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INTRODUCTION AND MAIN RESULT

Let us consider the diffusion equation which is a partial differential equation which describes density fluctuations in a material undergoing diffusion occupying an open and bounded domain of R n with C 8 boundary Γ " BΩ. Given T ą 0, we consider the following boundary value problem for the reactiondiffusion with homogeneous Dirichet boundary condition (1.1) y 1 px, tq ´divpDpxq∇ypx, tqq " F px, tq px, tq P Q " Ω ˆp0, T q, ypx, tq " 0 px, tq P Σ " Γ ˆp0, T q, ypx, 0q " 0 x P Ω, where prime stands for the time derivative. Throughout this paper, t and x " px 1 , . . . , x n q denote the time variable and the spatial variable respectively, and y denotes the temperature, is a scalar function, F P L 2 pQq is the heat source. We will assume that the diffusion matrix Dpxq " pd ij q 1ďi,jďn , where the coefficients d ij pxq are smooth on Ω for 1 ď i, j ď n, is positive-definite and satisfy for some positive constant C ą 0

(1.2) C ´1 |ξ| 2 ď n ÿ i,j"1
d ij ξ i ξ j ď C |ξ| 2 , d ij pxq " d ji pxq, x P Ω, ξ " pξ 1 , . . . , ξ n q P R n .

It is well known that system (1.1) possesses an unique solution y such that (1.3) y P H 1 p0, T ; L 2 pΩqq X L 2 p0, T ; H 2 pΩqq.

1.1. Inverse Source Problem. We assume that the heat source is given by (1.4) F px, tq " qpxqkpx, tq, Let 0 ă θ ă T and let ω Ť Ω be an arbitrary fixed subdomain. Moreover let us assume that k " kpx, tq is known. Then determine q " qpxq, x P Ω, from only the overdetermining data ypx, θq, x P Ω provided that qpxq " 0 in ω.

In our inverse problem, we are required to determine the x-dependent function qpxq, provided that the px, tq-dependent factor kpx, tq is known. As one simple example of such a source term, we can take kpx, tq " e ´σt with a constant σ ą 0 which is x-independent. This model describes a heat source by the decay of a radioactive isotope and then q " qpxq corresponds to the spatial density of the isotope. We note that θ ą 0, and we do not assume any initial condition at t " 0, but we alternatively assume to be able to measure yp¨, θq in Ω at any fixed moment θ ą 0. In the two dimensional case, such an observation can be realized for example by means of the thermography at θ, while it is difficult to determine yp¨, 0q by observations when the heat process is already going on. Therefore our formulation of the inverse problem is meaningful from the practical point of view.

In the area of mathematical and physical inverse problems, the inverse source identification problems is one of the most addressed. Indeed, the notion of source term in the form qpxqkpx, tq where kpx, tq is assumed to be known can be associated easily to the notion of reaction term in a linear reaction diffusion equation. This type of equation appears in several fields of applications such as hydrology [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF] or in heat transfer [START_REF] Beck | Inverse Heat Conduction, Ill-Posed Problems[END_REF], in population genetics [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation Partial Differential Equations and Related Topics[END_REF], chemistry [START_REF] Billingham | The development of traveling waves in quadratic and cubic autocatalysis with unequal diffusion rates I. permanent form of traveling waves[END_REF], biology and also in spacial ecology to modelise the dynamic of a population [30]. It is well known that the solution ypx, tq and the behavior of ypx, tq depend mainly on the linear part of the reaction term: in population dynamic, the extinction of the population, its persistence and its evolution is conditioned by this term [START_REF] Cantrell | Spatial Ecology Via Reaction-Diffusion Equations[END_REF]. Therefore, it is crucial to know or determine this coefficient. But, in many physical applications, this term is often unknown or partially known and this coefficient cannot be directly measured since it is the resultant of mixed effects of several factors. Thus, this coefficient is generally measured through the solution ypx, tq, and in most of the cases ypx, tq is not available simultaneously for all x and all time t.

