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ABSTRACT

This paper proposes a novel approach for echo-like multi-
ple removal in two-dimensional seismic images. It is based
on constrained adaptive filtering associated with geometric
wavelets. Approximate templates of multiple reflections are
assumed to be available and they are matched to multiple re-
flections throughout estimated finite impulse response filters.
The problem is formulated under a constrained convex opti-
mization form where the data of interest and filters are esti-
mated jointly. Proximal approaches are used to perform the
minimization of the derived criterion. The effectiveness of the
proposed approach is demonstrated with various noise levels
on realistic simulated data and on field seismic data.

Index Terms— Convex optimization, Parallel algorithms,
Wavelets, Adaptive filters, Geophysics, Sparsity.

1. INTRODUCTION

In reflection seismology, a seismic sourceis generated at the
ground surface or underwater. The resulting seismic wave
front travels through the earth and is reflected atgeological
interfaces wherechangesin propagating mediumdensity and
velocity occur. The energy reflected back to the surface is
recorded for geophysical processing, to provide estimates
of subsurface structures. One distinguishes two maintypes
of reflections: 1)primaries, reflected upward only once and
2) multiples, similar to acoustic reflections bouncing sev-
eral times. Reflections, related to geology, take the shape
of specific patterns [1] in seismic images, as illustrated in
Fig. 1. We address the problem oftemplate matching[2]
and sparse adaptive multiple reflection filtering. It consists in
finding parts in the seismic image that approximately match
pre-defined templates, and in adaptively subtracting them
(Fig. 1-middle) from the seismic data (Fig. 1-left) to uncover
precious obfuscated geological information (Fig. 1-right).
This concept is akin to disocclusion, visual echo cancella-
tion [3] or template matching [2, 4] in pattern recognition.
The main difference lies in the lack of rotation or scale de-
grees of freedom in the templates. In contrary to traditional

Fig. 1. Left to right: observed imagez, multiples, primaryy.

objects, seismic waves have a non-bounded support, and ex-
hibit a band-limited spectral content, closer to fingerprints
or geometric textures [5]. Meanwhile,seismic templates
are obtained through geophysical modelling. They are only
approximate, and substantially differ from the geophysical
reality in nonstationary amplitude, time delay and frequency
content. They ought to be matched to multiple reflections
through adapted finite impulse response (FIR) filters that are
estimated jointly with the signal of interest (primary).

Traditionally, adaptive multiple removal is performed in
two or three dimensional seismic data, via standardℓ2- or
more robustℓ1-norms, with local multidimensional matching
FIR filters. The multidimensionality of the filters is thought to
ensure lateral continuity in seismic events. A quite opposite
direction was taken in [6], with an emphasis on a frequency-
and shift-insensitive complex wavelet transform frame, asso-
ciated with simple unary (one-tap) complex filters, in 1D only.
Counter-intuitively, it was able to perform similarly to more
classical 2D matching techniques. In other words, a careful
partnership between sparse representations and adaptive fil-
tering was deemed beneficial in 1D, with respect to traditional
2D methods. To account for additional properties, including
statistical distributions for primaries [7] and slow filtervari-
ations, [8, 9] pursued seismic data adaptive filtering with 1D
wavelet frames. Meanwhile, seismic images possess geomet-
ric regularity that advises a 2D approach for improved per-
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formance. As a result, multiscale geometric transforms such
as curvelet frames [10–12] have been employed in geophys-
ical processing. Indeed, 2D matching filters resemble direc-
tional filters [13]. We extend here [8] to 2D seismic data.
Its anisotropy arises from seismic wave propagation and the
nature of array acquisition. One dimension of seismic images
is governed by space (sensor location) while the other dimen-
sion reflects time (wave propagation). This is directly mod-
elled in the proposed scheme. We adopt a variational frame-
work and build a criterion to be minimized where 1) a data
fidelity term fits the seismic image formation model, and 2)
regularization terms (constructed as hard constraints) express
a priori information one expects on adapted FIR filters and the
primary. The derived convex minimization problem is solved
using iterative proximal algorithms.The remainder of the pa-
per is organized as follows: Section 2 presents the model and
the proposed method. Simulation results are evaluated both
subjectively and objectively in synthetic data and visually of
field seismic data in Section 3. Section 4 concludes the paper.

