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FOURIER COEFFICIENTS OF CUSP FORMS OF
HALF-INTEGRAL WEIGHT

W. KOHNEN, Y.-K. LAU & J. WU

Abstract. Let f be a cusp form of half integral weight whose Fourier coefficients
af(n) are all real. We study the sign change problem of af(n), when n runs
over some specific sets of integers. Lower bounds of the best possible order of
magnitude are established for the number of those coefficients that have the same
signs. These give an improvement on some recent results of Bruinier & Kohnen
[2] and Kohnen [13].

1. Introduction

Owing to different reasons, the problem of sign changes of Hecke eigenvalues of
integral weight cusp forms has attracted many attentions [10, 15, 7, 14, 19, 17]. One
motivation is to delve the analogy with (real) Dirichlet characters. Real Dirichlet
characters admit only ±1 other than 0; however these eigenvalues (when properly
normalized) vary in the range from −2 to 2. A reasonable parallel one may consider
is the pattern of the signs. Such an investigation has a long history in the case of
real characters, like the problem of the least quadratic non-residue. The work [17]
provides a comprehensive discussion in the context of modular forms. In light of the
theory of half integral weight forms in Shimura [23], Waldspurger [24], Kohnen-
Zagier [16] and Kohnen [11, 12], etc, the half integral weight forms are closely
related to integral weight cusp forms and hence it is naturally important to study
the analogous sign-change problems. The case of half integral weight cusp forms,
although looking like a formal extension, is somehow more subtle. A reason is that
the Fourier coefficients of a half integral weight cuspidal Hecke eigenform in general
are not plainly multiplicative (cf. [4, page 783]). In [2], Bruinier & Kohnen studied
the sign changes of the Fourier coefficient af(n) of a half integral weight cusp form
f for specific sequences of integers n, which also stimulates this work.

Throughout we let k > 1 be an integer and assume N > 4 to be divisible by 4.
Fix any Dirichlet character χ modulo N . We write Sk+1/2(N,χ) for the space of
cusp forms of weight k + 1/2 for the group Γ0(N) with character χ (cf. [23]). The
space S3/2(N,χ) contains unary theta functions. Let S∗3/2(N,χ) be the orthogonal
complement with respect to the Petersson scalar product of the subspace generated
by these theta functions (cf. [23, Section 4] and [3, Section 4]). For convenience, we
put S∗k+1/2(N,χ) = Sk+1/2(N,χ) when k > 2. Each f ∈ S∗k+1/2(N,χ) has a Fourier
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expansion

(1.1) f(z) =
∑
n>1

af(n)e2πinz (z ∈ H),

on the complex upper half plane H. Let t > 1 be a squarefree integer. The Shimura
correspondance [23] lifts f to a cusp form ft of weight 2k for the group Γ0(N/2) with
character χ2. Also it gives a vital relation between their Fourier coefficients,

(1.2) aft(n) :=
∑
d|n

χt,N(d)dk−1af

(
t
n2

d2

)
,

where χt,N denotes the character

χt,N(d) := χ(d)

(
(−1)kt

d

)
and

(1.3) ft(z) :=
∑
n>1

aft(n)e2πinz (z ∈ H).

(ft is called the Shimura lift of f associated to t.) Furthermore if f is a Hecke
eigenform, then so is the Shimura lift. In fact, in this case

ft = af(t)f(1.4)

where f is a normalized (af (1) = 1) Hecke eigenform independent of t.
Let f ∈ S∗k+1/2(N,χ0) be a cusp form with trivial character χ0, squarefree level and

real coefficients af(n). Suppose that f lies in the plus space, that is, af(n) = 0 when
(−1)kn ≡ 2, 3 (mod 4), see [16, 12]. Bruinier & Kohnen [2] gave the conjectures

