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ON MEAN VALUES OF RANDOM MULTIPLICATIVE FUNCTIONS

YUK-KAM LAU, GÉRALD TENENBAUM AND JIE WU

Abstract. Let P denote the set of primes and {f(p)}p∈P be a sequence of independent
Bernoulli random variables taking values ±1 with probability 1/2. Extending f by
multiplicativity to a random multiplicative function f supported on the set of squarefree
integers, we prove that, for any ε > 0, the estimate

∑
n�x f(n) � √

x (log log x)3/2+ε

holds almost surely—thus qualitatively matching the law of iterated logarithm, valid for
independent variables. This improves on corresponding results by Wintner, Erdős and
Halász.

1. Introduction

In many problems of arithmetic nature, probabilistic models serve as heuristic support,
sometimes leading to plain solutions. For instance, the link between the distribution of
zeros of the Riemann ζ-function and random matrix theory has been extensively studied
in recent years— see in particular Montgomery’s pioneer article [11], and Katz & Sarnak’s
important monograph [9] for a more general theory.

It is well-known that equivalent forms of the Riemann hypothesis (RH) may be stated
in terms of mean values of multiplicative functions. The lastest result in this direction,
due to Soundararajan [15], states that, if µ designates the Möbius function, RH holds if,
and only if, we have

(1.1)
∑
n�x

µ(n) �ε

√
x e(log x)1/2+ε

(x � 3),

for all ε > 0. The best known estimate to date in this direction is the Korobov–Vinogradov
bound ∑

n�x

µ(n) � xe−c1(log x)3/5(log2 x)−1/5
(x � 3),

where c1 is a positive constant. Here and in the sequel, we let logk denote the k-fold
iterated logarithm.

A probabilistic approach to this question is therefore of great interest. It has been stated
by many authors that RH is almost always true. However such a statement heavily de-
pends on the nature of the random model that is chosen to represent the Möbius function.
If one selects random independent signs εn, then the desired bound follows from a well-
known theorem of Khintchine and Kolmogorov according to which a series

∑
n�1 εn/nσ

is almost always convergent if, and only if, σ > 1/2. A more precise, and actually opti-
mal, quantitative form is given by the law of iterated logarithm which provides the exact
maximal order for |

∑
n�x εn| i.e.

√
{2 + o(1)}x log2 x—see for instance [14], p. 397.

However, as observed by Lévy [10], such a model provides only limited hint from an
arithmetical viewpoint since εn does not depend on n in a multiplicative manner. This led
Wintner [17] to consider a setting that avoids Lévy’s objection, thus laying the foundation
for random multiplicative functions theory.
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Let (Ω, T , P) be a probability space, let P denote the set of primes, and let {f(p)}p∈P

be a sequence of independent Bernoulli random variables on Ω taking ±1 both with prob-
ability 1/2. For each positive integer n, we may define a random variable f(n) on Ω
by

(1.2) f(n) := µ(n)2
∏
p|n

f(p).

Clearly, n �→ f(n) is multiplicative, so f(n) is a random multiplicative function. Of course,
the probability that f = µ is zero, but it may be noticed that

dn :=
∏
p|n

p(1−f(p))/2

is a random squarefree divisor of n assuming each possible value with uniform probability
1/2ω(n), where ω(n) denotes the total number of distinct prime factors of n, and that

(1.3) f(n) = µ(dn) (n � 1).

The quantity
Mf (x) :=

∑
n�x

f(n)

thus measures the amount of cancellations arising from the multiplicative structure of the
random function f . As a heuristic support for (1.1), Wintner [17] obtained the upper
bound Mf (x) � x1/2+ε for any ε > 0 almost surely and showed that Mf (x) � x1/2−ε

is false almost surely, this latter property being shared by the Möbius function. He also
noted that “the chasm between [the upper and lower bound] could perhaps be bridged by
an arithmetical counterpart of Khintchine’s law of the iterated logarithm”.

Erdős (unpublished, see [5]) investigated in greater detail how the number-theoretic
dependence among the f(n) affects the magnitude of Mf (x). He showed that the factors
xε and x−ε may be replaced, still almost surely, by (log x)c2 and (log x)−c3 for some positive
constants c2 and c3.

