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In this paper we study several divisor problems related to the Epstein zeta-function. We are able to improve previous results and establish some new results by applying some classical techniques.

Introduction

In this paper, we shall continue our study on divisor problems related to the Epstein zeta-function [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF][START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF][START_REF] Lü | On a divisor problem related to the Epstein zetafunction[END_REF]. Let 2, y := (y 1 , . . . , y ) ∈ Z and A = (a ij ) be an integral matrix such that a ii ≡ 0 (mod 2) for 1 i . Thus a positive definite quadratic form Q(y) can be written as

Q(y) = 1 2 y t Ay = 1 2 1 i a ii y 2 i + 1 i<j a ij y i y j ,
where y t is the transpose of y. The corresponding Epstein zeta-function is initially defined by the Dirichlet series

(1.1) Z Q (s) := y∈Z {0} 1 Q(y) s = n 1 r(n, Q) n s
for e s > /2, where r(n, Q) := y ∈ Z : Q(y) = n .

According to [START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF], Z Q (s) has an analytic continuation to the whole complex plane C with only a simple pole at s = /2, and satisfies a functional equation of Riemann type.

For each integer k 1, we are interested in the mean value of the k-fold Dirichlet convolution of r(n, Q) defined by

(1.2) r k (n, Q) := n 1 •••n k =n r(n 1 , Q) • • • r(n k , Q).
The study on the asymptotic behavior of the error term

(1.3) ∆ * k (x, Q) := n x r k (n, Q) -Res s= /2 Z Q (s) k x s s -1
has received much attention [START_REF] Landau | Über die Anzahl der Gitterpunkte in gewissen Bereichen[END_REF][START_REF] Chandrasekharan | Functional equations with multiple gamma factors and the average order of arithmetical functions[END_REF][START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF]. In particular Sankaranarayanan [START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF] showed, by the complex method, that for k 2 and 3,

(1.4) ∆ * k (x, Q) x /2-1/k+ε ,
where and throughout this paper ε denotes an arbitrarily small positive constant.

Recently inspired by Iwaniec's book [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]Chapter 11], Lü [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF] noted that (1.4) can be improved for the quadratic forms of level one. These quadratic forms verify the following supplementary conditions:

≡ 0 (mod 8), A is equivalent to A -1 , |A| = 1.
For such quadratic forms, we have [8, (11.32)]

(1.5) r(n, Q) = (2π) /2 ζ( /2)Γ( /2) σ /2-1 (n) + a f (n, Q) (n 1),
where σ α (n) = d|n d α , ζ(s) is the Riemann zeta-function, Γ(s) is the Gamma function and a f (n, Q) is the n-th Fourier coefficient of a cusp form f (z, Q) of weight /2 with respect to the full modular group SL(2, Z) verifying Deligne's bound (1.6) |a f (n, Q)| n ( /2-1)/2 σ 0 (n) (n 1).

Thus

(1.7)

Z Q (s) = (2π) /2 ζ( /2)Γ( /2) ζ(s)ζ(s -/2 + 1) + L(s, f ) for s ∈ C { /2}
, where L(s, f ) is the Hecke L-function associated with f (z, Q). In view of basic properties of ζ(s) and L(s, f ), it is not difficult to see that ζ(s-/2+1) is more dominant and we may view ∆ * k (Q; x) as the classical k-dimensional divisor problem associated to the Riemann zeta-function. With the help of these ideas, Lü, Wu & Zhai [START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF] obtained, via a simple convolution argument,

(1.8) ∆ * k (x, Q) x /2-1+θ k +ε (x 2)
for k = 2, 3, † where θ k is the exponent in the classical k-dimension divisor problem (1.9)

n x τ k (n) = Res s=1 (ζ(s) k x s s -1 ) + O x θ k +ε (x 2).
Besides, an Ω-result for k = 2, 3 and a mean value theorem for ∆ * 2 (x, Q) have been established in [START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF] and [START_REF] Lü | On a divisor problem related to the Epstein zetafunction[END_REF], respectively.