2. MODELLING MULTIPLE REFLECTIONS

A line of seismic sensors delivers a two-dimensional image.
Each column is formed by a 1D temporal signal acquired by
one sensor:

z(n) = s(n) + y(n) + b(n) (2)

with n = (nt, nx), wherent ∈ Nt
△

= {0, . . . , Nt − 1} is

the time index,nx ∈ Nx
△

= {0, . . . , Nx − 1} is the sensor

index, andn ∈ N
△

= {(nt, nx)|nt ∈ Nt, nx ∈ Nx}. Ob-
served dataz = (z(n))n∈N (Fig. 1-left) is composed ofthe
primary y = (y(n))n∈N (Fig. 1-right, 2D data of interest,
unknown), multiples(s(n))n∈N (sum of undesired reflected
data, in Fig. 1-middle)andadditive noise(b(n))n∈N . One as-
sumes that genuine multiples(s(n))n∈N can be estimated as
a local, weighted sum of template candidates:

s(n) =

J−1
∑

j=0

p′+Pj−1
∑

p=p′

h
(n)
j (p)r

(nt−p,nx)
j (3)

Here(r(n)j )n∈N ,0≤j<J denoteJ available templates andh
(n)
j

is the unknown impulse response(with Pj coefficients)for
templaterj at time nt and sensornx (the filtering process is

both time and space variant) and wherep′ ∈ {−Pj+1, . . . , 0}
(p′ = 0 corresponds to the causal case). Eq. (3) can be ex-
pressed more concisely as

s =

J−1
∑

j=0

Rjhj (4)

where

s =
[

s(0,0), . . . , s(Nt−1,0), . . . ,

s(0,Nx−1), . . . , s(Nt−1,Nx−1)
]⊤

,

hj =

[

h
(0)

j

⊤

, . . . , h
(Nx−1)

j

⊤
]⊤

and

h
(nx)

j =
[

h
(0,nx)

j (p′), . . . , h
(0,nx)

j (p′ + Pj − 1), . . . ,

h
(Nt−1,nx)

j (p′), . . . , h
(Nt−1,nx)

j (p′ + Pj − 1)
]⊤

.

The matrixRj is block diagonal. Its diagonal elements

are denoted by(R(nt,nx)
j )nt∈Nt

and are given in (1). By

defining R = [R0 · · ·RJ−1] ∈ R
NtNx×NtNxP and h =

[h
⊤
0 · · ·h

⊤
J−1]

⊤ ∈ R
NtNxP , with P =

∑J−1
j=0 Pj , Model (2)

can be rewritten more concisely as

z = Rh+ y + b. (5)

We propose a variational framework where weaimat estimat-
ing simultaneously the filter tap coefficients of the nonstation-
ary filterh and the primaryy. The multiple removal problem
is thus formulated as the following constrained convex mini-
mization problem

minimize
y∈RNtNx ,h∈RNtNxP

‖z−y−Rh‖22+ ιD(Fy)+ ιC(h) , (6)

whereF ∈ R
KNx×NtNx models a frame operator(e.g. direc-

tional wavelets [15]). FunctionsιC andιD denote indicator
functions of nonempty convex setsC andD, respectively i.e.
ιC(x) = 0 if x ∈ C andιC(x) = +∞ if x /∈ C. Generally,
seismic data exhibits geometric features (linear, hyperbolic



and parabolic), at least piecewise, corresponding to subsur-
face interfaces (Fig. 1). Due to the anisotropic nature of
seismic data, we chooseF as a hybrid dual-tree wavelet (with
different wavelets along space and time [16]). Their decorre-
lation properties [17] have proven efficient in textured image
denoising [18, 19], compared to curvelets whose redundancy
is more important. We now turn our attention to the choice of
the convex setsC andD.

