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ABSTRACT
This paper proposes a novel approach for echo-like multi-
ple removal in two-dimensional seismic images. It is based f
on constrained adaptive filtering associated with geometri ;f

wavelets. Approximate templates of multiple reflections ar
assumed to be available and they are matched to multiple re-
flections throughout estimated finite impulse responseafdilte
The problem is formulated under a constrained convex opti-
mization form where the data of interest and filters are esti-
mated jointly. Proximal approaches are used to perform the
minimization of the derived criterion. The effectivene$the
proposed approach is demonstrated with various noiseslevel

on realistic simulated data and on field seismic data. Fig. 1. Left to right: observed image, multiple’s, primaryy.
Index Terms— Convex optimization, Parallel algorithms, objects, seismic waves have a non-bounded support, and ex-
Wavelets, Adaptive filters, Geophysics, Sparsity. hibit a band-limited spectral content, closer to fingensrin
or geometric textures [5]. Meanwhileseismic templates
1. INTRODUCTION are obtained through geophysical modelling. They are only

approximate, and substantially differ from the geophysica
In reflection seismologya seismic sourcis generated at the reality in nonstationary amplitude, time delay and frequyen
ground surface or underwater. The resulting seismic waveontent. They ought to be matched to multiple reflections
front travels through the earth and is reflectedyaplogical through adapted finite impulse response (FIR) filters that ar
interfaces wherehangesn propagating mediurdensity and ~ estimated jointly with the signal of interest (primary).
velocity occur  The energy reflected back to the surface is  Traditionally, adaptive multiple removal is performed in
recorded for geophysical processing, to provide estimatesvo or three dimensional seismic data, via standardor
of subsurface structures. One distinguishes two ryges more robust;-norms, with local multidimensional matching
of reflections: 1)primaries, reflected upward only once andFIR filters. The multidimensionality of the filters is thoudb
2) multiples, similar to acoustic reflections bouncing sev-ensure lateral continuity in seismic events. A quite opjgosi
eral times. Rflections, related to geology, take the shapelirection was taken in [6], with an emphasis on a frequency-
of specific patterns [1] in seismic images, as illustrated irand shift-insensitive complex wavelet transform framspas
Fig. 1. We address the problem tfmplate matchindg2]  ciated with simple unary (one-tap) complex filters, in 1Dyonl
and sparse adaptive multiple reflection filtering. It cotssis ~ Counter-intuitively, it was able to perform similarly to meo
finding parts in the seismic image that approximately matctelassical 2D matching techniques. In other words, a careful
pre-defined templates, and in adaptively subtracting therpartnership between sparse representations and adaptive fi
(Fig. 1-middle) from the seismic data (Fig. 1-left) to uneov tering was deemed beneficial in 1D, with respect to tradition
precious obfuscated geological information (Fig. 1-rfjght 2D methods. To account for additional properties, inclgdin
This concept is akin to disocclusion, visual echo cancellastatistical distributions for primaries [7] and slow filteatri-
tion [3] or template matching [2, 4] in pattern recognition. ations, [8, 9] pursued seismic data adaptive filtering with 1
The main difference lies in the lack of rotation or scale de-wavelet frames. Meanwhile, seismic images possess geomet-
grees of freedom in the templates. In contrary to tradifionaric regularity that advises a 2D approach for improved per-



[ r§_p/’"”) e 7“;-0’"“") 0 e 0 1
(=p'+1,n4) (0,n2)
( " e T 0 ... 0
0,ng)
R; :
t— 1, t— <N Ni—Pj,ng
: = r§-N Lnz) 7“§N 2nz) .. r](. )| Q)
R(Nt—1,7L,,) 0 T§Nt—1,"lz) o rgNt_Pj+177Lm)
L 0 . 0 TEN’_I’"’) . réNt_Pj_p/’7L’)_
formance. As a result, multiscale geometric transforms sucboth time and space varig@ind where’ € {—P;+1,...,0}

as curvelet frames [10-12] have been employed in geophy$p’ = 0 corresponds to the causal case). Eq. (3) can be ex-
ical processing. Indeed, 2D matching filters resemble direqpressed more concisely as

tional filters [13]. We extend here [8] to 2D seismic data.

