
HAL Id: hal-01278500
https://hal.science/hal-01278500

Submitted on 24 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From exact observability to identification of singular
sources

Marius Tucsnak, George Weiss

To cite this version:
Marius Tucsnak, George Weiss. From exact observability to identification of singular sources. Math-
ematics of Control, Signals, and Systems, 2015, 27 (1), pp.1-21. �10.1007/s00498-014-0132-z�. �hal-
01278500�

https://hal.science/hal-01278500
https://hal.archives-ouvertes.fr


From exact observability to identification of

singular sources

Marius Tucsnak
Department of Mathematics

University of Nancy
Vandoeuvre les Nancy 54506, France

Marius.Tucsnak@iecn.u-nancy.fr

George Weiss
Department of EE-Systems

Tel Aviv University
Ramat Aviv 69978, Israel

gweiss@eng.tau.ac.il

Abstract. We give general results about the identifiability of source terms for infinite
dimensional linear systems that are exactly observable. We allow the source term to
be unbounded, i.e., not contained in the state space, but in one of a sequence of
extended spaces. We show that the operator from the source term to the output
function is bounded from below, in suitable norms. We apply the main result to a
system described by the wave equation in a bounded n-dimensional domain. We derive
results of independent interest concerning the range of the input map of an exactly
controllable system, when restricted to various spaces of smooth input functions.

1. Introduction

In this work we give some general results about the identifiability of source terms
for infinite dimensional linear systems that are exactly observable. We allow the source
term to be unbounded, i.e., not contained in the state space. The abstract main result
(presented in Section 4) is a generalization of the main result of Alves et al [1], which in
turn is inspired by Puel and Yamamoto [17]. The class of source terms that we consider
is larger than in [1], which makes it possible to tackle a large range of applications to
systems governed by partial differential equations. In the applications, the general aim is
to show that the location of point sources can be determined from the output function
in a continuous manner (in other words, we have a stability estimate for the considered
inverse problem). For the physical background of such problems see our references.

Our motivating example is a wave equation with a point source and Neumann boundary
observation on a part of the boundary:

∂2w

∂t2
−∆w = λ(t)δξ on Ω× (0, τ) ,

w = 0 on ∂Ω× (0, τ),

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = w1(x) on x ∈ Ω,

y =
∂w

∂ν
on Γ× (0, τ) ,

(1.1)

where Ω ⊂ Rn is a bounded domain with C2 boundary, τ > 0, λ is a given absolutely
continuous function with λ′ ∈ L1[0, τ ] and λ(0) ̸= 0. The distribution δξ is the Dirac
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mass located at ξ ∈ Ω and Γ is a nonempty open subset of ∂Ω. The initial data satisfy
w0 ∈ H1

0(Ω) and w1 ∈ L2(Ω) and they are known. The well-posedness of the system (1.1)
has been investigated for n ∈ {1, 2, 3} in Triggiani [18, Theorem 2.1] (see also Meyer [16]
for the case n = 3 and without the boundary observation).

The inverse problem is to determine ξ from y in a continuous way. In fact, we may
replace in this problem the distribution δξ with a finite sum of the type

∑N
k=1 δξk , with

ξk ∈ Ω, without essentially changing the difficulty of the problem, and then the problem
is to determine all the points ξk. To keep the exposition simple, in this Introduction we
stick to a single Dirac mass at ξ. This problem (with a finite sum of Dirac masses) has
been considered by Komornik and Yamamoto [12, Section 4] under the assumptions that
Ω is a ball in Rn and Γ is its whole boundary. There is a large engineering literature on
related localization problems with point sources and point measurements, see for instance
A.J. Weiss [21] and the references therein.

We say that the wave equation on Ω with the Neumann trace operator on Γ is exactly
observable in time τ0 > 0 if the following estimate holds for smooth solutions of (1.1) with
λ = 0:

∥y∥L2([0,τ0];L2(Γ)) > k
(
∥∇w0∥2L2(Ω) + ∥w1∥2L2(Ω)

) 1
2
,

where k > 0. We refer to [20, Chapter 7] for more details on this concept. If ∂Ω is
sufficiently smooth, then the above observability property is equivalent to the geometric
optics condition due to Bardos, Lebeau and Rauch [2] (see also Burq and Gérard [3]).

For any Hilbert space U , any m ∈ N and any τ > 0 we set

Hm
L (0, τ ;U) =

{
u ∈ Hm(0, τ ;U) | u(0) = · · · = um−1(0) = 0

}
,

Hm
R (0, τ ;U) =

{
u ∈ Hm(0, τ ;U) | u(τ) = · · · = um−1(τ) = 0

}
.

For m = 0 the above spaces are defined to be L2([0, τ ];U). We denote, as is the standard
practice, Hm

0 (0, τ ;U) = Hm
L (0, τ ;U) ∩ Hm

R (0, τ ;U). We denote by W 1,1(0, τ) the space of
absolutely continuous functions on the interval (0, τ) whose derivative is in L1[0, τ ].

Our main result, Theorem 4.4 requires some preliminaries, so we state here only its
consequences when applied to the above wave equation with a point source term.

Theorem 1.1. Assume that the wave equation on Ω with the Neumann trace operator on
Γ is exactly observable in time τ0 > 0. Let ε > 0 be such that the open set

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}

is not empty. Let m ∈ N be such that m > n/2 and let τ > τ0. Let λ ∈ W 1,1(0, τ).

Then there exists a constant Kε,m,τ > 0 (which depends also on λ) with the following
property: if y(1) and y(2) are the outputs of the system (1.1) corresponding to ξ = ξ(1) ∈ Ωε

and ξ = ξ(2) ∈ Ωε, respectively, with the same initial data, then

|ξ(1) − ξ(2)| 6 Kε,m,τ

∥∥∥y(1) − y(2)
∥∥∥
[Hm−1

R (0,τ ;L2(Γ))]′
. (1.2)

Here [Hm−1
R (0, τ ;L2(Γ))]′ is the dual of Hm−1

R (0, τ ;L2(Γ)) with respect to the pivot
space L2([0, τ ];L2(Γ)), and |x| denotes the Euclidean norm of x ∈ Rn. For the proof of
this theorem we refer to Section 5.
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The theorem tell us that we can recover ξ from y in a continuous way, with respect to
the specified norm on the output functions. Of course, the [Hm

R ]′ norm decreases as m
increases, so that formally we have stronger statements for larger m, but in applications
it is probably enough to take one integer m that satisfies m > n/2. For m 6 n/2 the
right-hand side of (1.2) may become meaningless, because y(1), y(2) may not be in the
required space (whose norm we are using).