2.1. Definition of convex setD

The relationx = Fy relates the primary datay to the trans-
form coefficients, denoted byx. They exhibit specific sub-
band structures that are exploited here. Therefore, the con-
straint can be split by defining a partition of{1, . . . ,KNx}
denoted by{Kl ∪ Kl+L | l ∈ {1, . . . ,L}}, whereL corre-
sponds to the number of subbands,Kl andKl+L are thel-
th subband corresponding to the primal and dual coefficients,
respectively. Then, one can chooseD = D1 × · · · × DL

where, for everyl ∈ {1, . . . ,L}, Dl = {(xk)k∈Kl∪Kl+L
|

∑

k∈Kl
ϕl(xk) ≤ βl and

∑

k∈Kl+L
ϕl(xk) ≤ βl}, ϕl : R →

[0,+∞[ is a lower-semicontinuous convex function. One nat-
ural choice forϕl is theℓ1-norm.

2.2. Definition of convex setC

The convex setC introduces a priori knowledge on fil-
ter tap coefficients. As mentioned earlier, filters are assumed
to vary along the timent and the sensor indexnx. However,
their variations are usually slow. This can be modelled by
the following two constraint convex setsC1 (variations along
time) andC2 (variations along the sensors):

C1 =
{

h ∈ R
NtNxP | ∀(j, nt, nx, p),

|h
(nt+1,nx)
j (p)− h

(nt,nx)
j (p)| ≤ εnx

j,p

}

C2 =
{

h ∈ R
NtNxP | ∀(j, nt, nx, p), (7)

|h
(nt,nx+1)
j (p)− h

(nt,nx)
j (p)| ≤ εnt

j,p

}

,

where(εnx

j,p, ε
nt

j,p) ∈ [0,+∞[
2. Moreover, additional a priori

information can be added directly on the vector of filter coef-
ficientsh. This amounts to defining a new convex setC3 as a
lower level set of some proper lower-semicontinuous convex
function ρ, by settingC3 =

{

h ∈ R
NtNxP | ρ(Rh) ≤ λ

}

,
whereλ ∈ ]0,+∞[ andρ : RNtNx → [0,+∞[ is a lower-
semicontinuous convex function.Finally,C can be expressed
asC = C1 ∩ C2 ∩ C3.

To minimize the resulting sum of convex functions
composed with linear operators, we choose to employ a
primal-dual algorithm [20] an example of which is the Mono-
tone+Lipschitz Forward-Backward-Forward (M+L FBF) al-
gorithm [21]. Initially, the M+L FBF requires to compute
proximity operators [22] for which closed form expressions

exist for numerous functions [23]. However, they reduce here
to computing projections ontoD and (Cτ )τ∈{1,2,3} as the
functions to be minimized correspond to indicator functions
of nonempty convex setsD and(Cτ )τ∈{1,2,3} respectively.

3. SIMULATIONS

Our method is evaluated on the 2D synthetic seismic
dataset presented in Fig. 1with Nx = 512 seismic traces
of lengthNt = 512. The primary and two templates are
obtained from suitably filtered real seismic data as in [8],
plugged into (3) with filters of lengthP0 = 4 andP1 = 5.

The constraint setsC1 andC2 are defined by (7) where,
for every (j, p, nt, nx), εnx

j,p = 0.05 and εnt

j,p = 0.0001.
Regarding convex setsD and C3, we chooseϕl = | · |,
and we investigate three possible choices forρ, for every
d ∈ R

Nt×Nx :

1. ℓ1-norm: ℓ1(d) =
∑Nx−1

nx=0

∑Nt−1
nt=0 |d(nt,nx)|,

2. ℓ2-norm: ℓ2(d) =
√

∑Nx−1
nx=0

∑Nt−1
nt=0 (d

(nt,nx))2,

3. ℓ1,2-norm:ℓ1,2(d) =
∑Nx−1

nx=0

(

∑Nt−1
nt=0 (d

(nt,nx))2
)1/2

.

