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Introduction

The well known Legendre conjecture states that there is at least one prime number between n 2 and (n+1) 2 for each positive integer n. A related problem is the existence of primes in short intervals. Denote, as usual, by ζ(s) the Riemann zeta-function, and define the von Mangoldt function Λ(n) by It is known that, under the Riemann Hypothesis (RH in brief) for ζ(s),

- ζ ζ (s) = ∞ n=1 Λ(n) n s (σ > 
ψ(x) = x + O x 1/2 (log x) 2 (x 2).
From this we immediately deduce that, under RH, (1.1)

ψ(x + h(x)) -ψ(x) ∼ h(x) (x → ∞)
for any increasing functions h(x) x satisfying h(x) x 1/2 (log x) 2 → ∞ as x → ∞.

It seems be an interesting problem to determine how short h(x) can be. According to Cramér's model, we could take h(x)/(log x) 2 → ∞ as x → ∞. In 1943, Selberg [START_REF] Selberg | On the normal sensity of primes in short intervals and the difference between consecutive primes[END_REF] partially confirmed this by showing that under RH asymptotic relationship (1.2)

X 1 ψ(x + h(x)) -ψ(x) -h(x) 2 dx = o(h(X) 2 X) (X → ∞)
holds for any increasing functions h(x) x satisfying

(1.3) h(x) (log x) 2 → ∞ as x → ∞.
It shows that, under RH, (1.1) holds for almost all x 2 provided (1.3) is satisfied.

In order to better understand the connection between the distribution of zeros of ζ(s) and that of primes, Montgomery [START_REF] Montgomery | The pair correlation of zeros of the zeta function[END_REF] introduced the pair correlation function (1.4) F T (X) :=

0<γ 1 ,γ 2 T W (γ 1 -γ 2 )e X(γ 1 -γ 2 ) ,
where W (u) := 4 4 + u 2 , e(u) := e 2πiu , and γ runs over imaginary parts m ρ of the nontrivial zeros ρ of ζ(s) (counted according to multiplicity). Assuming RH and that

(1.5) F T log x 2π T log T
uniformly for x(log x) -3 T x, Heath-Brown [START_REF] Heat-Brown | Gaps between primes, and the pair correction of zeros of the zeta-function[END_REF] showed that (1.2) holds for any increasing functions h(x) x satisfying

(1.6) h(x) log x → ∞ as x → ∞.
In this paper, we shall investigate analogues of (1.2) for automorphic L-functions. Let us fix our notation first. To each irreducible unitary cuspidal representation π = ⊗π p of GL m (A Q ) with m 2, one can attach a global L-function

(1.7) L(s, π) = p<∞ L p (s, π p )
converging for σ > 1 (see [START_REF] Jacquet | On Euler products and the classification of automorphic representations I[END_REF]), where local factors are given by

(1.8) L p (s, π p ) = m j=1 1 -α π (p, j)p -s -1 .
The complete L-function Φ(s, π) is defined by

(1.9) Φ(s, π) = L(s, π)L ∞ (s, π ∞ ),
where N π 1 is an integer called the arithmetic conductor of π, and

(1.10) L ∞ (s, π ∞ ) := N π π m s/2 m j=1 Γ s + µ π (j) 2
is the Archimedean local factor. Here {α π (p, j)} m j=1 and {µ π (j)} m j=1 are complex numbers associated with π p and π ∞ , respectively, according to the Langlands correspondence. Good bounds for these local parameters are of fundamental importance for the study of automorphic L-functions. Thanks to the work of Luo-Rudnick-Sarnak [START_REF] Luo | On Selberg's eigenvalue conjecture[END_REF], it is known that

(1.11) |α π (p, j)| p θ if π is unramified at p, | e µ π (j)| θ if π is unramified at ∞, with θ = 1/2 -1/(m 2 + 1
). The Generalized Ramanujan Conjecture (GRC in brief) asserts that (1.11) should hold with θ = 0. It also follows from work of Shahidi [START_REF] Shahidi | On certain L-functions[END_REF][START_REF] Shahidi | Fourier transforms of intertwining operators and Plancherel measures for GL(n)[END_REF][START_REF] Shahidi | Local coefficients as Artin factors for real groups[END_REF][START_REF] Shahidi | A proof of Langlands' conjecture on Plancherel measures; Complementary series for p-adic groups[END_REF]] that the complete L-function Φ(s, π) has an analytic continuation to the whole complex plane and satisfies the functional equation