Its anisotropy arises from seismic wave propagation and the =

nature of array acquisition. One dimension of seismic irsage Rjh; )

is governed by space (sensor location) while the other dimen

sion reflects time (wave propagation). This is directly modyhere
elled in the proposed scheme. We adopt a variational frame-
work and build a criterion to be minimized where 1) a data - [3(0,0)’ L s Ne-10)

|
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fidelity term fits the seismic image formation model, and 2)

regularization terms (constructed as hard constrain{zess 5(0,N,—1) E(th,zvzq)} T
a priori information one expects on adapted FIR filters ard th Y

primary. The derived convex minimization problem is solved T

using iterative proximal algorithmsThe remainder of the pa- 7. — {h(O)T o h(Nwl)T}

per is organized as follows: Section 2 presents the model and g

the proposed method. Simulation results are evaluated both

subjectively and objectively in synthetic data and vispaf

field seismic data in Section 3. Section 4 concludes the paper-(r.) _ [+(0:nz), ,
hy " = [hj (),

ey

)
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..,h]- (p/+Pj—1),...,

—(N:—1,nz) , —(Ne—1,nz), 4 T
2. MODELLING MULTIPLE REFLECTIONS h; ®),.... ]y W +P -1 .
A line of seismic sensors delivers a two-dimensional image. The matrix 2

Each col is 1 dbva Dt | sianal ired b ; is block diagonal. Its diagonal elements
or?g Secrc:sljor:n ‘s formed by a emporat signal acquired by re denoted b3(R§."""“))meNt and are given in (1). By

A0 50 )y ) (2 definingR = [Ro---Ry-] € RVYMMF andh =
_ N Ry Ry )T € RNNP with P = Y770 Py, Model (2)
with n = (ny,n,), wheren, € Ny = {0,...,Ny —1}is  can pe rewritten more concisely as

the time indexn, € N, 2 {0,..., N, — 1} is the sensor

index, andn € N £ {(n¢,n,)|ny € Ny, ny € N} Ob- z=Rh+7y+b. (5)
served data = (2("),enr (Fig. 1-left) is composed ahe
primaryy = (7™ )near (Fig. 1-right, 2D data of interest,
unknown), multiples(z(™)ncar (sum of undesired reflected
data, in Fig. 1-middleandadditive noisgb™ ),car. One as-
sumes that genuine multipl¢s(™),cas can be estimated as
a local, weighted sum of template candidates:

We propose a variational framework where & at estimat-
ing simultaneously the filter tap coefficients of the noristat
ary filter h and the primary. The multiple removal problem
is thus formulated as the following constrained convex mini
mization problem

J—1 0/ +P;—1 minimize ||z —y—Rh|3+cp(Fy)+ic(h), (6)

- 7Oy (e—pna yeRTLTs, heRi
U= X hen @
j=0  p=p’ whereF € RENxN:N. models a frame operat¢e.g. direc-

tional wavelets [15]) Functions.c and.p denote indicator
Here(rﬁ”))neMogd denoteJ available templates arﬁu(jn) functions of nonempty convex setsand D, respectively i.e.
is the unknown impulse respongeith P; coefficients)for  tc(z) = 0if 2 € C' andic(z) = +oo if z ¢ C. Generally,
templater; attime n; and sensor,, (the filtering process is seismic data exhibits geometric features (linear, hyderbo



and parabolic), at least piecewise, corresponding to subsuexist for numerous functions [23]. However, they reducesher
face interfaces (Fig. 1). Due to the anisotropic nature ofo compuing projections ontoD and (C)c{1,2,33 as the
seismic data, we choogeas a hybrid dual-tree wavelet (with functions to be minimized correspond to indicator funcsion
different wavelets along space and time [16]). Their deorr of nonempty convex set® and(C' ) -¢{1,2,3} respectively.
lation properties [17] have proven efficient in textured gaa

denoising [18, 19], compared to curvelets whose redundancy 3. SIMULATIONS
is more importantWe now turn our attention to the choice of