Halász [7] made an important step forward by proving that, for suitable positive con-
stants c4, c5, we have almost surely

(1.4) Mf (x) �
√

x ec4
√

log2 x log3 x

while

(1.5) Mf (x) �
√

x e−c5
√

log2 x log3 x

is false almost surely.
In a very recent paper [8], Harper improved (1.5) to the assertion that, for each ε > 0,

(1.6) Mf (x) �
√

x/(log2 x)5/2+ε

holds almost surely for infinitely many integers x.
Of course, these estimates still fall short of any conjectural bound based on the law

of the iterated logarithm, or on the belief that dependence actually reduces the expected
size: see problem 26, due to Halász, in the appendix of Montgomery’s monograph [12],
where it is asked whether the bound Mf (x) � √

x holds almost surely.

In this paper, our aim is to investigate how close one can get to optimality for an
almost sure upper bound. Improving on Halász’ estimate (1.4), we show that a power of
an iterated logarithm is valid, on a set of probability 1, as an upper bound for the slowly
varying factor, and hence that the multiplicative structure does not disrupt statistical
cancellations in a significant way. To decide whether it actually increases the amount of
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cancellations remains an interesting open problem. However, this could only happen in a
relatively narrow range, as shown by (1.6).

We start by setting up a slightly more general probabilistic model, in which the f(n)
may vanish. Let {f(p)}p∈P be a sequence of independent random variables on (Ω, T , P)
such that

(1.7) P({f(p) = 1}) = P({f(p) = −1}) = 1
2κp, P({f(p) = 0}) = 1 − κp

where κp ∈ [0, 1] fulfils the following condition, where c is a positive constant,

(1.8)
∑
p�x

κp log p = x + O
(
xe−2c

√
log x

)
(x � 2).

We obtain a random multiplicative function f(n) by (1.2). Selecting κp = 1 for all primes p,
we recover Wintner’s probabilistic model. With the choice κp = p/(p + 1), we obtain
the probabilistic model for a real primitive Dirichlet character, as defined by Granville
& Soundararajan [6]—see also [18]—with the slight difference that our f has support
included in the set of squarefree integers.

Theorem 1.1. Let ε > 0. As x → ∞, we have almost surely

(1.9) Mf (x) �
√

x (log2 x)3/2+ε.

The special case κp ≡ 1 of Theorem 1.1 provides a significant improvement over the
estimate (1.4). In particular, our bound now pertains to the scale predicted by the law of
the iterated logarithm. In short, our result shows that random signs behave in comparable
way whether or not a multiplicative structure is imposed.

Based on Halász’ method, our upper bound is obtained by following Halász’ suggestion
[7] for removing the log3 x from (1.4). With some specific, new refinements, we show that
this idea leads to a much larger gain than expected—compare Lemma 3(ii) of [7] to Lemma
3.1 below.

It is also valuable to note, as did Erdős and Halász, that, in the case κp = 1, the f(p)
may be realized as Rademacher functions. Thus, all results in this theory find a natural
interpretation in the theory of orthogonal series.

2. Preliminary estimates

In the sequel of this work, we let cj (j = 0, 1, 2, . . .) denote suitable positive absolute
constants.

Recall that ω(n) denotes the number of distinct prime factors of an integer n. For real,
positive numbers m, u, v, y, z, we define

Sm = Sm(u, v; y, z) :=
y,z∑

u<d�v

µ(d)2mω(d)

where the symbol
∑y,z indicates a sum restricted to integers all of whose prime factors

belong to the interval ]y, z].

Lemma 2.1. Let δ ∈ ]0, 1[. For y � 3, m � 1, 1 < u � v(1 − 1/y1−δ), y < z � y2,
we have

(2.1) Sm � (v − u)m
log y

y,z∑
u/z<r�v/y

mω(r)

r
·
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Proof. We may assume with no loss of generality that v > y for Sm otherwise vanishes.
Write d = rp with p := P+(d). We plainly have

Sm � m

y,z∑
u/z<r�v/y

mω(r)
∑

u/r<p�v/r

1.

