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Introduction

Owing to different reasons, the problem of sign changes of Hecke eigenvalues of integral weight cusp forms has attracted many attentions [START_REF] Knopp | On the signs of Fourier coefficients of cusp forms, Rankin memorial issues[END_REF][START_REF] Kohnen | On the first sign change of Hecke eigenvalues of newforms[END_REF][START_REF] Iwaniec | The first sign change of Hecke eigenvalue[END_REF][START_REF] Kohnen | On the number of sign changes of Hecke eigenvalues of newforms[END_REF][START_REF] Lau | The number of Hecke eigenvalues of same signs[END_REF][START_REF] Kowalski | On modular signs[END_REF]. One motivation is to delve the analogy with (real) Dirichlet characters. Real Dirichlet characters admit only ±1 other than 0; however these eigenvalues (when properly normalized) vary in the range from -2 to 2. A reasonable parallel one may consider is the pattern of the signs. Such an investigation has a long history in the case of real characters, like the problem of the least quadratic non-residue. The work [START_REF] Kowalski | On modular signs[END_REF] provides a comprehensive discussion in the context of modular forms. In light of the theory of half integral weight forms in Shimura [START_REF] Shimura | On modular forms of half integral weight[END_REF], Waldspurger [START_REF] Waldspurger | Sur les coefficients de Fourier des forms modulaires de poids demi-entier[END_REF], Kohnen-Zagier [START_REF] Kohnen | Values of L-series of modular forms at the center of the critical strip[END_REF] and Kohnen [START_REF] Kohnen | Newforms of half-integral weight[END_REF][START_REF] Kohnen | Fourier coefficients of modular forms of half integral weight[END_REF], etc, the half integral weight forms are closely related to integral weight cusp forms and hence it is naturally important to study the analogous sign-change problems. The case of half integral weight cusp forms, although looking like a formal extension, is somehow more subtle. A reason is that the Fourier coefficients of a half integral weight cuspidal Hecke eigenform in general are not plainly multiplicative (cf. [4, page 783]). In [START_REF] Bruinier | Sign changes of coefficients of half integral weight modular forms[END_REF], Bruinier & Kohnen studied the sign changes of the Fourier coefficient a f (n) of a half integral weight cusp form f for specific sequences of integers n, which also stimulates this work.

Throughout we let k 1 be an integer and assume N 4 to be divisible by 4. Fix any Dirichlet character χ modulo N . We write S k+1/2 (N, χ) for the space of cusp forms of weight k + 1/2 for the group Γ 0 (N ) with character χ (cf. [START_REF] Shimura | On modular forms of half integral weight[END_REF]). The space S 3/2 (N, χ) contains unary theta functions. Let S * 3/2 (N, χ) be the orthogonal complement with respect to the Petersson scalar product of the subspace generated by these theta functions (cf. [START_REF] Shimura | On modular forms of half integral weight[END_REF]Section 4] and [START_REF] Cipra | On the Niwa-Shintani theta-kernel lifting of modular forms[END_REF]Section 4]). For convenience, we put

S * k+1/2 (N, χ) = S k+1/2 (N, χ) when k 2. Each f ∈ S * k+1/2 (N, χ) has a Fourier expansion (1.1) f(z) = n 1 a f (n)e 2πinz (z ∈ H),
on the complex upper half plane H. Let t 1 be a squarefree integer. The Shimura correspondance [START_REF] Shimura | On modular forms of half integral weight[END_REF] lifts f to a cusp form f t of weight 2k for the group Γ 0 (N/2) with character χ 2 . Also it gives a vital relation between their Fourier coefficients,

(1.2) a ft (n) := d|n χ t,N (d)d k-1 a f t n 2 d 2 ,
where χ t,N denotes the character

χ t,N (d) := χ(d) (-1) k t d and (1.3) f t (z) := n 1 a ft (n)e 2πinz (z ∈ H).
(f t is called the Shimura lift of f associated to t.) Furthermore if f is a Hecke eigenform, then so is the Shimura lift. In fact, in this case

f t = a f (t)f (1.4)
where f is a normalized (a f (1) = 1) Hecke eigenform independent of t.