Our method is evaluated on the 2D synthetic seismic
the convex set€’ and D.

dataset presented in Fig. vlith V, = 512 seismic traces
o of length N, = 512. The primary and two templates are
2.1. Definition of convex setD obtained from suitably filtered real seismic data as in [8],

. _ . _ plugged into (3) with filters of lengtl®, = 4 and P, = 5.
The relationz = F'y relates the primary datato the trans The constraint set€; and C, are defined by (7) where,

form coefficients, denoted hy. They exhibit specific sub- ) ne e
band structures that are exploited here. Therefore, the coﬁ)r e"zTV (j’p’nt’n“”)’tgjvp d_CO.OE) an(r:I] Sip = 2'0001'
straint can be split by defining a partition ¢f,..., KN,} egarding convex setd and C3, we choosep, = | - |,
denoted by{K; UK,z | I € {1 L}}, whereZ corre- and V\I/$ |51Vvest|gate three possible choices gorfor every
PR ) 1 f,>< T

sponds to the number of subbands, andK;,  are thei- deR )
th subband corresponding to the primal and dual coefficients ) No—1 = Ne—1 | o )

) 1. ¢;- U1 (d) = d\nt:ne
respectively. Then, one can choaBe= D; x --- x Dp r-norm: £4(d) = 30 =0 2ni=o | .

information can be added directly on the vector of filter eoef
ficientsh. This amounts to defining a new convex 6gtas a

dual-treé® | ¢5(x10%) | 2.20 | 2.50 | 3.20

where, for everyl € {1,...,L}, Dy = {(z)rex,uk,; . | g 5
Der, pilek) < prand Doy, ilzr) < Bikopr i R = 2. bynorm: £5(d) = \/Zn;;o ne=o (d(12))2,
[0, 400 is & lower-semicontinuous convex functiddne nat-

. . _ - _ 1/2
ural choice fory; is thef;-norm. 3. 01 5-norm: £, 5 (d) = Zﬁf:ol (Zﬁf,:ol(d(m,nz))z) )
2.2. Definition of convex set”

The convex sef’ introduces a priori knowledge on fil- g 5 0.04 | 0.08 | 0.16
ter tap coefficients. As mentioned earlier, filters are agg=lm | QOpservation error 61(><102) 3.88 | 6.89 | 13.1
to vary along the time; and the sensor index,. However, (o(x10%) | 542 | 8.80 | 16.4
their variations are usually slow. This can be modelled by | 15 ersion [8] €1(X10?) 205 | 291 | 4.07
the following two constraint convex setg (variations along 05(x10%) | 475 ] 6.26 | 8.06
time) andC5, (variations along the sensors): orthogonal | /;(x10%) [ 1.66 | 2.33 | 3.37
basi$*) | /5(x10%) | 2.96 | 3.78 | 5.40
o :{heRNthP |V (j, e, i, P) 7,(x10%) | 1.23 [ 1.70 | 2.39
P R B ¢, | Slframd® B =—2 : : :

(et 1) (nems) s £2(><10‘ )| 251 | 2.93 | 3.86
|h; (p) = h; (p) < Ej,p} M-band | ¢,(x10%) | 1.14 | 1.47 | 2.00

_ *) 2
c, :{h € RYN=P | (4. mu s p). @ dual-treé®) | /5(x10%) | 2.42 | 2.66 | 3.30
orthogonal | ¢;(x10%) | 1.53 | 2.27 | 3.34
B () = B (o) < e basi$”) [ f>(x10%) | 256 | 359 | 5.33

2
where (=, "t ) € [0, 2 Moreover, additional a priori (5(x10%) | 2.34 | 2.93 | 4.01
(75:€7p) € [0, el P M-band | £,(x10?) | 1.07 | 1.41 | 1.96

(x10%)

(x10%)

(x10%)

(x10%)

(x10%)

(x10%)