(1.12) Φ(s, π) = ε π Φ(1 -s, π),
where ε π is the root number satisfying |ε π | = 1, and π is the representation contragredient to π. Iwaniec and Sarnak [START_REF] Iwaniec | Perspectives in the analytic theory of L-functions[END_REF] introduced the analytic conductor of π. It is a function over the reals given by

Q π (t) = N π m j=1 (3 + |t + µ π (j)|),
which puts together all the important parameters for π. The quantity

Q π = Q π (0) = N π m j=1 (3 + |µ π (j)|)
is also important, and it is named the conductor of π.

Similarly to the classical case, we define Λ π (n) by taking logarithmic differentiation in (1.7)

(1.13) - L L (s, π) = ∞ n=1 Λ π (n) n s (σ > 1).
With the help of (1.8), it is easy to see that

(1.14) Λ π (n) = m j=1 α π (p, j) ν log p if n = p ν with ν 1, 0 otherwise.
The prime number theorem for L(s, π) concerns the asymptotic behavior of the counting function

(1.15) ψ(x, π) := n x Λ π (n).
This problem was first studied by Liu & Ye [START_REF] Liu | Superpositions of zeros of distinct L-functions[END_REF] and Qu [START_REF] Qu | The prime number theorem for automorphic L-functions for GL m[END_REF][START_REF] Qu | Selberg's normal density theorem for automorphic L-functions for GL m[END_REF]. In particular Qu [START_REF] Qu | Selberg's normal density theorem for automorphic L-functions for GL m[END_REF] proved that, under the Generalized Riemann Hypothesis (GRH in brief) for L(s, π), we have (1.16)

X 1 ψ(x + h(x), π) -ψ(x, π) 2 dx = o(h(X) 2 X) (X → ∞)
for any increasing functions h(x) x satisfying

h(x) x θ (log x) 2 → ∞ as x → ∞,
where θ is given by (1.11).

The first aim of this paper is to improve the above result by removing x θ , which offers an exact generalization of Selberg's (1.2) and (1.3) to automorphic L-functions. thm 1. Let π be an irreducible unitary cuspidal representation of GL m (A Q ) with m 2. Assume GRH for L(s, π). Then for X 2 we have (1.17)

X 1 ψ(x + h(x), π) -ψ(x, π) 2 dx h(X)X log 2 (Q π X) + log Q π log X 4
for any increasing functions h(x) x, where the implied constant depends only on m. In particular, (1.16) holds for any increasing functions h(x) x satisfying

(1.18) h(x) (log x) 2 → ∞ as x → ∞.
Our second aim of this paper is to consider the analogue of Heath-Brown's (1.2) and (1.6). Similar to (1.4), we can also define

F π T (X) := 0<γ 1 ,γ 2 T W (γ 1 -γ 2 )e X(γ 1 -γ 2 ) ,
where γ runs over imaginary parts m ρ of the nontrivial zeros ρ of L(s, π) (counted according to multiplicity).

thm 2. Let π be an irreducible unitary cuspidal representation of GL m (A Q ) with m 2. Assume GRH for L(s, π), and

(1.19) F π T log X 2π T log(Q π T )
uniformly for T (X log X) 2 . Then for X 2 we have

(1.20) X 1 ψ(x + h(x), π) -ψ(x, π) 2 dx h(X)X log(Q π X) + X log 2 (Q π X) + log Q π log X 4
for any increasing functions h(x) x, where the implied constant depends only on m. In particular, (1.16) holds for any increasing functions h(x) x satisfying

(1.21) h(x) log x → ∞ as x → ∞.
Theorem 1 (resp. Theorem 2) shows that, under GRH (resp. under GRH and (1.19)) for almost all x 2, we have

