputs u1, u2
and outputs y1, y2 defined by

ẋ(t) = Ax(t) +Bu1(t) ,

y1(t)=
1
2u1(t) ,

y2(t)= −Cx(t)−Du1(t) +
1
2u2(t) .
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It is not difficult to check that if Σ is scattering passive,
then the matrix A is dissipative (so that C0 ⊂ ρ(A)) and
the transfer functionG of the system is a Schur function,
i.e., it satisfies ∥G(s)∥ 6 1 for all s ∈ C0.

It is useful to note that most scattering passive systems
can be obtained from impedance scattering ones via the
external Cayley transformation (sometimes called the di-
agonal transformation), which redefines the input and
the output as follows: If e and f are the input and out-
put signals of an impedance passive system Σimp, then
the input and output signals of the corresponding scat-
tering passive system Σsca are

u = 1√
2
(e+ f) , y = 1√

2
(e− f) . (2.11)

The inverse transformation is given by the same formu-
las, only with the places of u, y and e, f reversed, as
is easy to see. This transformation has been employed
in many works, see for example Staffans [63,64,69], and
Weiss [80]. The external Cayley transformation can be
understood also as an output feedback transformation
(combined with a feed-forward term and a rescaling), as
Figure 1 (approximately reproduced from [80]) shows. It
is easy to see from this figure that the relation between
the transfer functions of Σimp and Σsca is

Gsca = (I −Gimp)(I +Gimp)
−1 .

-u √
2 - e

6

+

−
-e Σimp -f e?+

−
- 1√

2
-y

Fig. 1. The system Σsca with input u and output y, as ob-
tained from the system Σimp (with input e and output f)
via the external Cayley transformation (2.11).

—————————–

In [63,64] the precise relationship between Σimp and Σsca

has been determined (in the infinite-dimensional con-
text), as stated in the following proposition.

Proposition 2.6 Suppose that Aimp, Bimp, Cimp, Dimp

determine via (2.1) an impedance passive system Σimp.
Then the matrix

Eimp :=

I 0

0 I√
2

[
I 0

Cimp I +Dimp

]
(2.12)

is invertible. Define the system Σsca via its matrices
Asca, Bsca, Csca, Dsca by[
Asca Bsca

Csca Dsca

]
=

[
0 0

0 −I

]
+

[
Aimp Bimp

0
√
2I

]
E−1

imp. (2.13)

Then Σsca is a scattering passive system. We have
E−1

imp = Esca, where

Esca :=

I 0

0 I√
2

[
I 0

Csca I +Dsca

]
, (2.14)

and Σimp can be recovered from Σsca via[
Aimp Bimp

Cimp Dimp

]
=

[
0 0

0 −I

]
+

[
Asca Bsca

0
√
2I

]
E−1

sca . (2.15)

Notice that Σsca is obtained from Σimp by the same
formulas by which Σimp is obtained from Σsca. However,
there is a hidden asymmetry here: the external Cayley
transformation will not yield every possible scattering
passive system. It follows from the above proposition
that the range of the external Cayley transformation
is the set of those scattering passive systems for which
I +Dsca is invertible.

3 Well-posed LTI systems on Hilbert spaces

For infinite-dimensional LTI systems, we think that it is
not a good idea to start from equations of the type (2.1),
or any other types of differential and algebraic equa-
tions that describe the system locally in time (i.e., at
one instant). This is because we encounter differential,
trace and other unbounded operators, and it is difficult
to build a general and clear definition for a well-posed
system using these. Indeed, we would get bogged down
endlessly in choosing the right domains and trying to
define what we mean by solutions of certain equations.
Starting with the work of Salamon [56,57] the accepted
approach is to start from the global (or “integral”) op-
erators Σ(t, τ) that appear in (2.3), which are bounded.
This is similar to the theory of operator semigroups (we
use this name for what is also known as strongly con-
tinuous semigroups, or C0 semigroups, and we assume
that the reader is familiar with them). Indeed, in the
theory of operator semigroups, the definition concerns
the family of (global) operators in the semigroup, which
are bounded, and the (usually unbounded) generator ap-
pears later in the theory. Similarly, we start with the
family of bounded operators Σ(t, τ) and the (usually un-
bounded) operators in (2.1) will appear later. There are
many competing and equivalent definitions for a well-
posed LTI system, see for instance Salamon [56], Weiss
[77,79], Staffans [67,68,65]. We shall use the definition
from [79] (which is often employed).

The idea of the definition is that the system is fully
described by the operators Σ(t−τ, 0) appearing in (2.4).
For convenience we denote Στ = Σ(τ, 0). We partition
these operators as follows:
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Στ =

[
Tτ Φτ

Ψτ Fτ

]
∀ τ > 0 . (3.1)

The definition will list the requirements that have to be
imposed on each of the four component operator fami-
lies, so that the concept corresponds to what we expect
based on our intuition and experience. Of course, finite-
dimensional LTI systems (as discussed in the first sec-
tion) must be a particular case of well-posed LTI sys-
tem in the Hilbert space context, as defined below. Well-
posed LTI systems are most often called well-posed lin-
ear systems.

Notation. Let W be a Hilbert space. For any interval
J , we regard L2

loc(J ;W ) as a subspace of L2
loc(R;W )

(by extending functions defined on J with the value 0
outside J). Recall the truncation operators PJ and the
bilateral right shift operators Sτ introduced in Section
2. For any u, v ∈ L2

loc([0,∞);W ) and any τ > 0, the
τ -concatenation of u and v is the function defined by

u♢
τ
v = P[0,τ ]u+ Sτv .

Thus, (u♢
τ
v)(t) = u(t) for t ∈ [0, τ), while (u♢

τ
v)(t) =

v(t − τ) for t > τ . If T is an operator semigroup, we
denote its growth bound by ω0(T).

Definition 3.1 Let U , X and Y be Hilbert spaces. A
well-posed linear system is a family of operators Σ =
(Σt)t>0 partitioned as in (3.1), where

(i) T = (Tt)t>0 is an operator semigroup on X,
(ii) Φ = (Φt)t>0 is a family of bounded linear operators

from L2([0,∞);U) to X such that

Φτ+t(u♢
τ
v) = TtΦτu+Φtv, (3.2)

for every u, v ∈ L2([0,∞);U) and all τ, t > 0,
(iii) Ψ = (Ψt)t>0 is a family of bounded linear operators

from X to L2([0,∞);Y ) such that

Ψτ+tx0 = Ψτ x0 ♢
τ
ΨtTτx0, (3.3)

for every x0 ∈ X and all τ, t > 0, and Ψ0 = 0,
(iv) F = (Ft)t>0 is a family of bounded linear operators

from L2([0,∞);U) to L2([0,∞);Y ) such that

Fτ+t(u♢
τ
v) = Fτu♢

τ
(ΨtΦτu+ Ftv), (3.4)

for every u, v ∈ L2([0,∞);U) and all τ, t > 0, and
F0 = 0.

We call U the input space, X the state space and Y the
output space of Σ. The operators Φτ are called input
maps, the operators Ψτ are called output maps, and the
operators Fτ are called input-output maps.

It is often convenient to denote Σ = (T,Φ,Ψ,F) in place
of arranging these families in a 2× 2 matrix as in (3.1).

It follows from (3.2) with t = 0 and v = 0 that Φ is
causal, the state does not depend on the future input:
Φτ Pτ = Φτ for all τ > 0, in particular Φ0 = 0. It follows
from this and the definitions that for all τ, t > 0,

Φτ+tP[0,τ ] = TtΦτ , P[0,τ ]Ψτ+t = Ψτ ,

P[0,τ ]Fτ+tP[0,τ ] = P[0,τ ]Fτ+t = Fτ ,

and hence P[0,τ ]Fτ+tP[τ,τ+t] = 0. The last identity says
that F is causal (i.e., the past output does not depend
on the future input).

Example 3.2 We give an extremely simple but impor-
tant example of an infinite-dimensional well-posed sys-
tem, borrowed from [79]. We model a delay line as a well-
posed linear system. Let X = L2[−h, 0], where h > 0,
and let T be the left shift semigroup on X with zero en-
tering from the right, i.e., for any τ > 0 and ζ ∈ [−h, 0],

(Tτ x)(ζ) =

{
x(ζ + τ) , for ζ + τ 6 0 ,

0 , for ζ + τ > 0 .

Let U = C and for any τ > 0 and ζ ∈ [−h, 0] define

(Φτ u)(ζ) =

{
u(ζ + τ) , for ζ + τ > 0 ,

0 , for ζ + τ < 0 .

Let Y = C and for any τ > 0 and t ∈ [0, τ) define

(Ψτ x0)(t) =

{
x(t− h) , for t− h 6 0 ,

0 , for t− h > 0 .

For t > τ we put (Ψτ x)(t) = 0. Finally, let for any τ > 0
and t ∈ [0, τ)

(Fτ u)(t) =

{
u(t− h) , for t− h > 0 ,

0 , for t− h < 0 .

For t > τ we put (Fτ u)(t) = 0. Then Σ = (T ,Φ ,Ψ ,F)
is a well-posed linear system. It is clear from the formula
of F that this is indeed a delay line of size h.

For the remainder of this section we use the assumptions
of Definition 3.1. We denote the generator of T by A.
The space X1 is defined as D(A) with the norm ∥z∥1 =
∥(βI−A)z∥, where β ∈ ρ(A), andX−1 is the completion
of X with respect to the norm ∥z∥−1 = ∥(βI −A)−1z∥.
The choice of β is not important, since different choices
lead to equivalent norms on X1 and on X−1. In fact,
the norm ∥ · ∥1 is equivalent to the graph norm on D(A)
andX−1 may be regarded as the dual of D(A∗) (with its
graph norm) with respect to the pivot space X. Thus,

X1 ⊂ X ⊂ X−1 (3.5)
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densely and with continuous embeddings. The semi-
group T can be extended to X−1, and then its generator
is an extension of A, whose domain is X. We use the
same notation for all these extensions as for the original
operators. The extended semigroup is isomorphic to the
original one via the isomorphism (βI−A) ∈ L(X,X−1).

We denote the corresponding spaces that we get by re-
placing A with A∗ by Xd

1 and Xd
−1, i.e., X

d
1 is D(A∗)

with the norm ∥z∥d1 = ∥(βI − A∗)z∥, and Xd
−1 is the

completion of X with respect to the norm ∥z∥d−1 =
∥(βI − A∗)−1z∥. The scalar product of X has continu-
ous extensions to X1 ×Xd

−1 and to Xd
1 ×X−1, so that

Xd
−1 (respectively X−1) may be regarded as the dual of

X1 (respectively of Xd
1 ) with respect to the pivot space

X. More details about these spaces and other related
ones, such asX−2, can be found in Engel and Nagel [23],
Staffans [65] and [73].

For the remainder of this section we recall some less
immediate consequences of Definition 3.1, following
[67,68,73,79], mostly without proof.

A nontrivial consequence of assumptions (i) and
(ii) in the definition is that there exists a unique
B ∈ L(U,X−1), called the control operator of Σ, such
that

Φtu =

∫ t

0

Tt−σBu(σ)dσ ∀ t > 0 . (3.6)

Notice that in the above formula, T acts onX−1 and the
integration is carried out in X−1. Φtu depends continu-
ously on t. The operator B can be found by

Bv = lim
τ → 0

1

τ
Φτ (χ · v) ∀ v ∈ U , (3.7)

where χ denotes the characteristic function of [0,∞).

Remark 3.3 Let U,X be Hilbert spaces and let T be an
operator semigroup onX. An operatorB ∈ L(U,X−1) is
called an admissible control operator for T if for some t >
0, the integral in (3.6) is inX, for any u ∈ L2([0,∞);U).
If this is the case, then Φt ∈ L(L2([0,∞);U), X) for all
t > 0. If B ∈ L(U,X), then obviously it is admissible.
Such control operators are called bounded, and the others
are called unbounded. Clearly, ifB is the control operator
of a well-posed system, then it is an admissible control
operator for the operator semigroup of the system.

We do not want to spend much space in this survey on
the concept of an admissible control operator, and for
more details we refer to the excellent survey by Jacob and
Partington [35], as well as to Jacob, Partington and Pott
[36], Staffans [65], Tucsnak and Weiss [73] and Weiss
[75]. We mention here only three important results:

(1) Suppose that T is exponentially stable, i.e., ω0(T) <
0. Then B is an admissible control operator for T if and

only if the equation

AΠz +ΠA∗z = −BB∗z ∀ z ∈ D(A∗)

(called a Lyapunov equation) has a solution Π ∈ L(X)
with Π > 0. (This solution is then unique, and is called
the controllability Gramian of A and B.)

(2) Suppose that T is left-invertible. Then B is an ad-
missible control operator for T if and only if, for some
ω > ω0(T),

sup
Re s=ω

∥(sI −A)−1B∥L(U,X) < ∞ .

(3) If B is an admissible control operator for T then for
every ω > ω0(T),

sup
Re s>ω

(Re s)∥(sI −A)−1B∥2L(U,X) < ∞ . (3.8)

This is the easy part. The strong result is that the con-
verse holds under additional assumptions: Suppose that
U is finite-dimensional and T is a contraction semigroup,
or it is normal. Then (3.8) (for one ω ∈ R) implies that
B is admissible for T. For related results and extensions
see, e.g., Haak and Kunstmann [30], and the counterex-
amples in Jacob and Zwart [37] and Zwart, Jacob and
Staffans [90].

Now we turn our attention to the output maps of the
well-posed system Σ from Definition 3.1. It follows from
the identity P[0,τ ]Ψτ+t = Ψτ (for τ, t > 0) that there

exists a unique operator Ψ∞ : X → L2
loc([0,∞);Y ) such

that P[0,τ ]Ψ∞ = Ψτ for all τ > 0. Ψ∞ is called the
extended output map of Σ, and it satisfies

Ψ∞x0 = Ψ∞x0 ♢
τ
Ψ∞Tτx0 , (3.9)

for every x0 ∈ X and all τ > 0. It can be shown (using
assumptions (i) and (iii) in the definition) that there
exists a unique C ∈ L(X1, Y ), called the observation
operator of Σ, such that for every x0 ∈ D(A) and all
t > 0,

(Ψ∞x0)(t) = CTtx0 . (3.10)

This determines Ψ∞, since D(A) is dense in X.

