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ABSTRACT FEEM constitutes a nonnegative third order tensor which can

In this communication, the problem of blind source sepa-b,e modeled by.mult|-l|nea.r decomposn_pns and more pre-
cisely by Canonical Polyadic Decompositions (CPD), thanks

ration in chemical analysis and more precisely in the fluo- he B Lambert | ¢ lativel "
rescence spectroscopy framework is addressed. Claysicaw the Beer-Lambert law [5], for relatively small concentra

multi-linear Canonical Polyadic (CP or Candecomp/Pabafact'Ons of the compoundsa(k.a. fluorophorgls Moreover, in

decompositions algorithms are used to perform that task. Yethe fluorescence s_,pectrosc_opy context, the const|tue_tume_c
f the three loading matrices should be nonnegative since

as the constituent vectors of the loading matrices should b d for intrinsicall ) " o
nonnegative since they stand for nonnegative quantitescfs they stand for intrinsically nonnegative quantities (esius,

tra and concentrations), we focus on NonNegative CP decorr‘?—xCitation spectra and concentrations), that is why we wil

position algorithms (NNCP). In the unconstrained case, twéeSFriCt our attention to Nquegative cP decomposition_ ?‘"
types of trilinear (or triadic) decomposition model haveibe gorithms (NNCP). The main advantage of the nonnegativity

studied. Here, our aim is to investigate different stragsgi constraint is that the low rank approximation problem be-
omes well posed [6]. Its counterpart is that its level of

concerning the choice of models and optimization schemes igm_ X . . .
ifficulty might increase. The way to take into account this

the case of a nonnegativity constraint. Computer simuiatio . it has b vel died
are performed on synthetic data to illustrate the robustoés nonnegativity con_st_ramt_ as been extensively studie .
st few years, giving rise to numerous works among which

the proposed approaches versus overfactoring problems R . :
also the critical importance of the use of regularizatiomee ~ 2'€ [71[8I[G)[10][11][12][13]. A very simple way consistsf
considering iterative alternating (minimization) optiation

Index Terms— Nonnegative Tensor Factorization (NTF); schemes where at each iteration the non-negativity cantrai
multi-linear algebra; Candecomp/Parafac; Non Negativgs imposed by a projection. The well-known NTF-ALS and
Canonical Polyadic decomposition (NNCP); data analysis NTF-HALS algorithms [8] are based on such an idea. In [10],

we have developed an alternative approach based on a square

1. INTRODUCTION change of variables making it possible to rewrite the tensor

decomposition problem as an unconstrained minimization
The problem of blind source separation in chemical analproblem, whilst ensuring the nonnegativity constraint.
ysis is considered, focusing more precisely on the fluores- Furthermore, in the unconstrained case, two types of tri-
cence spectroscppy framev_vork. Since .the \(vork s of Stedm.qpnear (or triadic) decomposition model have been considler
[1, .2]’ the technique cIaSS|caI.Iy u.sed in this f'?ld of appll_In this communication, our aim is to extend the approach de-
cations to separate the contributions of the different Com\'/eloped in [10] to the second type of model, and then to study
pounds present in the mixtures consists of coupling thre '

dimensional (3D) fluorescence spectroscopy (or Fluore S;iﬁerent strategies concerning the optimization schena a
P by Yhe regularization terms that are added to the cost funation

cence Excitation-Emission Matrices (FEEM)) together Wlthorder to evaluate their impact on the obtained results. @b th

multi-linear Canonical Polyadic (CP or Candecomp/Pajafac_. . . .
I . aim, computer simulations are performed on synthetic data
decompositions algorithms [3][4]. In fact, a set of several

which are very close to real spectroscopic data. They empha-
*Thanks to Labex Archirade (Aix-Marseille Univerity ) for funding. size the critical importance df —norm regularization terms




in order to ensure robustness versus overfactoring prahlemdefined asA = diag{\} where the operatadiag{-} returns
but also illustrate the interest of the second “full” mode&tt a square diagonal matrix which contains in its diagonal the
is considered here. Our approaches are also compared wiglements of the vector given in argument.In a similar way, we

other “state-of-the-art” methods. define\ = Diag{A}, where the operatddiag{-} returnsin a
vector the diagonal elements of the the square diagonabmatr
2 PROBLEM STATEMENT which is given in argument.
2.1. Some recalls 3. NONNEGATIVE 3-WAY ARRAY