Since (v − u)/r � y(v − u)/v � yδ, the Brun–Titchmarsh theorem implies that the inner
sum is � (v − u)/(r log y). �

The main aim of this section is to prove Lemma 2.3 below. For this we need to estimate
moments, and so appeal to the following form of a result of Bonami [2], for which Halász
provided an alternate proof — [7], Lemma 2.

Lemma 2.2. Let f(n) be defined by (1.7), (1.8) and (1.2). For m ∈ N∗ and aj ∈ CN∗

(1 � j � m), we have

(2.2)
∣∣∣∣E

( ∏
1�j�m

∑
n�1

aj(n)f(n)
)∣∣∣∣ �

( ∏
1�j�m

∑
n�1

|aj(n)|2κ(n)2/m(m − 1)ω(n)

)1/2

where

(2.3) κ(n) = µ(n)2
∏
p|n

κp.

Moreover, we have

(2.4) E
(
Mf (x)2

)
∼ cfx (x → ∞)

with
cf :=

∏
p∈P

(1 + κp/p)(1 − 1/p),

and, uniformly for v � u + 1 � 2,

(2.5) E
(
{Mf (v) − Mf (u)}4

)
� v2/3(v − u)4/3(log v)52/3.

Proof. When κp = 1 for all p, the bound (2.2) follows immediately from the induction
hypothesis appearing in the proof of Lemma 2 of [7]. Letting Q denote the set of integral
squares and using an asterisk to indicate that a summation is restricted to squarefree
integers, it may be written as

(2.6)
∣∣∣∣

∑
n1�1

∗
· · ·

∑
nm�1

∗

n1···nm∈Q

∏
1�j�m

aj(nj)
∣∣∣∣ �

( ∏
1�j�m

∑
n�1

∗
|aj(n)|2(m − 1)ω(n)

)1/2
.

Consider the general case. We have

(2.7) E
( ∏

1�j�m

∑
n�1

aj(n)f(n)
)

=
∑
n1�1

∗
· · ·

∑
nm�1

∗

n1···nm∈Q

∏
1�j�m

aj(nj)
∏

p|n1···nm

κp.

As 0 � κ � 1, we plainly have
∏

p|n1···nm
κp �

∏
1�j�m κ(nj)1/m for all squarefree nj

(1 � j � m), with equality if, and only if, n1 = · · · = nm. Thus, the modulus of the
left-hand side of (2.7) does not exceed

�
∑
n1�1

∗
· · ·

∑
nm�1

∗

n1···nm∈Q

∏
1�j�m

|aj(nj)|κ(nj)1/m

and the bound (2.2) follows from (2.6).
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Selecting m = 2 and a1(n) = a2(n) = 1 in (2.7), we get

E
(
Mf (x)2

)
=

∑
n�x

κ(n).

The asymptotic formula (2.4) is hence an immediate consequence of a classical theorem
on multiplicative function with values in [0, 1]—see for instance [16], theorem I.3.12.

Finally, since 0 � κ � 1, relation (2.2) with m = 4 and Hölder’s inequality imply

E
(
{Mf (v) − Mf (u)}4

)
�

( ∑
u<n�v

3ω(n)
)2

�
( ∑

n�v

27ω(n)
)2/3( ∑

u<n�v

1
)4/3

.

Therefore, the required bound (2.5) follows from the classical estimate∑
n�v

27ω(n) � v(log v)26.
�

Remark. As mentioned in [7], Bonami [2] proved the following variant of (2.2)

(2.8) E
∣∣∣∣
∑
n�1

a(n)f(n)
∣∣∣∣
m

�
( ∑

n�1

|a(n)|2(m − 1)ω(n)

)m/2

in which a ∈ CN∗
and m may assume any real value � 2. We shall not need such

generalization in this work.

According to (2.4), the expected order of Mf (x) is
√

x. The next lemma, essentially
identical to Lemma 1 of [7] (and the proof of which we provide for mere convenience), shows
that, almost surely, this quantity fluctuates moderately in appropriate short intervals: in
other words, the problem of bounding Mf (x) everywhere may be reduced to doing so at
suitable test-points.