In this paper we shall refine Sankaranarayanan's (1.4) for general positive definite quadratic forms Q. In this case, it is known that [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]Theorem 11.2] (1.10)

r(n, Q) = (2π) /2 Γ( /2) |A| n /2-1 σ(n, Q) + O n /4-δ +ε † When k 4
, a similar result has been proved by Lü [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF] with the complex method.

for 4, where e(t) := e 2πit (t ∈ R),

S(Q) := 0 y 1 ,...,y q-1 e(Q(y)), σ(n, Q) := ∞ q=1 1 q q * h=1 S hQ q e - hn q ,
and δ :=

1 4
if is odd,

1 2
if is even.

Here and in the sequel, the symbol * means (h,q)=1 . Here we propose two methods to bound ∆ * k (x, Q): the complex method and the convolution method. The former allows us to establish nontrivial estimates for ∆ * k (x, Q) for all k 1 and 4. But the convolution argument is more powerful for k = 1, 2, 3 when 6. Let

(1.11) L Q (s) := ∞ n=1 σ(n, Q) n s ( e s > 1).
In view of the bound (cf [8, Lemma 10.5])

(1.12) S(hQ/q) q /2 ((h, q) = 1),

The Dirichlet series L Q (s) is absolutely convergent for e s > 1 provided 5. In Section 2 we shall prove that L Q (s) can be analytically continued to a meromorphic function on the half plane e s > 0, which has a simple pole at s = 1 with residue 1 (see Lemma 2.1 below), and establish some individual and average subconvexity bounds for L Q (s) similar to ζ(s) (see Lemmas 2.2 and 2.3 below). With the help of these new tools, the standard complex method allows us to deduce the following result, which improves Sankaranarayanan's (1.4) when k 3.

Theorem 1. Let 4 and k 1. We have

(1.13) ∆ * k (x, Q) x /2-1+ϑ k, +ε (x 2),
where The convolution argument of [START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF] can be also generalized to estimate ∆ * k (x, Q). Though (1.10) is more complicated than (1.5), we can use it to establish a connection between ∆ * k (x, Q) and the divisor problem with congruence conditions. We will discuss this divisor problem in Section 4. For q := (q 1 , . . . , q k ) ∈ N k and r := (r 1 , . . . , r r ) ∈ N k such that r i q i (1 i k), define τ k (n; q, r) :=

ϑ k, =                    1/2 if
n 1 •••n k =n n i ≡r i (mod q i ) (1 i k) 1, D k (x; q, r) := n x τ k (n; q, r).
The divisor problem with congruence conditions aims to bound the error term

(1.14) ∆ k (x; q, r) := D k (x; q, r) -Res s=1 ζ(s, r 1 /q 1 ) • • • ζ(s, r k /q k )x s s -1
where ζ(s, α) is the Hurwitz zeta-function defined by

(1.15) ζ(s, α) := ∞ n=0 1 (n + α) s (0 < α 1, σ > 1).
With the help of the convolution argument, we can prove the following result, which offers better exponents than (1.4) for k = 1, 2, 3 when 6.

Theorem 2. Let 6 and k = 1, 2, 3. Assume that there is some

ϑ k ∈ (0, 1) such that ∆ k (x; q, r) k, ,ε x/(q 1 • • • q k ) ϑ k +ε
uniformly for 1 r i q i (1 i k) and q 1 • • • q k x. Then we have

∆ * k (x, Q) k, ,ε x /2-1+ϑ k +ε . Especially we can take (1.16) ϑ k =        0 if k = 1, 131 416 if k = 2, 43 96 if k = 3.
Another interesting problem related to r(n, Q) is to evaluate its kth power sum. In this direction, Landau [START_REF] Landau | Über die Anzahl der Gitterpunkte in gewissen Bereichen[END_REF] first showed that (1.17)

n x r(n, Q) = (2π) /2 Γ( /2 + 1) | det Q| x /2 + O x /2-/( +1) .
For k = 2, Müller [START_REF] Müller | The mean square of Dirichlet series associated with automorphic forms[END_REF] proved that

(1.18) n x r(n, Q) 2 = A Q x log x + B Q x + O x 3/5 log x if = 2, C Q x -1 + O x -1-2( -1)/(4 -3) if 3,
where A Q , B Q and C Q are some constants depending on Q. In this paper we study a more general correlated sum of r(n, Q), which contains the kth power sum as a special case.

