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We show that there exists a sequence {n k , k ≥ 1} growing at least geometrically such that for any finite non-negative measure ν such that ν ≥ 0, any T > 0,

Introduction

Let ν be a finite non-negative measure on R, ν(t) = R e itx ν(dx), then The first inequality is in turn true at any order: for any positive integer κ,

R sin T u/2 T u/2 2κ ν(du) ≤ 1 T κT -κT | ν(x)|dx. (1.
2)

The question whether the second inequality admits a similar extension arises naturally. We show the existence of a general form of that inequality in which appear constants growing fastly with κ.

Theorem 1.1. There exists a sequence {n k , k ≥ 1} growing at least geometrically such that for any finite non-negative measure ν such that ν ≥ 0, any T > 0, we have

2 n k T -2 n k T ν(x)dx ≪ ε T 2 2 (1+ε)n k R sin xT xT n 2 k ν(dx).
We don't know whether the constant 2 2 (1+ε)n k can be significantly weakened. The proof of is rather delicate. In order to prepare it, and also to provide the necessary hints concerning inequalities (1.1), (1.2), introduce some auxiliary functions 1 and indicate as well some related properties. Let K(t) = 1 -|t|) + , T > 0 and define K T (t) = K(t/T ) = 1 -|t|/T )χ {|t|≤T } . Then

K(u) = sin u/2 u/2 2 , K T (u) = 1 T sin T u/2 u/2 2 .
It is easy to check that K T (t) + K T (t + T ) + K T (t -T ) = 1, if |t| ≤ T . It follows that

χ {|t-H|≤T } ≤ K T (t -H) + K T (t -H + T ) + K T (t -H -T ).
( 1.3) This can be used to prove (1.1).

Since R K T (t -S) ν(t)dt = R e iSx K T (x)ν(dx), we deduce H+T H-T ν(t)dt ≤ R K T (t -H) + K T (t -H + T ) + K T (t -H -T ) ν(t)dt ≤ R K T (u) e iHu + e i(H-T )u + e i(H+T )u ν(du) = 1 T R sin T u/2 u/2 2 e iHu [1 + 2 cos T u]ν(du).
This immediately implies the second inequality in (1.1). Notice also by using Fubini's theorem, that for any reals S, γ, T reals, T > 0 and any integer κ > 0,

R sin T (u -γ)/2 T (u -γ)/2 2κ e iSu ν(du) = 1 T R e -iγ(y-S) K * κ y -S T ν(y)dy. (1.4) Letting κ = 1, γ = S = 0, gives 1 T R sin T u/2 u/2 2 ν(du) = R K T (y) ν(y)dy. As 0 ≤ K T (y) = 1 -|y|/T )χ {|y|≤T } ≤ χ {|y|≤T } , we deduce 1 T R sin T u/2 u/2 2 ν(du) ≤ R K T (y)| ν(y)|dy ≤ T -T | ν(y)|dy,
which yields the first inequality in (1.1).

As to (1.2), some properties of basic convolutions products are needed. Consider for A > 0 the elementary measures µ A with density

g µA (x) = χ {[-A,A]} (x). Let 0 < A ≤ B. Plainly g µA * µB (x) = g µA * g µB (x) = 2A 1 - |x| A + B • χ {[-A-B,A+B]} (x). (1.5) Indeed, g µA * µB (x) = R g µA (x -y)g µB (y)dy = B -B χ {[x-A,x+A]} (y)dy, and this is equal to λ [-B, B] ∩ [x -A, x + A] = B ∧ (x + A) -(x -A) ∨ (-B) χ {[-A-B,A+B]} (x).
In particular, introducing the function g

(x) = χ [-1 2 , 1 2 ] (x), we have K(t) = g * g(t). More generally, Lemma 1.2. Let 0 < A 1 ≤ A 2 ≤ . . . ≤ A J and µ = µ A1 * µ A2 * . . . * µ AJ . Then µ has density g satisfying 0 ≤ g(x) ≤ G J • χ {[-(A1+A2+...+AJ ),A1+A2+...+AJ ]} (x),
where