(1.5) lim
x→∞

|{n 6 x : af(n) ≷ 0}|
|{n 6 x : af(n) 6= 0}|

=
1

2

and

(1.6) lim
x→∞

|{|d| 6 x : d fundamental discriminant, af(|d|) ≷ 0}|
|{|d| 6 x : d fundamental discriminant, af(|d|) 6= 0}|

=
1

2

with empirical evidence, which may be, however, out of the present reach. Alter-
natively, they considered the change in signs of af(n) when n runs over specific sets
of integers, such as {tn2}n∈N, {tp2ν}ν∈N and {tn2

t}t squarefrees. Here t is a positive
squarefree integer such that af(t) 6= 0, p denotes any fixed prime and nt is an integer
determined by t (cf. [2, Theorems 2.1 and 2.2]). Amongst other things, their ap-
proach comprises a well-known robust analytic tool - Landau’s theorem on Dirichlet
series.

Our first result gives an improvement to [2, Theorem 2.1] and [13, Theorem],
exploiting tools in analytic number theory in connection with Rankin-Selberg L-
functions.

Theorem 1. Let k > 1 be an integer, N > 4 an integer divisible by 4 and χ
be a Dirichlet character modulo N . Suppose that f ∈ S∗k+1/2(N,χ) and t > 1 is

a squarefree integer such that af(t) 6= 0. Assume that the sequence {af(tn2)}n∈N is
real. Then {af(tn2)}n∈N has infinitely many sign changes. More specifically there is a
small constant α = α(f, t) > 0 such that for all sufficiently large x, i.e. x > x0(f, t),



FOURIER COEFFICIENTS OF CUSP FORMS OF HALF-INTEGRAL WEIGHT 3

af(tp
2) has (at least) one sign-change when p runs through primes in the interval

[xα, x].

Our proof shows an alternative (other than [13]) to remove the hypothesis on the
non-vanishing of L(s, χt,N) on (0, 1) (Chowla’s conjecture if χt,N is quadratic), see
Theorem 2.1 of [2]. This conjecture asserts that L(s, χt,N) has no zeros in the interval
(0, 1). Kohnen [13] removed the hypothesis by refining the argument of [2]. However
as in [2], the method did not produce a quantitative result. In this regard Theorem
1 goes further and in fact, the proof here applies to the finer sequence of primes, that
is, we narrow down to the infinitely many sign changes in {af(tp2)}p primes (instead
of {af(tn2)}n∈N).

The form f in Theorem 1 is not assumed to be a Hecke eigenform. Imposing this
assumption, if the Shimura lift ft, or equivalently f in (1.4) when af(t) 6= 0, is not
of CM type (see Remark 1), we can tell more in the next theorems. A salience
now is the retrieve of multiplicativity. More precisely, for any fixed (squarefree) t
and Hecke eigenform f, the arithmetic function n 7→ af(tn

2) is multiplicative in the
following sense (cf. [23, (1.18)]):

(1.7) af(tm
2)af(tn

2) = af(t)af(tm
2n2) if (m,n) = 1.

The condition of a Hecke eigenform f is indispensable in our argument, as we start
with (1.7). These results are clearly the best possible in order of magnitude.

Theorem 2. Let k > 1 be an integer, N > 4 an integer divisible by 4 and χ be a real
Dirichlet character modulo N . Suppose that f ∈ S∗k+1/2(N,χ) is a Hecke eigenform

and t > 1 is a squarefree integer such that af(t) 6= 0. Assume that its Shimura lift
is not of CM type. Then we have

(1.8)
∑

n6x, n is squarefree
(n,Nt)=1, af(tn

2)≷ 0

1�f,t x

for x > x0(f, t). If N/2 is squarefree, the assumption of a non-CM Shimura lift will
automatically hold and hence can be omitted.

Remark 1. A Hecke eigenform f is of CM type if there exists a non-trivial Dirichlet
character ϕ such that λf (p) = ϕ(p)λf (p) for all primes p in a set of primes of density
1 (see [22, Section 7.2]). Here and in the sequel the Vinogradov symbol f(x)� g(x)
(or g(x)� f(x)) means |f(x)| 6 Cg(x) for all sufficiently large x > x0, where C is
a positive constant. We also write�∗ or�∗ to stress the dependence of the implied
constants on ∗.