Theorem 3. Let 5, k 1 and a 1 , . . . , a k be fixed non-negative integers. Then

n x 1 i k r(n + a i , Q) = C Q (a 1 , . . . , a k )x ( /2-1)k+1 + O a 1 ,...,a k x ( /2-1)k+η (ε) ,
where C Q (a 1 , . . . , a k ) is a constant depending on Q and (a 1 , . . . , a k ), and

η (ε) :=      1 2 + ε if = 5, ε if = 6, 7, 0 if 8.
Obviously the two particular cases of Theorem 3:

"k = 1, a 1 = 0" and "k = 2, a 1 = a 2 = 0"
improve (1.17) for 6 and (1.18) for 5, respectively. It is worth to indicate that our method is different from Müller [START_REF] Müller | The mean square of Dirichlet series associated with automorphic forms[END_REF] and simpler.

As an application of Theorem 3, we give the following asymptotic formula for the correlated sum involving the divisor sum function σ /2-1 (n).

Corollary 1. Let 8 | , k 2 and a 1 , . . . , a k be fixed non-negative integers. Then

n x 1 i k σ /2-1 (n + a i ) = D (a 1 , . . . , a k )x ( /2-1)k+1 + O a 1 ,...,a k x ( /2-1)k ,
where D (a 1 , . . . , a k ) is a constant depending on and a 1 , . . . , a k .

Study on L

Q (s)
This section will be devoted to study L Q (s), which is important in the proof of Theorem 1.

Lemma 2.1. If 5, then L Q (s) can be analytically continued to a meromorphic function on the half plane e s > 0, which has a simple pole at s = 1 with residue 1.

Proof. By using the definition of σ(n, Q), a simple calculation shows that (2.1)

L Q (s) = ∞ q=1 1 q q * h=1 S(hQ/q)F (s, -h/q) = ζ(s) + ∞ q=2 1 q q * h=1 S(hQ/q)F (s, -h/q)
for e s > 1, where F (s, a) is the periodic zeta-function defined by

F (s, a) := ∞ n=1
e(an) n s ( e s > 1).

In view of well-known proprieties of ζ(s), it suffices to prove that the last double series in (2.1) can be continued analytically to the half plane e s > 0.

Introducing the notation

(2.2) M (u, α) := n u e(nα) min u, α -1 ,
where α := min t∈Z |α -t|, a simple integration by parts allows us to write, for e s > 1, q 2, and (h, q) = 1, that

F (s, h/q) = n |t|+1 e(hn/q) n s - M (|t| + 1, h/q) (|t| + 1) s + s ∞ |t|+1 M (u, h/q) u s+1 du.
This formula and (2.2) give an analytic continuation of F (s, h/q) to the region e s > 0 and the estimate F (s, h/q) |t| + 1 h/q holds uniformly for e s > 0. From this and (1.12), we deduce that

∞ q=2 1 q q * h=1 |S(hQ/q)F (s, -h/q)| ∞ q=2 |t| + 1 q /2 q/2 h=1 q h (|t| + 1) ∞ q=2 log q q /2-1 ,
which absolutely converges for e s > 0 since 5.

The next two lemmas give individual and average subconvexity bounds for L Q (s).

Lemma 2.2. Let 5 and ε > 0. We have

(2.3) L Q (σ + it) min |t| (1-σ)/3+ε , |t| 18.4974(1-σ) 3/2 (log |t|) 2/3
uniformly for

1 2 σ 1, |t| 2.
Proof. According to [20, pp 127], we have, for 0 < α 1, that (2.4)

F (s, α) = Γ(1 -s) (2π) 1-s e πi 2 (1-s) ζ * (1 -s, α) + e πi 2 (1-s) α -(1-s) + e -πi 2 (1-s) ζ * (1 -s, 1 -α) + e πi 2 (1-s) (1 -α) -(1-s) ,
where ζ * (s, α) := ζ(s, α) -α -s and ζ(s, α) is the Hurwitz zeta-function defined by (1.15). By combining (2.4) with Stirling's formula, we have, for s = 1 2 + it and (h, q) = 1 with q 2, that (2.5)