Let f ∈ S * k+1/2 (N, χ 0 ) be a cusp form with trivial character χ 0 , squarefree level and real coefficients a f (n). Suppose that f lies in the plus space, that is, a f (n) = 0 when (-1) k n ≡ 2, 3 (mod 4), see [START_REF] Kohnen | Values of L-series of modular forms at the center of the critical strip[END_REF][START_REF] Kohnen | Fourier coefficients of modular forms of half integral weight[END_REF]. Bruinier & Kohnen [START_REF] Bruinier | Sign changes of coefficients of half integral weight modular forms[END_REF] gave the conjectures

(1.5) lim x→∞ |{n x : a f (n) ≷ 0}| |{n x : a f (n) = 0}| = 1 2 and (1.6) lim x→∞ |{|d| x : d fundamental discriminant, a f (|d|) ≷ 0}| |{|d| x : d fundamental discriminant, a f (|d|) = 0}| = 1 2
with empirical evidence, which may be, however, out of the present reach. Alternatively, they considered the change in signs of a f (n) when n runs over specific sets of integers, such as {tn 2 } n∈N , {tp 2ν } ν∈N and {tn 2 t } t squarefrees . Here t is a positive squarefree integer such that a f (t) = 0, p denotes any fixed prime and n t is an integer determined by t (cf. [2, Theorems 2.1 and 2.2]). Amongst other things, their approach comprises a well-known robust analytic tool -Landau's theorem on Dirichlet series.

Our first result gives an improvement to [2, Theorem 2.1] and [START_REF] Kohnen | A short note on Fourier coefficients of half-integral weight modular forms[END_REF]Theorem], exploiting tools in analytic number theory in connection with Rankin-Selberg Lfunctions.

Theorem 1. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a Dirichlet character modulo N . Suppose that f ∈ S * k+1/2 (N, χ) and t 1 is a squarefree integer such that a f (t) = 0. Assume that the sequence {a f (tn 2 )} n∈N is real. Then {a f (tn 2 )} n∈N has infinitely many sign changes. More specifically there is a small constant α = α(f, t) > 0 such that for all sufficiently large x, i.e. x x 0 (f, t), a f (tp 2 ) has (at least) one sign-change when p runs through primes in the interval [x α , x].

Our proof shows an alternative (other than [START_REF] Kohnen | A short note on Fourier coefficients of half-integral weight modular forms[END_REF]) to remove the hypothesis on the non-vanishing of L(s, χ t,N ) on (0, 1) (Chowla's conjecture if χ t,N is quadratic), see Theorem 2.1 of [START_REF] Bruinier | Sign changes of coefficients of half integral weight modular forms[END_REF]. This conjecture asserts that L(s, χ t,N ) has no zeros in the interval (0, 1). Kohnen [START_REF] Kohnen | A short note on Fourier coefficients of half-integral weight modular forms[END_REF] removed the hypothesis by refining the argument of [START_REF] Bruinier | Sign changes of coefficients of half integral weight modular forms[END_REF]. However as in [START_REF] Bruinier | Sign changes of coefficients of half integral weight modular forms[END_REF], the method did not produce a quantitative result. In this regard Theorem 1 goes further and in fact, the proof here applies to the finer sequence of primes, that is, we narrow down to the infinitely many sign changes in {a f (tp 2 )} p primes (instead of {a f (tn 2 )} n∈N ).

The form f in Theorem 1 is not assumed to be a Hecke eigenform. Imposing this assumption, if the Shimura lift f t , or equivalently f in (1.4) when a f (t) = 0, is not of CM type (see Remark 1), we can tell more in the next theorems. A salience now is the retrieve of multiplicativity. More precisely, for any fixed (squarefree) t and Hecke eigenform f, the arithmetic function n → a f (tn 2 ) is multiplicative in the following sense (cf. [23, (1.18)]):

(1.7) a f (tm 2 )a f (tn 2 ) = a f (t)a f (tm 2 n 2 ) if (m, n) = 1.
The condition of a Hecke eigenform f is indispensable in our argument, as we start with (1.7). These results are clearly the best possible in order of magnitude.