Lemma 2.3. Let f(n) be defined by (1.7), (1.8) and (1.2). For any fixed constant A > 0,
there is a suitable constant c6 = c6(A) ∈]0, 1[ such that, for

(2.9) xi :=
⌊
eic6

⌋
(i � 1),

we have almost surely

max
xi−1<x�xi

|Mf (x) − Mf (xi−1)| �A,f

√
xi

(log xi)A
(i � 1).

Proof. Assume that

(2.10) max
xi−1<x�xi

∣∣Mf (x) − Mf (xi−1)
∣∣ > 2

√
xi/(log xi)A

and that the maximum is attained at some integer

x = xi−1 +
∑

1�j�h

2νj

where {νj}h
j=1∈Nh and ν1 > · · · > νh � 0. We split [xi−1, x] into a disjoint union of

subintervals with limit points

uk = xi−1 +
∑

1�j�k

2νj (0 � k � h).

Thus, there exists a pair {uk, uk+1} such that

(2.11)
∣∣Mf (uk+1) − Mf (uk)

∣∣ >
√

xi/(log xi)A+1,



6 YUK-KAM LAU, GÉRALD TENENBAUM AND JIE WU

for the number of these subintervals does not exceed 1 + {log(xi − xi−1)}/ log 2 < 2 log xi.
Note that

(2.12) uk = xi−1 + (� − 1)2m, uk+1 = xi−1 + �2m,

with � =
∑

1�j�k 2νj−νk and m = νk.
Next, we bound the total probability of the occurrence of (2.11) when (2.12) holds for

some � and m: this clearly dominates the probability of (2.10).
By Markov’s inequality for the fourth moment and (2.5), we may write

(2.13) P
(∣∣Mf (v) − Mf (u)

∣∣ >
√

xi/(log xi)A+1

)
�

(
v − u

xi

)4/3

(log xi)4A+64/3.

Let u = xi−1 + (�− 1)2m and v = xi−1 + �2m, where � � 1, m � 0 and �2m � xi − xi−1.
Then by (2.13), the probability that (2.11) holds for some uk, uk+1 of the form (2.12) is

(2.14)

�
∑∑

�2m�xi−xi−1

(
2m

xi

)4/3

(log xi)4A+64/3

� (log xi)4A+64/3
∑

2m�xi−xi−1

(
2m

xi

)4/3 xi − xi−1

2m

�
(

xi − xi−1

xi

)4/3

(log xi)4A+64/3.

Set c6 := 1/(272 + 48A). As (log xi)4A+64/3 � i(4A+64/3)c6 and (xi − xi−1)/xi � 1/i1−c6 ,
we deduce that (2.14) is � i−5/4 and hence that the same bound holds for probability
of the event (2.10). The proof is completed by the Borel-Cantelli lemma—see, e.g. [4],
Theorem 4.2.1. �

Remark. Chatterjee and Soundararajan ([3], Prop. 3.1) evaluate E({Mf (v) − Mf (u)}4)
for short intervals ]u, v]. However, inserting this estimate into the above proof would only
yield to an improvement on the value of the constant c6, with no influence on the final
exponent 3/2 appearing in Theorem 1.1.

3. Proof of Theorem 1.1

We first establish an average estimate improving significantly over the corresponding
bound obtained by Halász—see [7], formula (2).

Lemma 3.1. Let f(n) be defined by (1.7), (1.8) and (1.2) and let {xi}i�1 be given by (2.9).
Then, for any ε > 0, we have almost surely

1
xi − xi−1

∫ xi

xi−1

Mf (x) dx �f,ε
√

xi (log2 xi)3/2+ε (i � 1).

Proof. We show that large values of the integral occur with small probability and conclude
by the Borel-Cantelli lemma.

We have xi =
⌊
eic6

⌋
. Given a large constant �0, we put X� := e2�

for � � �0, so that
X�−1 = X

1/2
� . We consider those xi lying in ]X�−1,X�], and for α ∈]0, 1

2 [, write

(3.1) y0 := exp
{c62�

4�

}
, yj = yeα

j−1 = yeαj

0 (j � 1),

and observe that, if J is minimal under the constraint yJ � X�, then

J � 1 +
log{4�/c6}

α
� log �

α
·
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Employing the notation

Ψf (x, y) :=
∑
n�x

P (n)�y

f(n) (x � 0, y � 1),

we split the sum Mf (x) according to the size of the largest prime factor P (n) of the
summation variable n. For x ∈ [xi−1, xi], we thus obtain

Mf (x) =
∑
n�x

P (n)�y0

f(n) +
∑

1�j�J

yj−1,yj∑
yj−1<d�xi

∑
m�x/d

P (m)�yj−1

f(dm)

= Ψf (x, y0) +
∑

1�j�J

yj−1,yj∑
yj−1<d�xi

f(d)Ψf (x/d, yj−1).