The following result refines [2, Theorem 2.2].

Theorem 3. Let k > 1 be an integer, N > 4 an integer divisible by 4 and χ be a real
Dirichlet character modulo N . Suppose that f ∈ S∗k+1/2(N,χ) is a Hecke eigenform,

and t is a positive squarefree integer for which af(t) 6= 0. For any prime p - N ,
define θf (p) ∈ [0, π] by the relation λf (p) = 2 cos θf (p) where λf (p)p

k−1/2 is the p-th
Fourier coefficient of f in (1.4). We have the following results where ε = 1 or −1
in Case (ii)-(iv).

Case (i). θf (p) = 0. Then af(tp
2ν) has the same sign as af(t), for all ν > 0.
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Case (ii). θf (p) = π. Then

(1.9)
∑
ν6x

εaf(tp
2ν)> 0

1 ∼ 1

2
x (x→∞).

Case (iii). θf (p)/(2π) = m/n ∈ (0, 1/2) is rational with (m,n) = 1. Then

(1.10)
∑
ν6x

εaf(t)
−1af(tp

2ν)> (
√
3/2−1/√p)pν(k−1/2)/ sin θf (p)

1 >
1

n
x+Of(1) (x→∞).

Case (iv). θf (p)/(2π) ∈ (0, 1/2) is irrational. Then

(1.11)
∑
ν6x

εaf(t)
−1af(tp

2ν)> (c−1/√p)pν(k−1/2)/ sin θf (p)

1 >
(1

2
− arcsin c

π

)
x+o(x) (x→∞)

for any c ∈ (1/
√
p, 1).

Remark 2. Cases (i) and (ii) can happen for at most finitely many primes p only.
Indeed if we let Kf be the number field generated by all the Fourier coefficients af (n)
of f , then the total number of primes p for which 0 6= cos θft(p) ∈ Q cannot exceed
r where 2r‖[Kf : Q], i.e., 2r is the greatest power of two that divides the degree
of Kf over Q. This follows from the proof of [2, Remark 2.3]: if 0 6= λf (p) ∈ Q,
then

√
p ∈ Kf for af (p) = λf (p)p

k−1/2, whence our assertion follows by the fact
[Q(
√
p1, . . . ,

√
pt) : Q] = 2t for distinct primes p1, . . . , pt.

For other values α ∈ (−2, 2), the Sato-Tate conjecture suggests that λf (p) = α
holds only for a zero density of primes p. When α = 0, it is shown to be true in
Serre [22]; though in this case (α = 0) and f is a non CM form, one may anticipate,
parallel to Lehmer’s conjecture in [20], that no prime p for λf (p) = 0 exists. Another
resemble question is (the analogue of) Lang-Trotter conjecture - the primes for which
λf (p)p

(k−1/2) = α is of zero density, for any α.
The positive proportion of integers from {tn2}n∈N (resp. {tp2ν}ν∈N) on which

af(tn
2) (resp. af(tp

2ν)) are of the same sign, shown in Theorems 2 and 3, en-
courages our belief in Conjecture (1.5). Finally we would remark that for the
sequence {af(tp2)}p primes, there is also a positive density (over the set of primes)
of sign changes.

Theorem 4. Let k > 1 be an integer, N > 4 an integer divisible by 4 and χ be a real
Dirichlet character modulo N . Suppose that f ∈ S∗k+1/2(N,χ) is a Hecke eigenform
and t > 1 is squarefree such that its Shimura lift is not of CM type and
af(t) 6= 0. Then we have

(1.12)
∑
p6x

εaf(t)
−1af(tp

2)> 1.68pk−1/2

1�f
x

log x

for x > x0(f) and ε = ±1.