This theorem is a generalization of the result in [12, Section 4], in the sense that in [12]
Ω is restricted to be a ball. On the other hand, for a ball, the result in [12, Section 4] is
more general than ours in the sense that they consider related estimates for all m > n+1

2
(not necessarily integer). Moreover, in [12], the left side of (1.2) appears at a positive
power, so that the estimates are not equivalent. While the analysis in [12] is based on
series expansions into spherical functions, we use an abstract result given in Section 4.
This abstract result can be applied also to other examples, for example, systems described
by the heat, plate or Schrödinger equation.

An interesting related problem is to determine both the localization ξ and the intensity
λ from boundary measurements. This is, in the general case, an open problem. Some
results in this direction can be found in El Badia and Ha-Duong [6] and [1, Section 6].

To prove our abstract result from Section 4, we need some new results about exactly
controllable systems: the range of the input map when restricted to inputs in certain
smooth Sobolev spaces. These new results are derived in Section 2 (and the dual results
in Section 3). We believe that these sections are of independent interest.

2. Controllability with smooth inputs for smooth final states

For linear infinite-dimensional systems, exact controllability in some time τ means that,
starting from the initial state zero, with a suitably chosen input function u of class L2, we
can reach any final state at time τ . This property and its dual, exact observability, have
been discussed in a very large number of papers and books, many inspired by the book
Lions [15]. Relatively few authors have considered the following question: if the desired
final state is in some smoother subspace, for example, the domain of the generator to some
power, can the corresponding input function also be chosen in a smoother subspace, for
example, a Sobolev space with positive index. A systematic study of this question has
been undertaken in a recent paper by Ervedoza and Zuazua [7]. For the specific case of
the wave equation with bounded (distributed) control, it was considered in Dehman and
Lebeau [5]. There are several related results in Section 11.3 of [20]. Here we derive more
results on this topic, that generalize certain results from [7] and [20].

Throughout this section, X and U are Hilbert spaces.

Our first standing assumption for this section is that T is a strongly continuous
semigroup of operators on X, with generator A : D(A)→X. For m ∈ N, we denote
Xm = D(Am) and Xd

m = D(A∗m), each with the graph norm, so that they are Hilbert
spaces too. We set X0 = Xd

0 = X. We denote

X−m = (Xd
m)′ , Xd

−m = (Xm)′ ,

all these dual spaces being with respect to the pivot space X. Note that, for each k ∈ Z,
the original semigroup T has a restriction (or an extension) to Xk that is the image of T
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through the unitary operator (βI − A)−k ∈ L(X,Xk), where β ∈ ρ(A) (the resolvent set
of A). We refer to [20, Remark 2.10.5] for a proof of the last statement.

The second standing assumption for this section is that B ∈ L(U,X−1) is an ad-
missible control operator for T. The admissibility assumption means that for some τ > 0,
the operator Φτ defined by

Φτu =

∫ τ

0
Tτ−σBu(σ)dσ ∀ u ∈ L2([0, τ ];U) ,

a priori with range Ran Φτ contained in X−1, has its range contained in X. We refer again
to [20] for more material on this concept. Here we only mention that it follows from the
admissibility assumption that Φτ ∈ L(L2([0, τ ];U), X) holds for all τ > 0, and (with u as
above) Φtu depends continuously on t ∈ [0, τ ]. The operators Φτ are called input maps
corresponding to the pair (A,B).

Lemma 2.1. If u ∈ Hm
L (0, τ ;U) (with m ∈ N) and z(t) = Φtu for every t ∈ [0, τ ], then

z ∈ Cm([0, τ ];X) , z(j)(0) = 0 ∀ j ∈ {0, 1, . . .m} (2.1)

and, for all t ∈ [0, τ ],
z(m)(t) = Az(m−1)(t) +Bu(m−1)(t) . (2.2)

Proof. The case m = 1 is contained in Proposition 4.2.5 and Lemma 4.2.8 of [20]. Now
suppose that the statement is true for m− 1, i.e., for u ∈ Hm−1

L (0, τ ;U) we have

z ∈ Cm−1([0, τ ];X) , z(j)(0) = 0 ∀ j ∈ {0, 1, . . .m− 1} (2.3)

and, for all t ∈ [0, τ ],
z(m−1)(t) = Az(m−2)(t) +Bu(m−2)(t) . (2.4)

Suppose that u ∈ Hm
L (0, τ ;U), so that Bu(m−2) ∈ H2

L(0, τ ;X−1) ⊂ C1([0, τ ];X−1). It is
clear from (2.3) that also Az(m−2) ∈ C1([0, τ ];X−1). Thus, (2.4) implies that z(m−1) ∈
C1([0, τ ];X−1). Differentiating both sides of (2.4) we obtain that (2.2) holds as an equality
in X−1, for all t ∈ [0, τ ]. In particular, for t = 0 we obtain that z(m)(0) = 0.

Denote x = z(m−1) and v = u(m−1), so that x ∈ C1([0, τ ];X−1), v ∈ H1
L(0, τ ;U) and

(according to (2.2)) ẋ = Ax+ Bv holds on [0, τ ] and x(0) = 0. According to Proposition
4.2.5 in [20] we have x(t) = Φtv for every t ∈ [0, τ ] and according to Lemma 4.2.8 in [20]
we have x ∈ C1([0, τ ];X). This implies that z ∈ Cm([0, τ ];X) (so that and (2.2) holds as
an equality in X). Thus, by induction, we have proved the lemma.

Lemma 2.2. For every m ∈ N define the space Zm ⊂ X by

Zm = Xm + (βI −A)−1BU + (βI −A)−2BU . . .+ (βI −A)−mBU , (2.5)

where β ∈ ρ(A). We set Z0 = X. Then Zm is independent of the choice of β ∈ ρ(A).

Proof. For brevity, in this proof we denote Rµ = (µI−A)−1. Let β be the number used
in (2.5). We break the proof into a sequence of claims.

Claim 0. We have Zm ⊂ Zm−1, for all m ∈ N. This is easy to see.