F (s, h/q) ζ * ( 1 2 -it, h/q) + ζ * ( 1 2 -it, 1 -h/q) + q 1/2 h -1/2 + q 1/2 (q -h) -1/2 . Similar to the Riemann zeta-function, it is known that [2, Theorem] (2.6) ζ * (s, α) (|t| + 1) (1-σ)/3+ε and (2.7) ζ * (s, α) |t| 18.4974(1-σ) 3/2 (log |t|) 2/3
uniformly for 0 < α 1, 1 2 σ 1 and |t| 10(see e.g. [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF] and [START_REF] Kulas | Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1[END_REF], respectively). Now the required estimate (2.3) follows from (2.1), (2.4), (2.5), (2.6) and (2.7), by noticing that (2.8)

q 2 1 q q * h=1 |S(hQ/q)| q 1/2 h -1/2 + q 1/2 (q -h) -1/2 q 2 1 q /2-1 1, since 5.
Lemma 2.3. Let 5 and k 1 be fixed integers. Then we have (2.9)

T 1 |L Q ( 1 2 + it)| k dt T 1+β k, +ε ,
where Proof. Write s = 1 2 + it. In order to prove Lemma 2.3, it suffices to prove that

β k, :=              0 if 1 k
T 1 |L Q (s)| 4 dt T 1+ε , (2.10) T 1 |L Q (s)| 12 dt T 2+max{(16-3 )/12, 0}+ε . (2.11)
Our key tools are the fourth mean value of Hurwitz' zeta-function[1, Theorem 4] (2.12)

T 1 |ζ * (s, α)| 4 dt T (log T ) 10 ,
which holds uniformly for 0 < α 1, T 2 , and the twelfth power moment of the Dirichlet L-function(see [START_REF] Meurman | The mean twelfth power of Dirichlet L-functions on the critical line[END_REF])

(2.13)

χ ( mod q) T 1 |L(s, χ)| 12 dt q 3 T 2+ε ,
which holds uniformly for q 1, T 2. From (2.1), (2.5) and (2.8), we deduce that

(2.14) |L Q (s)| |ζ(s)| + q 2 1 q /2 h q/2 |ζ * ( 1 2 -it, h/q)| + 1.
So by Hölder's inequality we have

(2.15) |L Q (s)| 4 |ζ(s)| 4 + q 2 h q/2 1 q 5/2 3 q 2 h q/2 |ζ * ( 1 2 -it, h/q)| 4 q (4 -15)/2 + 1,
which combining (2.12) leads to (2.10) since 5. In order to prove (2.11), we write, by the orthogonality relation of Dirichlet characters, F (s, h/q) = q a=1 e(ah/q) n≡a( mod q)

1 n s = 1 ϕ(q) χ ( mod q) G(h, χ)L(s, χ),
where ϕ(q) is the Euler function and G(h, χ) is the Gauss sum defined by G(h, χ) := q a=1 χ(a)e(ah/q). By virtue of the well-known bound |G(h, χ)| q 1/2 ((h, q) = 1), it follows that (2.16) F (s, h/q) q 1/2 ϕ(q)

χ ( mod q)

|L(s, χ)|

Let η > 0 be a parameter to be chosen later. We split the sum over q in (2.1) into two parts according to q T η or q > T η . Using (2.16) for q T η and (2.5), (2.8) for q > T η , we deduce that (2.17)

|L Q (s)| L Q,1 (s) + L Q,2 (s) + 1
where

L Q,1 (s) := q T η 1 q ( -1)/2 χ ( mod q) |L(s, χ)|, L Q,2 (s) := q>T η 1 q /2 h q/2 |ζ * ( 1 2 -it, h/q)|.
By Hölder's inequality again we have

|L Q,1 (s)| 12 q T η χ( mod q) 1 q 2 11 q T η χ( mod q)
|L(s, χ)| 12 q 6 -28 (log T ) 11 q T η χ( mod q)

|L(s, χ)| 12 q 6 -28 , which combining (2.12) gives (2.18)

T 1 |L Q,1 (s)| 12 dt T 2+ε q T η q -6 +31 T 2+max{η(32-6 ), 0}+ε .
The bound (2.6) implies trivially that

q>T η 1 q /2 h q/2 |ζ * ( 1 2 -it, h/q)| T 1/6+ε q>T η 1 q /2-1 T 1/6-η( /2-2)+ε .
On the other hand, similarly to (2.15), we have

q>T η 1 q /2 h q/2 |ζ * ( 1 2 -it, h/q)| 4 T -3η/2 q>T η h q/2 |ζ * ( 1 2 -it, h/q)| 4 q (4 -15)/2 •
Combining these with (2.12) yields that 

