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ABSTRACT

In this communication, the problem of blind source sepa-
ration in chemical analysis and more precisely in the fluo-
rescence spectroscopy framework is addressed. Classically
multi-linear Canonical Polyadic (CP or Candecomp/Parafac)
decompositions algorithms are used to perform that task. Yet,
as the constituent vectors of the loading matrices should be
nonnegative since they stand for nonnegative quantities (spec-
tra and concentrations), we focus on NonNegative CP decom-
position algorithms (NNCP). In the unconstrained case, two
types of trilinear (or triadic) decomposition model have been
studied. Here, our aim is to investigate different strategies
concerning the choice of models and optimization schemes in
the case of a nonnegativity constraint. Computer simulations
are performed on synthetic data to illustrate the robustness of
the proposed approaches versus overfactoring problems but
also the critical importance of the use of regularization terms.

Index Terms— Nonnegative Tensor Factorization (NTF);
multi-linear algebra; Candecomp/Parafac; Non Negative
Canonical Polyadic decomposition (NNCP); data analysis

1. INTRODUCTION

The problem of blind source separation in chemical anal-
ysis is considered, focusing more precisely on the fluores-
cence spectroscopy framework. Since the works of Stedmon
[1, 2], the technique classically used in this field of appli-
cations to separate the contributions of the different com-
pounds present in the mixtures consists of coupling three
dimensional (3D) fluorescence spectroscopy (or Fluores-
cence Excitation-Emission Matrices (FEEM)) together with
multi-linear Canonical Polyadic (CP or Candecomp/Parafac)
decompositions algorithms [3][4]. In fact, a set of several
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FEEM constitutes a nonnegative third order tensor which can
be modeled by multi-linear decompositions and more pre-
cisely by Canonical Polyadic Decompositions (CPD), thanks
to the Beer-Lambert law [5], for relatively small concentra-
tions of the compounds (a.k.a. fluorophores). Moreover, in
the fluorescence spectroscopy context, the constituent vectors
of the three loading matrices should be nonnegative since
they stand for intrinsically nonnegative quantities (emission,
excitation spectra and concentrations), that is why we will
restrict our attention to NonNegative CP decomposition al-
gorithms (NNCP). The main advantage of the nonnegativity
constraint is that the low rank approximation problem be-
comes well posed [6]. Its counterpart is that its level of
difficulty might increase. The way to take into account this
nonnegativity constraint has been extensively studied over the
past few years, giving rise to numerous works among which
are [7][8][9][10][11][12][13]. A very simple way consistsof
considering iterative alternating (minimization) optimization
schemes where at each iteration the non-negativity contraint
is imposed by a projection. The well-known NTF-ALS and
NTF-HALS algorithms [8] are based on such an idea. In [10],
we have developed an alternative approach based on a square
change of variables making it possible to rewrite the tensor
decomposition problem as an unconstrained minimization
problem, whilst ensuring the nonnegativity constraint.

Furthermore, in the unconstrained case, two types of tri-
linear (or triadic) decomposition model have been considered.
In this communication, our aim is to extend the approach de-
veloped in [10] to the second type of model, and then to study
different strategies concerning the optimization scheme and
the regularization terms that are added to the cost functionin
order to evaluate their impact on the obtained results. To that
aim, computer simulations are performed on synthetic data
which are very close to real spectroscopic data. They empha-
size the critical importance ofl1−norm regularization terms



in order to ensure robustness versus overfactoring problems,
but also illustrate the interest of the second “full” model that
is considered here. Our approaches are also compared with
other “state-of-the-art” methods.

2. PROBLEM STATEMENT

2.1. Some recalls

A N -th order tensor can be represented by aN -way array.
Its order corresponds to the number of indices of the associ-
ated array (a.k.a waysor modes[5]). Due to the considered
fluorescence spectroscopy application, we focus on real non-
negative 3-way arrays denoted byT = (tijk) ∈ R

+I×J×K ,
admitting the following trilinear decomposition,a.k.a their
triadic decomposition [14]:

T =

F∑

f=1

af ⊛bf ⊛ cf , (1)

where eachaf ⊛bf ⊛ cf is a rank-1 third order array. The
three following matricesA = (aif ) = [a1,a2, . . . ,aF ] ∈
R

I×F , B = (bjf ) = [b1,b2, . . . ,bF ] ∈ R
J×F , C =

(ckf ) = [c1, c2, . . . , cF ] ∈ R
K×F are the so-calledload-

ing matrices, whose columns are theloading factors. In our
case the loading factors will have to be nonnegative since
they represent nonnegative quantities which are respectively
fluorescence emission, spectra, excitation spectra and con-
centrations.F is a sufficiently large integer corresponding to
the number of components involved in the sum and⊛ stands
for the outer product. The smallest integerF that can be
found such that Eq. (1) holds exactly is called thetensor rank
[15]. For this value ofF , the above decomposition is called
the Canonical Polyadic decomposition (CP) ofT.