Theorem 2. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N . Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t 1 is a squarefree integer such that a f (t) = 0. Assume that its Shimura lift is not of CM type. Then we have

(1.8) n x, n is squarefree (n,N t)=1, a f (tn 2 )≷ 0 1 f,t x for x x 0 (f, t). If N/2 is
squarefree, the assumption of a non-CM Shimura lift will automatically hold and hence can be omitted. Remark 1. A Hecke eigenform f is of CM type if there exists a non-trivial Dirichlet character ϕ such that λ f (p) = ϕ(p)λ f (p) for all primes p in a set of primes of density 1 (see [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF]Section 7.2]). Here and in the sequel the Vinogradov symbol f (x)

g(x) (or g(x) f (x)) means |f (x)| Cg(x)
for all sufficiently large x x 0 , where C is a positive constant. We also write * or * to stress the dependence of the implied constants on * .

The following result refines [2, Theorem 2.2].

Theorem 3. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N . Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform, and t is a positive squarefree integer for which a f (t) = 0. For any prime p N , define θ f (p) ∈ [0, π] by the relation λ f (p) = 2 cos θ f (p) where λ f (p)p k-1/2 is the p-th Fourier coefficient of f in (1.4). We have the following results where ε = 1 or -1 in Case (ii)-(iv).

Case (i). θ f (p) = 0. Then a f (tp 2ν ) has the same sign as a f (t), for all ν 0.

Case (ii). θ f (p) = π. Then (1.9)

ν x εa f (tp 2ν )> 0 1 ∼ 1 2 x (x → ∞). Case (iii). θ f (p)/(2π) = m/n ∈ (0, 1/2) is rational with (m, n) = 1. Then (1.10) ν x εa f (t) -1 a f (tp 2ν ) ( √ 3/2-1/ √ p)p ν(k-1/2) / sin θ f (p) 1 1 n x + O f (1) (x → ∞). Case (iv). θ f (p)/(2π) ∈ (0, 1/2) is irrational. Then (1.11) ν x εa f (t) -1 a f (tp 2ν ) (c-1/ √ p)p ν(k-1/2) / sin θ f (p) 1 1 2 - arcsin c π x+o(x) (x → ∞)
for any c ∈ (1/ √ p, 1).

Remark 2. Cases (i) and (ii) can happen for at most finitely many primes p only. Indeed if we let K f be the number field generated by all the Fourier coefficients a f (n) of f , then the total number of primes p for which 0 = cos θ ft (p) ∈ Q cannot exceed r where 2 r [K f : Q], i.e., 2 r is the greatest power of two that divides the degree of

K f over Q. This follows from the proof of [2, Remark 2.3]: if 0 = λ f (p) ∈ Q, then √ p ∈ K f for a f (p) = λ f (p)p k-1/2
, whence our assertion follows by the fact

[Q( √ p 1 , . . . , √ p t ) : Q] = 2 t
for distinct primes p 1 , . . . , p t . For other values α ∈ (-2, 2), the Sato-Tate conjecture suggests that λ f (p) = α holds only for a zero density of primes p. When α = 0, it is shown to be true in Serre [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF]; though in this case (α = 0) and f is a non CM form, one may anticipate, parallel to Lehmer's conjecture in [START_REF] Lehmer | The vanishing of Ramanujan's function τ (n)[END_REF], that no prime p for λ f (p) = 0 exists. Another resemble question is (the analogue of) Lang-Trotter conjecture -the primes for which λ f (p)p (k-1/2) = α is of zero density, for any α.

The positive proportion of integers from {tn 2 } n∈N (resp. {tp 2ν } ν∈N ) on which a f (tn 2 ) (resp. a f (tp 2ν )) are of the same sign, shown in Theorems 2 and 3, encourages our belief in Conjecture (1.5). Finally we would remark that for the sequence {a f (tp 2 )} p primes , there is also a positive density (over the set of primes) of sign changes. Theorem 4. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a real Dirichlet character modulo N . Suppose that f ∈ S * k+1/2 (N, χ) is a Hecke eigenform and t

1 is squarefree such that its Shimura lift is not of CM type and a f (t) = 0. Then we have (1.12)

p x εa f (t) -1 a f (tp 2 )> 1.68p k-1/2 1 f x log x for x x 0 (f) and ε = ±1.
This is a direct application of (4.1) (with ν = 1) below and that there exists a positive density of primes for which λ f (p) > 1.681 and λ f (p) < -1.681 respectively, shown in [START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF]Theorem 4.10].