Claim 1. We have RβZm−1 ⊂ Zm, for all m ∈ N. This is obvious.
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Claim 2. For any µ ∈ ρ(A) we have RµBU ⊂ Zm, for all m ∈ N. This is shown by
induction. It is obviously true for m = 0. Suppose it is true for m − 1, for some m ∈ N.
From the resolvent identity we have

RµBU ⊂ RβBU +RβRµBU ⊂ Zm +RβZm−1 .

Using Claim 1, we obtain that RµBU ⊂ Zm.

Claim 3. We have the recurrence relation

Zm = Rβ [Zm−1 +BU ] ,

for all m ∈ N. This is easy to see.

Claim 4. We have RµZm−1 ⊂ Zm, for all m ∈ N and for all µ ∈ ρ(A). This is proved
by induction. The case m = 1 is obvious. Suppose that the claim holds for some m ∈ N.
Applying Rµ to the recurrence relation in Claim 3 and then using Claim 2, we get

RµZm = RβRµZm−1 +RβRµBU ⊂ RβZm +RβZm .

Finally, using Claim 1 we get RµZm ⊂ Zm+1, i.e., the claim holds for m+ 1.

Claim 5. For some µ ∈ ρ(A) and all m ∈ N define

Z̃m = Xm +RµBU +R2
µBU . . .+Rm

µ BU .

Then Z̃m ⊂ Zm. Indeed, the first term Xm in the above sum is obviously a subset of Zm.
For the other terms we have, using Claim 2 and then repeatedly Claims 0 and 4, that for
every k ∈ N,

Rk
µBU ⊂ Rk−1

µ RµBU ⊂ Rk−1
µ Zm ⊂ Zm .

Claim 6. We have Z̃m = Zm, for all m ∈ N. Indeed, by redoing the above steps with
the roles of β and µ reversed, we obtain that Zm ⊂ Z̃m.

Proposition 2.3. For every m ∈ {0, 1, 2, . . .} and for all τ > 0,

ΦτHm
L (0, τ ;U) ⊂ Zm , ΦτHm

0 (0, τ ;U) ⊂ Xm ,

where Zm is the space introduced in Lemma 2.2.

Proof. It is well known that if β ∈ C then B is admissible also for the semigroup
generated by A − βI. It is easy to see that the range of the operator Φτ , when applied
to one of the spaces Hm

L (0, τ ;U) or Hm
0 (0, τ ;U), does not change if we replace A with

A− βI. For these reasons, without loss of generality we may assume in this proof that T
is exponentially stable. Therefore we may take β = 0 in (2.5).

Let u ∈ Hm
L (0, τ ;U) and let z : [0, τ ]→X be defined by z(t) = Φtu. We know from

Lemma 2.1 that (2.1) and (2.2) hold, for any k ∈ N with k 6 m in place of m. Applying
A−1 to both sides of (2.2) we obtain that (for 1 6 k 6 m)

z(k−1)(τ) = A−1z(k)(τ)−A−1Bu(k−1)(τ) .

Substituting the case k = 2 into the case k = 1, then substituting the case k = 3 into the
resulting formula and so on, we obtain that

z(τ) = A−mz(m)(τ)−A−1Bu(τ)−A−2Bu(1)(τ) . . .−A−mBu(m−1)(τ) . (2.6)
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According to (2.5) we get z(τ) ∈ Zm. If we assume that u ∈ Hm
0 (0, τ ;U) then all the

terms containing u on the right-hand side of (2.6) vanish, so that we get z(τ) ∈ Xm.

The third standing assuption that will be used in the remaining part of this section
is that the pair (A,B) is exactly controllable in some time τ0 > 0. This ssumption means
that Ran Φτ0 = X (when using inputs of class L2). In this case, Ran Φτ = X holds for
all τ > τ0, as it is easy to see. The reader may look up, for instance, [20, Chapter 11] for
some consequences of this concept, equivalent conditions and examples.

Lemma 2.4. Assume that T is exponentially stable. Then there exists a constant c > 0
with the following property: For any λ > 0 consider the two systems with states w(t) ∈ X
and u(t) ∈ U and the common input function v, described by

ẇ = Aw +Bv, u̇ = λu+ v . (2.7)

These systems are simultaneously exactly controllable in any time

τ > τ0 +
c

λ
. (2.8)

This means that for any w0 ∈ X and any u0 ∈ U , there exists v ∈ L2([0, τ ];U) such that
the solutions w, u of (2.7) corresponding to w(0) = 0 and u(0) = 0 satisfy

w(τ) = w0 , u(τ) = u0 . (2.9)

The dual (and hence equivalent) version of this lemma (with some additional information
on the constant c) has appeared as Lemma 11.3.5 in [20], so that we omit the proof. If U
is finite-dimensional, then a slightly stronger conclusion (corresponding to c = 0 in (2.8))
can be obtained from [19, Theorem 3.3] (see also [20, Corollary 11.3.3]).

Theorem 2.5. For every m ∈ {0, 1, 2, . . .} and for all τ > τ0,

ΦτHm
L (0, τ ;U) = Zm , ΦτHm

0 (0, τ ;U) = Xm .

Proof. We prove the theorem using induction. The case m = 0 is true by the definition
of exact controllability (since Z0 = X0 = X). Now suppose that the theorem is true for
m − 1, where m ∈ N. We have to prove that the theorem is true for m. While proving
this, we may assume, without loss of generality, that T is exponentially stable (this was
explained at the beginning of the proof of Proposition 2.3). In view of Proposition 2.3, we
only have to prove the converse inclusions.

The proof of ΦτHm
L (0, τ ;U) ⊃ Zm:

Choose τ > τ0 and then choose λ > 0 such that (2.8) holds. Consider the two systems
with states w(t) ∈ X and u(t) ∈ U and the common input function v, described by (2.7).
According to Lemma 2.4, these systems are simultaneously exactly controllable in time τ .
This means that the combined system described by q̇ = Aq + Bv, with

A =

[
A 0
0 λI

]
, B =

[
B
I

]
,

with state space X = X × U , is exactly controllable in time τ . Let us denote by Φ̃τ the
input to state operator for the combined system, given by

Φ̃τ =

[
Φτ

φτ

]
, where φτv =

∫ τ

0
eλ(τ−σ)v(σ)dσ.