(2.19) T 1 |L Q,2 (s)| 12 dt T 8{1/6-η( /2-2)}-3η/2-η(4 -19)/2+1+ε T 7/3
n x r k (n, Q) = 1 2πi /2+ε+iT /2+ε-iT Z Q (s) k x s s ds + O x /2+ε T + x ε .
In view of (1.10) and Lemma 2.1, we have

(3.2) Z Q (s) |L Q (s -/2 + 1)| + 1
uniformly for e s ( + 3)/4 + ε and t = 0. By noticing that ( + 3)/4 ( -1)/2 (since 5), we can move the integration in (3.1) to the parallel segment with e s = ( -1)/2 + ε. By Lemma 2.1 and the residue theorem, we have

(3.3) 1 2πi /2+ε+iT /2+ε-iT Z Q (s) k x s s ds = Res s= /2 Z Q (s) k x s s -1 - L Z Q (s) k x s s ds,
where L is the contour joining /2+iT , ( -1)/2+ε+iT , ( -1)/2+ε-iT , /2-iT with straight lines. With the help of (3.2) and Lemmas 2.2-2.3, the contribution of the horizontal segments to the last integral of (3.3) is

(3.4) x /2+ε T -1
provided T x 3/k (2 k 49), and the contribution of the vertical segment is

(3.5) x ( -1)/2+ε T 1 L Q ( 1 2 + ε + it) k t dt
x ( -1)/2+ε T β k, +ε .

Combining (3.4), (3.5) and (3.3) with (3.1) and taking T = x 1/(2+2β k, ) , we obtain the required estimate for 5 and k 49.

3.2. The case 5 and k 50. In this case we apply Lemma 2.2. After applying Perron's formula, we move the integration to the parallel segment with e s = σ 0 = /2 -2Ak -2/3 and choose T = x Ak -2/3 , where A > 0 is an absolute constant which will be determined later. By applying (3.2) and Lemma 2.2, the contribution of the vertical segment is

x /2-2Ak -2/3 T 18.5k{ /2-(σ 0 -/2+1)} 3/2 (log x) 2k/3+1 = x /2-(2A-18.5× √ 8A 5/2 )k -2/3 (log x) 2k/3+1 ,
and the contribution of the horizontal segments is

x /2+ε T -1 (log x) 2k/3 + max σ 0 σ /2 x σ T 18.5k{1-(σ-/2+1)} 3/2 -1 (log x) 2k/3 x /2-(A-ε)k -2/3 + x /2-(2A-37 √ 2A 5/2 )k -2/3 (log x) 2k/3+1 .

Now we choose A to satisfy

A = 2A -37 √ 2A 5/2
, which gives A = 2738 -1/3 . Therefore for k 50 we have

∆ * k (x, Q) x /2-(2738k 2 ) -1/3 (log x) 2k/3+1 .

The case = 4.

It is known that in this case

θ(z, Q) := ∞ n=0 r(n, Q)e(nz)
is a modular form of weight 2 and level N (N is an integer such that N A -1 is also an integral matrix, see [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]Theorem 10.9]). Then by the standard theory of modular forms, Z Q (s) can be written as

Z Q (s) = L Q (s) + L(s, f ),
where L Q (s) is a linear combination of series of the form 

(t 1 t 2 ) -s L(s, χ 1 )L(s -/2 +
T 1 |L( 1 2 + it, χ)| 4 dt T 1+ε , (3.8) T 1 |L( 1 2 + it, χ)| 12 dt T 2+ε , (3.9)
it is easy to see that the estimates in Lemmas 2.2 and 2.3 also hold when = 4. Thus we can follow the arguments of Section 3.1 to show that (1.13) also is true for = 4. We omit the details.