G J = 2 J A 1 • (A 1 + A 2 ) ∧ A 3 • (A 1 + A 2 + A 3 ) ∧ A 4 . . . (A 1 + . . . + A J-1 ) ∧ A J .
Proof. We prove it by induction. By (1.5), for every real x

0 ≤ g µA 1 * µA 2 (x) ≤ 2A 1 • χ {[-A1-A2,A1+A2]} (x) = 2A 1 • g µA 1 +A 2 (x).
The case J = 2 is proved. Now for J = 3, by what preceeeds

g µA 1 * µA 2 * µA 3 (x) = A3 -A3 g µA 1 * µA 2 (x -y)dy ≤ 2A 1 A3 -A3 g µA 1 +A 2 (x -y)dy = 2A 1 g µA 1 +A 2 * µA 3 ≤ 2A 1 2(A 3 ∧ A 1 + A 2 ) • χ {[-A1-A2-A3,A1+A2+A3]} (x).
The general case follows by iterating the same argument.

In particular, for any positive J,

0 ≤ K * J (x) ≤ χ {[-J,J]} (x).
(1.6) Indeed, apply Lemma 1.2 with A j ≡ 1/2. We get

0 ≤ K * J (x) = g * 2J (x) ≤ G 2J • χ {[-J,J]} (x),
and

G 2J = 2 2J • 2 -2J = 1. Inequality (1.2
) is yet a direct consequence of (1.4) and (1.6). Now, we pass to the preparation of the proof of Theorem 1.1, and begin to explain how we shall proceed. By using (1.3) with H = 0, T = 1/2, we get g(x) ≤ g * 2 (2x) + g * 2 (2x + 1) + g * 2 (2x -1).

(1.7)

An important intermediate step towards the proof of Theorem 1.1 will consist to generalizing that inequality. Our approach can be described as follows. As g * 2 (2v) = R g(2v -y)g(y)dy, (1.7) can be used to bound the integration term g(y). And by next reporting this into (1.7), it follows that g(x) can also be bounded by a sum of terms of type g * 3 . Call E this operation. By iterating E, we similarly obtain variant forms of (1.3), involving higher convolution powers of g. The study of the iterated action of E, as well as the order of the constants generated is made in the next section. The action of E will be first described as the combination of two elementary transforms acting alternatively.

Stacks and shifts

We first introduce some operators and related auxiliary results, as well as the necessary notation. Given f : R → R and a > 0, let

T a f (x) = f ( x a ) be the dilation of f by a -1 . Plainly T a T b = T ab . Notice also that T a (h * f ) = 1 a T a h * T a f, h ∈ L 1 (R), f ∈ L ∞ (R). (2.1) Indeed T a (h * f )(u) = R h( u a -x)f (x)dx = R T a h(u -ax)T a f (ax)dx = 1 a R T a h(u -v)T a f (v)dv = 1 a T a h * T a f (u).
More generally

T a (h 1 * . . . * h n ) = 1 a n-1 T a (h 1 ) * . . . * T a (h n ), h 1 , . . . , h n ∈ L ∞ (R). (2.2)
Introduce also the sequence of g-dilations

g k = T 2 -k g, k = 1, 2, . . . . Now let I be a finite subset of R. It will be convenient to denote Σ[f (x) : I] = ρ∈I f (x + ρ). (2.3) We have Σ[f (bx) : I] = Σ[T 1 b f (x) : 1 b I]. (2.4) And Σ[f : I](t) = f (t) ρ∈I e -itρ . (2.5) 
The linear operator f → Σ[f : I] on L 1 (R) commutes with the convolution operation: (2.7) Let j 0 < j 1 . . . < j k be a finite set of positive integers, which we denote J. Let C = {c j , j ∈ J} be some other set of positive integers, not necessarily distinct. We identify (J, C) with U := {(j, c j ), j ∈ J}, and put

f * Σ[h : I] = Σ[f * h : I]. (2.6) Further Σ[f : I] ≥ 0 if f ≥ 0. We
J * = J if c j0 > 1 J\{j 0 } if c j0 = 1.
(2.8)