Remark 3.4 An operator C ∈ L(X1, Y ) is called an
admissible observation operator for T if the estimate∫ τ

0

∥CTtx0∥2dt 6 k∥x0∥2

holds for some (hence, for every) τ > 0 and for every
x0 ∈ D(A). The constant k > 0 may depend on τ . If
C ∈ L(X,Y ) then obviously it is admissible. Such ob-
servation operators are called bounded, while the others

7



are called unbounded. It is clear that if C is the obser-
vation operator of a well-posed linear system Σ, then C
is admissible for the semigroup T of Σ. For further de-
tails about admissible observation operators we refer to
Weiss [76] as well as all the references in Remark 3.3.
The connection with admissible control operators is the
following duality: C ∈ L(X1, Y ) is an admissible obser-
vation operator for T if and only if C∗ ∈ L(Y,Xd

−1) is
an admissible control operator for T∗. In particular, the
dual version of the estimate (3.8) is the following: if C is
an admissible observation operator for T then for every
ω > ω0(T),

sup
Re s>ω

(Re s)∥C(sI −A)−1∥2L(X,Y ) < ∞ . (3.11)

Now we turn our attention to the input-output maps
of the well-posed system Σ. It follows from the identity
P[0,τ ]Fτ+t = Fτ that there exists a unique linear oper-

ator F∞ : L2
loc([0,∞);U) → L2

loc([0,∞);Y ) such that
P[0,τ ]F∞ = Fτ for all τ > 0. This F∞ is called the ex-
tended input-output map of Σ. We have

F∞(u♢
τ
v) = F∞u♢

τ
(Ψ∞Φτ u+ F∞v), (3.12)

for every u, v ∈ L2
loc([0,∞);U) and all τ > 0. Taking

u = 0 in (3.12) we get that

F∞Sτ = Sτ F∞, (3.13)

for every τ > 0. This property means that F∞ is shift-
invariant or time-invariant.

Notation. For any Hilbert spaceW , any interval J and
any ω ∈ R we put

L2
ω(J ;W ) = eωL

2(J ;W ),

where (eωv)(t) = eωtv(t), with the norm ∥eωv∥L2
ω

=
∥v∥L2 . We denote by Cω = {s ∈ C | Re s > ω}.

It can be shown that for everyω > ω0(T), Ψ∞ is bounded
from X to L2

ω([0,∞);Y ). For each x0 ∈ X, the Laplace
integral of Ψ∞x0 converges absolutely for Re s > ω0(T),
and for such values of s the Laplace transform is given
by

̂(Ψ∞x0)(s) = C(sI −A)−1x0 . (3.14)

We denote by γF the infimum of those ω ∈ R for which
F∞ is bounded from L2

ω([0,∞);U) to L2
ω([0,∞);Y ).

This number γF ∈ [−∞,∞) is called the growth bound
of F∞. It can be shown that γF 6 ω0(T). We can rep-
resent F∞ via the transfer function G of Σ, which is
a bounded analytic L(U, Y )-valued function on Cω for
every ω > γF. If u ∈ L2

ω([0,∞);U) with ω > γF then
the Laplace integral of F∞u converges absolutely for
Re s > γF and

(̂F∞u)(s) = G(s)û(s), Re s > ωF . (3.15)

The transfer function G satisfies

G(s)−G(β) = (β − s)C(βI −A)−1(sI −A)−1B

= C
[
(sI −A)−1 − (βI −A)−1

]
B, (3.16)

for all s, β ∈ Cω0(T) (equivalently, G′(s) = −C(sI −
A)−2B). This shows that G is determined by A, B and
C up to an additive constant operator.

The growth bound γF is the infimum of all those ω ∈ R
for which G has a bounded analytic extension to Cω.
It follows from (3.15) and the Paley-Wiener theorem
that for ω > γF, the norm of F∞ from L2

ω to L2
ω is the

supremum of ∥G(s)∥ over all s ∈ Cω. By the maximum
modulus theorem, denoting ∥F∞∥ω = ∥F∞∥L(L2

ω),

∥F∞∥ω = sup
Re s=ω

∥G(s)∥ . (3.17)

An analytic function defined on a domain that contains
some right half-plane is called proper if it is bounded on
some right half-plane (such asG above). This concept is
the natural generalization of the well-known concept of
properness for rational functions, that has been recalled
in the text after (2.2).

There are transformations which lead from one well-
posed system to another: duality, time-inversion, flow-
inversion and time-flow inversion. Here we briefly recall
duality, and we refer to [50,65,68] for the other (more
challenging) transformations.

Notation. Let W be a Hilbert space. For every
u ∈ L2

loc([0,∞);W ) and all τ > 0, we define the time-
inversion operator on [0, τ ] as follows:

( Rτu)(t) =

{
u(τ − t) for t ∈ [0, τ ],

0 for t > τ.

Theorem 3.5 Let Σ = (T,Φ,Ψ,F) be a well-posed lin-
ear system with input space U , state space X and output
space Y . Define Σd

τ (for all τ > 0) by

Σd
τ =

[
Td
τ Φd

τ

Ψd
τ Fd

τ

]
=

[
I 0

0 Rτ

][
T∗
τ Ψ∗

τ

Φ∗
τ F∗

τ

][
I 0

0 Rτ

]
. (3.18)

Then Σd = (Td,Φd,Ψd,Fd) is a well-posed linear system
with input space Y , state space X and output space U . If
A, B and C are the semigroup generator, control opera-
tor and observation operator of Σ, then the correspond-
ing operators for Σd are A∗, C∗ and B∗. The transfer
functions are related by

Gd(s) = G∗(s), Re s > ω0(T).

Both types of growth bounds are equal: ω0(T) = ω0(Td)
and γF = γFd .
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The systemΣd introduced above is called the dual system
corresponding to Σ. It is easy to verify (from (3.18)) that
applying the duality transformation twice, we get back
the original system: (Σd)d = Σ.

4 System nodes and solutions of system equa-
tions

Well-posed linear systems have various generalizations
within the LTI context. One obvious one is to replace
Hilbert spaces with Banach spaces and L2 with Lp - this
is one of the issues that we shall ignore in this paper,
but we refer to relevant parts of [10,12,30,32,65,75,76,79]
(this is an incomplete list).

A more interesting generalization is the concept of a
resolvent linear system, due to Mark Opmeer [54,55],
where the relations between input, state and output are
formulated entirely in a sort of Laplace transformed do-
main. This allows “much less well-posed” systems to be
included. The system is determined by four operator
families, like well-posed systems, but these are analytic
operator-valued functions which, in the case of a well-
posed linear system and using the notation of Section 3,
would have the interpretation of (sI−A)−1, (sI−A)−1B,
C(sI − A)−1 and G(s). The integrated resolvent lin-
ear systems, also introduced in [54], are a subclass that
comes closer to (and still contains) well-posed systems.
Other classes of systems that contain the well-posed ones
(and are contained in resolvent linear systems) are the
systems with n-admissible control and observation oper-
ators discussed in Latushkin et al [44], the systems that
are strictly proper with an integrator, introduced inWeiss
and Zhao [85], and the system nodes, presented below.

For the study of well-posed linear systems, the most use-
ful generalization of the concept seems to be the con-
cept of a system node. The reason for this is that sys-
tem nodes look very much like well-posed systems de-
cribed by equations local in time, but with most of the
well-posedness assumptions deleted. Thus, when given
a system of differential and algebraic equations that we
“suspect” to be well-posed, we can, as a first step, ver-
ify that it is a system node after introducing the correct
spaces and operators, and often this is relatively easy.
After this is done, we know that the equations of the
system have classical solutions for a significant space of
initial conditions and input functions. Now, if we want
to check the well-posedness of the system, sometimes we
can do this quickly by using various theorems formulated
in the abstract language of system nodes. For example,
if we somehow know that the system node is scattering
passive, then its well-posedness follows.

The idea of system nodes goes back to Y.L. Smuljan
in 1986, using a different terminology. The concept as
used today was formulated while writing Malinen et al

[51] and we refer to that paper for the relation with ear-
lier concepts such as operator colligations. System nodes
have been used in many works, starting with Staffans
[62], and good introductions are in Staffans [65] and
Staffans and Weiss [69]. The definition given below is
less elegant, but very short and easy to understand. Re-
garding classical and generalized solutions, our exposi-
tion follows [69].

Definition 4.1 Suppose that A is the generator of a
strongly continuous semigroup T on the Hilbert space X.
In the sequel we use the spaces X1 and X−1 and the ex-
tensions of A and T, as introduced around (3.5).

Let U and Y be Hilbert spaces, B ∈ L(U,X−1) and C ∈
L(X1, Y ). Let the functionG : Cω0(T) →L(U, Y ) be such
that, for every s, β ∈ Cω0(T),

G(s)−G(β) = C[(sI −A)−1 − (βI −A)−1]B. (4.1)

Then Σnode = (A,B,C,G) is called a system node on
(U,X, Y ). We call U , X, Y the input space, state space
and output space of Σnode respectively. A is the semi-
group generator of Σnode, B is its control operator, C is
its observation operator, G is its transfer function and
(A,B,C) is its generating triple.

Notice that G is analytic and it satisfies

G′(s) = − C(sI −A)−2B ∀ s ∈ Cω0(T) . (4.2)

For any triple (A,B,C) as above we can find infinitely
many functions G satisfying (4.1) (or, equivalently,
(4.2)) and any two such functions differ by a constant.

The combined observation/feedthrough operator of Σnode

is defined by

C&D

[
x

u

]
= C[x− (βI −A)−1Bu] +G(β)u, (4.3)

with domain

D(C&D) =

{[
x

u

]
∈ X × U

∣∣∣ Ax+Bu ∈ X

}
.

Note that the operatorC&D is independent of the choice
of β ∈ Cω0(T) -this can be verified using (4.1). We have
the following relation between C&D and G:

G(s) = C&D

[
(sI −A)−1B

I

]
∀ s ∈ Cω0(T) .

(4.4)

It may be that G has analytic extensions to half-planes
Cω with ω < ω0(T). We do not distinguish between an
analytic function defined on a right half-plane and an
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analytic extension to a larger right half-plane. This con-
vention is important since (when ρ(A) is not connected)
we may get points s ∈ ρ(A) where (4.4) is not true, see
Curtain and Zwart [22, Example 4.3.8]. Thus, to avoid
mistakes, when we are at a point s to the left of ω0(T), we
define G(s) by analytically extending G, starting from
the domain Cω0(T) (if such an extension exists).

The natural norm on D(C&D) is∥∥∥∥∥
[
x

u

]∥∥∥∥∥
2

D(C&D)

= ∥x∥2X + ∥u∥2U + ∥Ax+Bu∥2X . (4.5)

With this norm, D(C&D) is a Hilbert space and

C&D ∈ L(D(C&D), Y ) . (4.6)

The system node Σnode = (A,B,C,G) can also be de-
termined by its system operator

S =

[
A B

C&D

]
, D(S) = D(C&D) , (4.7)

which is a densely defined and closed operator fromX×
U to X × Y . In several papers, such as [69], S is taken
as the starting point when defining a system node, and
the operators A,B,C and the transfer function G are
derived from S.

Define the space

Z = D(A) + (βI −A)−1BU , (4.8)

which is independent of β ∈ ρ(A) and is a Hilbert space
with the norm

∥z∥2Z = inf

{
∥x∥21 + ∥v∥2

∣∣∣∣∣ x ∈ X1, v ∈ U

z = x+ (βI −A)−1Bv

}
.

Note that if [ xv ] ∈ D(S), then x ∈ Z and we have
∥x∥Z 6 m∥ [ xv ] ∥D(C&D), for somem > 0 independent of
x and v. The system node is called compatible if C has
a continuous extension to an operator C ∈ L(Z, Y ). In
this case, we may define the operator D ∈ L(U, Y ) by
D = G(β) − C(βI − A)−1B and it follows from (4.1)
that D is independent of β ∈ ρ(A). Then C&D and S
can be split to take their form which is familiar from
finite-dimensional systems theory:

C&D [ xv ] = Cx+Dv, S =

[
A B

C D

]
(4.9)

and we have

G(s) = C(sI −A)−1B +D ∀ s ∈ ρ(A) . (4.10)

A system node Σnode is usually associated with the equa-
tion

[
ẋ(t)

y(t)

]
= S

[
x(t)

u(t)

]
∀ t > 0 , (4.11)

where S is the system operator of Σnode. Equivalently,

ẋ(t) = Ax(t) +Bu(t) , y(t) = C&D
[
x(t)
u(t)

]
, (4.12)

for every t > 0.

Definition 4.2 Let S be a closed linear operator from
X × U to X × Y , with domain D(S) (but S need not
originate from a system node).

A triple (x, u, y) is called a classical solution of (4.11) on
[0,∞) if :

(a) x ∈ C1([0,∞);X),

(b) u ∈ C([0,∞);U), y ∈ C([0,∞);Y ),

(c)
[
x(t)
u(t)

]
∈ D(S) for all t > 0,

(d) (4.11) holds.

A triple (x, u, y) is called a generalized solution of (4.11)
on [0,∞) if

(e) x ∈ C([0,∞);X),

(f) u ∈ L2
loc([0,∞);U), y ∈ L2

loc([0,∞);Y ),

(g) there exists a sequence (xk, uk, yk) of classical solu-
tions of (4.11) such that xn → x in C([0,∞);X),
uk → u inL2

loc([0,∞);U), yk → y inL2
loc([0,∞);Y ).

Here, by uk → u in L2
loc([0,∞);U) we mean that

P[0,τ ]uk → P[0,τ ]u in L2([0, τ ];U) for every τ > 0, and
of course similarly for yk → y.

We remark that it follows easily from conditions (a)–(d)
above that every classical solution of (4.11) on [0,∞)
also satisfies

(h) [ xu ] ∈ C([0,∞);D(S)),

where the continuity is with respect to the graph norm
of S on D(S). In the case when S is a system node, this
graph norm is equivalent to the norm in (4.5).

The following proposition guarantees that for a system
node, we have plenty of classical solutions of the system
equation (4.11), or equivalently (4.12).

Proposition 4.3 Let Σnode be a system node on
(U,X, Y ). If u ∈ C2([0,∞);U) and

[ x0

u(0)

]
∈ D(C&D) ,

then the equations (4.12) have a unique classical solution
(x, u, y) satisfying x(0) = x0. Moreover, this classical
solution satisfies

x ∈ C2([0,∞);X−1) .