On the other hand, the classical way to recover the source term in a parabolic problem such as (1.1) is to involve additional information. Different methods and different hypothesis on the additional informations have produced several interesting works. Around the topic of recovering a source term or the linear part of the reaction term in a reaction-diffusion equation, a lot of authors have used additional information coming from a finite number of boundary measurements [START_REF] Duchateau | Unicity in an inverse problem for an unknown reaction term in a reaction-difusion equation[END_REF][START_REF] Lorenzi | An inverse problem for a semilinear parabolic equation[END_REF][START_REF] Pilant | An inverse problem for a nonlinear parabolic equation[END_REF][START_REF] Nanda | Determination of the source term in the heat conduction equation[END_REF]. Thanks to the Carleman inequalities, the method introduced by Bukgheim and Klibanov [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF] has permitted to establish important results involving stability inequality linking the coefficient to be recovered with the observations [START_REF] Bellassoued | Inverse source problem for a transmission problem for a parabolic equation[END_REF][START_REF] Cristofol | Biological invasions: deriving the regions at risk from partial measurements[END_REF][START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by Carleman estimates[END_REF][START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF]. These stability inequalities can play an important role in view to implement numerical simulations. The observations involved in these papers correspond to local observation on ω ˆp0, T q where ω is a subdomain of Ω plus the observation of the solution on all the domain Ω at one time θ ą 0. Recently [START_REF] Cristofol | Uniqueness from pointwise observations in a multi-parameter inverse problem[END_REF][START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF], a new approach involving only pointwise observation of the solution ypx, tq has been applied to obtain uniqueness results in several inverse parabolic problems including the recovering of the source terms in the one dimensional case. Another important inverse parabolic problems are associated to the integral overdetermination in which the additive observation can take the form: ż Ω ypx, tqupxqdx " ϕptq, for t P p0, T q, where u and ϕ are the known functions, or the form ż p0,T q ypx, tqvptqdt " ψpxq, for x P Ω, where v and ψ are the known functions. We find these additive informations in [START_REF] Sakamoto | Inverse heat source problem from time distributing overdetermination[END_REF] associated to parabolic equations parametrized by a diffusion coefficient, and in the monograph [START_REF] Prilepko | Methods for Solving Inverse Problems in Mathematical Physics[END_REF], in which the authors have established uniqueness results for special classes of coefficients. They deal with an equivalent formulation of their inverse problem and they use a Fredholm approach. In [START_REF] Kamynin | On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination conditions[END_REF][START_REF] Kostin | On certain inverse problems for parabolic equations with final and integral observation[END_REF] the linear parabolic case in addressed and in [START_REF] Beretta | Identifying a space dependent coefficient in a reaction-diffusion equation[END_REF], the authors are interested by the case of Neumann boundary conditions and they study a certain class of non linear reaction term.

The particular case of the final overdetermination in which the additive observation is the value of the solution at one fixed time θ : ypx, θq has been addressed by Prilepko and al in [START_REF] Prilepko | Methods for Solving Inverse Problems in Mathematical Physics[END_REF] using the same method described above and the same special classes of coefficients.

The works of Isakov [START_REF] Isakov | Inverse parabolic problems with the final overdetermination[END_REF][START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF] and Prilepko and Solov'ev [START_REF] Prilepko | Solvability of the inverse boundary-value problem of finding a coefficient of a lower derivative in a parabolic equation[END_REF] involve point fixed theorem. In his paper [START_REF] Isakov | Inverse parabolic problems with the final overdetermination[END_REF], Isakov carried out a stability result requiring additional boundary observations with some sign conditions. In [START_REF] Bushuyev | Global uniqueness for inverse parabolic problems with final observation[END_REF], Bushuyev considers the case of special non linear source term and in [START_REF] Choulli | Generic well-posedness of an inverse parabolic problem the Hölder space approch[END_REF], the authors deal with parabolic equations parametrized by a diffusion coefficient and establish a local stability inequality except for a countable set of parameters. In [START_REF] Deng | An inverse problem of identifying the coefficient in a nonlinear parabolic equation[END_REF], the authors used the optimal control framework to solve an optimization problem with final overdetermination to recover a potential in a nonlinear parabolic problem in the one dimensional case and in [START_REF] Hasanov | Simultaneous determination of source terms in a linear parabolic problem from the overdetermination: Weak solution approach[END_REF], Hasanov used a weak solution approach to minimize a coast functional. On the other hand, there are several papers addressing the inverse problem of the determination of zeroth order coefficient in parabolic equation. Isakov [START_REF] Isakov | Inverse Source Problems[END_REF] proved the uniqueness where the boundary observation B ν y| Γ 1 ˆp0,T q with some Γ 1 Ă BΩ, is adopted in place of y| ωˆp0,T q . Imanuvilov and Yamamoto [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by Carleman estimates[END_REF] established the Lipschitz stability in determining a coefficient q P L 2 pΩq, and Imanuvilov and Yamamoto [START_REF] Imanuvilov | Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications[END_REF] proved the uniqueness within q P H ´mpΩq; a Sobolev space of negative order ´m. In the case of x-independent k " kptq and θ " 0, we refer to Cannon [START_REF] Cannon | Determination of an unknown heat source from overspecified boundary data[END_REF] and Yamamoto [START_REF] Yamamoto | Conditional stability in determination of force terms of heat equations in a rectangle[END_REF], [START_REF] Yamamoto | Conditional stability in determination of densities of hear sources in a bounded domain[END_REF]. Cannon [START_REF] Cannon | Determination of an unknown heat source from overspecified boundary data[END_REF] proved the conditional stability in the special case of k " 1, and [START_REF] Yamamoto | Conditional stability in determination of force terms of heat equations in a rectangle[END_REF] - [START_REF] Yamamoto | Conditional stability in determination of densities of hear sources in a bounded domain[END_REF] established the conditional stability of the logarithmic type by means of boundary observation data.