The divisor problem with congruence conditions

The divisor problem with congruence conditions (1.14) was first studied by Nowak [START_REF] Nowak | On the Piltz divisor problem with congruence conditions[END_REF][START_REF] Nowak | On the Piltz divisor problem with congruence conditions, II[END_REF] and Menzer & Nowak [START_REF] Müller | Third power moments of the error term corresponding to certain arithmetic functions[END_REF]. They established very interesting Ω-type results for ∆ k (x; q, r). As they indicated ([18, page 456; page 110], [START_REF] Müller | Third power moments of the error term corresponding to certain arithmetic functions[END_REF]Remarks]), it is straightforward to obtain the same O-results as in the classical divisor problem, since the theory of ζ(s) developed in the textbooks [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF][START_REF] Ivić | The Riemann zeta-function[END_REF] may be readily generalized to L-series. Here we state this O-result as a lemma, since it is important in the proof of Theorem 2. ‡ (3.6) is a special case of [5, Corollary 1]; (3.7) can be deduced easily from (2.7); (3.9) is a consequence of (2.13).

Lemma 4.1. Suppose k = 1, 2, 3. We have

D k (x; q, r) = x q 1 • • • q k P k-1 log x q 1 • • • q k + O k,ε x q 1 • • • q k ϑ k +ε uniformly for x 3, 1 r i q i (1 i k) and q 1 • • • q k
x, where P k-1 (t) is a polynomial of degree k -1 and ϑ k is given by (1.16). Furthermore we have

(4.1) max |coefficients of P k-1 | 1 i 1 <•••<i k-1 k q i 1 • • • q i k-1 r i 1 • • • r i k-1 • Proof. It is easy to see that D k (x; q, r) = 1 n 1 •••n k x n i ≡r i (mod q i ) (1 i k) 1 = m 1 0, ..., m k 0 (m 1 +r 1 /q 1 )•••(m k +r k /q k ) x/(q 1 •••q k ) 1.
Thus the case of k = 1 is trivial. When k = 2, we can write from the above formula by the well-known hyperbolic approach, that D 2 (x; q, r) = (x/q 1 q 2 )P 1 (log(x/q 1 q 2 )) + ∆ 2 (x; q, r), where ψ(t) := {t} -1 2 ({t} is the fractional part of t) and ∆ 2 (x; q, r) = -

1 i 2 m i √ x/(q 1 q 2 )-r i /q i ψ x/(q 1 q 2 ) m i + r i /q i + O(1).
Using Huxley's new result on exponential sums [START_REF] Huxley | Integer points, exponential sums and the Riemann zeta function[END_REF] we get ∆ 2 (x; q, r) (x/q 1 q 2 ) 131/416+ε .

For k = 3, we could also follow Kolesnik's argument [START_REF] Kolesnik | On the estimation of multiple exponential sums[END_REF] to show ϑ 3 = 43/96. Next we prove (4.1). When s is near to 1, it is well known that (we suppose 0 < λ 1)

ζ(s, λ) = 1 s -1 - Γ Γ (λ) + ∞ n=1 (-1) n n! γ n (λ)(s -1) n
where γ n (λ) is the n-th Stieltjes constant. By the Cauchy formula, it is not difficult to see that γ n (λ) n 1 uniformly for 0 < λ 1. On the other hand, since s = 0 is a pole of order 1 of Γ(s), we have

Γ Γ (λ) 1 λ •
Finally we note that the polynomial P k-1 is determined by

Res s=1 ζ(s, λ 1 ) • • • ζ(s, λ k )x s s -1 = x q 1 • • • q k P k-1 log x q 1 • • • q k .
From the above information, we can easily deduce (4.1).

Proof of Theorem 2

In this section for any function g(n) we define

g j (n) := n=n 1 •••n j g(n 1 ) • • • g(n j ),
which is similar to (1.2). Let

A := (2π) /2 /(Γ( /2) |A|), r(n, Q) := A -1 n 1-/2 r(n, Q). Since r k (n, Q) = A k rk (n, Q)n /2-1
, it is sufficient to prove that (5.1)

n x rk (n, Q) = x Pk-1 (log x) + O k,ε x ϑ k +ε ,
where Pk-1 (t) is a polynomial of degree k -1 and ϑ k is defined by (1.16). We first establish the following lemma.