If u has compact support, then y has a Laplace transform
and (2.2) holds on Cω0(T).
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For the proof we refer to Lemma 4.7.8 in [65] or Propo-
sition 4.2.11 in [73] (various versions of (parts of) this
proposition can be found in the literature). Actually, the
last sentence of the proposition is not in the cited refer-
ences, but it is easy to prove.

Let us denote byD the space of all the pairs (x0, u) ∈ X×
L2([0,∞);U) which satisfy the assumptions of Proposi-
tion 4.3. Notice that D is dense in X × L2([0,∞);U).
Hence, the corresponding space Dτ of pairs (x0,P[0,τ ]u)

is dense in X×L2([0, τ ];U). The last proposition allows
us to define the operators Στ fromDτ toX×L2([0, τ ], Y )
such that for any solution of (4.12) and for any τ > 0,[

x(τ)

Pτy

]
= Στ

[
x(0)

Pτu

]
. (4.13)

Definition 4.4 The system node Σnode is called well-
posed if for some (hence, for every) τ > 0, the operator
Στ from (4.13) has a continuous extension

Στ ∈ L(X × L2([0, τ ], U), X × L2([0, τ ], Y )) .

It is easy to see that Σnode is well-posed iff for some
(hence, for every) τ > 0 there is a cτ > 0 such that for
all classical solutions of (4.12),

∥x(τ)∥2X + ∥y∥2L2([0,τ ];Y )

6 c2τ

(
∥x(0)∥2X + ∥u∥2L2([0,τ ];U)

)
.

It is easy to verify that if Σnode is well-posed, then the
family Σ = (Στ )τ>0 is a well-posed linear system as
defined in Section 3. Moreover, the operators A,B,C
and the transfer function as defined in Section 3 are then
the same as defined in this section. Conversely, every
well-posed linear system determines a unique well-posed
system node, and hence it makes sense to talk about
the combined observation/feedthrough operator or about
the system operator of a well-posed linear system (as in
(4.3) and (4.7)). If Σ is a well-posed linear system with
system operator S, then the dual system (as introduced
in Theorem 3.5) has the system operator S∗. (This is not
a trivial statement, it is contained in [68, Theorem 3.5].)

Proposition 4.5 Every well-posed system node is com-
patible (as defined before (4.9)).

For the proof see [67, Theorem 3.4]. Thus, for well-posed
systems we can always find an extension of the observa-
tion operator C such that C ∈ L(Z, Y ) and hence, with
a suitable operator D ∈ L(U, Y ), the formulas (4.9) and
(4.10) hold. However, C (and hence also D) may not be
unique. (The operator C&D is unique.)

For well-posed system nodes Proposition 4.3 can be
strengthened. We shall use the following notation:

H1
loc((0,∞);U) is the space of those functions on (0,∞)

whose restriction to (0, n) is in H1((0, n);U), for every
n ∈ N.

Proposition 4.6 Let Σnode be a well-posed system node
on (U,X, Y ). Assume that u ∈ H1

loc((0,∞);U) and[ x0

u(0)

]
∈ D(C&D) . Then the equations (4.12) have a

unique classical solution (x, u, y) satisfying x(0) = x0.
Moreover, we have[

x

u

]
∈ C([0,∞);D(C&D)) , y ∈ H1

loc((0,∞);Y ) .

Using the notation Φt, Ψ∞ and F∞ from Section 3, the
functions x, u, y satisfy

x(t) = Ttx0 +Φtu, y = Ψ∞x0 + F∞u. (4.14)

For the proof see [65, Theorem 4.6.11] or [67, Theorem
3.1]. For inputs of class L2 we have generalized solutions
for (4.12) with additional properties:

Proposition 4.7 Let Σnode be a well-posed system node
on (U,X, Y ). If u ∈ L2

loc([0,∞);U) and x0 ∈ X, then
the equations in (4.12) have a unique generalized solu-
tion (x, u, y) satisfying x(0) = x0. Again the functions
x, u, y satisfy (4.14). Moreover, x is the unique fuction
in C([0,∞);X) with the property

x(t) = x0 +

∫ t

0

[Ax(σ) +Bu(σ)]dσ ∀ t > 0 ,

the integral being computed in X−1. (This implies that
x ∈ H1

loc((0,∞);X−1).)

If there exists γ > ω0(T) such that u ∈ L2
γ([0,∞);U),

then y ∈ L2
γ([0,∞);Y ) and the Laplace transforms of u

and y satisfy (2.2) for Re s > γ.

Conversely, with u and x0 as above, if x and y are given
by (4.14) then (x, u, y) is a generalized solution of (4.12).

This proposition can be derived with ease from the one
before it, combined with the material in [73, Section 4.2]
and the material around (3.17).

Let us denote by Σ the well-posed system corresponding
to the well-posed system node Σnode (as in Definition
4.4). With the notation of the last proposition, x and y
are called the state trajectory and the output function of
Σnode (or of Σ) corresponding to the initial state x0 and
the input function u.

Definition 4.8 Let U , X and Y be Hilbert spaces.
A triple of operators (A,B,C) is called well-posed on
(U,X, Y ) if there exists a well-posed linear system Σ on
(U,X, Y ) whose generating triple is (A,B,C).
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This definition is taken from Curtain and Weiss [19].
Clearly, if (A,B,C) is the generating triple of a system
node Σ and (A,B,C) is well-posed, then Σ is well-posed.
It is useful to have a list of conditions that A, B and C
have to satisfy in order to constitute a well-posed triple.
The following result was proven in [19].

Proposition 4.9 A triple of operators (A,B,C) is well-
posed on (U,X, Y ) if and only if the following conditions
are satisfied:

(1) A is the generator of an operator semigroup T onX,

(2) B ∈ L(U,X−1) is an admissible control operator for
the semigroup T,

(3) C ∈ L(X1, Y ) is an admissible observation operator
for the semigroup T,

(4) some (hence every) transfer function G associated
with (A,B,C) (i.e., satisfying (4.1)) is proper (as de-
fined after (3.17)).

In particular, it follows that if A,B satisfy the con-
ditions (1) and (2) above and C is bounded (i.e.,
C ∈ L(X,Y )), then (A,B,C) is well-posed (the proper-
ness of G(s) = C(sI − A)−1B follows from (3.8)).
The dual result is that if A,C satisfy (1) and (3)
above and B is bounded, then again (A,B,C) is well-
posed (this follows from (3.11)). In both of these cases,
limα→∞ supRe s>α ∥C(sI −A)−1B∥L(U,Y ) = 0.

Proposition 4.10 In Proposition 4.9 we may replace
the condition (4) with:

(5) some (hence every) transfer function G associated
with (A,B,C) (i.e., satisfying (4.1)) is bounded on a
vertical line {s ∈ C | Re s = α}, where α > ω0(T).

Proof. LetA,B,C be operators satisfying the conditions
(1), (2) and (3) from Proposition 4.9, as well as condi-
tion (5) above. We have to prove that this implies that
condition (4) holds. (It is obvious that (4) implies (5).)

Take s = a + ib ∈ Cα and denote z = α + ib. By inte-
grating on the horizontal segment [z, s] we have, using
(4.2),

∥G(s)−G(z)∥ 6
∫ a

α

∥G′(x+ ib)∥dx

=

∫ a

α

∥C((x+ ib)I −A)−2B∥dx.

Choose ω ∈ (ω0(T), α). We know from (3.8) and (3.11)
that for some m1,m2 > 0,

∥(C(sI −A)−1∥L(X,Y ) 6 m1√
Re s− ω

,

∥((sI −A)−1B∥L(U,X) 6 m2√
Re s− ω

hold for all s ∈ Cω. Combining these with the previous
estimate, we get

∥G(s)−G(z)∥ 6
∫ a

α

m1m2

x− ω
dx = m1m2 log

a− ω

α− ω
.

From this and the boundedness of G on the line where
Re z = α, it follows that for a suitable M > 0 the fol-
lowing (much weaker) estimate holds:

∥G(s)∥ 6 Me
√

|s| ∀ s ∈ Cα .

Applying the Phragmen-Lindelöf principle (for a half-
plane), see for instance Titchmarsh [71, p. 177], we con-
clude that G is bounded on Cα. �

5 Regular linear systems and linear feedback
theory

So far, the only formulas to express the output function
of a well-posed system (as defined in (4.14)) in terms of
A,B,C and G are (4.12) (in the time domain) or (2.2)
(in the frequency domain), and this is not satisfactory,
because (4.12) is valid only for classical solutions (see
Proposition 4.6), and even then, the operator C&D is
too complicated. We would like to have something sim-
ple, like the second equation in (2.1), and we would like
it to hold for any input of class L2, and for almost every
time. This cannot be accomplished for every well-posed
system, but it works out well for a subclass called reg-
ular linear systems. These are systems whose transfer
function has a strong limit at +∞ (along the real axis).

Definition 5.1 Let X and Y be Hilbert spaces, let T
be a strongly continuous semigroup on X and let C ∈
L(X1, Y ). The Λ-extension of C is the operator

CΛx0 = lim
λ→+∞

Cλ(λI −A)−1x0,

with its domain D(CΛ) consisting of those x0 ∈ X for
which the limits exist.

It is easy to see that CΛ is indeed an extension of C. This
extension has various interesting properties, for which
we refer to [41,76,78].

Notation. For the remainder of this section, Σ =
(T,Φ,Ψ,F) is a well-posed linear system with in-
put space U , state space X and output space Y and
Σnode = (A,B,C,G) is the corresponding system node,
as introduced after Definition 4.4, so that in particular
G is the transfer function of Σ, which is defined for
Re s > γF. We denote by C&D be the combined obser-
vation/feedthrough operator of Σ (or equivalently, of
Σnode). χ is the characteristic function of [0,∞).
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Definition 5.2 For any v ∈ U , the function yv =
F∞(χ · v) is the step response of Σ corresponding to
v. The system Σ is called regular if the following limit
exists in Y , for every v ∈ U :

lim
τ→0

1

τ

∫ τ

0

yv(σ)dσ = Dv . (5.1)

The operator D ∈ L(U, Y ) defined by (5.1) is called the
feedthrough operator of Σ.

This concept was introduced in [77]. Equivalent charac-
terizations of regularity will be given in Theorem 5.6.
The following theorem gives the desired simple represen-
tation of the output function of a regular linear system.

Theorem 5.3 If Σ is regular, and if we denote the
feedthrough operator of Σ by D, then the output y of Σ
(defined in (4.14)) is given by

y(t) = CΛx(t) +Du(t), (5.2)

for almost every t > 0 (in particular, x(t) ∈ D(CΛ) for
almost every t > 0). If t > 0 is such that both u and y
are continuous from the right at t, then (using those right
limits) (5.2) holds at t (in particular, x(t) ∈ D(CΛ)).

The proof is in [77], [79] (these papers use another ex-
tension of C, denoted CL, but CΛ is an extension of CL,
so that Theorem 5.3 follows). Theorem 5.3 implies the
following formula for F∞ for regular systems:

(F∞u)(t) = CΛ

∫ t

0

Tt−σBu(σ)dσ +Du(t), (5.3)

valid for every u ∈ L2
loc([0,∞);U) and almost every t >

0 (in particular, the integral above is inD(CΛ) for almost
every t > 0).

The operators A, B, C and D are called the generating
operators of Σ, because Σ is completely determined by
them via ẋ(t) = Ax(t) +Bu(t) and (5.2).

Remark 5.4 Theorem 5.3 has a version for the more
general context of well-posed systems. Following [67,
Theorem 3.2] we define the Λ-extension of C&D by

[C&D]Λ

[
x0

u0

]
= CΛ

[
x0 − (βI −A)−1Bu0

]
+G(β)u0 ,

where β ∈ CωT is arbitrary. Its domain D([C&D]Λ)
consists of those [ x0

u0
] ∈ X × U for which x0 − (βI −

A)−1Bu0 ∈ D(CΛ). Then y (defined in (4.14)) is given
by

y(t) = [C&D]Λ

[
x(t)

u(t)

]
,

for almost every t > 0 (in particular,
[
x(t)
u(t)

]
∈

D([C&D]Λ) for almost every t > 0).

Theorem 5.5 Assume that Σ is regular. Then G is
given by

G(s) = CΛ(sI −A)−1B +D, Re s > ω0(T)

(in particular, (sI −A)−1BU ⊂ D(CΛ)).

The proof of this theorem, as well as of the following one,
is given in [79].

We introduce a notation for angular domains in C : for
any ψ ∈ (0, π),

W(ψ) =
{
reiϕ

∣∣ r ∈ (0,∞), ϕ ∈ (−ψ,ψ)
}
.

Theorem 5.6 The following statements are equivalent:

(1) Σ is regular, i.e., for every v ∈ U the limit in (5.1)
exists.

(2) For every s ∈ ρ(A) we have that (sI − A)
−1

BU ⊂
D(CΛ) and CΛ(sI −A)

−1

B is an analytic L(U, Y )-
valued function of s on ρ(A), uniformly bounded on
any half-plane Cω with ω > ω0(T).

(3) There exists s ∈ ρ(A) such that (sI − A)
−1

BU ⊂
D(CΛ).

(4) Any state trajectory ofΣ is almost always inD(CΛ).
(5) For every v ∈ U and ψ ∈

(
0, π2

)
, G(s)v has a limit

as |s| → ∞ and s ∈ W(ψ).
(6) For every v ∈ U , G(λ)v has a limit as λ → +∞,

where λ ∈ R.

Moreover, if the limits mentioned in statements (1), (5)
and (6) above exist, then they are equal to Dv, where D
is the feedthrough operator of Σ.

In view of this theorem, a regular transfer function is
defined as a proper transfer function that has a strong
limit at +∞ (along the real axis). The classical example
of a non-regular but proper transfer function is G(s) =
cos log s, due to Morris [52]. Many more such examples
can be found in [68], but we are not aware of a “natural”
proper non-regular example stemming from a PDE with
some physical meaning.

Example 3.2 (continued). For this example it is easy
to establish (using (3.7)) that the generating triple con-
sists of A = d

dζ , D(A) = {x ∈ H1(−h, 0) | x(0) = 0},
B = δ0 (theDiracmass at zero, defined as a functional on
D(A∗) by ⟨δ0, φ⟩ = φ(0)), Cx = x(−h) for all x ∈ D(A)
and the transfer function is G(s) = e−hs. It is now clear
from the last theorem that this system is regular, having
feedthrough operator D = 0.