This above list of papers and methods is non exhaustive, but summarizing the existing results associated to each kind of additive observations, it seems that the most interesting subsidiary information in view of practical applications is the final overdetermination. Indeed, the final overdetermination ypx, θq corresponds to a finite number of direct measurement of the solution. In other words, the choice of the final overdetermination corresponds to a realistic and rather simple observation which can be measured by an appropriate sensor. Furthermore, we stress out that a mathematical stability inequality linking the coefficient to be reconstructed with finite number of physical observations (in this paper physical observation corresponds to the final overdetermination ypx, θq) is not proposed in most of the previous results excepted for the results using Carleman inequalities. But, in all the existing results, the stability inequalities obtained via Carleman estimates require additional observations, e.g. local measurement in space and time of the solution of the problem. We propose here, a new result coupling stability inequality and final overdetermination observation at one time θ in a multidimensional case. 1.2. Notations and statement of main results. We define the following spaces:

H 1,2 pQq " H 1 p0, T ; L 2 pΩqq X L 2 p0, T, H 2 pΩqq and C 1,0 pQq " C 1 pr0, T s; CpΩqq.
Let θ P p0, T q. We assume that the known part of the source term satisfy the following properties:

(1.5) k P C 1,0 pQq, }k} C 1,0 pQq ď M, |kpx, θq| ě r 0 ą 0, x P Ω
with some constants M ą 0 and r 0 ą 0. Let y the solution of (1.1). Then by the regularity of the parabolic system (see Evans [START_REF] Evans | Partial Differential Equations[END_REF] Thm.5, p.360) we have y, y 1 P H 1,2 pQq moreover there exists C ą 0 such that

(1.6) }y} L 2 pQq `}∇y} L 2 pQq `› › y 1 › › L 2 pQq ď C }q} L 2 pΩq and (1.7) }yp¨, tq} H 2 pΩq ď C }q} L 2 pΩq
where the constant C depends only on Ω, T , }D} 8 and M .

We are ready to state the main result.

Theorem 1.1. Let ω Ť Ω be an arbitrary open subdomain of Ω. Let k P C 1,0 pQq satisfies (1.5) with θ P p0, T q. If y 1 P H 1,2 pQq satisfies (1.1), then there exists a constant C " Cpω, M, θq ą 0 such that

(1.8) }q} L 2 pΩq ď C}yp¨, θq} H 2 pΩq
for all q P L 2 pΩq satisfying q " 0 in ω.

As for the corresponding inverse problem in the case of θ " 0, the uniqueness and the stability by y |ω T with an arbitrary ω are very difficult and open problems. As for related inverse problems, see Bukhgeim [START_REF] Bukhgeim | Introduction to the Theory of Inverse Problems[END_REF], Isakov [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF], Lavrent'ev, Romanov and Shishat¨skiȋ [START_REF] Lavrent'ev | Ill-posed Problems of Mathematical Physics and Analysis[END_REF], Romanov [START_REF] Romanov | Inverse Problems of Mathematical Physics[END_REF].