Acknowledgement. The authors wish to thank the referee for the comments. Part of this work was done during the visit of J. Wu at the University of Hong Kong in 2009. He would like to thank the department of mathematics for hospitality. The work described in this paper was fully supported by a grant from the PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the Consulate General of France in Hong Kong (F-HK36/07T), and by the General Research Fund (HKU702308P).

The proof of Theorem 1

We begin with the basic theory of Atkin-Lehner on primitive forms (or newforms), and results following from the L-functions attached to these forms. Let S κ (L, ψ) be the space of holomorphic cusp forms of integral weight κ 2 and nebentypus ψ for Γ 0 (L). The nebentypus ψ is a Dirichlet character mod L whose conductor is denoted by L * . In an attempt to diagonalize all Hecke operators over S κ (L, ψ), Atkin and Lehner figured out the orthogonal complement S new κ (L, ψ) (with respect to Petersson inner product) of the subspace generated by all forms g( z) (called oldforms) where g ∈ S κ (M, ψ M ) is of strict lower level M |L (with L * |M ) and the nebentypus ψ M induced by ψ (more precisely, by the unique primitive character ψ * mod L * that induces ψ). The integer runs over all divisors of L/M . We call f a primitive form (or newform) if f ∈ S new κ (L, ψ) is a common eigenfunction of all Hecke operators (including the involution) and its first coefficient equals one. Denote by H * κ (L, ψ) the set of all primitive forms of weight κ, level L and nebentypus ψ. By the theory of primitive forms (see [START_REF] Atkin | Hecke operators on Γ 0 (m)[END_REF] or [8, §14.7]), we have the decomposition

S κ (L, ψ) = M |L M ≡0(mod L * ) f ∈H * κ (M,ψ M ) Span C f | : | (L/M ) , (2.1)
where ψ M is the Dirichlet character mod M induced from ψ and f | (z) := f ( z). The outermost direct sum runs over M and Span C S denotes the subspace generated by elements in S over C.

The primitive forms give rise to a special basis for S κ (L, ψ), and above all, their associated L-functions satisfy a functional equation and admit an Euler product factorization. More generally a primitive form f corresponds uniquely to an irreducible unitary cuspidal representation π of GL 2 (A Q ) (whose ∞-component π ∞ is a discrete series), and they have the same L-functions, i.e. L(s, f ) = L(s, π), up to normalization by a scalar. There are many fruitful results in the context of L-functions for automorphic representations, for example, the nonvanishing on the line e s = 1 and the zero-free regions. Our first lemma is also one of their consequences.

Lemma 2.1. Let f ∈ H * κ (M, ψ) whose n-th coefficient is λ f (n)n (κ-1)/2 . Then as x → ∞, p x p M λ f (p) p 1, (2.2) p x p M |λ f (p)| 2 p = log log x + O(1). (2.3)
Moreover, if g = f is another primitive form (of any level), then

p x p M λ f (p)λ g (p) p 1. (2.4)
The implied constants in or O-symbol depend on the form f in (2.2) and (2.3), and both f and g in (2.4).

These results are proved using analytic techniques and the theory of GL 2 × GL 2 Rankin-Selberg L-functions. Indeed the general case of GL m × GL m were treated by, for instance, Rudnick-Sarnak, Liu-Ye, Liu-Wang-Ye, etc. Here we shall prove the lemma with the tools in [START_REF] Iwaniec | Analytic Number Theory[END_REF].

Proof. The key ingredient is the Prime Number Theorem for general L-functions. Suppose L(s, F ) is an L-function (defined as in [8, p.94]) that has no zero, except possibly a simple real zero β, for s = σ + it in the region

σ 1 - c F log(|t| + 3) (2.5)
where c F > 0 is a constant depending on F only. We further assume β < 1 if it exists. Write