Define the transform J → J 1 as follows

J 1 = D(J) := J * ∪ (j 0 + J). (2.9) Next define C → C 1 by putting C 1 = T (C) := {c 1 j , j ∈ J 1 }, (2.10) 
where

c 1 j =          c j + c j-j0 if j ∈ J * ∩ (j 0 + J) c j-j0 if j ∈ (J * ) c ∩ (j 0 + J) c j if j ∈ J * ∩ (j 0 + J) c and j > j 0 c j0-1 if j 0 ∈ J * .
(2.11)

Similarly we identify (J 1 , C 1 ) with U 1 := {(j, c 1 j ), j ∈ J 1 } The successive transforms (J, C) → (J 1 , C 1 ) → (J 2 , C 2 ) → . . . turn up to describe the iterated of E, and may be compared to the action of superposing shifted functions. We start with J = {1}, C = {2} corresponding to the basic set

U = {(1, 2)}.
It is easy to check that the iterated transforms of U progressively generate the sequence of sets [START_REF] Mitrinović | Analytic inequalities[END_REF][START_REF] Mitrinović | Analytic inequalities[END_REF], [START_REF] Weber | [END_REF][START_REF] Weber | [END_REF] (2, 3), (3, 2) (2, 2), (3, 2), (4, 3), (5, 2) (2, 1), (3, 2), (4, 5), (5, 4), (6, 3), (7, 2) (3, 2), (4, 6), (5, 6), (6, 8), (7, 6), (8, 3), (9, 2) (3, 1), (4, 6), (5, 6), (6, 10), (7, 12), (8, 9), (9, 10), (10, 6), (11, 3), (12, 2) . . .

At the m-th step, the set J m is an interval of integers {a m , . . . , b m } with a m → ∞ slowly, whereas b m → ∞ very rapidly. More precisely, let for k = 1, 2, . . .

r k = max m≥1 c m k .
Then r 1 = 2, r 2 = 3, r 3 = 2, r 4 = 6, . . . etc. And define

R k = r 1 + . . . + r k , ζ k = 1 + r 1 + 2r 2 + . . . + kr k . (2.12) Let R k-1 < m ≤ R k .
At step m, J m is realized by first shifting J m-1 on the right from a length k, next taking union with J * m-1 and in turn

J m = k, k + 1, . . . , ζ k-1 + (m -R k-1 )k , if m < R k , whereas J R k = k + 1, . . . , ζ k . Write m = R k-1 + h, 1 ≤ h ≤ r k . Then we have the relations c m j = c R k-1 j-k + [r k + . . . + (r k -h + 1)] 2k ≤ j ≤ ζ k-1 + (m -R k-1 )k, c R k-1 j k ≤ j < 2k. (2.13) After the steps R k-1 + 1, R k-1 + 2, . . . , R k , the function h → c R k-1 +h n will have increased from r k + (r k -1) + . . . + 2 + 1 = r k (r k + 1) 2 for all n ∈ 2k, . . . , ζ k-1 . It follows that min n∈{2k,...,ζ k-1 } r n ≥ r 2 k 2 .
(2.14) Therefore r 2k ≥ r 2 k /2. This being true for all k, yields by iteration

r 2 j ≥ 1 2 (r 2 j-1 ) 2 ≥ 1 2 1 2 2 (r 2 j-2 ) 2 2 ≥ . . . ≥ 1 2 1+2+...+2 H-1 (r 2 j-H ) 2 H = r 2 j-H 2 2 H
.

We have r 2 = 3. Thus

r 2 j ≥ 3 2 2 j-1 , j = 1, 2, . . . . (2.15)
We shall deduce from this and (2.14) that r k grows at least geometrically. Let n and let j be such that 2 j+1 ≤ n < 2 j+2 . Apply (2.14) with k = 2 j . As n ≥ 2k, we have

r n ≥ r 2 2 j /2 once 2 j+2 ≤ ζ 2 j -1 . But ζ 2 j -1 ≥ ζ 2 j-1 = 1 + r 1 + 2r 2 + . . . + 2 j-1 r 2 j-1 ≥ 2 j-1 3 2 2 j-2 ≫ 2 j+2 .
Thereby, for j large

r n ≥ 1 2 r 2 2 j ≥ 1 2 3 2 2 j-1 = 1 2 3 2 2 j+2 8 ≥ 1 2 3 2 n 8 = 1 2 e ( 1 8 log 3 2 )n .
Consequently, there is a numerical constant ρ > 1, such that for all n ≥ 1, we have

r n ≥ ρ n . (2.16) Let j m := #{J m }. Since j m = ζ k-1 + (m -R k-1 -1)k if R k-1 < m ≤ R k , we have R k-1 <m≤R k j m = R k-1 <m≤R k (ζ k-1 + (m -R k-1 -1)k) = r k ζ k-1 + k r k -1 u=1 u.
We thus notice for later use that