Example 5.7 This is a very old example taken from
[19], in which the operators are represented as infinite
matrices. Let X = l2 and U = Y = C. Define the oper-
ators A,B,C by
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A =


−1

−2

−3

. . .

 , B =


1

1

1
...

 ,

C =
[
1 1 1 · · ·

]
,

with the natural domain for A. The operators B and C
are admissible for the semigroup generated byA, but the
triple (A,B,C) is not well-posed. However, if we replace
C with

Ca =
[
1 −1 1 −1 · · ·

]
,

then (A,B,Ca) is well posed and any transfer function
associated with this triple is regular. Thus, if we choose
D = 0, the equations ẋ(t) = Ax(t) + Bu(t) and y(t) =
Ca

Λx(t) determine a regular linear system. For the proofs
see [19, Section 6].

Example 5.8 Consider the following system (taken
from [4]) modeling an elastic string occupying a seg-
ment [0, 1] under the action of a pointwise force located
at ξ ∈ (0, 1), where the measured output is the velocity
of the string at x = ξ:

ẅ(x, t)− wxx(x, t) + u(t) δξ = 0,

w(0, t) = w(1, t) = 0,

w(x, 0) = w0(x), ẇ(x, 0) = w1(x),

y(t) =
d

dt
w(ξ, t),

(5.4)

where δξ is the Dirac mass at ξ and w(x, t) stands for the
transverse deflection of the string at the point x ∈ (0, 1)
and time t > 0. The state of the system is [wẇ ].

Proposition 5.9 Equations (5.4) define a regular sys-
tem with input and output spaces U = Y = C, state space
X = H1

0(0, 1)× L2[0, 1] and transfer function

G(s) =
sinh(sξ) sinh[s(ξ − 1)]

sinh(s)
∀ s ∈ C0 .

Sketch of the proof. We will omit the determination of
the operators A,B,C, and concentrate merely on estab-
lishing regularity. Assume that w0 = 0 and w1 = 0. Let
ŵ be the Laplace transform of w with respect to t. It can
be easily checked that

s2ŵ(x, s)− ŵxx(x, s) = 0, (5.5)

for x ∈ (0, ξ) ∪ (ξ, 1) and Re s > 0,

ŵ(0, s) = ŵ(1, s) = 0 (Re s > 0), (5.6)

[ŵ(·, s)]ξ(s) = 0, [ŵx(·, s)]ξ = û(s), (5.7)

where [g]ξ the jump of the function g at the point ξ.
From (5.5) and (5.6) it follows that

ŵ(x, s) =

{
K1 sinh(λx), x ∈ (0, ξ),

K2 sinh[λ(x− 1)], x ∈ (ξ, 1),

where K1, K2 are constants.

Consequently, the solutions of (5.5)-(5.7) have the fol-
lowing form:

ŵ(x, s) =

 1
s

sinh[s(ξ−1)] sinh(sx)
sinh(s) û(s), x ∈ (0, ξ),

1
s

sinh(sξ) sinh[s(x−1)]
sinh(s) û(s), x ∈ (ξ, 1).

It follows that
sŵ(ξ, s) = G(s)û(s),

where G is as given in the proposition. We can easily
check that for β > 0 large enough, supRe s>β |G(s)| 6
1, so that G is proper. It is also easy to check that
lims→∞ G(s) = −1/2, so that G (and hence the sys-
tem) is regular. �

Remark 5.10 The above example has a natural n-
dimensional counterpart, n > 2, where we replace
[0, 1] with a bounded domain Ω ⊂ Rn with smooth

boundary and we replace the operator d2

dx2 with the
Dirichlet Laplacian. The point ξ where the control
acts is in Ω and the observation is the velocity at ξ.
By analogy with the last example, the state space
should be X = H1

0(Ω) × L2(Ω) and we should have
X−1 = L2(Ω) × H−1(Ω). However, since δξ ∈ H−s(Ω)
holds only for s > n

2 , it is easy to verify that the given
equations do not correspond to a system node, and we
cannot “save” them by changing the state space. In
particular, there is no way to formulate these equations
as a well-posed system.

Example 5.11 A non-trivial example of regular sys-
tem described by PDEs in several space dimensions is
the wave equation on a bounded domain with smooth
boundary, with Dirichlet control and colocated observa-
tion:

z̈ = ∆z in Ω× (0,∞), (5.8)

z = u on ∂Ω× (0,∞), (5.9)

z(x, 0) = z0(x), ż(x, 0) = w0(x) for x ∈ Ω . (5.10)

The input of this system is the function u in (5.9), while
the output is

y = − ∂

∂ν
(Gż) on ∂Ω× (0,∞) . (5.11)

Here ν is the unit normal vector of ∂Ω pointing towards
the exterior of Ω and the operatorG : H−1(Ω) → H1

0(Ω)
is defined by

Gf = ϕ iff ϕ ∈ H1
0(Ω) and −∆ϕ = f ,
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so that, in a certain sense, G = −∆−1. It has been
proved in Ammari [3], using microlocal analysis, that
(5.8)–(5.10) determine a well-posed system with input
and output space L2(∂Ω) and with state space X =
L2(Ω) × H−1(Ω). A different proof has been offered in
Lasiecka and Triggiani [43]. The fact that this system is
regular, with D = I, has been established in Guo and
Zhang [29]. The method used in [29] combines Fourier
analysis and pseudo-differential operators, after a local
change of variables reducing the problem to a variable
coefficients PDE in a half-space.

In recent years, many other systems described by PDEs
in Rn have been proven to be regular, especially by Bao-
Zhu Guo and his collaborators, see [14–17,27–29,86].
They have used advanced PDE techniques to prove reg-
ularity for systems involving wave, heat, Euler-Bernoulli
beam, elasticity and Schrödinger equations, with con-
stant or variable coefficients. The paper [17] uses Rie-
mannian geometry to prove the regularity of Naghdi’s
shell equations with boundary control.

At the same time, sophisticated well-posedness and reg-
ularity results for systems described by one-dimensional
PDEs have been developed in Zwart et al [89]. Bounit
and Hadd [11] have proved that any well-posed system
governed by functional differential equations of neutral
type is regular.

Remark 5.12 The weak Λ-extension of C, denoted
CΛw, is defined similarly as CΛ, but with a weak limit,
so that its domain is larger. Weak regularity is defined
similarly as regularity, but with a weak limit, see [67].
If Y is finite-dimensional, then of course there is no
difference between regularity and weak regularity. Ev-
erything we said about regularity and CΛ (in particular,
the three theorems that we have stated up to here in
this section) remains valid for the more general concept
of weak regularity and for CΛw, if we replace limits in
the norm of Y with weak limits. It is clear that if a
well-posed system is weakly regular, then its dual is also
weakly regular. For regular systems, the dual need not
be regular, see Example 8.1 in [68]. The main reason
why we need the concept of regularity (instead of using
just weak regularity) is the feedback theory from [78]
and its applications. This theory has substantial parts
that we cannot extend to weakly regular systems.

The degree of unboundedness of an operator B ∈
L(U,X−1), denoted α(B), is the infimum of those α > 0
for which there exist positive constants δ, ω such that

∥(λI −A)−1B∥L(U,X) 6 δ

λ1−α
∀λ ∈ (ω,∞). (5.12)

It is clear from (3.8) that for any admissible control op-
erator B we have α(B) 6 1

2 , and if B is bounded then
α(B) = 0. The degree of unboundedness of an operator

C ∈ L(X1, Y ), denoted α(C), is defined similarly, by re-
placing in (5.12) ∥(λI − A)−1B∥ with ∥C(λI − A)−1∥.
Then it follows from (3.11) that for any admissible ob-
servation operator C we have α(C) 6 1

2 , and if C is
bounded then α(C) = 0. The following result is Propo-
sition 4.1 from Curtain and Weiss [20].

Proposition 5.13 Let Σ be a well-posed linear system
with control operator B, observation operator C and
transfer function G. If

α(B) + α(C) < 1 ,

then Σ is regular. In fact, limλ→+∞ G(λ) exists in the
operator norm.

We now recall some static output feedback theory. We
use the standing notation of this section, so that Σ is a
well-posed system andU, X, Y, A, B, C,G(s) have their
usual meaning. We take a feedback operatorK ∈ L(Y, U)
and we are interested in the closed-loop system ΣK that
is obtained by imposing the “static output feedback law”
u = Ky+v, where v is the new input function, as shown
in Figure 2. The state and output of ΣK should be the
same as for Σ, as long as their inputs are related by u =
Ky + v. The trouble with the feedback interconnection
from Figure 2 is that it is not necessarily well-posed
- sometimes it cannot even be defined. To avoid such
situations, we have to introduce the following concept:

6+
f-+ - Σ -

�K

v u y

Fig. 2. A well-posed linear system Σ with output feedback
via K. If K is admissible, then this is a new well-posed linear
system ΣK , called the closed-loop system.

—————————–

Definition 5.14 K ∈ L(Y, U) is called an admissible
feedback operator forΣ (or forG) if I−GK is invertible
on some right half-plane and its inverse is proper.

In this definition, I −GK may be replaced equivalently
with I−KG. We present some results about well-posed
systems with admissible feedback following Weiss [78].

Proposition 5.15 If K is admissible, then the feedback
connection from Figure 2 determines a new well-posed
linear systemΣK = (ΣK

τ )τ>0, defined as follows: for each
τ > 0, ΣK

τ is the unique solution of

ΣK
τ − Στ = Στ

[
0 0

0 K

]
ΣK

τ . (5.13)
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Moreover, the transfer function of ΣK , denoted by GK ,
is given by

GK = G(I −KG)−1 = (I −GK)−1G

and we have the commutation property

Στ

[
0 0

0 K

]
ΣK

τ = ΣK
τ

[
0 0

0 K

]
Στ .

We denote by (AK , BK , CK) the generating triple of
ΣK . Note that (unlessB is bounded) the domainD(AK)
may be different from D(A) and similarly, unless C is
bounded, the space XK

−1 (the completion of X with re-

spect to the norm ∥x∥K−1 = ∥(βI − AK)−1x∥) may be
different from X−1.

Theorem 5.16 With the above notation, with admissi-
ble K, the following identities are valid on the right half-
plane where Re s > max {ω0(T), ω0(TK)}:

[I −G(s)K]CK(sI −AK )−1 = C(sI −A)−1,

(sI −AK)−1BK [I −KG(s)] = (sI −A)−1B.

For all x ∈ D(AK) and for all z ∈ D(A),

AKx =
(
A+BKCK

)
x, Az =

(
AK −BKKC

)
z ,

where in the first formula, A is regarded as an operator
fromX toX−1, and in the second formula,AK is regarded
as an operator from X to XK

−1.

Theorem 5.17 With the above notation, with admissi-
ble K, assume that Σ is regular with feedthrough oper-
ator D. Then I − DK (and hence also I −KD) is left
invertible. The closed-loop system ΣK is regular if and
only if I − DK (and hence also I − KD) is invertible.
In this case, denoting the feedthrough operator of ΣK by
DK , the operators AK , BK , CK , DK can be expressed in
terms of A, B, C, D:

AKx =
[
A+BK(I −DK)−1CΛ

]
x,

CKx = (I −DK)−1CΛx,

for all x ∈ D(AK), where

D(AK) = {q ∈ D(CΛ) | (A+BK(I−DK)−1CΛ)q ∈ X}.

Moreover, we have

D(CΛ
K) = D(CΛ) , CΛ

K = (I −DK)−1CΛ .

Regarding the operators BK and DK we have

BK = B(I −KD)−1 ,

DK = D(I −KD)−1 = (I −DK)−1D.

The above formula for BK is problematic, because B
and BK map into different spaces, so that at first sight
it looks like the formula makes no sense. However, there
is a natural way to identify a part of X−1 with a part of
XK

−1, explained in [78, Section 7], and after this identifi-

cation the formula for BK makes sense. For other results
about the closed-loop system we refer to [78] and also to
Staffans [65] and Xu and Weiss [88].

The motivation for introducing regular linear systems
has been the simple structure of the output equation
(as given in Theorem 5.3) and the simple formula for
the transfer function (as given in Theorem 5.5), be-
cause these allow us to try to replicate classical ideas
from finite-dimensional control theory in an infinite-
dimensional context. Good examples of this being done
are the papers [81,21] on Luenberger observers, dynamic
stabilization and coprime factorization. Regular systems
are also used in optimal control, see [18] and the refer-
ences therein, the theory of exponential stabilization by
colocated feedback in [20], in the state feedback regula-
tor theory from [53], in the PI controller theory of [46]
(and the references therein) and others. The paper [47]
explores the robust stability of feedback systems with
respect to small delays in the loop, and here regularity is
used not for the reasons mentioned above, but because
it enables certain proofs in the frequency domain.

6 Passive linear systems

The concept of passive system and its importance has
been recalled in Section 2 (around (2.7)) and this mate-
rial remains valid in the linear infinite-dimensional con-
text. Many particular quadratic storage functions and
supply rates are of interest (see, for instance, [65]) and
they may depend on all sorts of weighting operators. In
this survey we shall consider only half the norm squared
as a storage function, and two particular supply rates,
leading to impedance passive systems and to scattering
passive ones. Impedance passivity appears more natu-
rally in modeling, but it has a big drawback: it does not
imply well-posedness. In finite dimensions this is not an
issue, but in infinite-dimensional systems, if we do not
have well-posedness, it is sometimes more convenient
to transform impedance passive systems into scattering
passive ones via the external Cayley transformation de-
scribed in (2.11).

Definition 6.1 The system node Σnode = (A,B,C,G)
on (U,X, Y ) is called impedance passive if Y = U ′ (the
dual space of U) and all the classical solutions of (4.11)
satisfy, for all t > 0,

d

dt
∥x(t)∥2 6 2Re ⟨u(t), y(t)⟩U,Y . (6.1)

An equivalent condition is that all the generalized solu-
tions of (4.11) satisfy, for every τ > 0,
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∥x(τ)∥2 − ∥x(0)∥2 6 2

∫ τ

0

Re ⟨u(t), y(t)⟩U,Y dt . (6.2)

Often U ′ is identified with U . In finite dimensions, we
have already presented this concept at (2.8). Impedance
passive systems appear frequently as models of physical
systems, and then often 1

2∥x∥
2 represents the energy of

the system and Re ⟨u, y⟩ is the power flowing into it. For
example, if a component of u is a voltage (or a velocity)
then the corresponding component of y is normally a
current (or a force).