ψ(x + h(x), π) -ψ(x, π) = o(h(x)) (x → ∞), provided (1.18) (resp. (1.21)) is satisfied. It means that the sequence {Λ π (n)} n 1
changes signs (different from the classical case {Λ(n)} n 1 ). Very recently, Liu, Qu & Wu [START_REF] Liu | Two Linnik-type problems for automorphic L-functions[END_REF] showed that if Λ π (n) is real for all n 1, then there is some n satisfying

n m,ε Q 1+ε π such that Λ π (n) < 0.
The implied constant depends only on m and ε. In particular, this result is true for any self-contragredient irreducible unitary cuspidal representation π for GL m (A Q ) with trivial central character.

The main new ideas for proving Theorems 1 and 2 are a delicate application of Iwaniec-Kowalski's mean value estimate (cf. (3.3) below) and an explicit formula in a more precise form adapted to our purpose (cf. Lemma 3.1 below).

Acknowledgements. This work has been finished during the second author's visit to the Morningside Center of Mathematics of Chinese Academy of Sciences, whose financial support and hospitality are gratefully acknowledged.

Preliminary lemmas

In view of (1.10) and the fact that L(s, π) and Φ(s, π) are entire, it is not difficult to see that the trivial zeros of L(s, π) and the poles of L ∞ (1 -s, π ∞ ) are µ := -2n -µ π (j) for n = 0, 1, 2, . . . ; j = 1, . . . , m, (2.1)

P n,j := 2n + 1 + µ e π (j) for n = 0, 1, 2, . . . ; j = 1, . . . , m, (2.2)
respectively. As in [START_REF] Liu | Superpositions of zeros of distinct L-functions[END_REF], we let C(m) denote the complex plane with the discs |s -P n,j | < (8m) -1 for n = 0, 1, 2, . . . ; j = 1, . . . , m excluded. Thus, for any s ∈ C(m), the quantity (1 -s + µ e π (j))/2 is away from all poles of Γ(s) by at least (16m) -1 . For j = 1, . . . , m, denote by β(j) the fractional part of eµ e π (j). In addition, let β(0) = 0 and β(m + 1) = 1. Then all β(j) ∈ [0, 1], and hence there exist β(j 1 ), β(j 2 ) such that β(j 2 ) -β(j 1 ) 1/(3m) and there is no β(j) lying between β(j 1 ) and β(j 2 ). Consequently, for all n = 0, 1, 2, . . . , the strips

(2.3) S -n := s ∈ C : -n + β(j 1 ) + (8m) -1 e s -n + β(j 2 ) -(8m) -1
are subsets of C(m).

The following assertions (i) and (ii) are Lemma 4.3(d) and Lemma 4.4 of [START_REF] Liu | Superpositions of zeros of distinct L-functions[END_REF], respectively.

Lemma 2.1. Let π be an irreducible unitary cuspidal representation of GL m (A Q ) with m 2.

(i) For T 2, there exists τ T with T τ T T + 1 such that

- L L (σ ± iτ T , π) log 2 (Q π T ) (|σ| 2). (ii) If s is in some strip S -n as in (2.3) with n 2, then - L L (s, π) 1.
The implied constants depend only on m.

The next lemma is about the distribution of zeros of L(s, π). For its proof, one is referred to Lemma 4.3 of Liu & Ye [START_REF] Liu | Superpositions of zeros of distinct L-functions[END_REF], or Theorem 5.8 of Iwaniec & Kowalski [START_REF] Iwaniec | Analytic Number Theory[END_REF]. Lemma 2.2. Let π be an irreducible unitary cuspidal representation of GL m (A Q ) with m 2. All the nontrivial zeros of Φ(s, π) are in the critical strip 0 σ 1. Let N (T, π) be the number of its nontrivial zeros within the rectangular 0 σ 1 and |τ | T . Then

(2.4) N (T, π) T log(Q π T )

and

(2.5)

N (T + 1, π) -N (T, π) log(Q π T ),
where the implied constants are absolute.

