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AN INVERSE SOURCE PROBLEM FOR THE DIFFUSION EQUATION WITH FINAL
OBSERVATION.

M. BELLASSOUED AND M.CRISTOFOL

ABSTRACT. We investigate the inverse problem involving recovery of source temperature from the informa-
tion of final temperature profile. We prove that we can uniquely recover the source of a n-dimensional heat
equation from the measurement of the temperature at fixed time provided that the source is known in an arbi-
trary subdomain. The algorithm is based on the Carleman estimate. By using a Bukhgeim-Klibanov method,
as a first step, we determine the source term by two measurements. A compacity and analyticity arguments
procedure help to reduce the number of measurements.

Keywords: Inverse source problem, parabolic equation, Carleman estimates, Final overdetermination.

1. INTRODUCTION AND MAIN RESULT

Let us consider the diffusion equation which is a partial differential equation which describes density
fluctuations in a material undergoing diffusion occupying an open and bounded domain of R™ with C*
boundary I' = 0€). Given T" > 0, we consider the following boundary value problem for the reaction-
diffusion with homogeneous Dirichet boundary condition

y'(z,t) — div(D(z)Vy(z,t)) = F(z,t) (x,t)e @ =Q x (0,T),

(1.1) y(z,t) =0 (x,t) e =T x (0,7),
y(z,0) =0 z € Q,
where prime stands for the time derivative. Throughout this paper, ¢t and x = (1, ..., x,) denote the time

variable and the spatial variable respectively, and y denotes the temperature, is a scalar function, F' € L?(Q)
is the heat source. We will assume that the diffusion matrix D(z) = (dij)1<i j<n. Where the coefficients
d;j(x) are smooth on €2 for 1 < ¢, j < n, is positive-definite and satisfy for some positive constant C' > 0

n
12  CTHEP < D] dy&i < CIEP, dij(a) = dji(z), zeQ, £=(&,....&) e R
ij=1
It is well known that system (1.1) possesses an unique solution y such that
(1.3) ye HY(0,T; L*(Q)) n L*(0,T; H*(Q)).
1.1. Inverse Source Problem. We assume that the heat source is given by
(1.4) F(z,t) = q(x)k(z,1),

Let 0 < § < T and let w € €2 be an arbitrary fixed subdomain. Moreover let us assume that k& = k(x,t) is
known. Then determine ¢ = ¢(x), x € 2, from only the overdetermining data

y(z,0), xef
provided that g(x) = 0 in w.

In our inverse problem, we are required to determine the z-dependent function g(x), provided that the
(x,t)-dependent factor k(x,t) is known. As one simple example of such a source term, we can take
1



2 M. BELLASSOUED AND M.CRISTOFOL

k(z,t) = e ! with a constant ¢ > 0 which is z-independent. This model describes a heat source by
the decay of a radioactive isotope and then ¢ = ¢(x) corresponds to the spatial density of the isotope. We
note that 6 > 0, and we do not assume any initial condition at £ = 0, but we alternatively assume to be
able to measure y(-, #) in 2 at any fixed moment § > 0. In the two dimensional case, such an observation
can be realized for example by means of the thermography at 6, while it is difficult to determine y(-,0) by
observations when the heat process is already going on. Therefore our formulation of the inverse problem is
meaningful from the practical point of view.

In the area of mathematical and physical inverse problems, the inverse source identification problems
is one of the most addressed. Indeed, the notion of source term in the form ¢(x)k(z,t) where k(x,t) is
assumed to be known can be associated easily to the notion of reaction term in a linear reaction diffusion
equation. This type of equation appears in several fields of applications such as hydrology [3] or in heat
transfer [4], in population genetics [1], chemistry [6], biology and also in spacial ecology to modelise the
dynamic of a population [30]. It is well known that the solution y(x, t) and the behavior of y(x,t) depend
mainly on the linear part of the reaction term: in population dynamic, the extinction of the population, its
persistence and its evolution is conditioned by this term [11]. Therefore, it is crucial to know or determine
this coefficient. But, in many physical applications, this term is often unknown or partially known and this
coefficient cannot be directly measured since it is the resultant of mixed effects of several factors. Thus,
this coefficient is generally measured through the solution y(x,t), and in most of the cases y(z,t) is not
available simultaneously for all z and all time .