Theorem 2.4 remains valid in the context of system nodes
(in fact it has been proved in this context). The precise
statement is the following result, that combines elements
from Theorem 4.2, Corollary 4.4 and Theorem 4.6 in
Staffans [63].

Theorem 6.2 If we identify U ′ = U , then Σnode is
impedance passive if and only if the operator

T =

[
A B

−C&D

]
, D(T ) = D(C&D) (6.3)

is dissipative (equivalently, m-dissipative) on X × U .
Moreover, we always have equality in (6.1) if and only
if Re ⟨T [ xv ] , [

x
v ]⟩ = 0 for all [ xv ] ∈ D(C&D).

We consider this to be the most significant characteri-
zation of impedance passive system nodes. We refer to
[1,63,64] for alternative characterizations and related re-
sults. The transfer function of an impedance passive sys-
tem node is always positive, as defined in (2.9), but it
need not be proper. It is easy to see (by taking u = 0)
that the semigroup of an impedance passive system node
is always contractive. A generalization of the concept
of impedance passive system node has been given in
[69]: the idea is to keep the requirement that T is m-
dissipative but to drop any other assumption, so that we
are no longer dealing with a system node.

Theorem 6.3 Let Σnode = (A,B,C,G) be an impe-
dance passive system node. If G is bounded on a vertical
line in C0, then Σnode is well-posed.

This theorem is due to Staffans [63, Theorem 5.1]. The
converse is obviously true, if Σnode is well-posed then G
is bounded on any half-plane Cα with α > 0.

We now begin to describe several classes of system nodes
with a special structure, that occur often in modeling.
These are useful because once we recognize that a system
belongs to one of these special classes, we can use readily
available results about the class.

Special structure “undamped second order”. Let
H be a Hilbert space and assume that A0 : D(A0)→H
is positive and boundedly invertible operator. We intro-
duce the scale of Hilbert spaces Hα, α ∈ R, as follows:

for every α > 0, Hα = D(Aα
0 ), with the norm ∥z∥α =

∥Aα
0 z∥H . The space H−α is defined by duality with re-

spect to the pivot space H as follows: H−α = H∗
α for

α > 0. Equivalently, H−α is the completion of H with
respect to the norm ∥z∥−α =

∥∥A−α
0 z

∥∥
H
. The operator

A0 can be extended (or restricted) to eachHα, such that
it becomes a bounded operator

A0 : Hα →Hα−1 ∀ α ∈ R .

The second ingredient needed for our construction is a
bounded linear operator C0 : H 1

2
→U , where U is an-

other Hilbert space. We identify U with its dual and we
denote B0 = C∗

0 , so that B0 : U→H− 1
2
. We consider

the system described by

z̈(t) +A0z(t) = B0u(t) , (6.4)

y(t) =
d

dt
C0z(t) , (6.5)

where t ∈ [0,∞) is the time. The equation (6.4) is un-
derstood as an equation in H− 1

2
. Most of the linear

equations modelling the undamped vibrations of elas-
tic structures can be written in the form (6.4), where z
stands for the displacement field. The state x(t) of this
system, its state space X and its semigroup generator
A : H1 ×H 1

2
→ X are defined by

x(t) =

[
z(t)

ż(t)

]
, X = H 1

2
×H, A =

[
0 I

−A0 0

]
. (6.6)

The observation operator is C =
[
0 C0

]
, defined on

D(A) = X1 = H1 × H 1
2
, while B = C∗. The operator

C has a natural extension C : H 1
2
×H 1

2
→U , given by

the same formula. It is easy to check that the space Z
defined in (4.8) is contained in H 1

2
×H 1

2
. Therefore, we

can define the L(U)-valued function G by

G(s) = C(sI−A)−1B = sC0(s
2I+A0)

−1B0 ∀s ∈ C0,

and G is a transfer function associated with the triple
(A,B,C), i.e., it satisfies (4.1). It is now easy to see that
(6.4) and (6.5) are in fact the system equations (4.12),
where C&D is defined by C&D [ xv ] = Cx.

Proposition 6.4 (A,B,C,G) is an impedance passive
system node on (U,X,U).

This can be checked by an easy computation. We men-
tion that in this case T from (6.3) is skew-adjoint on
H 1

2
×H × U .

The above class of systems has been studied on Am-
mari and Tucsnak [5] where, in particular, the version of
Theorem 6.3 for this class was given. The main focus in
[5] was the stabilization for systems in this class using
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static output feedback. The output feedback stabiliza-
tion of various systems modeling elastic structures (such
as Euler-Bernoulli and Rayleigh beams) has been stud-
ied in this framework in Aalto and Malinen [1], [5], Am-
mari et al [4], Guo and Luo [26], Weiss [80] and others.

Special structure “parabolic well-posed”. We now
move to another simple class of impedance passive sys-
tems, which are usually associated to parabolic PDEs.
These systems are well-posed and even regular. The con-
struction is as follows: Let H be a Hilbert space and
let A0 : D(A0) → H be a strictly positive operator.
For α ∈ R we define the scale of spaces Hα as we
did after Theorem 6.3. Let U and Y be Hilbert spaces,
let B ∈ L(U,H− 1

2
) (so that B∗ ∈ L(H 1

2
, U ′)) and let

C ∈ L(H 1
2
, Y ). We denote A = −A0, so that A gener-

ates an analytic operator semigroup on H. We denote
by C the restriction of C to D(A) = H1. The transfer
function associated to A, B and C is

G(s) = C(sI −A)−1B ∀ s ∈ C0

and it is easy to see that Σnode = (A,B,C,G) is a system
node on (U,X, Y ).

Proposition 6.5 With the above notation, Σnode is
well-posed and the corresponding well-posed system Σ is
regular, with feedthrough operator D = 0. Moreover, if z
is the state trajectory of Σ corresponding to the initial
state z0 ∈ H and the input function u ∈ L2

loc([0,∞);U),
as in Proposition 4.7, then

∥z(t)∥2 + 2

∫ t

0

∥z(σ)∥21
2
dσ

= ∥z0∥2 + 2Re

∫ t

0

⟨u(σ), B∗z(σ)⟩U,U ′ dσ (6.7)

holds for all t > 0. Thus, if Y = U ′ and C = B∗, then
Σ is impedance passive.

Proof. Take z0 ∈ H and u ∈ C2([0,∞);U) such
that Az0 + Bu(0) ∈ H, which is equivalent to[ z0
u(0)

]
∈ D(C&D). We know from Proposition 4.3 that

the equation

ż(t) = Az(t) +Bu(t) , z(0) = z0

has a unique classical solution which is in C1([0,∞);H).
This fact and the above differential equation imply that
for every t > 0 we have Az(t) ∈ H− 1

2
so that z(t) ∈ H 1

2
.

It follows from the above facts that the function t 7→
∥z(t)∥2 is continuously differentiable and (denoting by
∥B∥ the norm of B in L(U,H− 1

2
))

d

dt
∥z(t)∥2 = 2Re ⟨z(t), ż(t)⟩ = −2⟨z(t), A0z(t)⟩

+ 2Re ⟨z(t), Bu(t)⟩H 1
2
,H− 1

2

6 −2∥z(t)∥21
2
+ ∥z(t)∥21

2

+ ∥Bu(t)∥2− 1
2
6 −∥z(t)∥21

2
+ ∥B∥2∥u(t)∥2U . (6.8)

Integrating the above inequality on [0, τ ], we obtain that
for every τ > 0

∥z(τ)∥2 +
∫ t

0

∥z(t)∥21
2
dt 6 ∥z0∥2 + ∥B∥2

∫ τ

0

∥u(t)∥2U dt .

Denote y(t) = Cz(t). Using that ∥y(t)∥ 6 ∥C∥∥z(t)∥ 1
2
,

the last estimate implies that

∥z(τ)∥2 + 1

∥C∥2

∫ τ

0

∥y(t)∥2dt

6 ∥z0∥2 + ∥B∥2
∫ τ

0

∥u(t)∥2U dt .

According to the comments after Definition 4.4, Σnode

is well-posed.

Now we prove the regularity of Σ. Denoting

B̃ = A
−1/2
0 B ∈ L(U,H) , C̃ = CA

−1/2
0 ∈ L(H,Y ) ,

we obtain

G(s) = C̃(−A)(sI −A)−1B̃ .

We decompose −A(sI − A)−1 = I − s(sI − A)−1. The
second term is well known to converge strongly to I as
s→+∞ (for real s), so that lims→+∞A(sI−A)−1z = 0
for every z ∈ H. Thus, we have lims→+∞ G(s)v = 0
for every v ∈ U , so that Σ is regular with feedthrough
operator zero.

Integrating (6.8) we obtain that (6.7) holds for all pairs
(z0, u) ∈ H × C2([0, t];U) such that Az0 + Bu(0) ∈
H. This set of pairs is dense in H × L2([0, t];U), as we
have explained before (4.13). Therefore (6.7) holds for
all (z0, u) ∈ H × L2([0, t];U). In particular, if Y = U ′

and C = B∗, then we get (6.2). �

The above result is partially contained in Lemma 3.3
and Theorem 3.1 of Bensoussan et al [10]. The regularity
part is taken from [14, Section 7].

We mention that the well-posedness part of the last
proposition could have been obtained also from Theo-
rem 4.9. Indeed, B and C are admissible according to
[73, Proposition 5.1.3] and duality. Finally, the proper-
ness of G follows from the estimate ∥(sI −A)−1∥ 6 M

|s|
for analytic semigroups, using the computations from
the proof of regularity given above.

Wemention that a related class of systems, whereA is re-
placed with iA, has been analyzed inWen, Chai and Guo
[86, Section 5]. For this class of system nodes, they have
shown that if the input-output map is bounded, then
the system is well-posed and regular, with feedthrough
operator zero.
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Example 6.6 A system described byPDEswhich fits in
the above framework is the heat equation on a bounded
domain Ω ⊂ Rn with C2 boundary, with Neumann con-
trol and Dirichlet observation. The well-posedness and
regularity of this system has been studied in Byrnes et
al [14]. The equations of the system are

ż = ∆z in Ω× (0,∞),

∂z

∂ν
= u, y = z on ∂Ω× (0,∞),

z(x, 0) = z0(x) for x ∈ Ω .

The input of this system is u, while the output is y. We
choose the state space X = L2(Ω), the output space

Y = H 1
2 (∂Ω) and the input space U = H− 1

2 (∂Ω), so
that U is the dual of Y with respect to the pivot space
L2(∂Ω), hence Y = U ′. It has been shown in [14] that,
with a suitable definition of A and B, this system fits
into the framework of Proposition 6.5, with C = B∗.

A feedback theory for impedance passive system nodes,
which does not fit into the framework of the well-posed
feedback theory recalled at the end of Section 3, has
been developed in [1]. This theory can handle systems
that are composed by interconnecting a finite number
of impedance passive systems of boundary control type.
Under a certain surjectivity condition, it is shown that
the composite system is again an impedance passive sys-
tem node of boundary control type.

Definition 6.7 The system node Σnode = (A,B,C,G)
is called scattering passive if all the classical solutions of
(4.11) satisfy, for all > 0,

d

dt
∥x(t)∥2 6 ∥u(t)∥2 − ∥y(t)∥2 . (6.9)

An equivalent condition is that all the generalized solu-
tions of (4.11) satisfy, for every τ > 0,

∥x(τ)∥2 +
∫ τ

0

∥y(t)∥2dt

6 ∥x(0)∥2 +
∫ τ

0

∥u(t)∥2dt. (6.10)

A third equivalent condition is that the operators Στ

from (4.13) are contractions, so that obviously Σnode

is well-posed. Then the corresponding well-posed linear
system Σ is called a scattering passive linear system.
Such systems have been studied in [8,51,63–65,67,69]
and other references. (In [51] and [67] such systems were
called dissipative.) If Σ is scattering passive then so is its
dual Σd. Indeed, this follows easily from (3.18), since the
operators Rτ are unitary. It is clear that the semigroup
of a scattering passive system is always contractive. It is
also known that its transfer function G is always Schur,
meaning that ∥G(s)∥ 6 1 for all s ∈ C0.

Various characterizations of scattering passive systems
have been given in [50,63–65,67–69,82]. These tend to be
complicated block operator inequalities, sometimes in-
volving a Cayley transformation. We offer below a crite-
rion that looks simpler, andmay be new. It is the infinite-
dimensional version of Theorem 2.5 and it is related to
the main result of Staffans [66].

Theorem 6.8 The system node Σnode = (A,B,C,G)
on (U,X, Y ) is scattering passive (hence well-posed) if
and only if the operator

T̃ =


A B 0

0 −1
2 0

C&D−1
2

 , D(T̃ ) = D(C&D)× Y, (6.11)

is dissipative (equivalently, m-dissipative) onX×U×Y .

We mention that if it is known that Σnode is compatible,
then with the decomposition of C&D from (4.9) the last

line of T̃ becomes [C D −1
2 ]. Another remark is that the

above theorem does not have a “moreover” part similar
to Theorem 6.2, because T̃ cannot possibly have the
property Re ⟨ T̃ q, q⟩ = 0 for all q ∈ D(T̃ ).

Proof. The idea of the proof is the same as for Theorem

2.5. We embed Σnode into a larger system node Σ̃node on
(U×Y,X, Y ×Y ) by keeping u (the input signal of Σnode)
as the first input, introducing a second input v which has
no influence on Σnode and defining two outputs y1 = 1

2u

and y2 = 1
2v−y, where y is the output of Σnode. Formally,

Σ̃node = (A, B̃, C̃, G̃), where B̃ = [B 0], C̃ =
[

0
−C

]
and G̃ =

[
1
2 I 0

−G 1
2 I

]
. The classical solutions of Σ̃node are

precisely the triples
(
x, [ uv ] ,

[
1
2u

1
2 v−y

])
where (x, u, y) is

a classical solution of Σnode and v ∈ C([0,∞);Y ).

Suppose that T̃ is dissipative, then it follows from The-

orem 6.2 that Σ̃node is impedance passive. Hence, along
classical solutions (x, u, y) of Σnode and for any v ∈
C([0,∞);Y ) we have that

d

dt
∥x(t)∥2 6 2Re

[
⟨u(t), 1

2
u(t)⟩+ ⟨v(t), 1

2
v(t)− y(t)⟩

]
.

In particular, by choosing v = y we get precisely (6.9).