In Section 2, we recall the key Carleman estimates from [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by Carleman estimates[END_REF] and the Sections 3 and 4 are devoted to the proof of the theorem 1.1.

CARLEMAN ESTIMATE

Our proof is the application of a Carleman estimate, which originates from the paper by Bukhgeim and Klibanov [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF], and in [START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF] the uniqueness is proved in the inverse problem.

We set ω T " ω ˆp0, T q. We assume that the matrix D satisfies (1.2). In this section, we will detail a Carleman estimate for the problem:

(2.1) y 1 px, tq ´divpDpxq∇yqpx, tq " F px, tq px, tq P Q " Ω ˆp0, T q, ypx, tq " 0 px, tq P Σ " Γ ˆp0, T q, which is the analogue to the Carleman estimate by Imanuvilov [START_REF] Imanuvilov | Boundary controllability of parabolic equations[END_REF]. First we will define appropriate weight functions.

Lemma 2.1 ( see [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by Carleman estimates[END_REF]). Let ω Ť Ω be an arbitrary open subdomain, for every open set ω 0 Ť ω, there exists a function r β such that:

r β P C 2 pΩq, r β " 0, B ν r β ă 0 on BΩ, |∇ r β| ą 0 in Ωzω 0 ,
We take K ą 0, such that K ě 5 max Lemma 2.2. Under the above assumptions, there exists λ 0 ą 0 so that for any λ ą λ 0 , there exists a constant s 0 pλq ą 0 satisfying the following property: there exists a constant C ą 0, independent of s, such that

(2.2) s 3 ż Q e 2sα ptq ´3|y| 2 dxdt `s ż Q e 2sα ptq ´1|∇y| 2 dxdt ď Cs 3 ż ω T e 2sα ptq ´3|y| 2 dxdt `C ż Q e 2sα |F | 2 dxdt
for all y P H 1,2 pQq solves (2.1) and all s ě s 0 .

For the application to the inverse problem, we further need to estimate the term y 1 .

Lemma 2.3. Under the above assumptions, there exists λ 0 ą 0 so that for any λ ą λ 0 , there exists a constant s 0 pλq ą 0 satisfying the following property: there exists a constant C ą 0, independent of s, such that

(2.3) 1 s ż Q e 2sα ptq|y 1 | 2 dxdt ď Cs 3 ż ω T e 2sα ptq ´3|y| 2 dxdt `C ż Q e 2sα |F | 2 dxdt
for all y P H 1,2 pQq solves (2.1) and all s ě s 0 .

LOCAL ESTIMATES FOR PARABOLIC EQUATION

For further reference we now establish the following technical results, which are a kind of weighted regularity local estimates for parabolic equations. We consider the following parabolic system:

(3.1) y 1 ´divpDpxq∇yq " F, x P Ω, t P p0, T q, we assume that F P L 2 pQq and (3.2) F px, tq " 0, x P ω, t P p0, T q.

Lemma 3.1. Let γ P r0, `8q and ω 1 Ť ω Ă Ω. Then there exists a constant C " Cpγ, ω 1 , ωq ą 0 such that the parabolic estimate

(3.
3) }e sα ´γ ∇y} L 2 pω 1 T q ď Cs}e sα ´pγ`1q y} L 2 pω T q , hold for any y P H 1,2 pQq satisfies (3.1)-(3.2) and s ě 1.

Proof. Let χ P C 8 0 pΩq be supported in ω with χpxq " 1 for all x P ω 1 and Supppχq Ă ω. Multiplying F by e 2sα ´2γ χy and integrating over Q " Ω ˆp0, T q we get that

(3.4) 0 " ż Q e 2sα ´2γ χpxqF px, tqypx, tqdxdt " U `W, with U " 1 2 ż Ωˆp0,T q e 2sα ´2γ χpxq d dt p|ypx, tq| 2 qdxdt,
W " ´żΩˆp0,T q e 2sα ´2γ χpxqdivpDpxq∇yqypx, tqdxdt.

We treat each of the two terms appearing in the rhs of (3.4) we end up getting (3.3).

Lemma 3.2. Let γ P r0, `8q and ω 1 Ť ω Ă Ω. Then there exists a constant C " Cpγ, ω 1 , ωq ą 0 such that the parabolic estimate (3.9) }e sα ´γ y 1 } L 2 pω 1 T q ď Cs 2 }e sα ´pγ`2q y} L 2 pω T q . holds for any y P H 1,2 pQq satisfying (3.1)-(3.2) and s ě s 0 .