An explicit formula

Explicit formulae of different forms were established by many authors. In particular, under GRC, explicit formulae for general L-functions were proved in [3, (5.53)]. The explicit formula below is unconditional, and plays a key role in the proofs of Theorems 1 and 2. Lemma 3.1. Let π be an irreducible unitary cuspidal representation of GL m (A Q ) with m 2, and A > 0. Then, for x 2 and 2 T x A , we have

(3.1) ψ(x, π) = - |γ| T x ρ ρ - κ <λ<κ |ν| T x µ µ - L L (0, π) + O R π (x, T ) ,
where

R π (x, T ) := |n-x| x/ √ T |Λ π (n)| + x(log Q π ) log(Q π x) √ T + x log 2 (Q π x) T + log T x ,
-2 < κ < -1, κ = 1+1/ log x, and µ (resp. ρ) goes over the trivial zeros µ = λ+iν (resp. the nontrivial zeros ρ = β + iγ) of L(s, π). The implied constant depends only on A and m.

Proof. Since the series (1.13) converges absolutely for σ > 1, we can apply the Perron formula [17, Theorem II.2.2] with κ = 1 + 1/ log x, so that

(3.2) ψ(x, π) = 1 2πi κ+iT κ-iT - L L (s, π) x s s ds + O x κ ∞ n=1 |Λ π (n)| n κ (1 + T | log(x/n)|)
.

In order to treat the O-term, we split the sum into two parts according to

|x -n| x/ √ T or |x -n| > x/ √ T .
By the Cauchy-Schwarz inequality, it follows that

|x-n|>x/ √ T |Λ π (n)| n κ (1 + T | log(x/n)|) 1 √ T ∞ n=1 |Λ π (n)| n κ 1 √ T ∞ n=1 |Λ π (n)| 2 n κ 1/2 ∞ n=1 1 n κ 1/2 .
According to [3, (5.48)], we have

(3.3) n u |Λ π (n)| 2 m 2 u log 2 (Q π u) (u 1),
where the implied constant is absolute. Thus a simple integration by parts gives us

∞ n=1 |Λ π (n)| 2 n κ = ∞ 1- 1 u κ d n u |Λ π (n)| 2 m ∞ 1 log 2 (Q π u) u κ du m log 2 Q π κ -1 + 1 (κ -1) 3 •
Similarly but more easily, we have

∞ n=1 1 n κ 1 κ -1 •
Combining these estimates, we can find that

(3.4) x κ |x-n|>x/ √ T |Λ π (n)| n κ (1 + T | log(x/n)|) x(log x) log(Q π x) √ T •
Next, we shall evaluate the integral on the right-hand side of (3.2). For this purpose, we shift the contour of integration to the left. Choose κ with -2 < κ < -1 such that the vertical line σ = κ is contained in the strip S -2 ⊂ C(m); this is guaranteed by the structure of C(m). Without loss of generality, let T 2 be a large number such that T and -T can be taken as the τ T in Lemma 2.1(i). Now we consider the contour L 1 ∪ L 2 ∪ L 3 with

L 1 := [κ -iT, κ -iT ], L 2 := [κ -iT, κ + iT ], L 3 := [κ + iT, κ + iT ].
By Lemma 2.2 and (2.1), certain nontrivial zeros ρ = β + iγ and trivial zeros µ = λ + iν of L(s, π), as well as s = 0 are passed by the shifting of the contour.

Computing the residues, we have

(3.5) 1 2πi κ+iT κ-iT - L L (s, π) x s s ds = - |γ| T x ρ ρ - κ <λ<κ |ν| T x µ µ - L L (0, π) - 1 2πi L 1 ∪L 2 ∪L 3 - L L (s, π)
x s s ds.