Conversely, suppose that (6.9) holds along any classical
solution of Σnode. Using that −1

2∥y0∥
2 6 ⟨v0, 12v0 − y0⟩

for any v0, y0 ∈ Y , we obtain that the first estimate

in this proof holds, so that Σ̃node is impedance passive.
According to Theorem 6.2 T̃ is m-dissipative. �

Definition 6.9 The system nodeΣnode is called scatter-
ing energy preserving if we always have equality in (6.9)
(or equivalently, in (6.10)). The corresponding scattering
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passive system Σ is then scattering energy preserving.
(Thus, Σ is scattering energy preserving iff the operators
Στ are isometric for all τ > 0.)

Definition 6.10 The system Σ is called scattering con-
servative if both Σ and its dual Σd are scattering energy
preserving. (Thus, Σ is scattering conservative iff the op-
erators Στ are unitary for all τ > 0.) A scattering con-
servative system node is, by definition, a system node
that corresponds to a scattering conservative system.

The above terminology was introduced by Arov and
Nudelman [8]. For the theory of conservative systems
we refer also to [7,45,50,51,63,68,72,83,84]. In particular,
relatively simple necessary and sufficient conditions for
a system node to be scattering conservative have been
established in [51].

There is an elegant way to transform any impedance
passive system node Σimp into a scattering passive one
Σsca, called the external Cayley transformation, infor-
mally described by (2.11) and Figure 1. All the discussion
in Section 2 remains valid, and Proposition 2.6 remains
true, with the obvious modification of writing [C&D]imp

in place of [Cimp Dimp], and similarly for [C&D]sca. We
have to be careful to define the domain of Eimp: this op-
erator now maps D([C&D]imp) onto D([C&D]sca). For
the proof and a generalization we refer to [69, Section 5].

Special structure “from thin air”. Let us explain
the origin of the strange name of this class, as used in
[72] and [84]. We have announced results about this spe-
cial structure in our survey [83], when conservative sys-
tems were a new and mysterious topic initiated in [8].
It was difficult at that time to find nontrivial examples.
We have come across this special structure and we were
enthusiastic to have found an easy and unlimited source
to produce examples of conservative systems from very
simple ingredients, like “out of thin air”. It turns out
that this class appears naturally in mathematical mod-
els of vibrating systems with damping.

Let the Hilbert spaces H and U , the positive operator
A0 : D(A0)→H and the operatorsB0 = C∗

0 be as for the
special structure “undamped second order”, discussed a
little earlier. We consider the system described by

z̈(t) +A0z(t) +
1

2
B0

d

dt
C0z(t) = B0u(t) , (6.12)

y(t) = − d

dt
C0z(t) + u(t) . (6.13)

Equation (6.12) differs from (6.4) by the presence of the
damping term B0

d
dtC0z(t), which is sometimes infor-

mally written as B0C0ż(t). The state x(t) of this system
and its state space X are defined as in (6.6).

For classical solutions, we can rewrite the equations
(6.12), (6.13) as a first order system as follows:

{
ẋ(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t)− u(t) ,
(6.14)

where

A =

[
0 I

−A0 −1
2B0C0

]
, B =

[
0

B0

]
,

D(A) =

{[
z

w

]
∈ H 1

2
×H 1

2

∣∣∣∣ A0z +
1

2
B0C0w ∈ H

}
,

C : H 1
2
×H 1

2
→ U , C = [0 C0 ] .

It is not difficult to check that A is m-dissipative. We
denote by C the restriction of C to D(A) and for all
s ∈ C0 we define

G(s) = C(sI −A)−1B − I

= C0s
(
s2I +A0 +

s

2
B0C0

)−1

B0 − I .

Proposition 6.11 With our assumptions, (A,B,C,G)
is a scattering conservative system node on (U,X,U).

For the proof we refer to [84]. Many more results
about this class of systems and generalizations are in
[26,34,50,69,72,80,82,84]. This class can be obtained
from the class “undamped second order” via the exter-
nal Cayley transformation.

Example 6.12 This is a simplified version of the wave
equation example appearing in [84, Section 7]. We as-
sume that Ω ⊂ Rn is a bounded domain with Lipschitz
boundary Γ. Γ0 and Γ1 are nonempty open subsets of
Γ such that Γ0 ∩ Γ1 = ∅ and Γ0 ∪ Γ1 = Γ. A function
b ∈ L∞(Γ1) is given such that b(x) ̸= 0 for almost every
x ∈ Γ1. The equations of the system are

z̈(x, t) = ∆z(x, t) on Ω× [0,∞),

z(x, t) = 0 on Γ0 × [0,∞),

∂
∂ν z(x, t) + |b(x)|2 ż(x, t)

=
√
2 · b(x)u(x, t) on Γ1 × [0,∞),

∂
∂ν z(x, t)− |b(x)|2 ż(x, t)

=
√
2 · b(x)y(x, t) on Γ1 × [0,∞),

z(x, 0) = z0(x), ż(x, 0) = w0(x) on Ω,

where u is the input function and y is the output func-
tion. The functions z0 and w0 are the initial state of the
system. The part Γ0 of the boundary is just reflecting
waves, while the active portion Γ1 is where both the ob-
servation and the control take place. We may think of
u as the “incoming wave” (which brings energy into the
system) and of y as the “outgoing wave”.
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Define the Hilbert spaces H = L2(Ω) and U = L2(Γ1).
For the spaceH1

Γ0
(Ω) see [73, Section 13.6]. After a suit-

able definition of the Neumann trace operator γ1 on the
set Γ1 (see [84] for the details), we define A0 : D(A0) ⊂
L2(Ω)→H by

A0z = −∆z ,

D(A0) = {z ∈ H1
Γ0
(Ω) | ∆z ∈ H, γ1z = 0} .

Then A0 is positive and boundedly invertible. We have

H 1
2
= D(A

1
2
0 ) = H1

Γ0
(Ω). It was shown in [84] that this

system fits into the “from thin air” framework of (6.12)
and (6.13). According to Proposition 6.11, this is a con-
servative linear system with input and output space U
and state space H 1

2
×H. The regularity of this system

seems to be an open question.

Special structure “Maxwell”. This is a generaliza-
tion of the structure “from thin air” discussed before.
The generalization was needed to fit in Maxwell’s equa-
tions on a bounded domain, with control and observa-
tion from the “active” part of the boundary, and a su-
perconductor in the “reflecting” part of the boundary,
with currents in the domain. For lack of space, we refer
to [69] and [82] for the details.

7 Well-posed systems with nonlinear feedback

In this section we introduce a well-posedness concept for
the closed-loop system obtained from a well-posed linear
systems with nonlinear static feedback from its output
to one of its inputs. We show that if the nonlinearity
satisfies a certain Lipschitz estimate, then the closed-
loop system is well-posed.

Let U1, U2, X and Y be Hilbert spaces, and U = U1 ⊕
U2. Let Σ

P = (T,Φ,Ψ,F) be a well-posed linear system
with input space U , state space X and output space
Y . The operators Φτ and Fτ can be decomposed into
blocks according to the above decomposition of U : Φτ =
[Φ1

τ Φ2
τ ] and Fτ = [F1

τ F2
τ ]. The transfer function of ΣP

can be decomposed similarly: G = [G1 G2]. As before,
ω0(T) is the growth bound of T.

Let N : Y →U2 be a Lipschitz map with Lipschitz con-
stant L. The feedback interconnection of ΣP and N , de-
noted by ΣN , is the dynamic system obtained by im-
posing that u2, the second component of u, is obtained
from y via N :

u2(t) = Ny(t) ∀ t ∈ [0,∞) .

The system ΣN , shown as a block diagram in Fig-
ure 3, is said to be well-posed if for any input
u1 ∈ L2

loc([0,∞);U1) and any initial state z0 ∈ X, there
exist unique functions z ∈ C([0,∞);X) (the state tra-
jectory) and y ∈ L2

loc([0,∞);Y ) (the output function)
that satisfy

Fig. 3. The nonlinear infinite-dimensional system ΣN ob-
tained from the well-posed linear system ΣP by static output
feedback through the static nonlinearity N .

—————————–

z(t) = Ttz0 +Φ1
tu1 +Φ2

tN y, (7.1)

Pty =Ψtz0 + F1
tu1 + F2

tNy, (7.2)

for all t > 0, andmoreover, on any bounded time interval
[0, τ ], z(τ) and Pτy depend continuously on z0 and on
Pτu1. The continuous dependence is meant with respect
to the usual norm for states, and with respect to the L2

norm for the input and output functions.

Well-posed linear systems with nonlinear feedback, more
or less in the above framework, have been studied in Lo-
gemann and Ryan [48] and in more detail in Jayaward-
hana, Logemann and Ryan [39]. A relevant earlier ref-
erence is Jacob, Dragan and Pritchard [33]. However, it
seems that the following straightforward theorem is not
available in the cited sources.

Remark 7.1 Suppose that the system ΣN from (7.1)-
(7.2) is well-posed and let z be the state trajectory cor-
responding to the initial state z0 and the input function
u1. We denote by A the semigroup generator of ΣP and
by B = [B1 B2] its control operator. Then for every
t > 0 we have

z(t)− z0 =

∫ t

0

[Az(σ) +B1u1(σ) +B2N (y(σ))] dσ ,

and the function under the integral takes values in
L2
loc([0,∞);X−1). Indeed, this follows by applying

Proposition 4.7 to (x, [ u1
u2 ] , y).

Theorem 7.2 With the notation of this section, if

inf
ω>ω0(T)

∥F2
∞∥ωL < 1 ,

where L is the Lipschitz constant for the nonlinearity,
then ΣN is well-posed.

Proof. Fix T > 0 and consider the output equation (7.2)
on the interval [0, T ], where we denote yT = PT y and
use the causality of FT :
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yT = ΨT z0 + F1
Tu1 + F2

TNyT . (7.3)

Fix ω > ω0(T) such that ∥F2
∞∥ωL = a < 1. Define the

nonlinear map MT from L2
ω([0, T ];Y ) to itself by

MT (z) = ΨT z0 + F1
Tu1 + F2

TN z .

For each z ∈ L2
ω([0, T ];Y ), since F2

T z = PTF2
∞z, we

have ∥F2
T z∥L2

ω
6 ∥F2

∞∥ω∥z∥L2
ω
. It follows that for any

y1, y2 ∈ L2
ω([0, T ];Y ),

∥MT (y1)−MT (y2)∥L2
ω
= ∥F2

TNy1 − F2
TN y2∥L2

ω

6 a∥y1 − y2∥L2
ω
.

Thus, MT is a strict contraction on L2
ω([0, T ];Y ). Ac-

cording to the contractionmapping theorem (see the sur-
vey [13])MT has a unique fixed point yT ∈ L2

ω([0, T ];Y )
which satisfies (7.3). The above reasoning works for any
T > 0, so that in fact we get a family of functions yT ,
each satisfying (7.3).

The continuous dependence of yT on both z0 and PTu1
follows from Theorem 3.8 in [13] which states the fol-
lowing: The fixed points of a family of contractions that
depend continuously on a parameter λ, belonging to a
metric space, and having a uniform contraction constant,
depend continuously on λ.

We claim that for any τ > T > 0,

yT = PT yτ . (7.4)

To prove this, we apply PT to (7.3) in which we have
used τ in place of T , obtaining

PT yτ = ΨT z0 + F1
Tu1 + F2

TN yτ .

Using causality, this becomes

PT yτ = ΨT z0 + F1
Tu1 + F2

TNPT yτ .

Since the solution of (7.3) is unique, we get (7.4).

It follows from (7.4) that there exists a unique y ∈
L2
loc([0,∞);Y ) such that Pty = yt for each t > 0. Once

y is defined, the function z can be computed directly
from (7.1). The continuous dependence of z(T ) on z0 and
PTu1 is a consequence of the continuous dependence of
yT on the same parameters (as shown earlier). �

Remark 7.3 It follows from the last theorem that if the
transfer functionG2(s) decays to zero as Re s→∞, uni-
formly in Im s, then ΣN is well-posed irrespective of L.
This is the case, for instance, if either the control opera-
tor B2 or the observation operator C of ΣP is bounded
and its feedthrough operator from u2 to y is zero. This
follows from our comments preceding Proposition 4.10.

A class of well-posed systems with bilinear feed-
back. Linear systems with nonlinear feedback that de-
pends both on the output and the state appear in the

modeling of some physical systems, for instance systems
involving fluids. We shall now examine a class of nonlin-
ear systems ΣN described by

z(t) = Ttz0 +Φ1
tu1 +Φ2

tN (z, y), (7.5)

Pty =Ψtz0 + F1
tu1 + F2

tN (z, y), (7.6)

where the well-posed linear system ΣP is as at the be-
ginning of this section and N : X × Y → U2 is con-
tinuous. These equations resemble (7.1), (7.2). Often N
is a continuous bilinear function (such as in the Navier-
Stokes or Burgers equations). The equations correspond
to taking the feedback u2(t) = N (z(t), y(t)) for ΣP .

The local well-posedness of the closed-loop system ΣN

means that for every M > 0 there exists T > 0 such
that: for any u1 ∈ L2([0,∞);U1) and z0 ∈ X with ∥z0∥+
∥u1∥L2([0,∞);U1) 6 M , there exist unique functions z ∈
C([0, T ];X) (the state trajectory) and y ∈ L2([0, T ];Y )
(the output function) that satisfy (7.5) and (7.6) for all
t ∈ [0, T ]. Moreover, z(t) (for t ∈ [0, T ]) and P[0,T ]y
depend continuously on z0 and onP[0,T ]u1. (ForP[0,T ]u1
and for P[0,T ]y we use the L

2 norm.) The well-posedness

of ΣN means that in the above definition, for everyM >
0 we may take any T > 0. This can then be reformulated
in a similar way as (7.1) and (7.2).

Remark 7.4 Remark 7.1 can easily be reformulated
for the system from (7.5), (7.6), assuming local well-
posedness and replacing N (y) with N (z, y).

Remark 7.5 For a locally well-posed system we have a
property similar to Corollary 2.3. Suppose that for some
z0 ∈ X, u1 ∈ L2

loc([0,∞);U1) and δ > 0, [0, δ) is the
maximal interval of existence of the solution of (7.5),
(7.6) with z(0) = z0. Then for every c > 0 there exists
T ∈ [0, δ) such that ∥z(T )∥ > c. Indeed if there were
a c > 0 such that ∥z(t)∥ 6 c for all t ∈ [0, δ) then,
according to the definition of local well-posedness, we
could extend the solution beyond δ.