On the other hand, the classical way to recover the source term in a parabolic problem such as (1.1) is to
involve additional information. Different methods and different hypothesis on the additional informations
have produced several interesting works. Around the topic of recovering a source term or the linear part of
the reaction term in a reaction-diffusion equation, a lot of authors have used additional information coming
from a finite number of boundary measurements [16, 29, 32, 31]. Thanks to the Carleman inequalities, the
method introduced by Bukgheim and Klibanov [8] has permitted to establish important results involving
stability inequality linking the coefficient to be recovered with the observations [2, 14, 21, 39]. These sta-
bility inequalities can play an important role in view to implement numerical simulations. The observations
involved in these papers correspond to local observation on w x (0,7") where w is a subdomain of €2 plus
the observation of the solution on all the domain €2 at one time § > 0. Recently [13, 36], a new approach
involving only pointwise observation of the solution y(z, ) has been applied to obtain uniqueness results in
several inverse parabolic problems including the recovering of the source terms in the one dimensional case.
Another important inverse parabolic problems are associated to the integral overdetermination in which the
additive observation can take the form:

J;z y(z, t)u(z)dr = ¢(t), fort € (0,7,

where u and ¢ are the known functions, or the form
J y(x, t)v(t)dt = (x), for x € §,
(0,1)

where v and v are the known functions. We find these additive informations in [37] associated to parabolic
equations parametrized by a diffusion coefficient, and in the monograph [33], in which the authors have
established uniqueness results for special classes of coefficients. They deal with an equivalent formulation
of their inverse problem and they use a Fredholm approach. In [25, 27] the linear parabolic case in addressed
and in [5], the authors are interested by the case of Neumann boundary conditions and they study a certain
class of non linear reaction term.

The particular case of the final overdetermination in which the additive observation is the value of the
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solution at one fixed time 6 : y(x, 6) has been addressed by Prilepko and al in [33] using the same method
described above and the same special classes of coefficients.

The works of Isakov [22, 23] and Prilepko and Solov’ev [34] involve point fixed theorem. In his paper
[22], Isakov carried out a stability result requiring additional boundary observations with some sign condi-
tions. In [9], Bushuyev considers the case of special non linear source term and in [12], the authors deal with
parabolic equations parametrized by a diffusion coefficient and establish a local stability inequality except
for a countable set of parameters.

In [15], the authors used the optimal control framework to solve an optimization problem with final overde-
termination to recover a potential in a nonlinear parabolic problem in the one dimensional case and in [17],
Hasanov used a weak solution approach to minimize a coast functional.

On the other hand, there are several papers addressing the inverse problem of the determination of zeroth
order coefficient in parabolic equation. Isakov [24] proved the uniqueness where the boundary observa-
tion 0,Y|r, x (0,r) With some I'1 < 0€2, is adopted in place of y|,, (o,). Imanuvilov and Yamamoto [21]
established the Lipschitz stability in determining a coefficient ¢ € L?(£2), and Imanuvilov and Yamamoto
[20] proved the uniqueness within ¢ € H~"(€)); a Sobolev space of negative order —m. In the case of
x-independent k = k(t) and 6 = 0, we refer to Cannon [10] and Yamamoto [40], [41]. Cannon [10] proved
the conditional stability in the special case of k£ = 1, and [40] - [41] established the conditional stability of
the logarithmic type by means of boundary observation data.