R k-1 <m≤R k j m = r k ζ k-1 + k r k (r k + 1) 2 .
(2.17) Let * j f j denotes the convolution product of f j 's. Finally we put

I = -1 2 , 0, 1 2 . 
Our next result generalizes inequality (1.3) to arbitrary convolution powers of g.

Proposition 2.1. Let k ≥ 1 and R k-1 < m ≤ R k . Then g(x) ≤ C m Σ * (j,cj)∈Um g * cj j (x) : I m ,
where I m , C m are defined by the recurrence relations:

I 0 = -1 2 , 0, 1 2 , C 0 = 2 and I m = I m-1 + r k I m-1 , C m = 2 k(jm-1-1) C 2 m-1 .
Proof. We use repetitively the relation (see (2.1))

T 1 2 (h * f ) = 2 T 1 2 h * T 1 2 f, f ∈ L ∞ (R), h ∈ L 1 (R). By (1.7), g(x) ≤ 2 g * 2 1 (x) + g * 2 1 (x + 1 2 ) + g * 2 1 (x - 1 2 ) = C 0 Σ g * 2 1 (x) : I = Σ * (j,cj )∈U g * cj j (x) : I . (2.18)
Now we apply E. We begin with the "stack" of 1's of height r 1 = 2. At first

g * 2 1 (x) = R g 1 (x -y)g 1 (y)dy = R g 1 (x -y)g(2y)dy ≤ C 0 R g 1 (x -y)Σ g * 2 1 (2y) : I dy.
But by (2.4), next (2.1)

Σ g * 2 1 (2y) : I = Σ T 1 2 (g * 2 1
)(y) :

1 2 I = Σ 2(T 1 2 g 1 ) * 2 (y) : 1 2 I = 2Σ g * 2 2 (y) : 1 2 I . Therefore g * 2 1 (x) ≤ 2C 0 R g 1 (x -y)Σ g * 2 2 (y) : 1 2 I dy = 2C 0 Σ g 1 * g * 2 2 (x) : 1 2 I .
By reporting in (2.18), we obtain

g(x) ≤ C 0 (2C 0 )Σ Σ g 1 * g * 2 2 (x) : 1 2 I : I = C 1 Σ g 1 * g * 2 2 (x) : I 1 = C 1 Σ * (j,cj)∈U1 g * cj j (x) : I 1 . ( 2 

.19)

And C 1 = 8. We now apply E once again, and bound the generic product g 1 * g * 2 2 (x) by applying (2.19) 

to g 1 . Concretely R g * 2 2 (x -y)g 1 (y)dy = R g * 2 2 (x -y)g(2y)dy ≤ C 1 R g * 2 2 (x -y)Σ g 1 * g * 2 2 (2y) : I 1 dy = 2 3-1 C 1 R g * 2 2 (x -y)Σ g 2 * g * 2 3 (y) : 1 2 I 1 dy = 2 2 C 1 Σ g * 3 2 * g * 2 3 (x) : 1 2 I 1 .
By reporting in (2.19), we obtain

g(x) ≤ C 1 (2 2 C 1 )Σ Σ g * 3 2 * g * 2 3 (x) : 1 2 I 1 : I 1 = C 2 Σ g * 3 2 * g * 2 3 (x) : I 2 = C 2 Σ * (j,cj )∈U2 g * cj j (x) : I 2 . (2.20)
And C 2 = 256. For the next E-iteration, as we have exhausted the stack of 1's, we now use the stack of 2's of height r 2 = 3. We bound the new the generic product g * 3 2 * g * 2 3 (x) by applying (2.20) to g 2 (x) as follows:

R g * 2 2 * g * 2 3 (x -y)g 2 (y)dy = R g * 2 2 * g * 2 3 (x -y)g(2 2 y)dy ≤ C 2 R g * 2 2 * g * 2 3 (x -y)Σ g * 3 2 * g * 2 3 (4y) : I 3 dy = 2 2(3+2-1) C 2 R g * 2 2 * g * 2 3 (x -y)Σ g * 3 4 * g * 2 5 (y) : 1 4 I 2 dy = 2 8 C 2 Σ g * 2 2 * g * 2 3 * g * 3 4 * g * 2 5 (x) : 1 4 I 2 .
By reporting in (2.20), we obtain

g(x) ≤ 2 8 C 2 2 Σ Σ g * 2 2 * g * 2 3 * g * 3 4 * g * 2 5 (x) : 1 4 I 2 : I 2 = C 3 Σ g * 2 2 * g * 2 3 * g * 3 4 * g * 2 5 (x) : I 3 , (2.21) 
with C 3 = 16777216. And so on.

To simplify, let k ≥ 1 and R k-1 < m ≤ R k . At step m, we play with the stack of k's of height r k and apply the bound previously obtained to the least dilation of g in the generic product G = * (j,cj )∈Um-1 g * cj j (x) from the previous step. The dilation factor being 2 k , the bound of g k (x) thereby produces the new terms

T 2 -k (G)(x) = * (j,cj)∈Um-1 g * cj j+k (x).
Hence by (2.2), after integration, a constant factor 2 k(jm-1-1) C m-1 . Next we report the bound obtained for the generic products in the inequality from the preceding step. This is exactly what describes transform D. This generates a new constant factor C m-1 . Together with the preceding constant factor, this gives the constant 2 k(jm-1-1) C 2 m-1 = C m . The rule concerning constants C m being the same at each step inside the block ]R k-1 , R k ], we have the recurrence relation

C m = 2 k(jm-1-1) C 2 m-1 . (2.22) And the transform c m-1 j → c m j is described by T . Let k ≥ 1. Put γ k = j∈JR k c R k j , d k = j∈JR k jc R k j .
(2.23)

We shall now deduce the following estimate.

Proposition 2.2. Let ν be a finite measure such that ν ≥ 0. Then for any W > 0

1 2W W -W ν(t)dt ≤ C R k 2 -d k +1 R (j,cj )∈UR k sin( 2W x 2 j ) 2W x 2 j cj ρ∈2W IR k e -iρx ν(dx).
Proof. Recall that J R k = k + 1, . . . , ζ k . Further, by (2.12)

γ k ≥ r 2 k 2 (ζ k-1 -2k) = r 2 k 2 ζ k-1 (1 - 2k ζ k-1 ) ≥ ( 1 -ε 2 )r 2 k ζ k-1 , (2.24) once k ≥ k ε . Similarly d k ≥ r 2 k 2 j∈{2k,...,ζ k-1 } j ≥ r 2 k 4 (ζ 2 k-1 -4k 2 ) ≥ ( 1 -ε 4 )r 2 k ζ 2 k-1 (2.25) for k large enough. By Proposition 2.1, with m = R k g(t) ≤ C R k Σ * (j,cj)∈UR k g * cj j (t) : I R k .
Let W > 0. Then by (2.4), next (2.2)

χ [-W,W ] (t) = g( t 2W ) ≤ C R k Σ * (j,cj )∈UR k g * cj j ( t 2W ) : I R k = C R k Σ T 2W * (j,cj)∈UR k g * cj j (t) : 2W I R k = C R k (2W ) γ k -1 Σ * (j,cj)∈UR k (T 2W g j ) * cj (t) : 2W I R k . (2.26) By (2.5) Σ * (j,cj )∈UR k (T 2W g j ) * cj : 2W I R k (x) = (j,cj)∈UR k T 2W g j (x) cj ρ∈2W IR k e -iρx . (2.27) But T 2W g j (x) = R e ixu g( 2 j u 2W )du = 2W 2 j R e i2W 2 j xv g(v)dv = 2W 2 j g( 2W x 2 j ). Hence Σ * (j,cj )∈UR k (T 2W g j ) * cj : 2W I R k (x) = (2W ) γ k 2 -d k (j,cj )∈UR k g 2W x 2 j cj ρ∈2W IR k e -iρx .
(2.28)