Lemma 5.1. Suppose 6 and k = 1, 2, 3. Then for any ε > 0, we have

(5.2) n x σ k (n, Q) = xP * k-1 (log x) + O k,ε x ϑ k +ε ,
where

P * k-1 (t) is a polynomial of degree k -1 and ϑ k is defined by (1.16). Proof. Write σ(n, Q) = σ(n, Q) + σ(n, Q), with σ(n, Q) := q x 1 q q * h=1 S hQ q e - hn q , σ(n, Q) := q>x 1 q q * h=1 S hQ q e - hn q .
It is easy to see that σ(n, Q) 1 and σ(n, Q)

x -1 (since 6). From these facts, we can deduce that

σj (n, Q) τ j (n), σj (n, Q) x -j τ j (n) and (5.3) σ k (n, Q) = k j=0 k j dm=n σk-j (d, Q)σ j (m, Q) = σk (n, Q) + O(x -1 τ k-1 (n)).
Thus in order to prove (5.2), it is sufficient to show that (5.4)

n x σk (n, Q) = xP * k-1 (log x) + O x ϑ k +ε .
By using Lemma 4.1, it follows that (5.5)

n x σk (n, Q) = k i=1 q i x 1 q i q i * h i =1 S h i Q q i q i r i =1 e - h i r i q i D k (x; q, r) = xS 1 (x) + S 2 (x) + S 3 (x),
where

S 1 (x) := k i=1 q i x q 1 •••q k x 1 q +1 i q i * h i =1 S h i Q q i q i r i =1 e - h i r i q i P j-1 log x q 1 • • • q k , S 2 (x) := k i=1 q i x q 1 •••q k >x 1 q i q i * h i =1 S h i Q q i q i r i =1 e - h i r i q i D k (x; q, r), S 3 (x) := k i=1 q i x 1 q i q i * h i =1 S h i Q q i q i r i =1 e - h i r i q i ∆ k (x; q, r).
It is easy to estimate S 3 (x) that (5.6)

S 3 (x) x ϑ k +ε k i=1 q i x 1 q /2-2+ϑ k +ε i x ϑ k +ε ( since 6). 
When q 1 • • • q k > x, we use the trivial bound D k (x; q, r)

1 j k x r 1 • • • r j-1 q j r j+1 • • • r k + 1 to write (5.7) S 2 (x) k i=1 q i x q 1 •••q k >x 1 q /2 i q i * h i =1 q i r i =1 1 j k x r 1 • • • r j-1 q j r j+1 • • • r k + 1 x k i=1 q i x q 1 •••q k >x log q i q /2-1 i + k i=1 q i x q 1 •••q k >x 1 q /2-2 i x n>x τ k (n)(log n) k n /2-1 + n>x τ k (n) n /2-2
x ε (since 6).

Obviously we can write

(5.8) S 1 (x) = xP * k-1 (log x) + O(R(x)) where R(x) := k i=1 q i 1 q 1 •••q k >x 1 q /2-1 i P k-1 log x q 1 • • • q k .
By virtue of (4.1), we deduce that (5.9)

R(x) k i=1 q i 1 q 1 •••q k >x 1 q /2 i q i r i =1 1 i 1 <•••<i k-1 k q i 1 • • • q i k-1 r i 1 • • • r i k-1 log k-1 (q 1 • • • q k ) k i=1 q i x q 1 •••q k >x 1 q /2-1 i log 2j-2 (q 1 • • • q k ) n>x τ k (n)(log n) 2k-2 n /2-1
x -/2+2+ε .

Inserting (5.6), (5.7), (5.8) and (5.9) into (5.5), we obtain (5.4). Now we are ready to prove (5.1). By (1.10), we have

r(n, Q) = σ(n, Q) + β(n) with β(n) = O(n -1 ).
Similar to (5.3), we have

rk (n, Q) = k j=0 k j dm=n σ j (d, Q)β k-j (m), β j (n) τ j (n)/n.
Thus Lemma 5.1 allows us to deduce

n x rk (n, Q) = k j=0 k j m x β k-j (m) d x/m σ j (d, Q) = x k j=0 k j m x β k-j (m) m P * j-1 log x m + O x ϑ j +ε , which implies (5.1) since m x β k-j (m) m P * j-1 log x m = m 1 β k-j (m) m P * j-1 log x m + O x -1+ε = P * * j-1 (log x) + O x -1+ε
, where P * * j-1 (t) is a polynomial of degree j -1.