6



According to the theorem applied for m− 1, we have

Φ̃τHm−1
L (0, τ ;U) = Zm−1 , (2.10)

where Zm−1 is defined similarly as in (2.5), so that

Zm−1 = Zm−1 × U .

For an arbitrary z0 ∈ Zm choose w0 ∈ Zm−1, u0 ∈ U such that

z0 = A−1[w0 −Bu0] . (2.11)

Indeed, this is possible according to the recurrence relation in Claim 3 of the proof of
Lemma 2.2. From (2.10) there exists an input signal v ∈ Hm−1

L (0, τ ;U) such that the
solutions w, u of (2.7) satisfy

w(0) = 0 , w(τ) = w0 − λz0 , u(0) = 0 , u(τ) = u0 . (2.12)

Moreover, it is easy to see that u ∈ Hm
L (0, τ ;U). We define z ∈ C([0, τ ];X) by

z(t) = (A− λI)−1[w(t)−Bu(t)] .

It is clear that z(0) = 0. It is easy to see that

z(τ) = (A− λI)−1[w0 −Bu0 − λz0] = (A− λI)−1[Az0 − λz0] = z0 .

This part of the proof will be complete if we show that z is a solution of

ż(t) = Az(t) +Bu(t) ,

so that z(τ) = Φτu. First we verify that z satisfies the differential equation

ż(t) = λz(t) + w(t) ∀ t ∈ [0, τ ] . (2.13)

Indeed, we have (using the definition of z)

ż(t) = (A− λI)−1[ẇ(t)−Bu̇(t)] = (A− λI)−1[Aw(t)− λBu(t)]

= (A− λI)−1[(A− λI)w(t) + λ(w(t)−Bu(t))] = w(t) + λz(t) .

Note that (2.13) implies that z ∈ C1([0, τ ];X). Now from (2.13) we get, using again the
definition of z,

ż(t) = (λI −A+A)(A− λI)−1[w(t)−Bu(t)] + w(t)

= − [w(t)−Bu(t)] +A(A− λI)−1[w(t)−Bu(t)] + w(t)

= Az(t) +Bu(t) .

The proof of ΦτHm
0 (0, τ ;U) ⊃ Xm:

This part of the proof is very similar to the previous part. The difference is that now
instead of (2.10) we use

Φ̃τHm−1
0 (0, τ ;U) = Xm−1 ,
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where Xm−1 = D(Am−1) = D(Am−1)×U . This time we choose u0 = 0, v ∈ Hm−1
0 (0, τ ;U)

and we obtain that u ∈ Hm
0 (0, τ ;U).

We remark that the equality ΦτH1
L(0, τ ;U) = Z1 (which follows from the above the-

orem) constitutes Theorem 11.3.6 in [20]. The equality ΦτH2
L(0, τ ;U) = Z2, for finite-

dimensional U , constitutes Proposition 11.3.8 in [20]. Our proof above uses ideas from the
proofs of the results cited. The inclusion ΦτHm

0 (0, τ ;U) ⊃ Xm is contained in Theorem
1.4 of [7], but under the additional assumption that the semigroup T is invertible.

We define a norm on the space Zm from (2.5) as follows:

∥z∥2Zm
= inf

{
∥x∥2m + ∥u1∥2 + ∥u2∥2 . . .+ ∥um∥2

}
, (2.14)

the infimum being computed over all the collections (x, u1, u2, . . . um) ∈ Xm × Um such
that z = x+ (βI − A)−1Bu1 + (βI − A)−2Bu2 . . . + (βI − A)−mBum. Then Zm can be
regarded as a subspace of Xm × Um, namely, the orthogonal complement of the space

N =

{
((x, u1, u2, . . . um) ∈ Xm × Um

∣∣∣∣ x+

m∑
k=1

(βI −A)−kBuk = 0

}
.

This shows that Zm is complete (hence, it is a Hilbert space). It is easy to see that for all
m ∈ N the embeddings

Xm ⊂ Zm ⊂ Zm−1

are continuous. (For m = 1 see [20, p. 119].) Usually, Xm is not dense in Zm.

3. Extensions of output maps

In this section we formulate and prove the dual versions of the results from Section 2
and we give a very simple example. Throughout this section, X and Y are Hilbert spaces.

Our first standing assumption for this section is that T is a strongly continuous
semigroup of operators on X, with generator A : D(A)→X. For m ∈ Z, the spaces Xm,
Xd

m, X−m and Xd
−m are defined as in Section 2.

The second standing assumption for this section is that C ∈ L(X1, Y ) is an ad-
missible observation operator for T. The admissibility assumption means that for some
τ > 0, the operator Ψτ defined by

(Ψτz0)(t) = CTtz0 ∀ z0 ∈ X1 ,

has an extension to an operator Ψτ ∈ L(X,L2([0, τ ], Y ). Equivalently, there is a positive
number k such that

∫ τ
0 ∥CTtz0∥2dt 6 k2∥z0∥2 for all z0 ∈ D(A). We refer to [20, 23] for

more material on this concept. Here we only mention that it follows from the admissibility
assumption that Ψτ ∈ L(X,L2([0, τ ];Y ) holds for all τ > 0. The operators Ψτ are called
output maps corresponding to the pair (A,C).

The dual result of Proposition 2.3 is the following:

Proposition 3.1. For every m ∈ {0, 1, 2, . . .} and for all τ > 0, Ψτ has unique extensions

Ψτ ∈ L((Zd
m)′, [Hm

R (0, τ ;Y )]′) , Ψτ ∈ L((X−m,H−m(0, τ ;Y )) , (3.1)
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where

Zd
m = Xd

m + (βI −A∗)−1C∗U + (βI −A∗)−2C∗U . . .+ (βI −A∗)−mC∗U, (3.2)

for some β ∈ ρ(A∗). The norm on Zd
m is defined similarly as in (2.14), with A∗ and C∗ in

place of A and B. Here and below, dualities are computed with respect to the pivot spaces
X and L2([0, τ ];Y ), respectively.