This is a direct application of (4.1) (with ν = 1) below and that there exists a
positive density of primes for which λf (p) > 1.681 and λf (p) < −1.681 respectively,
shown in [9, Theorem 4.10].
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2. The proof of Theorem 1

We begin with the basic theory of Atkin-Lehner on primitive forms (or newforms),
and results following from the L-functions attached to these forms. Let Sκ(L, ψ) be
the space of holomorphic cusp forms of integral weight κ > 2 and nebentypus ψ for
Γ0(L). The nebentypus ψ is a Dirichlet character mod L whose conductor is denoted
by L∗. In an attempt to diagonalize all Hecke operators over Sκ(L, ψ), Atkin and
Lehner figured out the orthogonal complement Snew

κ (L, ψ) (with respect to Petersson
inner product) of the subspace generated by all forms g(`z) (called oldforms) where
g ∈ Sκ(M,ψM) is of strict lower level M |L (with L∗|M) and the nebentypus ψM
induced by ψ (more precisely, by the unique primitive character ψ∗ mod L∗ that
induces ψ). The integer ` runs over all divisors of L/M . We call f a primitive form
(or newform) if f ∈ Snew

κ (L, ψ) is a common eigenfunction of all Hecke operators
(including the involution) and its first coefficient equals one. Denote by H∗κ(L, ψ)
the set of all primitive forms of weight κ, level L and nebentypus ψ. By the theory
of primitive forms (see [1] or [8, §14.7]), we have the decomposition

Sκ(L, ψ) =
⊕
M |L

M≡0(modL∗)

⊕
f∈H∗κ(M,ψM )

SpanC
{
f|` : ` | (L/M)

}
,(2.1)

where ψM is the Dirichlet character mod M induced from ψ and f|`(z) := f(`z).
The outermost direct sum runs over M and SpanCS denotes the subspace generated
by elements in S over C.

The primitive forms give rise to a special basis for Sκ(L, ψ), and above all, their
associated L-functions satisfy a functional equation and admit an Euler product fac-
torization. More generally a primitive form f corresponds uniquely to an irreducible
unitary cuspidal representation π of GL2(AQ) (whose∞-component π∞ is a discrete
series), and they have the same L-functions, i.e. L(s, f) = L(s, π), up to normal-
ization by a scalar. There are many fruitful results in the context of L-functions
for automorphic representations, for example, the nonvanishing on the line <e s = 1
and the zero-free regions. Our first lemma is also one of their consequences.



6 W. KOHNEN, Y.-K. LAU & J. WU

Lemma 2.1. Let f ∈ H∗κ(M,ψ) whose n-th coefficient is λf (n)n(κ−1)/2. Then as
x→∞, ∑

p6x
p-M

λf (p)

p
� 1,(2.2)

∑
p6x
p-M

|λf (p)|2

p
= log log x+O(1).(2.3)

Moreover, if g 6= f is another primitive form (of any level), then∑
p6x
p-M

λf (p)λg(p)

p
� 1.(2.4)

The implied constants in � or O-symbol depend on the form f in (2.2) and (2.3),
and both f and g in (2.4).

These results are proved using analytic techniques and the theory of GL2 ×GL2

Rankin-Selberg L-functions. Indeed the general case of GLm × GLm′ were treated
by, for instance, Rudnick-Sarnak, Liu-Ye, Liu-Wang-Ye, etc. Here we shall prove
the lemma with the tools in [8].

Proof. The key ingredient is the Prime Number Theorem for general L-functions.
Suppose L(s, F ) is an L-function (defined as in [8, p.94]) that has no zero, except
possibly a simple real zero β, for s = σ + it in the region

σ > 1− cF
log(|t|+ 3)

(2.5)

where cF > 0 is a constant depending on F only. We further assume β < 1 if it
exists. Write

−L
′

L
(s, F ) =

∑
n>1

ΛF (n)

ns
(σ > 1),

where the sum ranges over prime powers (n = pν) only. Then by [8, Theorem 5.13],
we have the formula ∑

n6x

ΛF (n) = rx+OF

(
xe−c

′
F

√
log x
)

(2.6)

where r denotes the order of the possible pole of L(s, F ) at s = 1, and c′F > 0 is
a constant whose value depends on F . We state (2.6) in this weak form just for
simplicity.