Setting δi := xi − xi−1, we express accordingly the integral to be bounded as follows:

(3.2)
1
δi

∫ xi

xi−1

Mf (x) dx = Ni0(f) +
∑

1�j�J

Nij(f)

where

Ni0(f) :=
1
δi

∫ xi

xi−1

Ψf (x, y0) dx,(3.3)

Nij(f) :=
yj−1,yj∑

yj−1<d�xi

bij(d; f)f(d) (j � 1)(3.4)

with

bij(d; f) :=
1
δi

∫ xi

xi−1

Ψf (x/d, yj−1) dx.

We first establish an upper bound for the probability of the event

(3.5) A = A�(R) :=
⋃

X�−1<xi�X�

{
1
δi

∣∣∣∣
∫ xi

xi−1

Mf (x) dx

∣∣∣∣ � 2
√

xiR

}
.

To this end, we define

(3.6)

B0 = B0(R; �) :=
⋃

X�−1<xi�X�

{
|Ni0(f)| �

√
xiR

}
,

B1 = B1(R; �) :=
⋃

X�−1<xi�X�

{ ∑
1�j�J

|Nij(f)| �
√

xiR

}
.

Clearly A ⊂ B0 ∪ B1, so

(3.7) P(A ) � P(B0) + P(B1).

We first estimate B1. Following Halász, we consider the filtration {T (y)}y�1 where
T (y) denotes the σ-algebra generated by the variables f(p) with p � y. Since 0 � κ � 1,
we may deduce from Lemma 2.2 that, for any integer m � 1, we have

(3.8) E
(∣∣Nij(f)

∣∣2m | T (yj−1)
)

�
(
xiDij(f)

)m
,

where

Dij(f) :=
1
xi

yj−1,yj∑
yj−1<d�xi

bij(d; f)2µ(d)2(2m − 1)ω(d).
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From the Cauchy-Schwarz inequality, we see that

bij(d; f)2 �
1
δi

∫ xi

xi−1

Ψf (x/d, yj−1)2 dx �
xi

δi

∫ xi/d

xi−1/d

Ψf (t, yj−1)2

t
dt

where we made the change of variable t := x/d and used the inequality d = x/t � xi/t.
Therefore

(3.9) Dij(f) � D∗
ij(f) :=

1
δi

∫ xi/yj−1

1

yj−1,yj∑
xi−1/t<d�xi/t

µ(d)2(2m − 1)ω(d) Ψf (t, yj−1)2

t
dt.

Applying Lemma 2.1 to the right-hand side of (3.9), we obtain

D∗
ij(f) � 1

log yj−1

yj−1,yj∑
r�X�

(2m − 1)ω(r)+1

r

∫ xi/ryj−1

xi−1/ryj

Ψf (t, yj−1)2

t2
dt

� m

log yj−1

∫ X�/yj−1

1

yj−1,yj∑
xi−1/tyj<r�xi/tyj−1

(2m − 1)ω(r)

r

Ψf (t, yj−1)2

t2
dt.

Now, we observe that, for y < min(z, w), m � 1, we have

(3.10)
y,z∑

r�w

(2m − 1)ω(r) �
y,z∑

s�w

(2m − 2)ω(s)
y,w∑

d�w/s

1 � w

log y

∏
y<p�z

(
1 +

2m − 2
p

)
,

from which we deduce by partial summation that
yj−1,yj∑

xi−1/tyj<r�xi/tyj−1

(2m − 1)ω(r)

r
� αec7αm

provided α � 1/2� � 1/ log y0. Writing

Ij� :=
∫ X�

1

Ψf (t, yj−1)2

t2
dt,

we thus have

(3.11) D∗
ij(f)m �

(c8αmec7αmIj�

log yj−1

)m
.