Proof. Denote by Φd
τ the input maps corresponding to the pair (A∗, C∗). We know from

[20, Section 4.4] that
Φd
τ = Ψ∗

τ Rτ , (3.3)

where Rτ is the reflection operator on L2([0, τ ];Y ) defined by Rτu(t) = u(τ − t). Notice
that Rτ is self-adjoint and also unitary. Since Rτ is an isomorphism from Hm

L (0, τ ;Y ) to
Hm

R (0, τ ;Y ), it follows from Proposition 2.3 (with A∗ and C∗ in place of A and B) that

Ψ∗
τHm

R (0, τ ;Y ) ⊂ Zd
m , Ψ∗

τHm
0 (0, τ ;Y ) ⊂ Xd

m .

where Zd
m is the counterpart of Zm for the pair (A∗, C∗), so that it is given by (3.2). By

the closed graph theorem we have that Ψ∗
τ is bounded between the spaces indicated above.

Now taking adjoints we obtain (3.1).

The third standing assuption for the remaining part of this section is that the pair
(A,C) is exactly observable in some time τ0 > 0. This assumption means that Ψτ0 is
bounded from below. In this case, Ψτ is bounded from below for all τ > τ0, as it is easy
to see. We refer to [20, Chapter 6] for more material on this concept.

The dual result of Theorem 2.5 is the following:

Theorem 3.2. With the notation of Proposition 3.1, for every m ∈ {0, 1, 2, . . .} and each
τ > τ0, there exists a constant cm,τ > 0 such that, for every f ∈ (Zd

m)′, we have

∥Ψτf∥[Hm
R (0,τ ;Y )]

′ > cm,τ∥f∥(Zd
m)′ . (3.4)

Similarly, for every m ∈ {0, 1, 2, . . .} and each τ > τ0, there exists a constant km,τ > 0
such that, for every f ∈ X−m, we have

∥Ψτf∥H−m(0,τ ;Y ) > km,τ∥f∥X−m . (3.5)

Proof. We denote again by Φd
τ the input maps corresponding to the pair (A∗, C∗). We

know from [20, Theorem 11.2.1] that (A∗, C∗) is exactly controllable in time τ0. According
to Theorem 2.5 (applied to the pair (A∗, C∗)), for every m ∈ {0, 1, 2, . . .} and for all τ > τ0,
Φd
τ maps Hm

L (0, τ ;Y ) onto Zd
m, and it also maps Hm

0 (0, τ ;Y ) onto Xd
m. Since Ψ∗

τ = Φd
τ Rτ

(see (3.3)), it follows that

Ψ∗
τ Hm

R (0, τ ;Y ) = Zd
m , Ψ∗

τ Hm
0 (0, τ ;Y ) = Xd

m .

By the closed graph theorem, Ψ∗
τ is bounded between these spaces. By a well known result

about surjective operators (see, for instance, [20, Proposition 12.1.3]), Ψτ is bounded from
below between the corresponding dual spaces. This fact is expressed in (3.4) and (3.5).

Example 3.3. Consider the boundary observed wave equation on the interval (0, π):

wtt = wxx , w(0, t) = w(π, t) = 0 , (3.6)
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with the initial conditions

w(x, 0) = w0(x) , wt(x, 0) = w1(x) , (3.7)

and with the measurements

y1(t) = − ∂w

∂x
(0, t) , y2(t) =

∂w

∂x
(π, t) .

We refer to Section 5 for an n-dimensional version of this system.

To associate to these equations a system in the sense considered earlier, first we introduce
H = L2[0, π] and A0 : D(A0)→H by

D(A0) = H2(0, π) ∩H1
0(0, π) , A0w = − wxx .

Then A0 is a strictly positive operator, so that for every α > 0 we can introduce the space
Hα = D(Aα

0 ), with ∥z∥α = ∥Aα
0 z∥H . We set H0 = H and H−α = H ′

α (duality with respect
to the pivot space H). We have

H 1
2
= H1

0(0, π) ,

see for instance [20, Section 3.5]. The semigroup T associated to our PDE is defined on
the state space X = H 1

2
×H, with X1 = D(A) = H1 ×H 1

2
and

A

[
g
f

]
=

[
f

−A0g

]
.

This A is skew-adjoint and hence T is unitary. We have Y = C2 and the observation
operator C ∈ L(X1, Y ) is given by

C

[
g
f

]
=

[
−gx(0)
gx(π)

]
∀

[
g
f

]
∈ H1 ×H 1

2
.

The PDE can be solved by elementary methods and the corresponding semigroup is
isomorphic to a periodic left shift semigroup on [0, 2π], see for instance Weiss [22, Section
5]. However, in order to express Ψτ for small τ , we do not need the solution formulas
for the system (3.6), (3.7). It will be enough to recall the elementary fact that if w is a
solution of (3.6),(3.7) then for x ∈ [0, π] and δ ∈ R such that x+ δ ∈ [0, π] we have

ẇ(x, t)− wx(x, t) = ẇ(x+ δ, t+ δ)− wx(x+ δ, t+ δ) . (3.8)

Similarly, if x ∈ [0, π] and δ ∈ R are such that x− δ ∈ [0, π], we have

ẇ(x, t) + wx(x, t) = ẇ(x− δ, t+ δ) + wx(x− δ, t+ δ) . (3.9)

The expression in the last two formulas are called Riemann invariants of the wave equation
and these formulas say that they are constant along characteristics.

If we take x = π, t ∈ [0, π] and δ = −t in (3.8), we get

wx(π, t) = wx(π − t, 0)− ẇ(π − t, 0) = w0,x(π − t)− w1(π − t) .

Similarly, if we take x = 0, t ∈ [0, π] and δ = −t in (3.9), we get

wx(0, t) = wx(t, 0) + ẇ(t, 0) = w0,x(t) + w1(t) .
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As usual, we denote by Ψτ the output maps corresponding to the pair (A,C). From the
last two formulas, denoting g = w0 and f = w1, it follows that

Ψπ

[
g
f

]
=

[
−gx − f
Rπ(gx − f)

]
∀

[
g
f

]
∈ X . (3.10)

This shows, in particular, that (A,C) is exactly observable in time π, because both gx and
f can be continuously recovered from gx + f and from gx − f .

Sometimes (such as in the example discussed in Section 5) we are interested to know if it
is possible to recover an initial state of the special structure

[
0
f

]
, and then the equivalent

question is if Ψτ is bounded from below on the subspace of such initial states. We can see
from (3.10) that this is indeed the case for τ > π/2, i.e., if we know that the initial state
has the special structure

[
0
f

]
, then we need only half the time to recover it than we would

otherwise need, see also Komornik and Yamamoto [10].