2.2. A modified model

As it can be more convenient to assume that all vectorsaf ,
bf andcf have unit length, a modified model has been in-
troduced [4]. Eq. (1) becomesT =

∑F
f=1 λf af ⊛bf ⊛ cf ,

whereλj are scaling factors andλ = [λ1, . . . , λF ]
T , with

(·)T the matrix transposition operator.
Finally, this model can be written in a compact form using the
Khatri-Rao product⊙, as

T
I,JK

(1) = AΛ(C⊙B)T , (2)

T
J,KI

(2) = BΛ(C⊙A)T , (3)

T
K,JI

(3) = CΛ(B⊙A)T , (4)

whereTI,JK

(1) (resp.TJ,KI

(2) andTK,JI

(3) ) is the matrix of size
I×JK (resp.J×KI andK×JI) obtained by unfolding the
arrayT of sizeI × J ×K in the first mode (resp. the second
mode and the third mode);Λ is theF × F diagonal matrix

defined asΛ = diag{λ} where the operatordiag{·} returns
a square diagonal matrix which contains in its diagonal the
elements of the vector given in argument.In a similar way, we
defineλ = Diag{Λ}, where the operatorDiag{·} returns in a
vector the diagonal elements of the the square diagonal matrix
which is given in argument.

3. NONNEGATIVE 3-WAY ARRAY
FACTORIZATION: NNCP DECOMPOSITION

The problem consists of estimating the three loading matrices
A, B andC but alsoΛ in the case of the modified model
whilst ensuring their nonnegativity. A classical way to solve
such a problem consists of coming back to a constrained mini-
mization problem using a suitably designed cost function. But
in [10], we used a square change of variables (if a matrix, say
A′, possesses only nonnegative terms, all its entries are de-
fined asa′ij = a2ij). Thus, the tensor decomposition problem
is rewritten as an unconstrained minimization problem using
the following cost functionH(A,B,C,Λ):

H = ‖TI,JK

(1) −A⊡2Λ⊡2
[
C⊡2 ⊙B⊡2

]T
‖2F = ‖δ(1)‖

2
F

= ‖TJ,KI

(2) −B⊡2Λ⊡2
[
C⊡2 ⊙A⊡2

]T
‖2F = ‖δ(2)‖

2
F

= ‖TK,JI

(3) −C⊡2Λ⊡2
[
B⊡2 ⊙A⊡2

]T
‖2F = ‖δ(3)‖

2
F ,

whereA⊡2 = A⊡A, ⊡ is the Hadamard product and‖ · ‖F
is the Frobenius norm. In the NNCP decomposition problem
(like in most Blind Source Separation problems), the num-
ber of mixed compoundsi.e. the rankF of the tensor is un-
known. It can be either overestimated or estimated by differ-
ent methods among which are Split Half Analysis [16], COre
CONsistency DIAgnostic (CORDONDIA) [17], LTMC [18],
Threshold-CORCONDIA [19], DIFFIT [20], SORTE [21],
AROFAC2 [22] to mention only the most known. Yet, those
estimation methods can be subject to forecast errors. That is
why, it remains important to develop NNCP methods that are
robust versus a possible overestimation of the tensor rank (i.e.
overfactoring problems).

3.1. Gradient matrices

Using the same methodology as the one developed in [10],
the four gradient components∇AH, ∇BH, ∇CH and∇ΛH
can be derived:

∇AH(A,B,C,Λ) =
∂H(A,B,C,Λ)

∂A

= 4A⊡

(
−δ(1)

[
C⊡2 ⊙B⊡2

]
Λ⊡2

)
,

∇BH(A,B,C,Λ) =
∂H(A,B,C,Λ)

∂B

= 4B⊡

(
−δ(2)[C

⊡2 ⊙A⊡2]Λ⊡2
)
,



∇CH(A,B,C,Λ) =
∂H(A,B,C,Λ)

∂C

= 4C⊡

(
−δ(3)[B

⊡2 ⊙A⊡2]Λ⊡2
)

∇ΛH(A,B,C,Λ) =
∂H(A,B,C,Λ)

∂Λ

= 4Λ⊡

(
A⊡2

)T (
−δ(1)

[
C⊡2 ⊙B⊡2

])
.