Proof of Theorem 3

We reason by recurrence on k. The case of k = 1 follows from Theorem 1 since a 1 is fixed. Assume that the required asymptotic formula holds for 1, 2, . . . , k -1. Then in view of (1.10) and the fact that /4 -δ /2 -1, we can write (n + a i ) /2-1 σ(n + a i , Q).

Inserting the series expansion for σ(n, Q) and using simple relation (n + a 1 ) /2-1 • • • (n + a k ) /2-1 = n ( /2-1)k + O a 1 ,...,a k n ( /2-1)k-1 , it follows that

S = ∞ q 1 =1 • • • ∞ q k =1 q 1 * h 1 =1 • • • q k * h k =1 S(h 1 Q/q 1 ) • • • S(h k Q/q k ) (q 1 • • • q k ) e - h 1 a 1 q 1 -• • • - h k a k q k × n x n ( /2-1)k e -n h 1 q 1 + • • • + h k q k + O x ( /2-1)k .
By virtue of (1.12), the infinite series

∞ q 1 =1 • • • ∞ q k =1 q 1 * h 1 =1 • • • q k * h k =1 S(h 1 Q/q 1 ) • • • S(h k Q/q k ) (q 1 • • • q k ) e - h 1 a 1 q 1 -• • • - h k a k q k is absolutely convergent. Since n x
n ( /2-1)k = x ( /2-1)k+1 ( /2 -1)k + 1 + O x ( /2-1)k , the contribution of (q 1 , . . . , q k , h 1 , . . . , h k ) with h 1 /q 1 + • • • + h k /q k ∈ Z to S is (6.2) C Q (a 1 , . . . , a k )x ( /2-1)k+1 + O x ( /2-1)k .

By using (2.2), partial summation and the fact h 1 /q 1 +• • •+h k /q k (q 1 • • • q k ) -1 , the contribution of (q 1 , . . . , q k , h 1 , . . . , h k ) with h 1 /q 1 + • • • + h k /q k / ∈ Z to S is (6.3)

x ( /2-1)k ∞ q 1 =1 • • • ∞ q k =1 min{x, q 1 • • • q k } (q 1 • • • q k ) /2-1
x ( /2-1)k+η (ε) ,

where we have used the following estimate min{x,

q 1 • • • q k }      x 1/2+ε (q 1 • • • q k ) 1/2-ε if = 5, x ε (q 1 • • • q k ) 1-ε if = 6, 7, q 1 • • • q k if 8.
Now Theorem 3 follows from (6.2) and (6.3), by noticing that ( /2 -1)(k -1) + 1 + /4 -δ + ε ( /2 -1)k + η (ε) ( 5). 

(6. 1 )

 1 n x 1 i k r(n + a i , Q) = ζ( /2)Γ( /2) (2π) /2 k S + O x ( /2-1)(k-1)+1+ /4-δ +ε ,where S := n x 1 i k

7. Proof of Corollary 1 By ( 1 . 5 ) 2 k- 1 d=1

 11521 and (1.6), we have, for n x, + a i , Q)+ O x (k-d)( /2-1)/{i 1 ,...,i d }⊂{1,...,k} d j=1 r(n + a i j , Q) . Now Theorem 3 implies the required result since (k -d)( /2 -1)/2 + ( /2 -1)d + 1 ( /2 -1)(k -1/2) + 1 ( /2 -1)k.

  1, χ 2 ), and L(s, f ) is the Hecke L-function associated with a cusp form of weight 2 and level N . Here t 1 , t 2 are positive divisors of N , and χ 1 , χ 2 are Dirichlet characters modulo N/t 1 , N/t 2 respectively. According to (1.6) with = 4, we learn that |L(s, f )| ε 1 for e s

	When = 4, we also have 2 -1 2 = 3 2 . Therefore similar to (3.2), we have	3 2 + ε.
		|Z Q (s)|	|L Q (s)| + 1
	for e s 3 2 + ε. On recalling the classical results ‡
	(3.6)	L( 1 2 + it, χ)	(|t| + 1) 1/6+ε ,
	(3.7)	L( 1 2 + it, χ)	(|t| + 1) 18.4974(1-σ) 3/2 (log |t|) 2/3 ,
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