- L L (s, F ) = n 1 Λ F (n) n s (σ > 1),
where the sum ranges over prime powers (n = p ν ) only. Then by [START_REF] Iwaniec | Analytic Number Theory[END_REF]Theorem 5.13],

we have the formula

n x Λ F (n) = rx + O F xe -c F √ log x (2.6)
where r denotes the order of the possible pole of L(s, F ) at s = 1, and c F > 0 is a constant whose value depends on F . We state (2.6) in this weak form just for simplicity. Now consider the L-functions L(s, f ) and L(s, f × g) (which are respectively L(f, s) and L(f ⊗ g, s) in [START_REF] Iwaniec | Analytic Number Theory[END_REF]). By Theorems 5.39 and 5.44 of [START_REF] Iwaniec | Analytic Number Theory[END_REF], we obtain (2.6) for these two L-functions. (Note that here g is interpreted as the primitive form g(-z).) Moreover, r = 0 when F = f or F = f × g with f = g. In case F = f × f , we have r = 1. Furthermore we note that 

Λ f (p) = λ f (p) log p, Λ f ×g (p) = λ f (p)λ g (p)
p x λ f (p) p = n x Λ f (n) n log n - p x ν 2 Λ f (p ν ) p ν log p ν .
The double sum is obviously O(1), and the sum over n is, by partial integration, equal to

x 2 1 t log t d n t Λ f (n) = r x 2 dt t log t + x 2 dO te -c f √ log t t log t = r log log x + O(1).
Apparently we have the same conclusion for F = f × g. Only a finite number of primes divide M , so we may drop the corresponding terms without a significant loss.

Our proof is complete by invoking r = 1 for (2.3) and 0 for (2.2) or (2.4).

Lemma 2.2. Let k 1 be an integer, N 4 an integer divisible by 4 and χ be a Dirichlet character modulo N . Suppose that f ∈ S * k+1/2 (N, χ) and t 1 is a squarefree integer such that a f (t) = 0. Assume that the sequence {a f (tn 2 )} n∈N is real. Then

p x p N a f (tp 2 ) p k+1/2 f,t 1, (2.7) p x p N a f (tp 2 ) 2 p 2k = C f,t log log x + O f,t (1) (x → ∞), (2.8)
where the positive constant C f,t and the implied constants depend on f and t.

Proof. Applying the Möbius inversion formula to (1.2), we derive that (2.9)

a f (tn 2 ) = d|n µ(d)χ t,N (d)d k-1 a ft n d ,
where µ(d) is the Möbius function and

a ft (n) is the n-th coefficient of f t . Write a ft (n) = λ ft (n)n k-1/2
, the formula (2.9) is reformulated as

(2.10) a f (tn 2 ) n k-1/2 = d|n µ(d)χ t,N (d) √ d λ ft n d .
Taking n = p a prime, it follows that

(2.11) a f (tp 2 ) p k-1/2 = λ ft (p) - χ t,N (p) √ p a f (t),
as λ ft (1) = a f (t). Now we apply (2.1) to S 2k (N/2, χ 2 ), and obtain an basis

M |(N/2) M ≡0(mod (N/2) * ) f | : (N/2) M , f ∈ H * 2k M, (χ 2 ) M
where (N/2) * is the conductor of χ 2 , and (χ 2 ) M is the character mod M induced by χ 2 . Hence each f ∈ S 2k (N/2, χ 2 ) is uniquely expressed as

f (z) = i |(N/(2M i )) c i, f i ( z)
where

f i ∈ H * 2k (M i , (χ 2 ) M i ) is primitive of level M i (and (N/2) * | M i | (N/2
)) and c i, 's are scalars depending on f . Note that M i 's take the same value for those f i 's of the same level. Through their Fourier expansions we see that for any prime p N ,

λ ft (p) = i c i λ f i (p)
where c i := c i,1 and not all c i 's equal zero for

0 = a f (t) = λ ft (1) = i c i (whence f t ≡ 0). In view of (2.11), it follows that (2.12) a f (tp 2 ) p k-1/2 = i c i λ f i (p) - χ t,N (p) √ p a f (t)
and under the assumption a f (tn 2 ) ∈ R, we infer

a f (tp 2 ) 2 p 2k-1 = i |c i | 2 λ f i (p) 2 + i =j c i c j λ f i (p)λ f j (p) + |a f (t)| 2 |χ t,N (p)| 2 p -2 e i c i λ f i (p)χ t,N (p) √ p a f (t).
Imposing the weight p -1 to these two formulas and summing over p x except for the prime factors of N , we conclude that

p x p N a f (tp 2 ) p k+1/2 = i c i p x λ f i (p) p + O f,t (1) 
and

p x p N a f (tp 2 ) 2 p 2k = i |c i | 2 p x p N |λ f i (p)| 2 p + i =j c i c j p x p N λ f i (p)λ f j (p) p + O f,t (1). 
Set C f,t := i |c i | 2 > 0 (as some c i = 0), the desired results follow plainly with Lemma 2.1.