A N-th order tensor can be represented bivavay array. FACTORIZATION: NNCP DECOMPOSITION

Its order corresponds to the number of indices of the assocyg problem consists of estimating the three loading mesric
ated array §.k.a waysor modes[5]). Due to the considered A B andC but alsoA in the case of the modified model

fluorescence spectroscopy application, we focuflor} “;f‘(al NOWhilst ensuring their nonnegativity. A classical way tovol
H _ . X J X . . . .
negative 3-way arrays denoted iy = (%) € R + such a problem consists of coming back to a constrained mini-
admitting the following trilinear decompositiom.k.atheir iz ati0n problem using a suitably designed cost functiaut. B
triadic decomposition [14]: in [10], we used a square change of variables (if a matrix, say
P A’, possesses only nonnegative terms, all its entries are de-
[ I = a2). Thus, the tensor decomposition problem
T=> a@bs@cy, (1) [fined asa;; = aj)). o ' decomp problel
is rewritten as an unconstrained minimization problemgisin

= the following cost functior(A, B, C, A):
where eachay ® by ® c; is a rank-1 third order array. The -
three following matricesA = (a;¢) = [a1,az,...,af] € Y= HTfi‘)]K _ AT2pE2 {sz @BDZ} ”% _ ||5(1)va
RIXF, B = (bjf) = [bl,bg,...,bp] S RJXF, C = T
(ckf) = [c1,¢2,...,cp] € REXF are the so-calledbad- - HT'(]S” —BY2AH2 {CDQ ® ADQ} 17 =16 %
ing matrices whose columns are tHeading factors In our -
case the loading factors will have to be nonnegative since — HTfé’)‘” _ CH2pH2 [352 o Alﬂﬂ % = ||5(3)||%,

they represent nonnegative quantities which are resgdgetiv

fluorescence emission, spectra, excitation spectra and cohereA™2 = A [ A, @ is the Hadamard product afld || »
centrations F' is a sufficiently large integer corresponding to js the Frobenius norm. In the NNCP decomposition problem
the number of components involved in the sum angtands  (jike in most Blind Source Separation problems), the num-
for the outer product. The smallest integérthat can be  per of mixed compoundie. the rankF of the tensor is un-
found such that Eq. (1) holds exactly is called teisor rank  known. It can be either overestimated or estimated by differ
[15]. For this value off’, the above decomposition is called ent methods among which are Split Half Analysis [16], COre

the Canonical Polyadic decomposition (CP)Iof CONssistency DIAgnostic (CORDONDIA) [17], LTMC [18],
Threshold-CORCONDIA [19], DIFFIT [20], SORTE [21],
2.2. A modified model AROFAC2 [22] to mention only the most known. Yet, those

_ ) estimation methods can be subject to forecast errors. $hat i
As it can be more convenient to assume that all vecigrs v it remains important to develop NNCP methods that are
b; andc; have unit length, a modﬁgad model has been in-,p ot versus a possible overestimation of the tensor iank (
troduced [4]. Eq. (1) becomeB =3,  Arar@bs®cy,  overfactoring problems).

where \; are scaling factors and = [A1,...,Ap]?, with
()T the matrix transposition operator. 3.1. Gradient matrices
Finally, this model can be written in a compact form using the
Khatri-Rao product>, as Using the same methodology as the one developed in [10],
the four gradient component8aH, VeH, VecH andVaH
T;/" = AA(CoB)", (2)  can be derived:
JKI T

T/ =BA(CoA), () VAH(AB.C.A) = 6H(A£, C,A)

T = CAB® A, 4
WhereTIiJK (resp.TJQ’KI andeg’JI) is the matrix of size OH(A,B,C,A)

( . . VeH(A,B,C,A) = ——2 1"

I xJK (resp.J x KI andK x JI) obtained by unfolding the OB

arrayT of sizel x J x K in the first mode (resp. the second

_ N O2 - A O2) AC2
mode and the third mode)\ is the F' x F diagonal matrix — 4B ( 9»[C™" © ATIA ) ’



OH(A,B,C,A)
aC
=401 (~65[B2 0 ATA™?)
OH(A,B,C,A)
DA

VcH(A,B,C,A) =

VAH(A,B,C,A) =

=4A [ (AEQ)T (—5(1) [CDQ ® BDZ:D .