Let T � 1 be specified later. Defining the events

(3.12) Cj :=
{
Ij� � T log yj−1

}
(1 � j � J), C :=

⋂
1�j�J

Cj ,

we plainly have

(3.13) B1 ⊂ (B1 ∩ C ) ∪ C .

By Lemma 2.2 and the classical estimate ([16], th. III.5.1)

Ψ(x, y) :=
∑
n�x

P (n)�y

1 � x1−1/(2 log y) (x � y � 2),

we have E
(
Ij�

)
� log yj−1, whence

(3.14) P(Cj) �
1
T
·
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Moreover, since, as first noticed by Basquin [1], {Ij�}J
j=0 is a submartingale with respect

to the filtration {T (yj) : 1 � j � J}, we actually deduce from Doob’s inequality (see,
e.g., [13] Theorem II.1.7) that

(3.15) P
(
C

)
� log �

T
·

Indeed,
P
(

sup
2r<log yj−1�2r+1

Ij�

log yj−1
> T

)
� 1

T

for each integer r such that c62�/(4� log 2) < 2r � 2�. Since there are only � log � possible
values of r, (3.15) follows.

Applying Hölder’s inequality in the form( ∑
1�j�J

|Nij(f)|
)2m

� J2m−1
∑

1�j�J

|Nij(f)|2m,

we derive from (3.6), (3.8), (3.9) and (3.11) that

(3.16)

P(B1 ∩ C ) � P(B1|C ) �
∑

X�−1<xi�X�

∑
1�j�J

E
(
|Nij(f)|2m | Cj

)
J2m−1(

xiR2
)m

� 2�/c6

(
c8TJ2αmec7αm

R2

)m

.

Finally, we bound P(B0). Using the Cauchy-Schwarz inequality, we get, as before,

E
(
Ni0(f)2

)
�

1
δi

∫ xi

xi−1

E
(
Ψf (x, y0)2

)
dx

�
1
δi

∫ xi

xi−1

Ψ(x, y0) dx � xie−(log X�)/(4 log y0) = xi2−�/c6

since xi � X�−1 = X
1/2
� . By Markov’s inequality, we then deduce that

(3.17)

P
(
B0) �

∑
X�−1<xi�X�

P(Ni0(f) �
√

xiR
)

�
∑

X�−1<xi�X�

E
(
Ni0(f)2

)
(
√

xiR)2
� 2−�/c6

R2

∑
X�−1<xi�X�

1 � 1
R2

,

by our choice for xi and X�.
Collecting our estimates (3.13), (3.15), (3.16), (3.17) and inserting back into (3.7),

we get

(3.18) P(A ) � 1
R2

+ 2�/c6

(
c8TJ2αmec7αm

R2

)m

+
log �

T
·

Selecting
T = �1+ε/2, R := �3/2+ε, α := 1/�, m := �,

so that J � � log �, we conclude that

(3.19) P(A ) �ε
log �

�1+ε/2
·

Thus, the Borel-Cantelli lemma implies

P
(

lim sup
��1

A�(R)
)

= 0.

This finishes the proof of Lemma 3.1. �
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Now we are ready to prove Theorem 1.1. From the identity∫ xi

xi−1

Mf (t)dt = δiMf (x) − δi{Mf (x) − Mf (xi−1} +
∫ xi

xi−1

{
Mf (t) − Mf (xi−1)

}
dt,

we deduce that, for all i � 1 and all x ∈]xi−1, xi], we have

|Mf (x)| �
1
δi

∣∣∣∣
∫ xi

xi−1

Mf (t)dt

∣∣∣∣ + 2 max
xi−1<t�xi

|Mf (t) − Mf (xi−1)|.

Write

E� :=
{

sup
X�−1<x�X�

|Mf (x)|√
x (log2 x)3/2+ε

> 4
}

.

From the above upper bound, Lemma 2.3 with A = 1, and (3.19), we have

P(E�) � (log �)/�1+ε/2.

It hence follows from the Borel-Cantelli lemma that P
(
lim sup�→∞ E�

)
= 0, as required.
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