This above list of papers and methods is non exhaustive, but summarizing the existing results associated
to each kind of additive observations, it seems that the most interesting subsidiary information in view of
practical applications is the final overdetermination. Indeed, the final overdetermination y(z, 8) corresponds
to a finite number of direct measurement of the solution. In other words, the choice of the final overdeter-
mination corresponds to a realistic and rather simple observation which can be measured by an appropriate
Sensor.

Furthermore, we stress out that a mathematical stability inequality linking the coefficient to be reconstructed
with finite number of physical observations (in this paper physical observation corresponds to the final
overdetermination y(x, #)) is not proposed in most of the previous results excepted for the results using Car-
leman inequalities. But, in all the existing results, the stability inequalities obtained via Carleman estimates
require additional observations, e.g. local measurement in space and time of the solution of the problem.
We propose here, a new result coupling stability inequality and final overdetermination observation at one
time 6 in a multidimensional case.

1.2. Notations and statement of main results. We define the following spaces:
HY(Q) = H(0,T;L*(Q)) n L*(0,T, H*(Q))
and
cH(@Q) = C'([0, T]:C(2)).
Let 6 € (0,T). We assume that the known part of the source term satisfy the following properties:
(1.5) keC(@), |klewog <M, |k(z,0)=r0>0, zeQ

with some constants M > 0 and 79 > 0. Let y the solution of (1.1). Then by the regularity of the parabolic
system (see Evans [18] Thm.5, p.360) we have

y,y' € H*(Q)

moreover there exists C > 0 such that

(1.6) 1l 22i) + 1V¥lL2iq) + 19 12y < € lal 2oy
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and
(1.7) (D) g2y < Cllal 2
where the constant C' depends only on €2, T', | D|,, and M.

We are ready to state the main result.

Theorem 1.1. Let w € ) be an arbitrary open subdomain of Q. Let k € C10(Q) satisfies (1.5) with
0 e (0,7). Ify' € H2(Q) satisfies (1.1), then there exists a constant C = C(w, M, 8) > 0 such that

(1.8) lallz2) < ClyC, )2
for all g € L?() satisfying ¢ = 0 in w.

As for the corresponding inverse problem in the case of § = 0, the uniqueness and the stability by y,,,.
with an arbitrary w are very difficult and open problems. As for related inverse problems, see Bukhgeim [7],
Isakov [23], Lavrent’ev, Romanov and Shishat-skii [28], Romanov [35].

In Section 2, we recall the key Carleman estimates from [21] and the Sections 3 and 4 are devoted to the
proof of the theorem 1.1.

2. CARLEMAN ESTIMATE

Our proof is the application of a Carleman estimate, which originates from the paper by Bukhgeim and
Klibanov [8], and in [26] the uniqueness is proved in the inverse problem.

We set wp = w x (0,7). We assume that the matrix D satisfies (1.2). In this section, we will detail a
Carleman estimate for the problem:

Y (z,t) — div(D(z)Vy)(z,t) = F(z,t) (x,t)e Q= Q x (0,7),
y(z,t) =0 (,t)eX =T x(0,T),

2.1

which is the analogue to the Carleman estimate by Imanuvilov [19]. First we will define appropriate weight
functions.

Lemma 2.1 (see [21]). Let w € ) be an arbitrary open subdomain, for every open set wy € w, there exists
a function (3 such that: 3 € C*(9Q),

~

B=0, 0,8<0  onoQ,
VB >0  inQ\wo,

We take K > 0, such that
K = 5maxf

Q
and set 5
B=B+K, B=-maxp.
4 9
Then we introduce the weight functions:

AB(@) M) _ B
@(xat) = f(t) > Ol(xat) = T, f(t) = t(T — t)

where A > 0 is a parameter.