A simple computation shows that

C∗ = −
[
D
0

]
,

where D : C2→H is the Dirichlet map:

D

[
u1
u2

]
(x) =

(
1− x

π

)
u1 +

x

π
u2 ,

and this easily implies that

Zd
1 = Xd

1 +A−1C∗Y = (H2(0, π) ∩H1
0(0, π))×H1(0, π)

(we have used that Xd
1 = D(A∗) = D(A), because A is skew-adjoint). According to

Proposition 3.1 with m = 1, for every τ > 0, Ψτ is bounded from (Zd
1 )

′ to
[
H1

R(0, τ ;C
2)
]′
,

and for τ > π, according to Theorem 3.2, this operator is bounded from below.

Remark 3.4. In this remark we signal what we think to be a small mistake in two papers
of Komornik and Yamamoto [10, 12], appearing also in Cipolatti and Yamamoto [4], where
a certain inequality seems to contradict our Proposition 3.1.

In Section 4 of [12] the authors study the wave equation on an n-dimensional ball Ω,
with Neumann boundary observation over the whole boundary. Let us denote A0 = −∆,
D(A0) = H2(Ω)∩H1

0(Ω), the spacesHα (with α ∈ R) are defined as for the one dimensional
case above and Y = L2(∂Ω). In [12, Proposition 4.2] it is claimed that the output maps
Ψτ of this system can be extended so that they boundedly map initial states of the form[
0
f

]
with f ∈ H− s

2
(s > 0) into [Hs

R(0, τ ;Y )]′ (which is defined by interpolation). This
boundedness is expressed as the existence of c > 0 such that∥∥∥∥Ψτ

[
0
f

]∥∥∥∥
[Hs

R(0,τ ;Y )]
′
6 c∥f∥H− s

2

(3.11)

(this is the second half of [12, estimate (4.3)]). (Actually, this is claimed only for τ larger
than the radius of the ball, but if it were true, then this would easily imply that it is
true for any τ > 0.) Moreover, it is claimed in the same place that if τ is larger than the
radius of the ball, then this map is bounded from below. This result (the boundedness
part) contradicts our Proposition 3.1, because it would mean that (at least in the given
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context) Ψτ boundedly maps X−s into [Hs
R(0, τ ;Y )]′. It is claimed in [4, Proposition 2.2]

that the same result generalizes to any bounded open set Ω with smooth boundary.

To clarify if there is indeed a mistake, we consider the one dimensional domain Ω = (0, π)
and we take s = 1 and τ = π, so that we can use our computations from Example 3.3.
Then (3.11) with the help of (3.10) reduces to∥∥∥∥[ f

Rπf

]∥∥∥∥
[H1

R(0,π;Y )]
′
6 c∥f∥H−1(0,π) ,

which would imply in particular that

∥f∥[H1
R(0,π)]

′ 6 c∥f∥H−1(0,π) ∀ f ∈ L2[0, π] . (3.12)

To disprove (3.12) we construct a sequence (fn) of functions in L2[0, π] such that

∥fn∥H−1(0,π) → 0 , ∥fn∥[H1
R(0,π)]

′ −̸→ 0 .

Such a sequence is given by
fn(x) = ne−nx .

We have (using the duality pairing between H−1(0, π) and H1
0(0, π))

∥fn∥H−1(0,π) = sup
φ∈H1

0(0,π), ∥φ′∥L2=1

|⟨fn, φ⟩| = sup
φ∈H1

0(0,π), ∥φ′∥L2=1

∣∣∣∣∫ π

0
e−nxφ′(x)dx

∣∣∣∣ .
Now we see from the Cauchy-Schwarz inequality that indeed ∥fn∥H−1(0,π)→ 0. Finally, to

show that (fn) does not converge to zero in
[
H1

R(0, π)
]′
, we take φ ∈ H1

R(0, π) defined by
φ(x) = π − x. Then we have the duality pairing

⟨fn, φ⟩ = −
[
e−nxφ(x)

]π
0
+

∫ π

0
e−nx(−1)dx = π − 1− e−nπ

n
→ π.

The same problem appears in the discussion of the one dimensional case in [10]. Indeed,
the first part of the estimate (12) from [10] is (3.12), with the interval (0, π) replaced with
(0, 1), both in space and in time. The proof of this estimate given in [10] (with an erratum
given in [11]) is valid for f ∈ F , where F is a certain dense subspace of H−1(0, π). The
mistake is to conclude from here that the estimate holds for f ∈

[
H1

R(0, π)
]′
, because F

is not dense in
[
H1

R(0, π)
]′
.

4. The main result

In this section we give our abstract result regarding the identification of source terms.
Let X and Y be Hilbert spaces. We consider systems of the type

ż(t) = Az(t) + λ(t)f, z(0) = 0,

y(t) = Cz(t) ,
(4.1)

where A is the generator of a strongly continuous semigroup T on X, C ∈ L(X1, Y ) is an
admissible observation operator for T and (A,C) is exactly observable in time τ0.
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If f ∈ X and λ is a continuous (scalar) function, then it is easy to see that the solution
of (4.1) on any interval [0, τ ] gives the following output function:

y(t) = (Jτf)(t) =

∫ t

0
λ(t− s)(Ψτf)(s)ds ∀ t ∈ [0, τ ] , (4.2)

where Ψτ is defined as at the beginning of Section 3.

Here we are concerned with extensions of this operator Jτ (from f to y) to some larger
spaces. For m ∈ N, the spaces Xm, X−m, Xd

m and Xd
−m are defined as at the beginning

of Section 2. In our main result we consider f ∈ (Zd
m)′ (these extended spaces were

introduced in the previous section) and λ ∈ W 1,1(0, τ) (defined before Theorem 1.1). We
may regard f as a control operator and λ as an input function, in the sense of [20], but we
do not assume that f is an admissible control operator for T. We do not even assume that
f ∈ X−1, we only have that f ∈ X−m (because (Zd

m)′ ⊂ X−m). Systems with a control
operator mapping into X−m have been considered, for instance, in Latushkin et al [14].

Lemma 4.1. Let τ > 0, k ∈ L1[0, τ ] and define the operator Ck ∈ L(L2([0, τ ];Y )) by

(Ckv)(t) =

∫ t

0
k(t− s)v(s)ds.

Then σ(Ck) = {0}.