Proof. Choose ω 2 such that ω 1 Ť ω 2 Ť ω. Let χ P C 8 0 pΩq such that χ " 1 in ω 1 and Supppχq Ă ω 2 . Let y ˚" χy. From the very definition of F we have

y 1 ˚´divpDpxq∇y ˚q " χF `Q1 y " Q 1 y in Q, where Q 1 is a first order differential operator supported in ω 2 . Let ỹ " ´pγ`1{2q y ˚. Then ỹ satisfy ỹ1 ´divpDpxq∇ỹq " ´pγ`1{2q Q 1 y ´pγ `1 2 qpT ´2tq ´pγ`3{2q y ˚" G
Next, applying Lemma 2.3 with y replaced by ỹ, we get that 

(3.10) 1 s ż Q e 2sα ptq|ỹ 1 | 2 dxdt ď Cs 3 ż ω T e 2sα ptq ´3|ỹ| 2 dxdt `C ż Q e 2sα |G| 2 dxdt ď Cs 3 ż ω T e 2sα ptq ´2pγ`2q |y| 2 dxdt `C ż Q e 2sα |G| 2 dxdt. Furthermore (3.11) ż Q e 2sα |G| 2 dxdt ď C ż ω 2 T e 2sα ´p2γ`1q |∇y| 2 dxdt `C ż ω 2 T e 2sα ´p2γ`
ż The proof is complete.

ω 1 T e 2sα ´2γ |y 1 | 2 dxdt ď ż ω 1 T e 2sα |ỹ 1 | 2 dxdt `C ż ω 1 T e 2sα ´2pγ`

PROOF OF MAIN THEOREM

Now we can prove Theorem 1.1 by an argument similar to Imanuvilov and Yamamoto [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by Carleman estimates[END_REF]. In a first step, we establish a new stability inequality (4.9) involving weaker norm than one obtained in [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by Carleman estimates[END_REF]. For this, we set Aupxq " divpDpxq∇upxqq when u P C 2 pΩq, and u| BΩ " 0. Since we can change scales of t, without loss of generality, we may assume that θ " T 2 . By (1.1), the function z " y 1 P H for all q P L 2 pΩq satisfying q " 0 in ω.

We stress out that in the previous proposition, contrary to the classical results, the local observation in ω T is done with a norm in L 2 pω T q. In a second step, we recall the following lemma Inspired by [START_REF] Stefanov | Boundary rigidity and stability for generic simple metric[END_REF] : Lemma 4.2. Let X, Y , Z be three Banach spaces, let A : X Ñ Y be a bounded injective linear operator with domain DpAq, and let K : X Ñ Z be a compact linear operator. Assume that there exists C ą 0 such that

(4.10) }f } X ď C 1 }Af } Y `}Kf } Z , @f P DpAq.
Then there exists C ą 0 such that

(4.11) }f } X ď C }Af } Y , @f P DpAq.
Proof. Given A bounded and injective we argue by contradiction by assuming the opposite to (4.11). Then there exists a sequence pf n q n in X such that }f n } X " 1 for all n and Af n Ñ 0 in Y as n go to infinity. Since K : X Ñ Z is compact, there is a subsequence, still denoted by f n , such that pKf n q n converges in Z. Therefore this is a Cauchy sequence in Z, hence, by applying (4.10) to f n ´fm , we get that }f n ´fm } X Ñ 0, as n, m Ñ 8. As a consequence pf n q n is a Cauchy sequence in X so f n Ñ f as n Ñ 8 for some f P X. Since }f n } X " 1 for all n, then }f } X " 1. Moreover we have Af n Ñ Af " 0 as n Ñ 8, which is a contradiction to the fact that A is injective.

We end the proof by defining X " q P L 2 pΩq, qpxq " 0 in ω ( , Y " H 2 pΩq, Z " L 2 pω T q, and A : X ÝÑ Y q Þ ÝÑ Aq " yp¨, θq

; K : X ÝÑ Z q Þ ÝÑ Kq " y |ω T
where y denotes the unique solution to (1.1). Then it suffices to prove the two following lemma:

Lemma 4.3. The operator A is bounded and injective.