And we can build either the following(I + J +K + F )× F

matricesG(k) andX(k) (standing resp. for gradient matrices
and unknown parameters):

G(k) =




∇AH(A(k),B(k),C(k),Λ(k))

∇BH(A(k),B(k),C(k),Λ(k))

∇CH(A(k),B(k),C(k),Λ(k))

∇ΛH(A(k),B(k),C(k),Λ(k))


 ,X(k) =




A(k)

B(k)

C(k)

Λ(k)




(5)

or more efficiently, the following(I + J + K + 1)F × 1
vectors:

g(k) =




vec{∇AH(A(k),B(k),C(k),Λ(k))}

vec{∇BH(A(k),B(k),C(k),Λ(k))}

vec{∇CH(A(k),B(k),C(k),Λ(k))}

Diag{∇ΛH(A(k),B(k),C(k),Λ(k))}


 (6)

x(k) =




vec{A(k)}
vec{B(k)}
vec{C(k)}

λ
(k)


 (7)

3.2. Optimization algorithm: the non linear conjugate
gradient algorithm

As described in [23] when applied to non quadratic problems,
the non linear conjugate gradient (NLCG) method is more
efficient than Newton methods especially for large systems
of equations since it does not require to compute the Hessian
matrix. The NLCG algorithm can take several forms, yet, we
focus on line search methods. The complete NLCG algorithm
(using restarts) thus reads:
Step 1. Givenx(0) (Eq. (7)), computeg(0) (Eq. (6)) and set
d(0) = −g(0)

Step 2. Fork = 0, 1, . . . , n− 1

{
x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −g(k+1) + β(k)d(k) (8)

Step 3. If k = n − 1 replacex(0) by x(n) and go back to
Step 1(restart).

When the optimal step size is used,µ(k) minimizes the poly-
nomialH(P1 ⊡ P1,P2 ⊡ P2,P3 ⊡ P3,P4 ⊡ P4) where

P1 = A(k) + µD
(k)
A

, P2 = B(k) + µD
(k)
B

, P3 = C(k) +

µD
(k)
C

andP4 = Λ(k) + µD
(k)
Λ

with

D(k) =




D
(k)
A

D
(k)
B

D
(k)
C

D
(k)
Λ


 , d(k) =




vec{D
(k)
A

}

vec{D
(k)
B

}

vec{D
(k)
C

}

vec{D
(k)
Λ

}


 =




d
(k)
A

d
(k)
B

d
(k)
C

d
(k)
Λ




(9)

In exact line searches methods, two expressions forβ are clas-
sically used: the Fletcher-Reeves (βFR) and the Polak-Ribière
(βPR) formula [24]:

β
(k+1)
FR

=
g(k+1)Tg(k+1)

g(k)Tg(k)
(10)

β
(k+1)
PR

=
(g(k+1) − g(k))Tg(k+1)

g(k)Tg(k)
. (11)

Finally, as noticed in [23][24], the restarting aspect of the al-
gorithm is fundamental for the global convergence analysis
since in general one cannot guarantee that the directionsd(i)

are effectively descent directions. But since a pure steepest
descent step is taken at each restart by settingd(i) = −g(i)

the global convergence is assured. In our case, this “restart”
is normally performed everyn − 1 = (I + J +K + 1)F it-
erations or each time|g(i)| > ρ whereρ is a constant chosen
equal to10e+ 3.

Finally, at each iteration, the columns of matricesA, B and
C are rescaled to have unitl1-norm, while the diagonal of the
matrixΛ is multiplied by a certain scalar in order to maintain
the cost functionH unchanged.

3.3. Addition of regularization terms

The previous objective functionH, can be modified by
adding regularization terms in order to ensure boundedness
on the solution and/or to enforce another specific property
on the solution such as smoothness, sparsity or uncorrelated-
ness. The modified objective function finally readsG(.) =

H(.)+αA‖A
⊡2‖•+αB‖B

⊡2‖•+αC‖C
⊡2‖•+αΛ‖Λ

⊡2‖•
whereαA, αB , αC andαΛ are nonnegative regularization pa-
rameters: they represent the weight of the regularized part. In
order to avoid a bound in the performance, we suggest here
to decrease these parametersα• every a certain number of
iterations (we opted for each restart).