Now we are ready to finish the proof of Theorem 1. With Deligne's bound, we deduce from (2.12) that

a f (tp 2 )p -(k-1/2) 2 i |c i | + |a f (t)| =: C f,t .
Assume all a f (tp 

for all x y 2. This is impossible if y = x α with a small constant α = α(f, t) > 0.

The proof of Theorem 2

The next lemma comes from the first part of Theorem 15 in Serre [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF], which is the key tool for our proof. Now we are in a position to prove Theorem 2. Given a Hecke eigenform f, we let f be the associated Shimura lift as in (1.4). As f is a Hecke eigenform, we have by (2.1), f (z) = |L c f i ( z) for some L|(N/2), where f i is a primitive form. Thus λ f (p) = λ f i (p) for all primes p N , and f i is not of CM type by the assumption that f is not of CM type. (See Remark 1.)

Now it remains to prove (1.8). We let P N t := {p : p N t} and by (2.9) and (1.4), we obtain for p ∈ P N t ,

a f (t) -1 a f (tp 2 ) = a f (p) -χ t,N (p)p k-1 .
As χ t,N (p) = ±1 for p ∈ P N t (noting that the nebentypus χ is quadratic), we split

P N t := {p : p N t} = P (1) N t ∪ P (2) N t
where for p ∈ P (j)

N t (j = 1, 2), (3.2) a f (t) -1 a f (tp 2 ) = a f (p) -ε j p k-1
with ε 1 := 1 and ε 2 := -1. Thus we have a f (tp 2 ) = 0 ⇒ a f (p) = ε j p k-1 for j = 1 or 2. By applying Lemma 3.1 to g = f , we deduce that

(3.3) p x p N t, a f (tp 2 )=0 1 = 1 j 2 p x p∈P (j) N t , a f (p)=ε j p k-1 1 1 j 2 p x, p (N/2) a f (p)=ε j p k-1 1 f,t,δ x (log x) 1+δ
for any δ < 1 4 and all x 2. Define

B f := p : p N t, a f (tp 2 ) = 0 ∪ {p 0 } ∪ {p : p | N t} ∪ p 2 : p p 0 N t, a f (tp 2 ) = 0 =: {b i } i 1 (with increasing order),
where p 0 is the first prime such that p 0 tN and a f (t)a f (tp 2 0 ) < 0. (Theorem 1 assures the existence of p 0 ). By virtue of (3.3), a simple integration by parts allows us to deduce

p x p N t, a f (tp 2 )=0 1 p = x 2- 1 t d p t p N t, a f (tp 2 )=0 1 1 + x 2 dt t(log t) 1+δ
1.

Thus we infer that

i 1 1 b i < ∞ and (b i , b j ) = 1 (i = j).
Let A f := {a i } i 1 (with increasing order) be the sequence of all B f -free numbers, i.e. the integers indivisible by any element in B f . According to [START_REF] Erdős | On the difference of consecutive terms of sequences, defined by divisibility properties[END_REF], A f is of positive density

(3.4) lim x→∞ |A f ∩ [1, x]| x = ∞ i=1 1 - 1 b i > 0.
The definition of B f and (1.7) yields that for all a ∈ A f ,

a f (ta 2 ) = a f (t) 1-ω(a) p|a a f (tp 2 ) = 0
where ω(a) denotes the number of all distinct prime factors of a. As in [START_REF] Lau | The number of Hecke eigenvalues of same signs[END_REF], we shall exploit the two sets of integers

N ± := A ± f ∪ {p 0 a i : a i ∈ A ∓ f } where A ± f := a i ∈ A f : a f (ta 2 i ) ≷ 0 constitutes the partition A f = A + f ∪ A - f .
The upshot is the switch of signs via the multiplicativity (1.7) and the negativity of a f (t)a f (tp 2 0 ) under our construction. Indeed, a f (t(p 0 a) 2 ) = a f (t) -1 a f (tp 2 0 )a f (ta 2 ) ≷ 0 according as a ∈ A ∓ f . Hence a f (ta 2 ) ≷ 0 and (a, N t) = 1 for all a ∈ N ± and

N ± f,t (x) N ± ∩ [1, x] A f ∩ [1, x/p 0 ]
has a positive density for all x 1, by (3.4). Hence (1.8) follows.