Theorem 7.6 We assume that Y ⊂ X, with continuous
and dense imbedding, that N : X × Y → U2 is bilinear,
continuous and that there exists K > 0 and p ∈ (0, 1)
such that

∥N (z, y)∥U2 6 K∥z∥X ∥y∥1−p
X ∥y∥pY , (7.7)

for every z ∈ X and y ∈ Y . Moreover, assume that C
admits an extension C ∈ L(X) and the system is such
that its output is given by y(t) = Cz(t). Then the closed-
loop system ΣN from (7.5) and (7.6) is locally well-posed.

Proof. The first step of the proof is to introduce the non-
linear loop gain operator GT and to prove an estimate
for it (estimate (7.11) below). Let u1 ∈ L2([0,∞);U1)
be fixed, let T > 0 and let GT : L2([0, T ];U2) →
L2([0, T ];U2) be defined by
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[GT (v)](t) = N (z(t), y(t)) (7.8)

for all t ∈ [0, T ], v ∈ L2([0, T ];U2), where

z(t) = Ttz0 +Φ1
tu1 +Φ2

t v ,

P[0,T ]y = ΨT z0 + F1
Tu1 + F2

T v.

It follows from the continuity of z and of N that indeed
GT (v) ∈ L2([0, T ];U2).

The existence and uniqueness result in the statement
is clearly equivalent to the existence and uniqueness of
a fixed point of GT . In order to solve this fixed point
problem, we note that (7.7) implies that for almost every
t ∈ [0, T ],

∥GT (v)(t)∥
2
p

U2
6 K

2
p ∥C∥

2(1−p)
p

L(X) ∥z(t)∥
4−2p

p

X ∥y(t)∥2Y .

Using the uniform boundedness of the operators Tt, Φ
1
t

and Φ2
t on the interval [0, T ], we have that there exists

kT > 0, non-decreasing with respect to T , such that

∥z(t)∥ 6 kT
(
∥z0∥+ ∥u1∥L2([0,T ];U1) + ∥v∥L2([0,T ];U2)

)
.

(7.9)
From the last two estimates we obtain that

∥GT (v)∥
2
p

L
2
p ([0,T ];U2)

6 k1,T
(
∥z0∥+ ∥u1∥L2([0,T ];U1)

+∥v∥L2([0,T ];U2)

) 4−2p
p ∥y∥2L2([0,T ];Y ),

where k1,T is non decreasing with respect to T . Using the
boundedness of the operators ΨT , F1

T and F2
T , we have

that there exists hT > 0, non-decreasing with respect to
T , such that

∥y∥L2([0,T ];Y ) 6 hT
(
∥z0∥+ ∥u1∥L2([0,T ];U1)

+∥v∥L2([0,T ];U2)

)
. (7.10)

Combining the last two estimates we obtain that

∥GT (v)∥
2
p

L
2
p ([0,T ];U2)

6 k2,T
(
∥z0∥+ ∥u1∥L2([0,T ];U1)

+∥v∥L2([0,T ];U2)

) 4
p , (7.11)

where k2,T is non-decreasing with respect to T .

The second step in the proof is to show that GT leaves
certain balls in L2([0, T ];U2) invariant. Let M > 0 and
assume that

∥z0∥+ ∥u1∥L2([0,T ];U1) 6 M . (7.12)

We denote by BM,T the ball of radiusM , centered at the
origin, in L2([0, T ];U2). We claim that, for T sufficiently
small, this ball is invariant under GT . Indeed, using (7.11)
it follows that for v ∈ BM,T we have

∥GT (v)∥
L

2
p ([0,T ];U2)

6 k
p
2

2,T (2M)2 . (7.13)

It is easy to see from Hölder’s inequality that for any

f ∈ L
2
p [0, T ] we have

∥f∥L2[0,T ] 6 ∥f∥
L

2
p [0,T ]

T
1−p
2 . (7.14)

Applying this for f(t) = ∥[GT (v)](t)∥ we obtain from
(7.13) that for every v ∈ BM,T we have

∥GT (v)∥L2([0,T ];U2) 6 k
p
2

2,T (2M)2 T
1−p
2 .

Since k2,T is non-decreasing in T , it is clear from the
above that for T sufficiently small (depending on the
system and on M) we have GT (v) ∈ BM,T for every
v ∈ BM,T .

The third step is to show that for every M > 0 there
exists a T > 0 such that if z0 and u1 satisfy (7.12) then,
besides leaving BM,T invariant, GT is a strict contraction
on BM,T . Let v1, v2 ∈ BM,T . Then

GT (v1)− GT (v2) = N (z1, y1)−N (z2, y2)

= N (z1 − z2, y1) +N (z2, y1 − y2), (7.15)

where for j ∈ {1, 2},

zj(t) = Ttz0 +Φ1
tu1 +Φ2

t vj ,

P[0,T ]yj = ΨT z0 + F1
Tu1 + F2

T vj .

From (7.15) and (7.7) it follows that

∥GT (v1)− GT (v2)∥
L

2
p ([0,T ];U2)

6 K

[∫ T

0

∥z1 − z2∥
2
p

X ∥y1∥
2−2p

p

X ∥y1∥2Y dt

] p
2

+K

[∫ T

0

∥z2∥
2
p

X ∥y1 − y2∥
2−2p

p

X ∥y1 − y2∥2Y dt

] p
2

. (7.16)

To estimate the first term in right-hand side of the above
inequality we note that by applying (7.9) it follows that

∥z1(t)− z2(t)∥X 6 kT ∥v1 − v2∥L2([0,T ];U2), (7.17)

for every t ∈ [0, T ]. Combining the last inequality and
(7.9), (7.10) it follows that[∫ T

0

∥z1(t)− z2(t)∥
2
p

X ∥y1(t)∥
2−2p

p

X ∥y1(t)∥2Y dt

] p
2

6 k3,T ∥z1 − z2∥C([0,T ];X)M
1−p∥y1∥pL2([0,T ];Y )

6 k4,TM∥v1 − v2∥L2([0,T ];U2), (7.18)

with k3,T and k4,T non decreasing with respect to T .
Using again (7.9), (7.10) and (7.17), the last term on the
right-hand side of (7.16) satisfies
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[∫ T

0

∥z2(t)∥
2
p

X∥y1(t)− y2(t)∥
2−2p

p

X ∥y1(t)− y2(t)∥2Y dt

]p
2

6 k5,TM∥v1 − v2∥1−p
L2([0,T ];U2)

∥y1 − y2∥pL2([0,T ];Y )

6 k6,TM∥v1 − v2∥L2([0,T ];U2), (7.19)

with k5,T and k6,T non-decreasing with respect to T .
By using (7.16)-(7.19), together with (7.9) and (7.10),
it follows that for every z0 and u1 satisfying (7.12) and
v1, v2 ∈ BM,T we have

∥GT (v1)− GT (v2)∥
L

2
p ([0,T ];U2)

6 k7,TM∥v1 − v2∥L2([0,T ];U2),

with k7,T non-decreasing with respect to T . Using above
(7.14) it follows that

∥GT (v1)− GT (v2)∥L2([0,T ];U2)

6 k7,TMT
1−p
2 ∥v1 − v2∥L2([0,T ];U2),

for every z0 and u1 satisfying (7.12) and v1, v2 ∈ BM,T .
We have thus shown that for every M > 0 there exists
T > 0 such that for z0 and u1 satisfying (7.12) the map
GM,T is a strict contraction of BM,T . Consequently, for
every M > 0 there exists T > 0 such that for z0 and
u1 satisfying (7.12) the map GM,T admits a unique fixed
point, depending continuously on z0 and u1. In other
words, we have obtained the conclusion that ΣN is lo-
cally well-posed. �

8 An example with the Burgers equation

In this section we use the abstract nonlinear feedback
theory from Section 7 to prove the well-posedness of
the Burgers equation with distributed control. The re-
sults here are not new, only the approach. For the study
and control of Burgers equation see Ly et al [49], Krstic
[42] and the references therein. All the function spaces
(such as Sobolev spaces) in this section contain only real-
valued functions.

Consider the following system with state trajectory z,
control input u and output function y:

ż = zxx − zzx + u1 t > 0, x ∈ (0, 1),

z(t, 0) = z(t, 1) = 0 t > 0,

z(0, x) = z0(x) y ∈ (0, 1),

y(t, x) = z(t, x) t > 0, x ∈ (0, 1).

(8.1)

The main result in this section is the following. We use
the notation H1

loc as introduced before Proposition 4.6.

Theorem 8.1 For every z0 ∈ H1
0(0, 1) and u1 ∈

L2
loc([0,∞);L2[0, 1]), there exists a unique solution z of

(8.1) such that

z ∈ H1
loc((0,∞);L2[0, 1]) ∩ C([0,∞);H1

0(0, 1))

∩ L2
loc([0,∞);H2(0, 1)), (8.2)

and the first line in (8.1) holds in L2
loc([0,∞);L2[0, 1]).

To prove this theorem, first we introduce a well-posed
linear system ΣP as follows. We introduce the state, in-
put and output spaces

X = H1
0(0, 1), U1 = U2 = L2(0, 1),

Y = H2(0, 1) ∩H1
0(0, 1),

and the operator A : D(A) → X by

Aφ = φxx ∀ φ ∈ D(A) ,

D(A) =
{
φ ∈ H3(0, 1) | φ, φxx ∈ H1

0(0, 1)
}
.

It is well known (see, for instance, Proposition 3.5.1 and
the beginning of Section 6.7 in [73]) that A < 0, so
that A generates an analytic operator semigroup T on
X. Moreover, the corresponding space X 1

2
= D((−A) 1

2 )

(endowed with the graph norm of (−A) 1
2 ) and its dual

with respect to the pivot space X are

X 1
2
= H2(0, 1) ∩H1

0(0, 1), X− 1
2
= L2[0, 1] ,

see Sections 3.4 and 3.5 in [73]. Consider the control
operators Bk ∈ L(Uk, X− 1

2
) defined by B1 = B2 = I

(the identity operator on L2[0, 1]). For t > 0 we denote
Φk

t , with k ∈ {1, 2}, the corresponding input maps, as
in (3.6) (we have Φ1 = Φ2).

We denote by C the identity operator of H1
0(0, 1), which

can be restricted to an unbounded observation operator
C ∈ L(X1, Y ). We set (Ψ∞z)(t) = CTtz for every z ∈
X1 and t > 0, as in (3.10) and Ψτ = P[0,τ ]Ψ∞. For t > 0

we denote by Fk, with k ∈ {1, 2}, the input-output maps
defined by (Fku)(t) = CΦk

t u (we have F1 = F2). We
denote Φ = [Φ1 Φ2] and F = [F1 F2].

Proposition 8.2 We have that ΣP = (T,Φ,Ψ,F) is a
regular linear system. If z is the state trajectory of ΣP

corresponding to the initial state z0 and the input func-
tions u1 and u2 and y is the corresponding output func-
tion, then

1

2
∥z(t)∥2L2 =

1

2
∥z0∥2L2 −

∫ t

0

∥zx(σ)∥2L2 dσ

+

∫ t

0

⟨(u1(σ) + u2(σ), y(σ)⟩L2 dσ . (8.3)

Proof. The fact that ΣP is regular follows from Propo-
sition 6.5 with H = X.

To prove (8.3) we apply the same Proposition 6.5 but
with H = X− 1

2
= L2[0, 1] and U, B as before. Then the

identity (6.7) becomes (8.3). �
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With the above notation, we show below that the system
(8.1) has the form (7.5), (7.6), where the bilinear and
continuous operator N : X × Y → U2 is defined by

N (z, y) = − zyx . (8.4)

The abstract version of Theorem 8.1 is the following:

Theorem 8.3 With the specified spaces and operators,
the system defined by (7.5), (7.6) is well-posed.

A first step in proving Theorem 8.3 is the following:

Proposition 8.4 The system considered in Theo-
rem 8.3 is locally well-posed. For some z0 ∈ X and
u1 ∈ L2([0,∞);U1), let [0, T ) be the maximal interval of
existence of the solution of (7.5), (7.6). Then for every
t ∈ [0, T ),

1

2
∥z(t)∥2L2 =

1

2
∥z0∥2L2 −

∫ t

0

∥zx(σ)∥2L2 dσ

+

∫ t

0

⟨u1(σ), y(σ)⟩L2 dσ . (8.5)

Proof. In order to apply Theorem 7.6 we first note that
from (8.4) it follows that

∥N (z, y)∥U2 = ∥zyx∥L2[0,1] 6 ∥z∥C[0,1] ∥yx∥L2[0,1]

6 K0∥z∥X∥y∥X ,

so that (7.7) holds with p = 0. Since the embedding
Y ⊂ X is continuous, it follows that (7.7) holds for any
p ∈ (0, 1). From Theorem 7.6 we obtain the local well-
posedness of the system.

To prove (8.5), we take u2 = N (z, y) in (8.3). Using

that
∫ 1

0
zx(t, x)z

2(t, x)dx = 1
3

[
z3(t, 1)− z3(t, 0)

]
= 0,

we obtain (8.5). �

Proof of Theorem 8.3. We have seen in Proposition 8.4
that the system ΣN is locally well-posed. Let z0 ∈ X,
u1 ∈ L2

loc([0,∞);U1) and let z be the corresponding
solution of (7.5), (7.6), which is defined on the maximal
interval [0, T ). We assume that T is finite and this will
lead to a contradiction.

From the well-posedness of the system ΣP (see Proposi-
tion 8.2) and the fact that u2 = N (x, y), we obtain that
there exists an absolute constant K > 0 such that for
every t ∈ [0, T ),

∥zx(t)∥2L2 +

∫ t

0

∥zxx(σ)∥2L2 dσ 6 K

[
∥(z0)x∥2L2

+

∫ t

0

∥u1(σ)∥2L2 dσ +

∫ t

0

∥z(σ)zx(σ)∥2L2 dσ

]
. (8.6)

Using the elementary interpolation inequality

∥ψ∥C[0,1] 6
√
2∥ψ∥

1
2

L2[0,1]∥ψx∥
1
2

L2[0,1] (ψ ∈ H1
0 (0, 1)),

it follows that for almost every t ∈ [0, T ),

∥z(t) zx(t)∥L2 6 ∥z(t)∥C[0,1]∥zx(t)∥L2

6
√
2∥z(t)∥

1
2

L2∥zx(t)∥
3
2

L2 .