σ 0.04 0.08 0.16

Observation error
ℓ1(×102) 3.88 6.89 13.1
ℓ2(×102) 5.42 8.80 16.4

1D version [8]
ℓ1(×102) 2.05 2.91 4.07
ℓ2(×102) 4.75 6.26 8.06

ℓ1

orthogonal ℓ1(×102) 1.66 2.33 3.37
basis(∗) ℓ2(×102) 2.96 3.78 5.40

SI frame(∗)
ℓ1(×102) 1.23 1.70 2.39
ℓ2(×102) 2.51 2.93 3.86

M -band ℓ1(×102) 1.14 1.47 2.00
dual-tree(∗) ℓ2(×102) 2.42 2.66 3.30

ℓ2

orthogonal ℓ1(×102) 1.53 2.27 3.34
basis(∗) ℓ2(×102) 2.56 3.59 5.33

SI frame(∗)
ℓ1(×102) 1.19 1.69 2.42
ℓ2(×102) 2.34 2.93 4.01

M -band ℓ1(×102) 1.07 1.41 1.96
dual-tree(∗) ℓ2(×102) 2.20 2.50 3.20

ℓ1,2

orthogonal ℓ1(×102) 1.51 2.25 3.32
basis(∗) ℓ2(×102) 2.48 3.54 5.27

SI frame(∗)
ℓ1(×102) 1.10 1.58 2.32
ℓ2(×102) 1.76 2.36 3.49

M -band ℓ1(×102) 0.95 1.31 1.87
dual-tree(∗) ℓ2(×102) 1.60 2.07 2.83

Table 1. Comparison of the results obtained by the proposed
2D dual-tree wavelets with the 1D [8] and different 2D(∗)

wavelet transforms, over three noise levels, and three a pri-
ori functionsρ ∈ {ℓ1, ℓ2, ℓ1,2}.



Fig. 2. Estimatedy by 1D method [8] (top) and by 2D method
(bottom) from observed dataz (with σ = 0.04 in Figure 1).

We compute projections onto the convex setsC andD sim-
ilarly as in [8]. The transforms are chosen as follows. In
the time (vertical or sensor) and in the spacedirections, we
choose a Symmlet of length 8 anda Daubechies waveletof
length 4, respectively. The overall transformF may either
be: 1D shift-invariant (SI, length-8 Symletalong timeonly),
2D critical and orthogonal, 2D shift-invariant (fully redun-
dant) or 2D dual-tree (twice redundant). In the latter case,the
given wavelets yield the primal tree, the dual being obtained
by the Hilbert transform of the aforementioned wavelets.The
constraint bounds

(

(βl)l∈{1,...,L} andλ
)

are computed em-
pirically on i) real signals for synthetic data and ii) estimated
signals using [6] for real data.

In Fig. 2, the top row shows the SI-1D wavelet frame re-
sult, although more redundant tight-frame are used, exhibits a
higher level of remnant noise and a blur crossing, as opposed
to the bottom row, where primaries are clearly recovered with
the proposed 2D version using the dual-tree wavelet. The
comparison is pursued in a more complete and objective man-
ner withℓ1 andℓ2 residual errors for primariesy− ŷ in Tab. 1
in which the values in bold indicate the minimum residual er-
rors for eachρ. We test the proposed method against different
levels of noise:σ ∈ {0.04, 0.08, 0.16} and three differentρ
functions. We see that 2D versions generally further reduce
modelling errors, as expected. Moreover, a loose ranking is
as follows: SI-1D< Ortho-2D< SI-2D< dual-tree, and the
smallest absolute or quadratic residuals are obtained with the
ℓ1,2-norm.This confirms that mild redundancy and direction-
ality in the sparsifying transform are indeed beneficial over
(potentially more redundant) 1D and separable 2D decompo-
sitions, when coupled with appropriate constraints.

Fig. 3 displays a recorded seismic data with a partially
appearing primary (arrows) and the estimated primaries ob-
tained by 1D version [8] and by 2D version.We refer to
[6] for template construction.The outcome is displayed in
the cropped square zone from recorded seismic data only.

The primary is better delineated with the directional dual-tree
wavelet frame, with a reduced level of remaining noise and
multiple interferences.Additional results are given in [24].
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Fig. 3. From top to bottom: recorded seismic data with a
partially appearing primary; estimated primary obtained by
1D version [8] and by 2D version.

4. CONCLUSION

This paper proposes an adaptive filtering approachfor multi-
ple reflection cancellation in seismic data. The 2D anisotropic
structure is taken into account andtackledusing geometric
multiscale representations andconvex optimization. Al-
though the proposed variational frameworkallows a wide
range of sparse image representations to be used,directional
dual-tree wavelets have demonstrated very good performance
in our simulations and on real seismic images.
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