And we can build either the followingl + J + K+ F) x F

matricesG (%) andX (%) (standing resp. for gradient matrices

and unknown parameters):

VaH(A® BFE k) AR) Ak

c _ VBH(A(k) B®), C(k) k)) x(®) _ B
B VCH(A( B(k k)) ’ | ck
VaH(A® ,B *) C<k> A(’“)) AP

5)

or more efficiently, the followingl + J + K + 1)F' x 1
vectors:

vec{VaH(A®) BHE) C®) AP}

vec{ VEH(A® B®) cH AR}
)}
)

(k) —
B = | vec{VeH (AW, B®, ch), A®) (6)
Diag{VAH(A(k')’B(k)?C(k')7A(k )}

vec{A (R}

(k)

) _ | vec{B™M}
x vec{C(F)} (7)

A

3.2. Optimization algorithm:
gradient algorithm

the non linear conjugate

1= A® 4+ DY Py = B® 4 DWW Py = Cc®) 4
/LD(Ck) andP, = A + ,UDXC) with

D vec{D\1 di)

k k k

DK D(k) Cdw = vec{D%)} _ dgk)
Dé) vec{DE})} d(c)

D vec{D'\)} a®

9)

In exact line searches methods, two expressions &oe clas-
sically used: the Fletcher-Reeve#) and the Polak-Rilgére
(Bpr) formula [24]:

T
(ht1) g+ glk+1)
R = (10)
g0 gk
(k41) _ (g(k+1) _ g(k:))Tg(k+1)- 1)
FR g0 T g(k)

Finally, as noticed in [23][24], the restarting aspect df #i-
gorithm is fundamental for the global convergence analysis
since in general one cannot guarantee that the direatighs
are effectively descent directions. But since a pure stepe
descent step is taken at each restart by settitg= —g(®

the global convergence is assured. In our case, this “téstar
is normally performed every — 1 = (I + J + K + 1)F it-
erations or each timg(¥| > p wherep is a constant chosen
equal tol0e + 3.

Finally, at each iteration, the columns of matricks B and

C are rescaled to have uitnorm, while the diagonal of the
matrix A is multiplied by a certain scalar in order to maintain
the cost functiori unchanged.

As described in [23] when applied to non quadratic problems,

the non linear conjugate gradient (NLCG) method is more3.3. Addition of regularization terms

efficient than Newton methods especially for large systems

of equations since it does not require to compute the Hessiafhe previous objective functiori{, can be modified by

matrix. The NLCG algorithm can take several forms, yet, weadding regularization terms in order to ensure boundedness
focus on line search methods. The complete NLCG algorithnen the solution and/or to enforce another specific property

(using restarts) thus reads:

Step 1.Givenx(®) (Eq. (7)), computez®) (Eq. (6)) and set
d® = g

Step 2. Fork =0,1,...

(k+D)
dk+1)

Step 3. If &k = n — 1 replacex(® by x(") and go back to
Step 1(restart).

n—1
=x® 4 gk

_ g+ | g g®) (8)

When the optimal step size is used”) minimizes the poly-
nomialH(Pl P, P3Py, P3 [ P3, P4 P4) where

on the solution such as smoothness, sparsity or uncormelate
ness. The modified objective function finally rea@ds) =
H()+aal| AP?||e +ap|BP2|e +ac||CP?|le +an | A,
wherea 4, ap, ac anda are nonnegative regularization pa-
rameters: they represent the weight of the regularized [rart
order to avoid a bound in the performance, we suggest here
to decrease these parametegsevery a certain number of
iterations (we opted for each restart).

