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A Sharp Estimate for Divisors of Bernoulli Sums

Let Sn = ε1 + . . . + εn, where εi are i.

]. We show that sup 2≤d≤n P d|Sn -E(n, d) = O log 5/2 n n 3/2 , where E(n, d) verifies c1β(n, d) ≤ E(n, d) ≤ c2β(n, d) and c1, c2 are numerical constants.

Main result

Let {ε i , i ≥ 1} denote a Bernoulli sequence defined on a joint probability space ( Ω, Ã, P), with partial sums S n = ε 1 + . . . + ε n . Consider the Theta function

Θ(d, m) = ℓ∈Z e imπ ℓ d -mπ 2 ℓ 2 2d 2 .
The improvment of the following result, which is Theorem II in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], is the main purpose of this work.

Proposition 1 We have the following uniform estimate:

sup 2≤d≤n P d|S n - Θ(d, n) d = O log 5/2 n n 3/2 . ( 1 
)
This estimate is sharp already when d < (Bn/ log n) 1/2 , otherwise

P d|S n - 1 d ≤ C log 5/2 n n 3/2 + 1 d e -nπ 2 2d 2 if d ≤ n 1/2 , C n 1/2 if n 1/2 ≤ d ≤ n. ( 2 
)
And this is no longer efficient when d ≫ √ n. The purpose of this Note is to remedy this by showing the existence of an extra corrective exponential factor in that case. Introduce a notation. Let n ≥ d ≥ 2 be integers and denote by r d (n) the least residue of n modulo 2d: n ≡ r mod(2d) and 0 ≤ r < 2d. Let also denote rd (n) = 2dr d (n).

Theorem 2 We have

sup 2≤d≤n P d|S n -E(n, d) = O log 5/2 n n 3/2 .
where E(n, d) satisfies

1 2 √ 2π ≤ E(n, d) max 1 2d , 1 √ n e -r d (n) 2 2n + e -rd (n) 2 2n ≤ 32 √ 2π .
This exponential factor is effective when min(r d (n), rd (n)) ≫ √ n. Its importance is easily seen through the following example.

Let 0 < c < 1 and let 1 ≤ ϕ 1 (n) ≤ cϕ 2 (n) be non-decreasing. Suppose d is such that 2d ≥ √ nϕ 2 (n) with r d (n) large so that √ nϕ 1 (n) ≤ r d (n) ≤ c √ nϕ 2 (n). Then rd (n) ≥ (1 -c) √ nϕ 2 (n) and so E(n, d) ≤ 32 √ 2πn e - ϕ 2 1 (n) 2 + e - (1-c) 2 ϕ 2 2 (n) 2 . Let 0 < A 1 ≤ A 2 . By taking ϕ i (n) = √ 2A i log n, i = 1, 2, we get E(n, d) ≤ C max n -1/2-A1 , n -1/2-(1-c) 2 A2 ≪ n -1/2 .
Thus we get a much better upper bound than in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF]. The proof uses estimates for Theta functions, which are provided in the next Section.

2 Theta Function Estimates

Let E(n, d) := Θ(d,n) d . By the Poisson summation formula ℓ∈Z e -(ℓ+δ) 2 πx -1 = x 1/2 ℓ∈Z e 2iπℓδ-ℓ 2 πx ,
where x is any real and 0 ≤ δ ≤ 1, we get with the choices x = πn/(2d 2 ),

δ = n/(2d) E(n, d) = 2 πn h∈Z e -2({ n 2d }+h) 2 d 2 n . (3) 
Let a > 0, 0 ≤ µ ≤ 1 and write μ := 1µ. We begin with elementary estimates of

S(µ, a) := h∈Z e -a(µ+h) 2 = e -aµ 2 + e -aμ 2 + ∞ h=1 e -a(µ+h) 2 + ∞ h=1 e -a(h+μ) 2 . Lemma 3 Define for 0 ≤ µ ≤ 1 and a > 0, ϕ(µ, a) = 1 √ 2a+2aµ . Then (ϕ(µ, a) -1)e -aµ 2 ≤ ∞ h=1 e -a(µ+h) 2 ≤ 2ϕ(µ, a)e -aµ 2 . Proof. Consider Mill's ratio R(x) = e x 2 /2 ∞
x e -t 2 /2 dt. Then ([1] section 2.26)

1 1 + x ≤ 2 √ x 2 + 4 + x ≤ R(x) ≤ 2 x 2 + 8/π + x ≤ 2 1 + x , x ≥ 0. First ∞ 0 e -a(µ+x) 2 dx -e -aµ 2 ≤ ∞ h=1 e -a(µ+h) 2 ≤ ∞ 0 e -a(µ+x) 2 dx. But ∞ 0 e -a(µ+x) 2 dx = e -µ 2 a √ 2a R(µ √ 2a) and 1 1 + µ √ 2a ≤ R(µ √ 2a) ≤ 2 1 + µ √ 2a . Thus 1 √ 2a + 2aµ e -aµ 2 ≤ ∞ 0 e -a(µ+x) 2 dx ≤ 2 √ 2a + 2aµ e -aµ 2 . Hence (ϕ(µ, a) -1)e -aµ 2 ≤ ∞ h=1 e -a(µ+h) 2 ≤ 2ϕ(µ, a)e -aµ 2 ,
as claimed.