)

lower level set of some proper lower-semicontinuous convex orthogonal | ¢,(x10%) | 1.51 | 2.25 | 3.32
function p, by settingCs; = {h € R¥V=F | p(Rh) < A}, basis*) | ¢y(x10%) | 2.48 | 3.54 | 5.27
where A € ]0,+oo[ and p: RNtN= — [0, +00[ is a lower- / S| frame® L& x10%) | 1.10 | 1.58 [ 2.32
semicontinuous convex functioRinally, C' can be expressed b2 l5(x10%) | 1.76 | 2.36 | 3.49
asC =C1NCyNCs. M-band | ¢,(x10? 095 | 1.31| 1.87

To minimize the resulting sum of convex functions dual-treé”) | (5(x10%) | 1.60 | 2.07 | 2.83

composed with linear operators, we choose to employ a ) )

primal-dual algorithm [20] an example of which is the Mono- Table 1. Comparison of the results obtained by the proposed
gorithm [21]. Initially, the M+L FBF requires to compute Wavelet transforms, over three noise levels, and three-a pri
proximity operators [22] for which closed form expressionsOri functionsp € {1, €2, £1»}.



The primary is better delineated with the directional dueé
wavelet frame, with a reduced level of remaining noise and
multiple interferencesAdditional results are given in [24].
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Fig. 2. Estimated; by 1D method [8] (top) and by 2D method
(bottom) from observed data(with o = 0.04 in Figure 1). : ‘ SRR "‘”—":x..t_%
We compute projections onto the convex setand D sim- S0r > Primary g
ilarly as in [8]. The transforms are chosen as follows. In 3
the time (vertical or sensor) and in the spaiections we 100 ]
choose a Symmlet of length 8 amadDaubechies waveletf :
length 4, respectively. The overall transfofhmay either 150- 1
be: 1D shift-invariant (Sl, length-8 Symlatong timeonly),
2D critical and orthogonal, 2D shift-invariant (fully reaku 200~ ]
dant) or 2D dual-tree (twice redundant). In the latter ctee,
given wavelets yield the primal tree, the dual being obtine 250t : ‘ : ; =
by the Hilbert transform of the aforementioned wavel&tse 50 100 150 200 250
constraint boundg(53;),e(1,.....1 and\) are computed em- g
pirically on i) real signals for synthetic data and ii) e<dited Y
signals using [6] for real data. 50+ Pri mary ‘x_;
In Fig. 2, the top row shows the SI-1D wavelet frame re-
sult, although more redundant tight-frame are used, etshgbi 100; b

higher level of remnant noise and a blur crossiag opposed
to the bottom row, where primaries are clearly recoveret wit 150 1
the proposed 2D version using the dual-tree wavelet. Th
comparison is pursued in a more complete and objective mai  200- 8
ner with/; and/, residual errors for primarigg— ¢ in Tab. 1
in whichthe values in bold indicate the minimum residual er- 250t : . : ‘ 4
rors for eaclp. We test the proposed method against differen 50 100 150 200 250
levels of noise:c € {0.04,0.08,0.16} and three differenp ) o .
functions. We see that 2D versions generally further reducE!9- 3- From top to bottom: recorded seismic data with a
modelling errors, as expected. Moreover, a loose ranking igartially appearing primary; estimated primary obtaingd b
as follows: SI-1D< Ortho-2D< SI-2D < dual-tree, and the LD version [8] and by 2D version.
smallest abso!ute or.quadratic rgsiduals are obtaineq With the 4. CONCLUSION
£1,2-norm. This confirms that mild redundancy and direction-
ality in the sparsifying transform are indeed beneficialrove Thjs paper proposes an adaptive filtering apprdacimulti-
(potentially more redundant) 1D and separable 2D decompgyie reflection cancellation in seismic dafehe 2D anisotropic
sitions, when coupled with appropriate constraints. structure is taken into account atatckled using geometric
Fig. 3 displays a recorded seismic data with a partiallynultiscale representations armbnvex optimization. Al-
appearing primary (arrows) and the estimated primaries olthough the proposed variational framewaaows a wide
tained by 1D version [8] and by 2D versioriWe refer to  range of sparse image representations to be wubezttional
[6] for template construction.The outcome is displayed in dual-tree wavelets have demonstrated very good perforenanc
the cropped square zone from recorded seismic data onliy our simulations and on real seismic images.
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