Proof. It is well known that ∥Ck∥ 6 ∥k∥L1 . For every γ ∈ R we define the operator
eγ ∈ L(L1[0, τ ]) by (eγv)(t) = eγtv(t). It easy to check that

Ck = e−γCeγk
eγ ,

which shows that for any nonzero α ∈ C, αI − Ck is invertible iff αI − C
eγk

is invertible.

According to the dominated convergence theorem we have limγ→−∞ ∥eγk∥L1 = 0, so that
∥C

eγk
∥→ 0 as γ→ −∞. This implies that indeed αI − C

eγk
is invertible.

For results related to the above lemma we refer to Gohberg and Feldman [9, p. 41,
p. 100] or Kress [13, p. 33, p. 34].

Remark 4.2. It is easy to see that Ck from the last lemma commutes with the operator of
integration from 0 to t. This fact together with the lemma implies that for any α ∈ C\{0}
and m ∈ N, αI − Ck is an isomorphism (i.e., it is boundedly invertible) on Hm

L (0, τ ;Y ).

Lemma 4.3. Let τ > 0 and λ ∈ W 1,1(0, τ) with λ(0) ̸= 0. Define Sτ : L2([0, τ ];Y ) →
H1

L(0, τ ;Y ) by

(Sτg)(t) =

∫ t

0
λ(t− s)g(s)ds. (4.3)

Then Sτ is an isomorphism from L2([0, τ ];Y ) onto H1
L(0, τ ;Y ). Moreover, for every m ∈

N, the operator Sτ admits a unique extension to an isomorphism

Sτ : [Hm
R (0, τ ;Y )]′ →

[
Hm−1

R (0, τ ;Y )
]′
.

Proof. Denote y = Sτg. Differentiating the sides of (4.3) we obtain that

ẏ(t) = λ(0)g(t) +

∫ t

0
λ̇(t− s)g(s)ds.

13



Thus, the operator from g to ẏ is λ(0)I + Ck, with k = λ̇. According to Lemma 4.1 this
operator is an isomorphism on L2([0, τ ];Y ). Since y(t) =

∫ t
0 ẏ(σ)dσ, it follows that Sτ is

an isomorphism from L2([0, τ ];Y ) onto H1
L(0, τ ;Y ).

Denote X = L2([0, τ ];Y ), D(A) = H1
L(0, τ ;Y ) and let A : D(A) → X be the inverse of

Sτ . For m ∈ N we denote by Xm the space D(Am) endowed with the graph norm. It is
not difficult to check (using Remark 4.2) that

Xm = Hm
L (0, τ ;Y ) ∀ m ∈ N .

The spaces X−m, with m ∈ N are defined as the completion of X with respect to the norm
∥z∥−m = ∥(βI − A)−mz∥, where β ∈ ρ(A). We refer to [20, Section 2.10] for a detailed
discussion of such spaces. In particular, it is well known that X−m is the dual of D((A∗)m)
with respect to the pivot space X . It is easy to check that

(S∗
τh)(t) =

∫ τ

t
λ(s− t)h(s)ds,

so that S∗
τ maps L2([0, τ ];Y ) onto H1

R(0, τ ;Y ), whence D(A∗) = H1
R(0, τ ;Y ). More gen-

erally, by the dual version of Remark 4.2, D((A∗)m) = Hm
R (0, τ ;Y ), so that we have

X−m = [Hm
R (0, τ ;Y )]′ ∀ m ∈ N .

By denoting X0 = X , A maps Xm onto Xm−1 for every m ∈ Z. Consequently, Sτ = A−1

extends to an isomorphism from [Hm
R (0, τ ;Y )]′ onto

[
Hm−1

R (0, τ ;Y )
]′
.

Theorem 4.4. Assume that the pair (A,C) is exactly observable in some time τ0 > 0 and
that λ ∈ W 1,1(0, τ) with λ(0) ̸= 0. Then for every m ∈ {0, 1, 2, . . .} and each τ > τ0, Jτ =
SτΨτ is one-to-one from (Zd

m)′ to [Hm−1
R (0, τ ;Y )]′ and there exists a constant κm,τ > 0

such that
∥f∥(Zd

m)′ 6 κm,τ ∥Jτf∥[Hm−1
R (0,τ ;Y )]

′ , ∀ f ∈ (Zd
m)′ . (4.4)

Proof. By using Lemma 4.3 and Theorem 3.2, there exists Mτ > 0 such that

∥Jτf∥[Hm−1
R (0,τ ;Y )]

′ > Mτ∥Ψτf∥[Hm
R (0,τ ;Y )]

′ > Mτcm,τ∥f∥[Zd
m]′ .

Remark 4.5. The above theorem considers f ∈ (Zd
m)′. This implies, according to the

definition of Zd
m, that the duality products ⟨f, (sI − A∗)−kC∗y0⟩ are well defined for all

y0 ∈ Y and all k ∈ {1, 2, . . .m}, so that the products f∗(sI −A∗)−kC∗ make sense.

5. An application to the wave equation

Consider the system described by (1.1), with the stated assumptions on Ω, Γ and λ. Our
aim here is to prove Theorem 1.1, which shows that the inverse problem of determining
the location of the source ξ from the output y, is well-posed in appropriate spaces. Note
that Theorem 1.1 implies the existence of K > 0 such that for any ξ(1), ξ(2) ∈ Ωε,

∥y(1) − y(2)∥L2(0,τ ;L2(Γ)) > K|ξ(1) − ξ(2)| ,

where the L2 norm on the left might be ∞.

14



For the proof we need to introduce some notation. We denote by −A0 the Dirichlet
Laplacian on Ω, so that A0 : D(A0)→L2(Ω), where

D(A0) = H2(Ω) ∩H1
0(Ω) ,

and A0 > 0. We denote H = L2(Ω) and for every α > 0 we define Hα = D(Aα
0 ), with the

norm ∥z∥α = ∥Aα
0 z∥H . The spaces H−α are defined as the duals of Hα with respect to the

pivot space H. We have (see, for instance, Section 3.6 in [20])

H1 = H2(Ω) ∩H1
0(Ω) , H 1

2
= H1

0(Ω) , H− 1
2
= H−1(Ω) .

We recall the following well-known result defining the Dirichlet map D for Ω (see, for
instance, Propositions 10.6.1 and 10.6.2 in [20]).