Now consider the L-functions L(s, f) and L(s, f × g) (which are respectively
L(f, s) and L(f ⊗ g, s) in [8]). By Theorems 5.39 and 5.44 of [8], we obtain (2.6)
for these two L-functions. (Note that here g is interpreted as the primitive form

g(−z).) Moreover, r = 0 when F = f or F = f × g with f 6= g. In case F = f × f ,
we have r = 1. Furthermore we note that

Λf (p) = λf (p) log p, Λf×g(p) = λf (p)λg(p) log p

and
|Λf (p

ν)| 6 2 log p, |Λf×g(p
ν)| 6 4 log p
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with Deligne’s inequality. By (2.6), we deduce that∑
p6x

λf (p)

p
=
∑
n6x

Λf (n)

n log n
−
∑
p6x

∑
ν>2

Λf (p
ν)

pν log pν
.

The double sum is obviously O(1), and the sum over n is, by partial integration,
equal to ∫ x

2

1

t log t
d
(∑
n6t

Λf (n)
)

= r

∫ x

2

dt

t log t
+

∫ x

2

dO
(
te−c

′
f

√
log t
)

t log t

= r log log x+O(1).

Apparently we have the same conclusion for F = f × g. Only a finite number of
primes divide M , so we may drop the corresponding terms without a significant loss.
Our proof is complete by invoking r = 1 for (2.3) and 0 for (2.2) or (2.4). �

Lemma 2.2. Let k > 1 be an integer, N > 4 an integer divisible by 4 and χ be
a Dirichlet character modulo N . Suppose that f ∈ S∗k+1/2(N,χ) and t > 1 is a

squarefree integer such that af(t) 6= 0. Assume that the sequence {af(tn2)}n∈N is
real. Then ∑

p6x
p-N

af(tp
2)

pk+1/2
�f,t 1,(2.7)

∑
p6x
p-N

af(tp
2)2

p2k
= Cf,t log log x+Of,t(1) (x→∞),(2.8)

where the positive constant Cf,t and the implied constants depend on f and t.

Proof. Applying the Möbius inversion formula to (1.2), we derive that

(2.9) af(tn
2) =

∑
d|n

µ(d)χt,N(d)dk−1aft

(
n

d

)
,

where µ(d) is the Möbius function and aft(n) is the n-th coefficient of ft. Write
aft(n) = λft(n)nk−1/2, the formula (2.9) is reformulated as

(2.10)
af(tn

2)

nk−1/2
=
∑
d|n

µ(d)χt,N(d)√
d

λft

(
n

d

)
.

Taking n = p a prime, it follows that

(2.11)
af(tp

2)

pk−1/2
= λft(p)−

χt,N(p)
√
p

af(t),

as λft(1) = af(t).
Now we apply (2.1) to S2k(N/2, χ

2), and obtain an basis⋃
M |(N/2)

M≡0(mod (N/2)∗)

{
f|` : `

∣∣∣(N/2)

M
, f ∈ H∗2k

(
M, (χ2)M

)}
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where (N/2)∗ is the conductor of χ2, and (χ2)M is the character mod M induced by
χ2. Hence each f ∈ S2k(N/2, χ

2) is uniquely expressed as

f(z) =
∑
i

∑
`|(N/(2Mi))

ci,`fi(`z)

where fi ∈ H∗2k(Mi, (χ
2)Mi

) is primitive of level Mi (and (N/2)∗ | Mi | (N/2)) and
ci,`’s are scalars depending on f . Note that Mi’s take the same value for those fi’s of
the same level. Through their Fourier expansions we see that for any prime p - N ,