And by the Parseval relation

1 2W W -W ν(t)dt ≤ C R k (2W ) γ k R Σ * (j,cj )∈UR k (T 2W g j ) * cj (t) : 2W I R k ν(t)dt = C R k (2W ) γ k (2W ) γ k 2 -d k R (j,cj)∈UR k g( 2W x 2 j ) cj ρ∈2W IR k e -iρx ν(dx) = C R k 2 -d k +1 R (j,cj )∈UR k sin( 2W x 2 j ) 2W x 2 j cj ρ∈2W IR k e -iρx ν(dx).
(2.29)

3. Proof of Theorem 1.1 By assumption ν ≥ 0. Choose W = 2 ζ k T . Then sin( 2W x 2 j ) 2W x 2 j = sin(2 ζ k +1-j xT ) 2 ζ k +1-j xT But we have that sin n k=1 x k ≤ n k=1 sin x k , (3.1) 
if 0 < x k < π and n > 1, see [START_REF] Mitrinović | Analytic inequalities[END_REF] p.236. From this easily follows that | sin nx| ≤ n| sin x| for any real x and any integer n. Indeed, write x = x ′ +kπ with 0 < x ′ < π.

Then | sin nx| = | sin(nx ′ + nkϕ)| = | sin nx ′ | ≤ n| sin nx ′ | = n| sin nx|. Consequently sin 2 ζ k +1-j xT 2 ζ k +1-j xT ≤ sin xT xT . (3.2)
By reporting and since #{I

R k } = 3 R k we get 1 2.2 ζ k T 2 ζ k T -2 ζ k T ν(dt) ≤ C R k 3 R k 2 -d k R sin xT xT γ k ν(dx).
(3.3)

And by using estimates (2.24), (2.25)

1 2.2 ζ k T 2 ζ k T -2 ζ k T ν(dt) ≤ C R k 3 R k 2 -1 5 r 2 k ζ 2 k-1 R sin xT xT 1 3 r 2 k ζ k-1
ν(dx).

(3.4)

We now estimate C R k . By iterating inside the block of integers ]R k-1 , R k ] the recurrence relation C m = 2 k(jm-1-1) C 2 m-1 obtained in Proposition 2.1, we obtain C R k = 2 k{(jR k-1 -1)+...+(jR k -1)} C 2 r k R k-1 . According to (2.17 As ζ k = 1 + r 1 + 2r 2 + . . . + kr k , it follows that

kr k (ζ k-1 -1) + k 2 r k (r k + 1) 2 ≤ kr k ζ k-1 + k 2 r 2 k ≤ ζ k ζ k-1 + ζ 2 k ≤ 2ζ 2 k . Thus C R k ≤ 2 2ζ 2 k C 2 r k R k-1 .
(3.5) By successively iterating this, and since C R1 = 2, we get

C R k ≤ 2 2{ζ 2 k +ζ 2 k-1 2 r k +ζ 2 k-2 (2 r k +2 r k-1 )+...+ζ 2 
2 (2 r k +...+2 r 3 ))} 2 2 r k +2 r k-1 +...+2 r 2 ≤ 2 2.2 r k kζ 2 k .

But r k ≥ ρ k by (2.16), so that

R k ≤ ζ k = 1 + r 1 + 2r 2 + . . . + kr k ≪ ε 2 εr k .
Hence also C R k ≤ 2 2 (1+ε)r k .

(3.6) Finally, 1 T (3.8)

2 ζ k T -2 ζ k T ν(dt) ≪ ε 2 2 (1+ε)r k 2 ζ k -1 5 r 2 k ζ 2 k-1 R sin xT xT

  use the standard arithmetical set notation: λI = {λρ : ρ ∈ I} and if I, J are two finite subsets, I + J = {ρ + η : ρ ∈ I, η ∈ J}, repetitions are counted. This is relevant since Σ Σ[f (x) : I] : J = Σ[f (x) : I + J].

  ), we havek{(j R k-1 -1) + . . . + (j R k -1)} = k R k-1 <m≤R k (j m -1) = kr k (ζ k-1 -1) + k 2 r k (r k + 1)2 .