Proposition 5.1. For every v ∈ L2(∂Ω), there exists a unique function Dv ∈ L2(Ω) such
that ∫

Ω
(Dv)(x)g(x)dx = −

∫
∂Ω

v
∂(A−1

0 g)

∂ν
dσ ∀ g ∈ L2(Ω) . (5.1)

The operator D defined above (called the Dirichlet map) is linear and bounded from L2(∂Ω)
into L2(Ω) and its adjoint D∗ ∈ L(L2(Ω), L2(∂Ω)) given by

D∗g = − ∂(A−1
0 g)

∂ν
∀ g ∈ L2(Ω) . (5.2)

Moreover, for any v ∈ L2(∂Ω) we have Dv ∈ C∞(Ω) and ∆Dv = 0.

We mention that γ0Dv = v for all v ∈ L2(∂Ω), where γ0 is a suitable extension of the
Dirichlet trace operator, see for instance [20, Proposition 10.6.4].

The system (1.1) can be rewritten in the abstract form (4.1), with the following spaces
and operators:

X = H 1
2
×H , Y = L2(Γ),

D(A) = H1 ×H 1
2
, A =

[
0 I

−A0 0

]
C =

[
γ1 0

]
, f =

[
0
δξ

]
,

where γ1 is the Neumann trace operator restricted to Γ. Note that A−1 =
[
0 −A−1

0
I 0

]
.

Lemma 5.2. For every ξ ∈ Ω and m > n/2, we have f ∈ (Zd
m)′.

Proof. A simple calculation based on (5.2) shows that C∗ = −
[
D
0

]
, where D is the

Dirichlet map defined in Proposition 5.1. Since A is skew-adjoint, we have

Xd
m = Hm+1

2
×Hm

2
.

Hence, by a short computation, the space Zd
m from (3.2) (using β = 0) is given by

Zd
m = Xd

m +A−1C∗Y +A−2C∗Y . . .+A−mC∗Y = Wm × Vm ,
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where
Wm = Hm+1

2
+A−1

0 DY . . .+A
−[(m+1)/2]
0 DY ,

Vm = Hm
2
+A−1

0 DY . . .+A
−[m/2]
0 DY , (5.3)

and [α] denotes the integer part of the real number α.

We claim that for m > n/2, Vm ⊂ C(Ω). Indeed, if φ ∈ Vm then its first component
according to the above decomposition is in Hm

2
⊂ Hm(Ω) ⊂ C(Ω) (we have used a well

known Sobolev embedding theorem). The other components of φ are in A−k
0 DY , for

various k ∈ N. We know from Proposition 5.1 that DY ⊂ C∞(Ω). According to a
regularity result for elliptic equations (see Evans [8, p. 309]), A−k

0 DY ⊂ C∞(Ω).

We claim that for every ε > 0 and for m > n/2, the operator Tε : Vm→C(Ωε) defined
by

Tεφ = φ|Ωε

is bounded. (On C(Ωε) we use the supremum norm.) Indeed, since Vm is continuously
embedded in H, it follows that Tε is bounded from Vm to the larger space L2(Ωε). Using
the closed graph theorem, the boundedness of Tε (to C(Ωε)) follows.

From the above claim it follows that for every ξ ∈ Ω and m > n/2, the Dirac mass δξ
is a bounded functional on Vm. Indeed, if we choose ε > 0 such that ξ ∈ Ωε, then

|⟨δξ, φ⟩| = |φ(ξ)| 6 ∥Tε∥ · ∥φ∥Vm ∀ φ ∈ Vm .

From here, the lemma follows.

Proof of Theorem 1.1. Let ε > 0, m > n/2, ξ(1), ξ(2) ∈ Ωε, τ > τ0. For j ∈ {1, 2}
let y(j) be the output of (1.1) corresponding to ξ = ξ(j), with the initial data [w0

w1 ] ∈ X.
These outputs are defined by continuous extension: we approximate δξ(j) by a sequence of

functions δk,j ∈ L2(Ω), with convergence in V ′
m (Vm was defined in (5.3)). Then from the

decomposition (Zd
m)′ = W ′

m×V ′
m (see the proof of Lemma 5.2) we see that

[
0

δk,j

]
→

[
0

δ
ξ(j)

]
in (Zd

m)′. For δk,j in place of δξ(j) , the output of (1.1) on [0, τ ] is

yk,j = Ψτ

[
w0

w1

]
+ Jτ

[
0
δk,j

]
,

where Jτ is the operator introduced in (4.2), with our specific A and C. According to

Theorem 4.4 the operator Jτ has a continuous extension from (Zd
m)′ to

[
Hm−1

R (0, τ ;Y )
]′
.

Thus, y(j) can be defined in the latter space as the limit of yk,j .

Denoting f (j) =
[

0
δξj

]
, we obtain that

y(j) = Ψτ

[
w0

w1

]
+ Jτf

(j) ∈
[
Hm−1

R (0, τ ;Y )
]′
.

Subtracting these equations and using Theorem 4.4, we obtain that∥∥∥f (1) − f (2)
∥∥∥
(Zd

m)′
6 κm,τ

∥∥∥y(1) − y(2)
∥∥∥
[Hm−1

R (0,τ ;Y )]
′ . (5.4)
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To end the proof we note that for every j ∈ {1, . . . , n} there exists a function φj ∈
D(Ω) ⊂ Vm such that

φj(x1, x2, . . . xn) = xj ∀ (x1, x2, . . . , xn) ∈ Ωε

(this follows, for instance, from [20, Proposition 13.1.5]). Since ξ(1), ξ(2) ∈ Ωε, we have⟨
δξ(1) − δξ(2) , φj

⟩
= ξ

(1)
j − ξ

(2)
j .

Thus, denoting ηm,ε = maxj∈{1,2,... n} ∥φj∥Vm , it follows that

|ξ(1) − ξ(2)| 6
√
n ηm,ε

∥∥∥δξ(1) − δξ(2)
∥∥∥
V ′
m

. (5.5)

Since ∥f (j)∥(Zd
m)′ = ∥δξj∥V ′

m
and using (5.4), we get the desired estimate (1.2).

We mention that many interesting estimates related to (5.5) (also in the converse di-
rection) can be found in Komornik and Yamamoto [12, Section 2].
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[15] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués.
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