λft(p) =
∑
i

ciλfi(p)

where ci := ci,1 and not all ci’s equal zero for

0 6= af(t) = λft(1) =
∑
i

ci

(whence ft 6≡ 0). In view of (2.11), it follows that

(2.12)
af(tp

2)

pk−1/2
=
∑
i

ciλfi(p)−
χt,N(p)
√
p

af(t)

and under the assumption af(tn
2) ∈ R, we infer

af(tp
2)2

p2k−1
=

∑
i

|ci|2
∣∣λfi(p)∣∣2 +

∑
i 6=j

cicjλfi(p)λfj(p)

+ |af(t)|2
|χt,N(p)|2

p
− 2<e

∑
i

ciλfi(p)χt,N(p)
√
p

af(t).

Imposing the weight p−1 to these two formulas and summing over p 6 x except for
the prime factors of N , we conclude that∑

p6x
p-N

af(tp
2)

pk+1/2
=
∑
i

ci
∑
p6x

λfi(p)

p
+Of,t(1)

and ∑
p6x
p-N

af(tp
2)2

p2k
=
∑
i

|ci|2
∑
p6x
p-N

|λfi(p)|2

p
+
∑
i 6=j

cicj
∑
p6x
p-N

λfi(p)λfj(p)

p
+Of,t(1).

Set Cf,t :=
∑

i |ci|2 > 0 (as some ci 6= 0), the desired results follow plainly with
Lemma 2.1. �

Now we are ready to finish the proof of Theorem 1. With Deligne’s bound, we
deduce from (2.12) that∣∣af(tp2)p−(k−1/2)∣∣ 6 2

∑
i

|ci|+ |af(t)| =: C ′f,t.
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Assume all af(tp
2) are of the same sign for y 6 p 6 x with p - N . Then,

(2.13)
∑
y6p6x
p-N

af(tp
2)2

p2k
6 C ′f,t

∑
y6p6x
p-N

|af(tp2)|
pk+1/2

= C ′f,t

∣∣∣∣ ∑
y6p6x
p-N

af(tp
2)

pk+1/2

∣∣∣∣.
Immediately (2.8) implies that the L.H.S. of (2.13) equals

Cf,t log

(
log x

log y

)
+Of,t(1),

but from (2.7), the R.H.S. of (2.13) is Of,t(1) for all x > y > 2. This is impossible
if y = xα with a small constant α = α(f, t) > 0.

3. The proof of Theorem 2

The next lemma comes from the first part of Theorem 15 in Serre [22], which is
the key tool for our proof.

Lemma 3.1. Let g be any Hecke eigenform of integral weight > 2 and of level M .
Suppose h(X) ∈ C[X] is any polynomial. Write ag(n) for the n-th Fourier coefficient
of g. If g is not of type CM, then

(3.1)
∑
p6x

p-M,ag(p)=h(p)

1�g,h,δ
x

(log x)1+δ

for any δ < 1
4

and all x > 2.

Now we are in a position to prove Theorem 2. Given a Hecke eigenform f, we let
f be the associated Shimura lift as in (1.4). As f is a Hecke eigenform, we have by
(2.1), f(z) =

∑
`|L c`fi(`z) for some L|(N/2), where fi is a primitive form. Thus

λf (p) = λfi(p) for all primes p - N , and fi is not of CM type by the assumption that
f is not of CM type. (See Remark 1.)

Now it remains to prove (1.8). We let PNt := {p : p - Nt} and by (2.9) and (1.4),
we obtain for p ∈PNt,

af(t)
−1af(tp

2) = af (p)− χt,N(p)pk−1.