From (8.5) we easily obtain (using the Poincaré inequal-
ity on [0, 1]) that for every t ∈ [0, T ),

∥z(t)∥2L2 +

∫ t

0

∥zx(σ)∥2L2 dσ

6 ∥z0∥2L2 + ∥u1∥2L2([0,T ];U). (8.7)

The last two estimates imply that

∥z(t) zx(t)∥2L2 6

2
(
∥z0∥2L2 + ∥u1∥2L2([0,T ];U)

) 1
2 ∥zx(t)∥3L2 .

Let us denote M = 2
(
∥z0∥2L2 + ∥u1∥2L2([0,T ];U)

) 1
2

. In-

serting the last inequality in (8.6) we obtain that for ev-
ery t ∈ [0, T ) we have

∥zx(t)∥2L2 6 K

[
∥(z0)x∥2L2 +

∫ t

0

∥u1(σ)∥2L2 dσ

+M

∫ t

0

∥zx(σ)∥3L2 dσ

]
.

From the above estimate it follows that for every t ∈
[0, T ),

∥zx(t)∥2L2 6 K1 +

∫ t

0

K2(σ)∥zx(σ)∥2L2 dσ , (8.8)

where, for every t ∈ [0, T ),

K1 = K

[
∥(z0)x∥2L2 +

∫ T

0

∥u1(σ)∥2L2 dσ

]
,

K2(t) = KM∥zx(t)∥L2 .

From (8.7) we see that K2 ∈ L2[0, T ], whence K2 ∈
L1[0, T ]. The estimate (8.8) and Gronwall’s inequality
yield that

∥zx(t)∥2L2 6 K1e
∥K2∥L1[0,T ] (t ∈ [0, T )) . (8.9)

Thus, ∥z(t)∥X = ∥zx(t)∥L2 remains bounded on [0, T ).
According to Remark 7.5, this is a contradiction. Hence
T = ∞. �

Proof of Theorem 8.1. We use the same notation as in
Theorem 8.3. Let z0 ∈ X and u1 ∈ L2

loc([0,∞);U1).
According to Theorem 8.3 there exist unique functions
z ∈ C([0,∞);X) and y ∈ L2

loc([0,∞);Y ) that satisfy
(7.5) and (7.6) for all t > 0. By Remark 7.4 z satisfies

25



z(t, x)− z0(x) =

∫ t

0

[zxx(σ, x)

−z(σ, x)zx(σ, x) + u1(σ, x)] dσ , (8.10)

for every t > 0 and the function under the inte-
gral is in L2

loc([0,∞);X−1). Differentiating both sides,
we obtain that the first equation in (8.1) holds in
L2
loc([0,∞);X−1). The facts that z ∈ C([0,∞);H1

0(0, 1))
and z ∈ L2

loc([0,∞);H2(0, 1)) follow from the well-
posedness of ΣN , using that z ∈ C([0,∞);X) and
y = z ∈ L2

loc([0,∞);Y ). Consequently it is easy to see
that all the terms on the right-hand side of the first
equation in (8.1) are in L2

loc([0,∞);L2[0, 1]). It follows
that the first equation in (8.1) holds in L2([0, τ ];L2[0, 1])
and hence z ∈ H1

loc((0,∞);L2[0, 1]). We have thus
shown that z satisfies (8.1) and (8.2).

For the uniqueness part, assume that z satisfies (8.1)
and (8.2), so that ż = Az + B1u1 + N (z, z) in
L2
loc([0,∞);L2[0, 1]). According to Proposition 4.6, z is

a solution of (7.5), (7.6), which is unique according to
Theorem 8.3. �

9 Local well-posedness of the Navier-Stokes
system

In this section we show that the abstract nonlinear feed-
back theory from Section 7 can be used to derive exis-
tence and uniqueness of local (in time) strong solutions
for the Navier-Stokes system, which describes themotion
of an incompressible viscous fluid in a bounded domain
in R3. This result is not new, it has been obtained by Fu-
jita and Kato [25] and references therein, but we think
that it is interesting to see a proof based on well-posed
system theory. Related recent work using abstract lin-
ear systems theory for the analysis of the Navier-Stokes
system is in Haak and Kunstmann [31]. The existence
of global strong solutions for this system (in R3) is a fa-
mous open problem with a large prize, see the official
problem statement by Fefferman [24]. In R2 the Navier-
Stokes system is known to have global strong solutions
(we refer again to [25]) and the proof of this fact has
many common points with our approach to the Burgers
equation in the previous section.

We assume that the fluid occupies a bounded open set
Ω ⊂ R3 with boundary ∂Ω of class C2. The Navier-
Stokes system (see, for instance, Sohr [60]) is

ρż − ν∆z + ρ(z · ∇)z +∇p = u1 , t > 0, x ∈ Ω, (9.1)

div z = 0, t > 0, x ∈ Ω, (9.2)

z = 0, t > 0, x ∈ ∂Ω, (9.3)

z(0, x) = z0(x), x ∈ Ω. (9.4)

In the above system the unknown functions are z(t, x),
the Eulerian velocity field of the fluid, and p(t, x), the
pressure field in the fluid. The given positive constants
ρ and ν denote the density and the viscosity of the fluid.

As in the previous section, the function spaces in this
section contain only real-valued functions.We introduce

Ĥ1(Ω) =

{
q ∈ H1(Ω) |

∫
Ω

q(x)dx = 0

}
,

which is a Hilbert space when endowed with the inner
product inherited from H1(Ω).

The main result in this section is:

Theorem 9.1 For every initial state z0 ∈ H1
0(Ω;R3)

with div z0 = 0 and every input function u1 ∈
L2
loc([0,∞);L2(Ω;R3)), there exists T > 0 and a unique

solution (z, p) of (9.1)-(9.4) such that

z ∈ H1((0, T );L2(Ω;R3)) ∩ C([0, T ];H1
0(Ω;R3))

∩ L2([0, T ];H2(Ω;R3)), (9.5)

p ∈ L2([0, T ]; Ĥ1(Ω)), (9.6)

and the equation in (9.1) holds in L2([0, T ];L2(Ω;R3)).

Moreover, if [0, δ) is the maximal interval of existence
of the solution of (9.1)-(9.4), then for every c > 0 there
exists T ∈ [0, δ) such that ∥z(T )∥H1

0(Ω;R3) > c.

To prove the above theoremwe need some notation. Con-
sider the Hilbert space

L2
σ(Ω) = {φ ∈ L2(Ω;R3) | divφ = 0, φ ·n = 0 on ∂Ω}.

The condition φ · n = 0 on ∂Ω should be understood in
the weak sense:∫

Ω

φ · ∇gdx = 0 ∀ g ∈ H1(Ω) .

It is easily checked that L2
σ(Ω) is a closed subspace of

L2(Ω;R3), so that it makes sense to consider the orthog-
onal projector P of L2(Ω;R3) onto L2

σ(Ω). This is called
the Leray projector or the Helmholtz projector, see for
instance [60, p. 82], and it is often used to eliminate the
pressure from (9.1)-(9.4). Denote

G(Ω) = (I − P )L2
σ(Ω) . (9.7)

It is a well-known result (see for instance [60, Section

II.2.5]) that G(Ω) = ∇(Ĥ1(Ω)). It is easy to see that ∇
is one-to-one between these spaces. By the closed graph
theorem ∇ has a bounded inverse

M ∈ L(G(Ω), Ĥ1(Ω)) . (9.8)

An important role in the remaining part of this section
will be played by the Stokes operator on Ω, denoted by
A0, which is defined by

A0φ = − ν

ρ
P∆φ,
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D(A0) = L2
σ(Ω) ∩H1

0(Ω;R3) ∩H2(Ω;R3) .

It is known, see for instance [60, Ch. III, Theorem 2.1.1],
thatA0 is a strictly positive operator onL

2
σ(Ω). As usual,

we denote
H = L2

σ(Ω), H1 = D(A0),

H 1
2
= D(A

1
2
0 ), H 3

2
= D(A

3
2
0 ) .

According to [60, Ch. III, Lemma 2.2.1],

H 1
2
=

{
φ ∈ H1

0(Ω;R3) | divφ = 0
}
.

We introduce a well-posed linear system ΣP as follows.
We introduce the state, input and output spaces

X = H 1
2
, U1 = U2 = L2(Ω;R3), Y = H1,

and the operator A : D(A) → X by

Aφ = −A0φ, φ ∈ D(A) = H 3
2
. (9.9)

SinceA < 0,A generates an analytic operator semigroup
T on X. As in Section 8, the corresponding space X 1

2
=

D((−A) 1
2 ) (endowed with the graph norm of (−A) 1

2 )
and its dual with respect to the pivot space X are

X 1
2
= H1, X− 1

2
= H .

We take Bk ∈ L(Uk, X− 1
2
) defined by B1 = B2 = P/ρ

and, as in Section 8, Φk
t , with k ∈ {1, 2}, are the corre-

sponding input maps.

We denote by C the identity operator of X, which can
be restricted to an unbounded observation operator C ∈
L(X1, Y ). Now the operators Ψ∞, Ψτ , Fk, with k ∈
{1, 2}, Φ = [Φ1 Φ2] and F = [F1 F2] are defined exactly
as in Section 8.

The analogue of Proposition 8.2 is the result below, with
the same proof. We omit to write the analogue of (8.3),
as it will not be needed.

Proposition 9.2 We have that ΣP = (T,Φ,Ψ,F) is a
regular linear system.

With the above notation, we show below that the system
(9.1)–(9.4) has the form (7.5)–(7.6), where the bilinear
continuous operator N : X × Y → U2 is defined by

N (z, y) = − P [(z · ∇)y] . (9.10)

Therefore, the abstract version of Theorem 9.1 is the
following:

Theorem 9.3 With the specified spaces and operators,
the system defined by (7.5), (7.6) is locally well-posed.

The proof below follows the ideas in Takahashi and Tuc-
snak [70]. Similar techniques could be used to prove the
local well-posedness of the system describing a spheri-
cal rigid body moving in an incompressible viscous fluid
occupying all the remaining space (this was the original
motivation in [70]).

Proof. In order to apply Theorem 7.6 it suffices to show
that condition (7.7) holds. To this end we note that for
every z ∈ X and y ∈ X 1

2
we have, using the Hölder

inequality for three factors, that for any i ∈ {1, 2, 3},∫
Ω

z2i (x)

[
∂yj
∂xi

(x)

]2
dx

=

∫
Ω

z2i (x)

[
∂yj
∂xi

(x)

]2/5 [
∂yj
∂xi

(x)

]8/5
dx

6 ∥z2i ∥L5/2(Ω)

∥∥∥∥∥
[
∂yj
∂xi

]2/5∥∥∥∥∥
L5(Ω)

∥∥∥∥∥
[
∂yj
∂xi

]8/5∥∥∥∥∥
L5/2(Ω)

= ∥zi∥2L5(Ω)

∥∥∥∥∂yj∂xi

∥∥∥∥2/5
L2(Ω)

∥∥∥∥∂yj∂xi

∥∥∥∥8/5
L4(Ω)

.

Using twice the continuous embedding H1(Ω) ⊂ Lp(Ω)
for 1 6 p 6 6 (see, for instance, Adams [2, p. 97]) we
obtain that there exists a constant K > 0 (depending
only on Ω) such that for every z ∈ X and y ∈ X 1

2
,∫

Ω

z2i (x)

[
∂yj
∂xi

(x)

]2
dx

6 K∥zi∥2H1
0(Ω)∥yi∥

2/5

H1
0(Ω)

∥yi∥8/5H2(Ω).

We have thus proved that there exists K̃ > 0 (depending
only on Ω) such that for every z ∈ X and y ∈ X 1

2
,

∥(z · ∇)y∥U2 6 K̃∥z∥X∥y∥1/5X ∥y∥4/5Y . (9.11)

From the above estimate and (9.10) it follows that the
condition (7.7) holds with p = 4/5. Thus by Theorem
7.6 the statement follows. �

Proof of Theorem 9.1. We use the same notation as in
Theorem 9.3. Let z0 ∈ X and u1 ∈ L2

loc([0,∞);U1).
According to Theorem 9.3 there exist T > 0 and unique
functions z ∈ C([0, T ];X) and y ∈ L2([0, T ];Y ] that
satisfy (7.5) and (7.6) for all t ∈ [0, T ]. By Remark 7.4
z satisfies

z(t, x)− z0(x)

=

∫ t

0

[
Az(σ)− P [(z(σ) · ∇)z(σ)] +

1

ρ
Pu1(σ)

]
dσ ,

for every t ∈ [0, T ] and the function under the integral is
in L2([0, T ];X−1). Differentiating both sides, we obtain

ż(t) = Az(t)− P [(z(t) · ∇)z(t)] +
1

ρ
Pu1(t) (9.12)
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holds in L2([0, T ];X−1). The facts that z ∈ C([0, T ];X)
and z ∈ L2([0, T ];Y ) follow from the local well-
posedness of ΣN , using that z ∈ C([0, T ];X) and
y = z ∈ L2([0, T ];Y ). Consequently it is easy to see
that the first and third terms on the right-hand side
of in (9.12) are in L2([0, T ],H). The fact that the
same is true for the second term follows from (9.11).
It follows that (9.12) holds in L2([0, T ];H) and hence
z ∈ H1((0, T );H).

It follows from (9.12) that

ρż(t) = ν∆z(t)− (z(t) · ∇)z(t) + u1(t)

− (I − P )[ν∆z(t)− (z(t) · ∇)z(t) + u1(t)] (9.13)

holds with each term in L2([0, T ];L2(Ω;R3)). Hence

(I − P )[ν∆z − (z · ∇)z + u1] ∈ L2([0, T ];G(Ω)),

where G(Ω) has been defined in (9.7). Using M from
(9.8) we define the function

p(t) = M(I − P )[ν∆z(t)− (z(t) · ∇)z(t) + u1(t)] ,

so that p ∈ L2([0, T ]; Ĥ1(Ω)). Then (9.13) becomes (9.1)
for t ∈ [0, T ].

For the uniqueness part, assume that z and p are func-
tions satisfying (9.5), (9.6), together with (9.1)-(9.4).
By applying the projector P to (9.1) it follows that
ż = Az+B1u1+N (z, z) in L2([0, T ], L2

σ(Ω)). According
to Proposition 4.6, z is a solution of (7.5), (7.6), which
is unique according to Theorem 9.3. The uniqueness of
p follows by applying the operatorM(I−P ) to (9.1). �
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