The integral on L 1 can be estimated by Lemma 2.1(i) as

1 2πi L 1 - L L (s, π) x s s ds κ κ log 2 (Q π T ) x σ T dσ x log 2 (Q π T ) T ,
and the same upper bound also holds for the integral on L 3 . By Lemma 2.1(ii), then

1 2πi L 2 - L L (s, π) x s s ds T -T x κ |τ | + 1 dt log T x • Therefore, (3.5) becomes 1 2πi κ+iT κ-iT - L L (s, π) x s s ds = - |γ| T x ρ ρ - κ <λ<κ |ν| T x µ µ - L L (0, π) + O x(log x) log(Q π x) √ T + x log 2 (Q π T ) T + log T x .
Inserting the above formula and (3.4) into (3.2), we obtain the required result.

Gallagher lemma and proof of Theorem 1

Our main tool is the following lemma of Gallagher [1, Lemma 1]. be absolutely convergent, where the coefficients c(ν) ∈ C, and the frequencies of ν run over an arbitrary sequence of real numbers. Then

U -U |S(u)| 2 du ϑ U 2 +∞ -∞ t<ν t+δ c (ν) 2 dt. 
Now we prove Theorem 1. Let 10 4 X x 2X, and take T = (X log X) 2 in the explicit formula (3.1) of Lemma 3.1. Since the length of the interval xx/(X log X), x + x/(X log X) is 2x/(X log X) 1/2, this interval contains at most one integer; we denote this possible integer by n x . Thus our explicit formula becomes

ψ(x, π) = - |γ| (X log X) 2 x ρ ρ - κ <λ<κ |ν| (X log X) 2 x µ µ - L L (0, π) + O |Λ π (n x )| + log(Q π X) + (log Q π ) 2 X(log X) 2 ,
where the implied constant depends only on m. From this we can write

ψ(x + h, π) -ψ(x, π) = A + B + O C + log(Q π X) + (log Q π ) 2 X(log X) 2 ,
where h 2X 2x and

A := - |γ| (X log X) 2 (x + h) ρ -x ρ ρ , B := - κ <λ<κ |ν| (X log X) 2 (x + h) µ -x µ µ , C := |Λ π (n x+h )| + |Λ π (n x )|.
Clearly, (

2X X ψ(x + h, π) -ψ(x, π) 2 dx 2X X |A| 2 + |B| 2 + |C| 2 dx + X log 2 (Q π X) + (log Q π ) 4 X(log X) 4 • 4.1) 
We start from A. In A, we split the sum over |γ| at T , with 4 T (X log X) 2 a parameter that will be specified later, and define

S 1 (y) := |γ| T y iγ and S 2 (y) := T <|γ| (X log X) 2 y iγ ρ •
Under GRH, the sum in A runs over the nontrivial zeros ρ = 1/2 + iγ of L(s, π) with |γ| up to (X log X) 2 . Thus we can write

A = - |γ| T (x + h) ρ -x ρ ρ - T <|γ| (X log X) 2 (x + h) ρ -x ρ ρ = - |γ| T x+h x y ρ-1 dy - T <|γ| (X log X) 2 (x + h) 1/2+iγ -x 1/2+iγ ρ = - x+h x S 1 (y) y 1/2 dy -(x + h) 1/2 S 2 (x + h) + x 1/2 S 2 (x) =: A 1 + A 2 + A 3 ,
say. By the Cauchy-Schwarz inequality,

|A 1 | 2 h x+h x |S 1 (y)| 2 y dy.
In view of h 2X, the contribution from |A 1 | 2 is estimated as 

1 2 dt h 2 T 0 t<γ t+1 1 2 dt h 2 T log 2 (Q π T ).
The contribution from |A 2 | 2 can be estimated as

(4.3) 2X X |A 2 | 2 dx X 2 4X X |S 2 (x)| 2 x dx = X 2 (log 2)/π 0 T <|γ| (X log X) 2 X iγ ρ e 2πiγu 2 du X 2 +∞ -∞ T <|γ| (X log X) 2 , t<γ<t+1 1 |γ| 2 dt X 2 (X log X) 2 T -1 t<γ t+1 1 |γ| 2 dt.
By using (2.5) and (2.4) of Lemma 2.2, a simple integration by parts gives us t<γ t+1