As χt,N(p) = ±1 for p ∈PNt (noting that the nebentypus χ is quadratic), we split

PNt := {p : p - Nt} = P(1)
Nt ∪P(2)

Nt

where for p ∈P(j)
Nt (j = 1, 2),

(3.2) af(t)
−1af(tp

2) = af (p)− εjpk−1
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with ε1 := 1 and ε2 := −1. Thus we have af(tp
2) = 0 ⇒ af (p) = εjp

k−1 for j = 1
or 2. By applying Lemma 3.1 to g = f , we deduce that

(3.3)

∑
p6x

p-Nt, af(tp2)=0

1 =
∑
16j62

∑
p6x

p∈P
(j)
Nt , af (p)=εjp

k−1

1

6
∑
16j62

∑
p6x, p-(N/2)
af (p)=εjp

k−1

1

�f,t,δ
x

(log x)1+δ

for any δ < 1
4

and all x > 2.
Define

Bf :=
{
p : p - Nt, af(tp2) = 0

}
∪ {p0} ∪ {p : p | Nt} ∪

{
p2 : p - p0Nt, af(tp2) 6= 0

}
=: {bi}i>1 (with increasing order),

where p0 is the first prime such that p0 - tN and af(t)af(tp
2
0) < 0. (Theorem 1

assures the existence of p0). By virtue of (3.3), a simple integration by parts allows
us to deduce ∑

p6x
p-Nt, af(tp2)=0

1

p
=

∫ x

2−

1

t
d

( ∑
p6t

p-Nt, af(tp2)=0

1

)

� 1 +

∫ x

2

dt

t(log t)1+δ

� 1.

Thus we infer that ∑
i>1

1

bi
<∞ and (bi, bj) = 1 (i 6= j).

Let Af := {ai}i>1 (with increasing order) be the sequence of all Bf-free numbers,
i.e. the integers indivisible by any element in Bf. According to [6], Af is of positive
density

(3.4) lim
x→∞

|Af ∩ [1, x]|
x

=
∞∏
i=1

(
1− 1

bi

)
> 0.

The definition of Bf and (1.7) yields that for all a ∈ Af,

af(ta
2) = af(t)

1−ω(a)
∏
p|a

af(tp
2) 6= 0

where ω(a) denotes the number of all distinct prime factors of a. As in [19], we shall
exploit the two sets of integers

N ± := A ±
f ∪ {p0ai : ai ∈ A ∓

f }
where

A ±
f :=

{
ai ∈ Af : af(ta

2
i ) ≷ 0

}
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constitutes the partition
Af = A +

f ∪A −
f .

The upshot is the switch of signs via the multiplicativity (1.7) and the negativity of
af(t)af(tp

2
0) under our construction. Indeed,

af(t(p0a)2) = af(t)
−1af(tp

2
0)af(ta

2) ≷ 0

according as a ∈ A ∓
f . Hence af(ta

2) ≷ 0 and (a,Nt) = 1 for all a ∈ N ± and

N ±
f,t (x) >

∣∣N ± ∩ [1, x]
∣∣ > ∣∣Af ∩ [1, x/p0]

∣∣
has a positive density for all x > 1, by (3.4). Hence (1.8) follows.

Finally let us consider the case that N/2 is squarefree, for which the Shimura
lift is automatically not of CM type. It is because according to the proof of the
Corollary of Theorem A in [21], p.30, a primitive form g ∈ Snew

k (N ′, χ0) whose level
N ′ is squarefree and nebentypus χ0 is trivial is not of CM type. Now our primitive
form fi is of level N/2 and a trivial nebentypus (as χ2 is trivial when χ is a real
character).

This completes the proof of Theorem 2.

4. The proof of Theorem 3

The key tool is still (2.10). We set n = pν with p - N , then

(4.1) af(t)
−1 af(tp

2ν)

pν(k−1/2)
= λf (p

ν)− χt,N(p)
√
p

λf (p
ν−1).

Recall that χ is real and so is χt,N . The Hecke eigenform f is independent of t and
its pν-th eigenvalue λf (p

ν) (p - N) is expressible as

λf (p
ν) =

sin((ν + 1)θf (p))

sin θf (p)

(with the obvious interpretation in the limiting cases θf (p) = 0, π). Indeed, this
follows by elementary calculations, using the definition of θf (p) and factoring the
quadratic polynomial in the denominator of the Euler p-factor of the L-series of f .