Now we are ready to recall the first key Carleman estimate.
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Lemma 2.2. Under the above assumptions, there exists \g > 0 so that for any A > )\, there exists a
constant so(X) > 0 satisfying the following property: there exists a constant C' > 0, independent of s, such
that

(2.2) 33J 250 (t) 3 y|*dadt + sf e () Vy|*dxdt
Q Q

< C’ng 2 () 73|y Pdadt + Cf e*| F|?dxdt
wr Q

forall y € HY2(Q) solves (2.1) and all s > s.
For the application to the inverse problem, we further need to estimate the term 3.

Lemma 2.3. Under the above assumptions, there exists A\g > 0 so that for any X > )y, there exists a
constant so(\) > 0 satisfying the following property: there exists a constant C' > 0, independent of s, such
that

(2.3) % f X U(t) |y |Pdxdt < Cs® J
Q

wT

€250() 3|y 2dadt + C J €250 2 dad
Q
forall y € HY2(Q) solves (2.1) and all s > s.

3. LOCAL ESTIMATES FOR PARABOLIC EQUATION

For further reference we now establish the following technical results, which are a kind of weighted
regularity local estimates for parabolic equations. We consider the following parabolic system:

3.1) y —div(D(z)Vy)=F, zeQ,te(0,7T),
we assume that F' € L?(Q) and
(3.2) F(z,t) =0, zew, te(0,T).

Lemma 3.1. Let v € [0,+0) and w' € w < Q. Then there exists a constant C = C(y,w’,w) > 0 such
that the parabolic estimate

(3.3) [e*¢ VY| L2y < Cslle™ ™ y| 2y,
hold for any y € HY2(Q) satisfies (3.1)-(3.2) and s > 1.

Proof. Let x € C3°(€2) be supported in w with x(z) = 1 for all z € w’ and Supp(x) < w.
Multiplying F by e2**/~27yy and integrating over Q = Q x (0,T) we get that

(3.4) 0= f X2y (2)F(z, t)y(z, t)dedt = U + W,
Q
with . 4
U= ) e ) dade,
2 Jax(o,1) dt

W = —f 2502y (2)div(D(z) Vy)y(x, t)dadt.
Qx(0,7)

We treat each of the two terms appearing in the rhs of (3.4) separately. Integrating by parts in the first one
we get

(3.5) U| = ’ JQ 202y () (sow — 0 ()(T = 2¢)) |y|* ddt| < CsHeSO‘B_(VH)yH%Q(wT),
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since |oy| < CU72.
Next we obtain in the same way that

3.6) W= f X2y - D(x) - Vydadt + J XTI (Vx + 2sxVa) - D(z) - Vy(x, t)dadt.
Q Q
Further, since

3.7) 2 J;} XYy - D(x) - Vyydadt = J;} XU~V - D(x) - V(|y|*)dzdt

- — J XU~ (div(D(2)Vx) + 25V - Va) |y|* dadt,
we get that ¢
(3.8) UQ XU~V - D(z) - Vy(z, t)y(, t)dxdt’ < CS|\esa€_(7+1/2)y|\i2(wﬂ.

Moreover, we have

L; 628“5‘2V><TV0¢-D(96)-Vyyd:vdt‘ < s e NPV + sle XAV ay | g

< s TNV Y| 3 ) + sle* e O Dy,

wr)”

as we have |Va| < crt. Putting this together with (3.5)-(3.6) and recalling from (1.3) that
f ¥\ Vy - D(z) - Vydadt > C_lHeso‘é_VVyH%g(w/T)
Q

we end up getting (3.3). (]

Lemma 3.2. Let v € [0,+0) and w' € w < . Then there exists a constant C = C(v,w’,w) > 0 such
that the parabolic estimate

(3.9) [0y |12y < Cs? e 0™y 1o
holds for any y € H%2(Q) satisfying (3.1)-(3.2) and s > s.

wr)*

Proof. Choose w” such that w’ € w” € w. Let x € C°(€2) such that x = 1 in w’ and Supp(x) < w”. Let
Yy« = Xxy. From the very definition of F' we have