Proof. First the boundedness of A follows readily from (1.7). Second y being solution to the system formed by the two first equations in (1.1), we deduce from the identities yp¨, θq " 0 and q " 0 on ω that y 1 p¨, θq " 0 on ω. Arguing in the same way we get that the successive derivatives of y wrt t vanish on ω ˆtθu. Since y is solution to some initial value problem with time independent coefficients, it is time analytic so we necessarily have y " 0 on ω ˆp0, θq. Therefore q " 0 on Ω by (4.9), and the proof is complete.

Lemma 4.4. K is a compact operator from X into Z.

Proof. The operator K being bounded from X to H 1 pω T q as we have }y} L 2 pω T q `}∇y} L 2 pω T q `› › y 1 › › L 2 pω T q ď }q} L 2 pΩq , from (1.6) so the result follows readily from the compactness of the injection H 1 pω T q ãÑ Z " L 2 pω T q. 

  ´tq where λ ą 0 is a parameter. Now we are ready to recall the first key Carleman estimate.

Finally, putting Lemmas 4

 4 .1, 4.2, 4.3 and 4.4 together, we end up getting that }q} L 2 pΩq ď C }Aq} Y " C }yp¨, θq} H 2 pΩq , which gives Theorem 1.1.

  2sα ´2γ τ ∇χ ¨Dpxq ¨∇ypx, tqypx, tqdxdt ˇˇˇď Cs}e sα ´pγ`1{2q y} 2L 2 pω T q . 1{2 ∇y} 2 L 2 pQq `s}e sα ´γ χ 1{2 ∇αy} 2 L 2 pQq ď s ´1}e sα ´γ χ 1{2 ∇y} 2L 2 pQq `s}e sα ´pγ`1q y} 2 L 2 pω T q . as we have |∇α| ď C ´1. Putting this together with (3.5)-(3.6) and recalling from (1.3) that ż

	Next we obtain in the same way that	
		ż		
	(3.6) W "	e 2sα ´2γ χ τ ∇y ¨Dpxq ¨∇ydxdt	`żQ	e 2sα ´2γ τ p∇χ `2sχ∇αq ¨Dpxq ¨∇ypx, tqdxdt.
		Q		
	Further, since		
	ż		ż
	(3.7) 2	e 2sα ´2γ τ ∇χ ¨Dpxq ¨∇yydxdt "	e 2sα ´2γ τ ∇χ ¨Dpxq ¨∇p|y| 2 qdxdt
	Q			Q
			"	´żQ	e 2sα ´2γ pdivpDpxq∇χq `2s∇χ ¨∇αq |y| 2 dxdt,
	we get that			
		ˇˇˇż	
	(3.8)			
	Moreover, we have	
	ˇˇˇż			
					separately. Integrating by parts in the first one
	we get			
	(3.5)	|U | " ˇˇˇż	

Q e 2sα ´2γ χpxqpsα t ´γ ´1ptqpT ´2tqq |y| 2 dxdt ˇˇˇď Cs}e sα ´pγ`1q y} 2 L 2 pω T q , since |α t | ď C ´2. Q e Q e 2sα

´2γ χ τ ∇α ¨Dpxq ¨∇yydxdt ˇˇˇď s ´1}e sα ´γ χ Q e 2sα ´2γ χ∇y ¨Dpxq ¨∇ydxdt ě C ´1}e sα ´γ ∇y} 2 L 2 pω 1 T q

  3q |y| 2 dxdt.Applying Lemma 3.1, with ω 1 replaced by ω 2 and γ replaced by γ `1{2, to estimate the second integral

	ż		ż
	(3.12)	e 2sα ´p2γ`1q |∇y| 2 dxdt ď Cs 2	e 2sα ´p2γ`3q |y| 2 dxdt
	ω 2 T		ω T
	So, inserting (3.12) in (3.11), we obtain	
		ż	ż
	(3.13)	e 2sα |G| 2 dxdt ď Cs 2	e 2sα ´p2γ`3q |y| 2 dxdt
		Q	ω 2 T
	Moreover, since		

  1q |y| 2 dxdt

	we deduce that		
	ż	ż	
	(3.15)	e 2sα ´2γ |y 1 | 2 dxdt ď Cs 4	e 2sα ptq ´2pγ`2q |y| 2 dxdt.
	ω 1 T	ω T