Corollary 4 Put ψ(µ, a) := 1 + ϕ(µ, a) e -aµ 2 . Then for every 0 ≤ µ 1 and

a > 0 1 2 ≤ S(µ, a) ψ(µ, a) + ψ(μ, a) ≤ 2.

Proof. At first by the previous Lemma

A := e -aµ 2 + ∞ h=1 e -a(µ+h) 2 ≤ e -aµ 2 1 + 2ϕ(µ, a) .

Next A ≥ e -aµ 2 + 1 2 ∞ h=1 e -a(µ+h) 2 ≥ e -aµ 2 + 1 2 ϕ(µ, a)-1 e -aµ 2 = 1 2 1+ϕ(µ, a) e -aµ 2 . Thereby 1/2 ≤ A ψ(µ,a) ≤ 2. Operating similarly with Ā = e -aμ 2 + ∞ h=1 e -a(μ+h) 2 leads to 1 2 ≤ S(µ, a) ψ(µ, a) + ψ(μ, a) ≤ 2.
Notice that ϕ(0, a) = 1/ √ 2a and

1 2 1 + 1 √ 2a ≤ S(0, a) = 1 + 2 ∞ h=1 e -ah 2 ≤ 4 1 + 1 √ 2a . (4) 
We now need an extra Lemma.

Lemma 5 Let n = 2dK + r with 1 ≤ r ≤ 2d. Then

1 2 max 1 2d , 1 √ n e -r 2 2n ≤ ψ( r 2d , 2d 2 n ) √ n ≤ 2 max 1 2d , 1 √ n e -r 2 2n .
Proof. We have

ψ( r 2d , 2d 2 n ) = 1 + √ n 2d 1 1 + r √ n e -r 2 2n .
We consider three cases.

Case a. 2d ≤ √ n. Then r √ n < 2d
√ n ≤ 1, and so

√ n 4d e -r 2 2n ≤ ψ( r 2d , 2d 2 n ) ≤ √ n d e -r 2 2n , which implies 1 2 max 1 2d , 1 √ n e -r 2 2n = e -r 2 2n 4d ≤ ψ( r 2d , 2d 2 n ) √ n ≤ e -r 2 2n d = 2 max 1 2d , 1 √ n e -r 2 2n . Case b. 2d ≥ √ n and r ≤ √ n. Here we have e -r 2 2n ≤ ψ( r 2d , 2d 2 n ) ≤ 2e -r 2 2n , which implies max 1 2d , 1 √ n e -r 2 2n = e -r 2 2n √ n ≤ ψ( r 2d , 2d 2 n ) √ n ≤ 2e -r 2 2n √ n = 2 max 1 2d , 1 √ n e -r 2 2n . Case c. 2d ≥ √ n and r ≥ √ n.
The exponential factor e -r 2 2n may this time play a role (if r ≫ √ n), and we have e

-r 2 2n ≤ ψ( r 2d , 2d 2 n ) ≤ 3 2 e -r 2 2n which implies max 1 2d , 1 √ n e -r 2 2n = e -r 2 2n √ n ≤ ψ( r 2d , 2d 2 n ) √ n ≤ 3e -r 2 2n 2 √ n = 3 2 max 1 2d , 1 √ n e -r 2 2n
.

Summarizing cases a) to c), we have that

1 2 max 1 2d , 1 √ n e -r 2 2n ≤ ψ( r 2d , 2d 2 n ) √ n ≤ 2 max 1 2d , 1 √ n e -r 2 2n .

Proof

A first case is simple.

Case I. 2d|n. We have E(n, d) = 2 πn S(0, 2d 2 n ). But by (4)

1 2 max 1, √ n 2d ≤ 1 2 1 + √ n 2d ≤ S(0, 2d 2 n ) ≤ 4 1 + √ n 2d ≤ 8 max 1, √ n 2d . Hence 1 √ 2π max 1 2d , 1 √ n ≤ E(n, d) ≤ 16 √ 2π max 1 2d , 1 √ n . (5) 
Case II. Now if 2d |n, write n = 2dK + ρ with 0 < ρ < 2d. In our setting a

= 2d 2 n , µ = { n 2d } = ρ 2d and by (3), E(n, d) = 2/πn S({ n 2d }, 2d 2 n ). Applying Lemma 5 with r = ρ gives 1 2 max 1 2d , 1 √ n e -ρ 2 2n ≤ ψ( ρ 2d , 2d 2 n ) √ n ≤ 2 max 1 2d , 1 √ n e -ρ 2 2n . (6) 
As to ψ(μ, 2d 2 n ), we have μ = 2d-ρ 2d := ρ 2d and 0 < ρ < 2d. Applying Lemma 5 with r = ρ gives 

1 2 max 1 2d , 1 √ n e - ρ2 2n ≤ ψ( ρ 2d , 2d 2 n ) √ n ≤ 2