Yi —div(D(2)Vys) = xF + Quy = Qiy  in Q,
where Q is a first order differential operator supported in w”. Let § = £~ (7*1/2)y_ Then § satisfy
. - _ 1 _
§ —div(D(@)V§) = €0 Quy — (v + )T — 20y, =@

Next, applying Lemma 2.3 with y replaced by y, we get that

(3.10) if X5 ()| |Pdadt < Cs3f
Q

wr

€2500(1) 3| 2t + O f €259 G P dadt
Q

<Os? f 250 (4) 20|y 2 dadt + C’f 25| G| dudt.
wr Q

Furthermore

3.11) j e*?|G P dadt < C’J 2= vy 2dedt + C | 250 |y 2 dadt.
Q w&/—‘ "

wp



AN INVERSE SOURCE PROBLEM FOR THE DIFFUSION EQUATION WITH FINAL OBSERVATION. 7

Applying Lemma 3.1, with ' replaced by w” and ~y replaced by v + 1/2, to estimate the second integral

3.12) J

T

2sa£—(2’y+l)‘vy’2dxdt < CSQJ e2sa€—(2fy+3)|y‘2dxdt
wr

So, inserting (3.12) in (3.11), we obtain

(3.13) J 5G| dxdt < CSQJ 250~ 23) |y 2 dgdt
Q wip
Moreover, since
(3.14) J ey Pdadt < f Xy Pdadt + C | 207204 |y 2 dadt
wr wr wr
we deduce that
(3.15) J 252y Pdedt < Cs* | e2@0(t) 7202y |2 dadt.
W wr
The proof is complete. O

4. PROOF OF MAIN THEOREM

Now we can prove Theorem 1.1 by an argument similar to Imanuvilov and Yamamoto [21]. In a first
step, we establish a new stability inequality (4.9) involving weaker norm than one obtained in [21].
For this, we set Au(z) = div(D(z)Vu(z)) when u € C2(Q2), and u|sq = 0.
Since we can change scales of ¢, without loss of generality, we may assume that § = % By (1.1), the
function z = ' € H'?(Q) satisfies

4.1) 2= Az + q(x)k (z,t) inQ
and
(4.2) z(z,0) = Ayg + q(x)k (x,0) in Q,

where we set yg(z) = y (z,0), x € Q. Therefore by Lemmas 2.2-2.3, using (1.5), we obtain
1
43) J €2500(1) 3|2 2ddt + s f e250g(1) |V 2 P dadt + Sf e2500(4) |2/ Pdadt
Q Q Q

< CSSJ 259 (t) 73| 2P dadt + C'f e?5%|q(z) |*dxdt
wr Q

for all large s > 0.
By e2@(#.0) — ) the Cauchy-Schwarz inequality and (4.3), we have

0
4.4) J |z (z, 9)]2 e25a(x,T/2) 1. d¢ —f % (j slz(z, t)]2 250‘dm) dt

fos 'e25) 2dxdt+ff ( )(fzm> e dxdt
< CLL s20(t) ~2e25e 2d:pdt+CJ f ( t)|2? +s3z2€(t)_1> e dudt

< CSBJ 250 (1) 7322 dadt + C’J e5%q(z) | dxdt
wT Q
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for all large s > 0.
Hence (4.2) and (4.4) yield

(4‘5) Sf ’q(x)‘Z ‘k (33,9)|2 era(I’G)daE < CSJ IAyg\QeQW(I’Q)dx
Q Q
+ C’s?’J e25(t) 73|z Pdadt + C’J X% q(x)|?dxdt
wr Q

for all large s > 0. Since a(x,t) < a(x,0) for all (z,t) € @, we have

T
(4.6) f era‘q(x)‘de < f |q($)’2 (J e2sa(x,9)dt> dr = TJ ‘q($)|2€28a(x’9)d$.
Q Q 0 Q

Hence, by the last condition in (4.6), we can absorb the last term at the right hand side of (4.5) into the left
hand side if s > 0 is sufficiently large, so that