Different kinds of norms‖ · ‖• can be considered. The stan-
dard Tikhonovl2-norm regularization (‖·‖• = ‖·‖2F ) is meant
to enforce smoothness of the solution while thel1-norm reg-
ularization (‖C‖• = ‖C‖1 =

∑
i,j |cij |) is meant to enforce

sparsity of the solution. The gradient components given in (6)



or (5) are replaced by:

∇AG(·) = ∇AH(·) + αA⋆ (12)

∇BG(·) = ∇BH(·) + αB ⋆ ⋆ (13)

∇CG(·) = ∇CH(·) + αC ⋆ ⋆⋆ (14)

∇ΛG(·) = ∇ΛH(·) + αΛ ⋆ ⋆ ⋆ ⋆ (15)

where⋆ = 2A (resp.2B, 2C or 2Λ) is added in the case of
a l1-norm regularization, while⋆ = 4A⊡3 = 4A ⊡ A ⊡ A

(resp. 4B⊡3, 4C⊡3 or 4Λ⊡3) is added in the case of al2-
norm regularization.

4. COMPUTER SIMULATIONS

In this section, we test the NLCG method with different reg-
ularization approaches for both models (“full” modified and
CP-model) then put in comparison with some reference ap-
proaches such as HALS [8] or Parafac [25]. In this exam-
ple, to better assess the behavior of the different algorithms
that are compared, the data have been numerically simulated.
With regard to the constituent vectors of the loading matrices
A andB, we have used mixtures of Generalized Gaussian
distribution functions, whereas the constituent vectors of the
loading matrixC and the diagonal terms ofΛ were simulated
according to a uniform distribution. The sizes of the resulting
third order nonnegative tensorT are101 × 47 × 10 and we
assumed thatF = 4 components were mixed. In the over-
estimated case, we suppose thatF = 5. All algorithms are
initialized thanks to the same arbitrary random initializations
and the number of iterations is fixed and is equal to10e + 5
in all the tests that are performed.
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Fig. 1. Error discarding the overestimated part: a compar-
ison of the results obtained with the different approaches:
HALS, Parafac(Para), complete model and CP model with
Decoupling regularization(DecC, Dec),l1-norm regulariza-
tion(L1C, L1) and Frobenius norm regularization(L2C, L2)
respectively

By a permutation, we can suppose that the firstF columns
of the estimateŝA1:F , B̂1:F , Ĉ1:F , Λ̂1:F correspond to the
initial loading matricesA,B,C,Λ. We introduce then two
indices of performance: the first oneE1 measuring relative
distance between the estimates and the true loading matrices
when discarding the overestimated part

E1 =
‖Â1:F −A‖1 + ‖B̂1:F −B‖1 + ‖Ĉ1:F −C‖1 + ‖Λ̂1:F −Λ‖

‖A‖1 + ‖B‖1 + ‖C‖1 + ‖Λ‖1
(16)

and the second oneE2 related to the overestimated part

E2 =
∑

f>F

λf . (17)

Figure 1 shows better error estimationsE1 of our proposed
models and CP model in compare with HALS and Parafac.
We also observe that the fact of adding regularisation deduces
smaller errors than no-regularisation approaches. The best er-
ror estimation (E1 =) belongs to thel1 NLCG method in CP
model. Furthermore for the overestimate index, the modified
model performs better than CP model with respect to each
regularisation (Figure 2). We figure out the FEEM matrices
(Figure 3) andΛ (Figure 4) for the readers’ easy visualiza-
tion.

HALS Para DecC Dec L1C L1 L2C L2 NoPC NoP
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Fig. 2. Error related to the overestimated part: a compar-
ison of the results obtained with the different approaches:
HALS, Parafac(Para), complete model and CP model with
Decoupling regularisation(DecC, Dec),l1-norm regularisa-
tion(L1C,L1) and Frobenius norm regularisation(L2C, L2) re-
spectively

5. CONCLUSION

In this article, focusing on synthetic examples sticking tothe
same kind of data as in the 3D fluorescence spectroscopy
context, we have presented an alternative approach to handle
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Fig. 3. Estimated values ofλ versus the different methods

the NNCP decomposition of the resulting three-way tensor
of FEEM. Computer simulations have been provided to em-
phasize the effectiveness of the suggested approaches. While
more CPU time consuming, these latter clearly outperform
more classical methods when overfactoring problems are en-
countered.
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