Now we consider case by case.
Case (i). θf (p) = 0.

We have λf (p
ν) = ν + 1 so each af(t)

−1af(tp
2ν) > 1 + ν(1− p−1/2) > 0.

Case (ii). θf (p) = π.

Thus λf (p
ν) = (−1)ν(ν + 1), and in this case, (4.1) turns to

af(tp
2ν)

pν(k−1/2)
= af(t)(−1)ν

{
1 + ν

(
1 +

χt,N(p)
√
p

)}
.

It follows that half of af(tp
2ν) are positive and half are negative, depending on the

parity of ν.

For the remaining two cases, we rewrite (4.1) into

af(t)
−1 af(tp

2ν)

pν(k−1/2)
sin θf (p) = sin((ν + 1)θf (p))−

χt,N(p)
√
p

sin(νθf (p)),
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which easily leads to

(4.2)

∑
ν6x

±af(t)−1af(tp
2ν)> (c−1/√p)pν(k−1/2)/ sin θf (p)

1 >
∑
ν6x

sin((ν+1)θf (p))≷±c

1

=
∑

26ν6x+1
sin(νθf (p))≷±c

1

for any c ∈ (1/
√
p, 1). Here the symbol ≷ is abbreviated for > and 6.

Case (iii). θf (p)/(2π) = m/n ∈ (0, 1/2) where m and n are coprime.
For n > 3, we set a+n = d when n is of form 4d or 4d + 1, and a+n = d + 1 when

n = 4d+ 2 or n = 4d+ 3, so 1/5 6 a+n /n 6 1/3. Besides we take a−n = n− a+n , then

sin

(
2πa±n
n

)
≷ ± sin

(
2π

3

)
= ±
√

3

2
≷ ± 1

√
p
·

Then we consider νm ≡ a±n (modn), whose solutions form the arithmetic pro-
gression ν = `n + m(n)a±n (` ∈ Z) where m(n)m ≡ 1 (modn). For these ν’s, we
have

sin(νθf (p)) = sin

(
2πνm

n

)
= sin

(
2πa±n
n

)
≷ ± sin

(
2π

3

)
= ±
√

3

2
·

Setting c =
√

3/2 in (4.2), we deduce that∑
ν6x

±af(t)−1af(tp
2ν)> (

√
3/2−1/√p)pν(k−1/2)/ sin θf (p)

1 >
∑

26ν6x+1
sin(νθf (p))≷±

√
3/2

1

>
∑

26`n+m(n)a±n6x+1

1

>
1

n
x+Of(1) (x→∞).

Case (iv). θf (p)/(2π) is irrational.
Write

νθf (p) = 2π[νθf (p)/(2π)] + 2π{νθf (p)/(2π)},
where [t] (resp. {t}) is the integral part of t (resp. fractional part). It follows that

sin(νθf (p)) = sin(2π{νθf (p)/(2π)}).

Thus for any [a, b] ⊂ [−1, 1], the last sum in (4.2) becomes∑
26ν6x+1

sin(νθf (p))∈[a,b]

1 =
∑

26ν6x+1
sin(2π{νθf (p)/(2π)})∈[a, b]

1

= 2
∑

26ν6x+1
2π{ν(θf (p)/2π)}∈[arcsin a, arcsin b]

1.
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As is well known, {ν(θf (p)/2π)} is distributed uniformly mod 1 if and only if
θf (p)/(2π) is irrational, by Weyl’s criterion (see [8, Chapter 21]). In this case,
we have

(4.3)
∑

26ν6x+1
sin(νθf (p))∈[a,b]

1 ∼ arcsin b− arcsin a

π
x (x→∞).

Now the required result follows from (4.2) and (4.3) with the choice of a = c, b = 1
or a = −1, b = −c.

This completes the proof of Theorem 3.
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