1 |γ| = t+1 t 1 u dN (u, π) log(Q π t) t • Thus (4.4) 2X X |A 2 | 2 dx X 2 (X log X) 2 T -1 log 2 (Q π t) t 2 dt X 2 log 2 (Q π T ) T •
Similarly, after taking x + h = y, we have

(4.5) 2X X |A 3 | 2 dx X 2 log 2 (Q π T ) T •
We conclude from (4.2), (4.4) and (4.5) that

(4.6) 2X X |A| 2 dx h 2 T log 2 (Q π T ) + X 2 log 2 (Q π T ) T •
For the mean-value of |B| 2 , we apply (2.1) and (1.11), to get

(4.7) 2X X |B| 2 dx = 2X X κ <λ<κ |ν| (X log X) 2 (x + h) µ -x µ µ 2 dx 2X X κ <λ<κ |ν| (X log X) 2 x λ-1 h 2 dx 2X X (x θ-1 h) 2 dx h 2 .
It remains to estimate the contribution of |C| 2 . We have

2X X |C| 2 dx = 2X X |Λ π (n x+h )| + |Λ π (n x )| 2 dx [2X] j=[X] j+1 j |Λ π (n x+h )| 2 + |Λ π (n x )| 2 dx.
Since h(x) is increasing and h(x) x, we have trivially, for j x j + 1, that

j -1 n x+h(x) 2(j + 2), j -1 n x j + 2.
Thus,

(4.8) 2X X |C| 2 dx 3[2X] j=[X]-1 |Λ π (j)| 2 X log 2 (Q π X),
by applying (3.3). Finally inserting (4.6), (4.7) and (4.8) to (4.1), and taking T = X/h(2X), we find

2X X ψ(x + h, π) -ψ(x, π) 2 dx h(2X)X log 2 (Q π X) + (log Q π ) 4 X(log X) 4
for any increasing function h(x) satisfying 1 h(x) x. A splitting-up argument then gives the required inequality (1.17). This completes the proof of Theorem 1.

Pair correlation of zeros and proof of Theorem 2

The proof of Theorem 2 is very similar to that of Theorem 1. The only difference is to estimate the contribution of |A i | 2 with the help of hypothesis (1.19) instead of Gallagher's lemma and Lemma 2.2. We retain the notation in Section 4. According to the first line of (4.2), we have X iγ e 2πiγu 2 du

h 2 0<γ 1 ,γ 2 T X i(γ 1 -γ 2 ) +∞ -∞
e -4π|u| e 2πi(γ 1 -γ 2 )u du

h 2 0<γ 1 ,γ 2 T X i(γ 1 -γ 2 ) W (γ 1 -γ 2 ) = h 2 F π T log X 2π .
Assuming X iγ e 2πiγu = γ (X log X) 2

X iγ e 2πiγu 1/2 + i(X log X) 

1

 1 1), where s = σ + iτ . Then Λ(n) = log p if n = p ν with ν

Lemma 4 . 1 .

 41 Let U > 0 and δ = ϑ/U with 0 < ϑ < 1, and let S(u) := ν c(ν)e 2πiνu

2XX|A 1 | 2 dx h 2 (

 12 log 2)/π 0 |γ| TX iγ e 2πiγu 2 du.In view of the trivial inequality e -4π|u| 1 (0 u 1) and the classical formula 2π

  Next we estimate the contribution of |A 2 | 2 . By partial summation, it follows that T <γ (X log X)2 

	X iγ ρ	e 2πiγu =	T	(X log X) 2	1 1/2 + it	d	γ t

(1.19

), we have

(5.2) 2X X |A 1 | 2 dx h 2 T log(Q π T ).

In view of the first two lines of (4.3) and the estimate above, we can write

X iγ e 2πiγu 2 du

From this, a similar argument to (5.1) allows us to deduce

The same estimate also holds for

From these conclusions and (5.2), we get that

Finally, inserting (5.3), (4.7), and (4.8) to (4.1), and taking T = Xh(2X) -1 , we find that

for any increasing functions h(x) satisfying 1 h(x) x. A splitting-up argument then gives the required inequality (1.20). This completes the proof of Theorem 2.