Finally let us consider the case that N/2 is squarefree, for which the Shimura lift is automatically not of CM type. It is because according to the proof of the Corollary of Theorem A in [START_REF] Ramakrishnan | Recovering modular forms from squares[END_REF], p.30, a primitive form g ∈ S new k (N , χ 0 ) whose level N is squarefree and nebentypus χ 0 is trivial is not of CM type. Now our primitive form f i is of level N/2 and a trivial nebentypus (as χ 2 is trivial when χ is a real character).

This completes the proof of Theorem 2.

The proof of Theorem 3

The key tool is still (2.10). We set n = p ν with p N , then (4.1) a f (t) -1 a f (tp 2ν ) p ν(k-1/2) = λ f (p ν ) -χ t,N (p) √ p λ f (p ν-1 ).

Recall that χ is real and so is χ t,N . The Hecke eigenform f is independent of t and its p ν -th eigenvalue λ f (p ν ) (p N ) is expressible as λ f (p ν ) = sin((ν + 1)θ f (p)) sin θ f (p) (with the obvious interpretation in the limiting cases θ f (p) = 0, π). Indeed, this follows by elementary calculations, using the definition of θ f (p) and factoring the quadratic polynomial in the denominator of the Euler p-factor of the L-series of f . Now we consider case by case. Case (i). θ f (p) = 0.

We have λ f (p ν ) = ν + 1 so each a f (t) -1 a f (tp 2ν ) 1 + ν(1 -p -1/2 ) > 0. Case (ii). θ f (p) = π.

Thus λ f (p ν ) = (-1) ν (ν + 1), and in this case, (4.1) turns to a f (tp 2ν ) p ν(k-1/2) = a f (t)(-1) ν 1 + ν 1 + χ t,N (p) √ p .

It follows that half of a f (tp 2ν ) are positive and half are negative, depending on the parity of ν.

For the remaining two cases, we rewrite (4.1) into a f (t) -1 a f (tp 2ν ) p ν(k- 

Lemma 3 . 1 .

 31 Let g be any Hecke eigenform of integral weight 2 and of level M . Suppose h(X) ∈ C[X] is any polynomial. Write a g (n) for the n-th Fourier coefficient of g. If g is not of type CM, then (3.1) p x p M, ag(p)=h(p) 1 g,h,δ x (log x) 1+δ for any δ < 1 4 and all x 2.

  sin(νθ f (p))∈[a,b] 1 ∼ arcsin b -arcsin a π x (x → ∞). Now the required result follows from (4.2) and (4.3) with the choice of a = c, b = 1 or a = -1, b = -c. This completes the proof of Theorem 3.

  2 ) are of the same sign for y p x with p N . Then,

	(2.13)	y p x	a f (tp 2 ) 2 p 2k	C f,t	y p x	|a f (tp 2 )| p k+1/2 = C f,t	y p x	a f (tp 2 ) p k+1/2 .
		p N			p N				p N
	Immediately (2.8) implies that the L.H.S. of (2.13) equals
				C f,t log	log x log y	+ O f,t (1),
	but from (2.7), the R.H.S. of (2.13) is O f,t	

  As is well known, {ν(θ f (p)/2π)} is distributed uniformly mod 1 if and only if θ f (p)/(2π) is irrational, by Weyl's criterion (see[START_REF] Iwaniec | Analytic Number Theory[END_REF] Chapter 21]). In this case,

	we have
	(4.3)

1/2) 

sin θ f (p) = sin((ν + 1)θ f (p)) -χ t,N (p) √ p sin(νθ f (p)),

which easily leads to (4.2)

Here the symbol ≷ is abbreviated for and .

Case (iii). θ f (p)/(2π) = m/n ∈ (0, 1/2) where m and n are coprime.

For n 3, we set a + n = d when n is of form 4d or 4d + 1, and

Then we consider νm ≡ a ± n (mod n), whose solutions form the arithmetic pro-

2), we deduce that