4.7) SJ |q(x)|26230‘(’”’9)dx < C’Sf ]Ay9|26280‘($’9)dx + CS3J X5 () 73|y |Pdxdt
Q Q wr
for all large s > 0. By Lemma 3.2, we get
4.8) SJ |q(x)|2625a($’9)d$ < C’sf \Ay9|2e250‘($’0)d$ + CS7J eQSaf(t)_7|y|2d:Udt
[¢) Q wr
Since
sup era(m,O)’ sup g(t)77625a(:c,t) < o,
e (z,t)eQ

fixing s > 0 sufficiently large, we obtain the following key result:

Proposition 4.1. Let w € ) be an arbitrary open subdomain of ). Let k € C'°(Q) satisfies (1.5) with
0 € (0,7). Ify e HY*(Q) satisfies (1.1), then there exists a constant C' = C(w, M, 0) > 0 such that

(4.9) lalrz2@) < Clly ) r20) + 19l L2 @0p)
for all g € L?() satisfying ¢ = 0 in w.

We stress out that in the previous proposition, contrary to the classical results, the local observation in wr
is done with a norm in L?(wr).
In a second step, we recall the following lemma Inspired by [38] :

Lemma 4.2. Let X, Y , Z be three Banach spaces, let A : X — Y be a bounded injective linear operator
with domain 9(A), and let K : X — Z be a compact linear operator. Assume that there exists C' > 0 such
that

(4.10) 1 flx < CilAfly +IKflz, Vfe2(A).
Then there exists C > 0 such that
(4.11) Iflx <ClAfly, Yfe2Z(A).

Proof. Given A bounded and injective we argue by contradiction by assuming the opposite to (4.11). Then
there exists a sequence (f,), in X such that | f,| = 1 for all n and Af, — 0in Y as n go to infinity.
Since K : X — Z is compact, there is a subsequence, still denoted by f,,, such that (X f,,),, converges in Z.
Therefore this is a Cauchy sequence in Z, hence, by applying (4.10) to f,, — fm, we get that | f, — fi| x —
0, as n,m — o0. As a consequence (fy), is a Cauchy sequence in X so f,, — f as n — oo for some
f e X. Since || fn| x = 1 for all n, then ||f| , = 1. Moreover we have Af, — Af = 0asn — oo, which
is a contradiction to the fact that A4 is injective. ([l
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We end the proof by defining
X ={qe L*(Q), q(z) =0inw}, Y =H*Q), Z=L*wr),

and
A X — Y K: X — A

q — Ag=y(-,0) qg — Kq=1yu,
where y denotes the unique solution to (1.1). Then it suffices to prove the two following lemma:

Lemma 4.3. The operator A is bounded and injective.

Proof. First the boundedness of A follows readily from (1.7). Second y being solution to the system formed
by the two first equations in (1.1), we deduce from the identities y(-,#) = 0 and ¢ = 0 on w that y/(-,6) = 0
on w. Arguing in the same way we get that the successive derivatives of y wrt ¢ vanish on w x {#}. Since
y is solution to some initial value problem with time independent coefficients, it is time analytic so we
necessarily have y = 0 on w x (0, §). Therefore ¢ = 0 on 2 by (4.9), and the proof is complete. g

Lemma 4.4. K is a compact operator from X into Z.
Proof. The operator K being bounded from X to H'(wr) as we have
190 22 (r) T IVUlL2ry + 1] 12y < L2y »
from (1.6) so the result follows readily from the compactness of the injection H'(wr) < Z = L?(wr). O
Finally, putting Lemmas 4.1, 4.2, 4.3 and 4.4 together, we end up getting that
lall 2y < €l Adly = Clly(0)l g2qy »

which gives Theorem 1.1.

REFERENCES

[1] D. G. ARONSON, H. G. WEINBERGER, Nonlinear diffusion in population genetics, combustion and nerve propagation
Partial Differential Equations and Related Topics, Lectures Notes in Mathematics vol 446, New York: Springer 1975, pp
5-49.