Different kinds of normsg| - ||, can be considered. The stan-
dard Tikhonow-norm regularization|{: || = ||-||%) is meant
to enforce smoothness of the solution while th&orm reg-
ularization (|Cl[s = [|C|l1 = _, ;[ci;[) is meant to enforce
sparsity of the solution. The gradient components giveB)n (



or (5) are replaced by: By a permutation, we can suppose that the firstolumns
of the estimatesA ., B1.r, C1.r, A1.p correspond to the

VaG(:) = VAH(:) + aax (12)  initial loading matricesA, B, C, A. We introduce then two
VBG(:) = VBH(:) + ap x* (13) indices of performance: the first o measuring relative
distance between the estimates and the true loading nsatrice
VeG() =V . ’ 14 ) ; .
cg0) CH() +acxx (14) when discarding the overestimated part
VAG() = VAH() + apa x *x % * (15)

. . |Arp — Ay + |Bi.r — Bll1 + |Cr.p — C|l1 + |[Arr — A
wherex = 2A (resp.2B, 2C or 2A) is added in the case of E; =
(resp ) IAT: + B[y + ICT + Al

al;-norm regularization, while- = 4AP3 —4A D AGDA
(resp. 4B™3, 4C™3 or 4A™?) is added in the case ofla-
norm regularization.

and the second orig, related to the overestimated part

Ey= > ). (17)
4. COMPUTER SIMULATIONS f>F

In this section, we test the NLCG method with different reg—';'ggﬁslazzogz ?ﬁggglei;r%rofn‘qg?:tﬁ: |?|fAc|)_uSr g;%pg?regfac
ularization approaches for both models (“full” modified and pare - ’

. . : We also observe that the fact of adding regularisation desluc
CP-model) then put in comparison with some reference ap- I th larisati hes. THesbe
proaches such as HALS [8] or Parafac [25]. In this exam—f’g:?asi.rn?;%ﬁ an_n(t));i %u gTs?r:gnSEpCrganief& d _neeCPs
ple, to better assess the behavior of the different algosth imation £, =) 9 ! !

that are compared, the data have been numerically simulate@ggz:' Zﬂ;g?‘:?g;i;?r tr:noégerzgrg;tm?ﬁ TZ’Stlit”lgdg;:?]
With regard to the constituent vectors of the loading magric b P

A andB. we have used mixtures of Generalized Gaussiaregularisa\tion (Figure 2). We figure out the FEEM matrices
distribution functions, whereas the constituent vectdrthe ?Flgure 3) andA (Figure 4) for the readers’ easy visualiza-

loading matrixC and the diagonal terms & were simulated tion.
according to a uniform distribution. The sizes of the réaglt

third order nonnegative tens@rare101 x 47 x 10 and we -300
assumed that’ = 4 components were mixed. In the over-
estimated case, we suppose that= 5. All algorithms are
initialized thanks to the same arbitrary random initidiizas
and the number of iterations is fixed and is equale + 5

in all the tests that are performed. _1s0]

Overestimate

—200

dB

Error -100

HALS Para DecC Dec Lic L1 L2c L2 NoPC NoP

Fig. 2. Error related to the overestimated part: a compar-
ison of the results obtained with the different approaches:
HALS, Parafac(Para), complete model and CP model with
Decoupling regularisation(DecC, Ded),-norm regularisa-
tion(L1C,L1) and Frobenius norm regularisation(L2C, L&) r
spectively

R TR e
HALS ParaDecC Dec L1C L1 L2C L2 NoPC NoP

Fig. 1. Error discarding the overestimated part: a compar-

ison of the results obtained with the different approaches:

HALS, Parafac(Para), complete model and CP model with 5. CONCLUSION
Decoupling regularization(DecC, Ded),-norm regulariza-

tion(L1C, L1) and Frobenius norm regularization(L2C, L2) In this article, focusing on synthetic examples stickinghie
respectively same kind of data as in the 3D fluorescence spectroscopy

context, we have presented an alternative approach todnandl
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Fig. 3. Estimated values oX versus the different methods

the NNCP decomposition of the resulting three-way tenso-
of FEEM. Computer simulations have been provided to em
phasize the effectiveness of the suggested approaches Wt
more CPU time consuming, these latter clearly outperforn
more classical methods when overfactoring problems are el
countered.
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