[2] M. BELLASSOUED, M. YAMAMOTO, Inverse source problem for a transmission problem for a parabolic equation,, J.
Inverse IlI-Posed Probl., 14 (2006), 47-56.

[3] J. BEAR, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.

[4] V. BECK, B. BLACKWELL, ST. C.R. CLAIR, Inverse Heat Conduction, I11-Posed Problems,Wiley Interscience, New York,
1985.

[5] E. BERETTA, C. CAVATERRA, Identifying a space dependent coefficient in a reaction-diffusion equation, Inverse Problem
and Imaging, 5, 2, (2011) 285-296.

[6] J. BILLINGHAM, D J. NEEDHAM, The development of traveling waves in quadratic and cubic autocatalysis with unequal
diffusion rates 1. permanent form of traveling waves,Phil. Trans. R. Soc. A (1991) 334 1-24.

[7]1 A.L. BUKHGEIM, Introduction to the Theory of Inverse Problems, VSP, Utrecht, 2000.

[8] A. L. BUKHGEIM, M. V. KLIBANOV, Uniqueness in the large of a class of multidimensional inverse problems, Sov. Math.
Dokl. 17 (1981), 244-247.

[9] I. BUSHUYEV, Global uniqueness for inverse parabolic problems with final observation, Inverse Problems 11 (1995) L11.

[10] J.R. CANNON, Determination of an unknown heat source from overspecified boundary data, SIAM J Numer Anal 5, 1968,
275 - 286.

[11] R S CANTRELL, C COSNER, Spatial Ecology Via Reaction-Diffusion Equations, Chichester: Wiley (2003).

[12] M. CHOULLI, M. YAMAMOTO, Generic well-posedness of an inverse parabolic problem the Holder space approch, Inverse
Problems, 12, (1996), 195-205.



10
(13]
(14]
[15]
(16]
(17]
(18]
[19]
(20]
(21]
(22]
(23]
[24]

[25]

[26]
(27]

(28]
[29]
(30]
(31]
(32]
(33]

(34]

(35]
(36]

(37]

(38]

(39]

[40]

(41]

M. BELLASSOUED AND M.CRISTOFOL

M. CRISTOFOL, J. GARNIER, F. HAMEL, L. ROQUES, Uniqueness from pointwise observations in a multi-parameter
inverse problem, Commun. Pure Appl. Anal. 11 (2012) 1-15.

M. CRISTOFOL, L. ROQUES, Biological invasions: deriving the regions at risk from partial measurements, Math. Biosci.,
215 (2008), 158-166.

Z. C. DENG, L. YANG, J. N. YU, G. W. LUO, An inverse problem of identifying the coefficient in a nonlinear parabolic
equation, Nonlinear Analysis 71 (2009) 6212-6221.

P. DUCHATEAU, W. RUNDELL, Unicity in an inverse problem for an unknown reaction term in a reaction-difusion equation,
J. Differential Equations. 59 (1985), 155-164.

A. HASANOV, Simultaneous determination of source terms in a linear parabolic problem from the overdetermination: Weak
solution approach., J. Math. Anal. Appl. 330 (2007) 766-779.

L. C. EVANS, Partial Differential Equations, Amer. Math. Soc., Graduate Studies in Mathematics, vol. 19.

O. Yu. IMANUVILOV, Boundary controllability of parabolic equations, Sbornik Math; 1995, 186, 879 - 900.

O.YU. IMANUVILOV AND M. YAMAMOTO, Carleman estimate for a parabolic equation in a Sobolev space of negative
order and its applications, in ”’Control of Nonlinear Distributed Parameter Systems” edited by G. Chen et al. Marcel-Dekker,
2001, 113-137.

0. Yu. IMANUVILOV, M. YAMAMOTO, Lipschitz stability in inverse parabolic problems by Carleman estimates, Inverse
Probl. 14 (1998), 1229-1249.

V. ISAKOV, Inverse parabolic problems with the final overdetermination, Comm. Pure Appl. Math. 44 (1991), pp. 185-209.
V. ISAKOV, Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006.

V. ISAKOV, Inverse Source Problems, American Mathematical Society, Providence, Rhode Island, 1990.

V. L. KAMYNIN, On the inverse problem of determining the right-hand side of a parabolic equation under an integral
overdetermination conditions, Math. Notes, 77 (2005), 482-493.

M.V. KLIBANOV, Inverse problems and Carleman estimates, Inverse Problems, 8, 1992, 575-596.

A. B. KOSTIN, A. I. PRILEPKO, On certain inverse problems for parabolic equations with final and integral observation,
Russian Acad. Sci. Sb. Math., 75 (1993), 473-490.

M.M. LAVRENT EV, V.G. ROMANOV AND S.P. SHISHAT-SKII, Ill-posed Problems of Mathematical Physics and Analysis,
American Mathematical Society, Providence, Rhode Island, 1986

A. LORENZIL, An inverse problem for a semilinear parabolic equation, Ann. Mat. Pura Appl. 131 (1982) 145-166,

J D MURRAY, Mathematical Biology, 3rd edn (Interdisciplinary Applied Mathematics vol 17) (New York: Springer) 2002.
A. NANDA, P. C. DAS, Determination of the source term in the heat conduction equation, Inv. Prob. 12(3) (1996), 325-339.
M S. PILANT, W. RUNDELL, An inverse problem for a nonlinear parabolic equation,, Comm. Partial Differential Equations.
11 (1986), 445-457.

R.I. PRILEPKO, D.G. ORLOVSKY, I.A. VASIN, Methods for Solving Inverse Problems in Mathematical Physics, Marcel
Dekker, New York, 2000.

R.I. PRILEPKO, V.V. SOLOVEV, Solvability of the inverse boundary-value problem of finding a coefficient of a lower
derivative in a parabolic equation, Differential Equations 23 (1987) 101-107.

V.G. ROMANOV, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987.

L. ROQUES, M. CRISTOFOL, On the determination of the nonlinearity from localized measurements in a reaction-diffusion
equation, Nonlinearity, 23 (2010), 675-686.

K. SAKAMOTO,M. YAMAMOTO, Inverse heat source problem from time distributing overdetermination, Applicable Anal-
ysis. 88, N-5, (2009), 735-748.

P. STEFANOV, G. UHLMANN, Boundary rigidity and stability for generic simple metric,J. Amer. Math. Soc. 18(4), 9751003,
2005.

M. YAMAMOTO, J. ZoU, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse
Probl. 17 (2001), 1181-1202.

M. YAMAMOTO, Conditional stability in determination of force terms of heat equations in a rectangle, MathComputer
Modelling, 18, 1993, 79-88.

M. YAMAMOTO, Conditional stability in determination of densities of hear sources in a bounded domain, IntSeries of
NumerMathi994, 118, 359-370, Birkhiuser-Verlag, Basel.



AN INVERSE SOURCE PROBLEM FOR THE DIFFUSION EQUATION WITH FINAL OBSERVATION. 11

M. BELLASSOUED. UNIVERSITY OF TUNIS EL MANAR, NATIONAL ENGINEERING SCHOOL OF TUNIS, ENIT-LAMSIN,
B.P. 37, 1002 TUNIS, TUNISIA
E-mail address: mourad.bellassoued@fsb.rnu.tn

M. CRISTOFOL. UNIVERSITE D’ AIX-MARSEILLE, INSTITUT DE MATHEMATIQUES DE MARSEILLE, UMR CNRS 7373,
ECOLE CENTRALE, 13288 MARSEILLE, FRANCE.
E-mail address: michel .cristofol@univ-amu. fr



