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ON A DIVISOR PROBLEM RELATED TO THE EPSTEIN
ZETA-FUNCTION, III

GUANGSHI LÜ, JIE WU & WENGUANG ZHAI

Abstract. In this paper we study the mean square of the error term ∆∗
k(Q, x)

in a divisor problem related to the Epstein zeta-function. An asymptotic formula
has been obtained when k = 2.

1. Introduction

This is the third part of our series of papers on a divisor problem related to the
Epstein zeta-function [10, 11]. First we recall some notation there. Let ` > 2,
y := (y1, . . . , y`) and A = (aij) be an integral matrix such that aii ≡ 0 (mod 2) for
0 6 i 6 `. Thus a positive definite quadratic form Q(y) can be written as

Q(y) =
1

2
ytAy =

∑
16i<j6`

aijyiyj +
1

2

∑
16i6`

aiiy
2
i ,

where yt is the transpose of y. The corresponding Epstein zeta-function is initially
defined by the Dirichlet series

(1.1) ZQ(s) :=
∑

y∈Z`r{0}

Q(y)−s =
∑
n>1

ann
−s (<e s > `/2),

where an is the number of the solutions of the equation Q(y) = n with y ∈ Z`. It is
known that ZQ(s) has an analytic continuation to the whole complex plane C with
only a simple pole at s = `/2, and satisfies a functional equation of Riemann type
(cf. [13]). For each integer k > 1, we define ak(n) by

(1.2) ZQ(s)k =
∑
n>1

ak(n)n−s (<e s > `/2)

and put

(1.3) ∆∗k(Q, x) :=
∑
n6x

ak(n)− x`/2Pk(log x),

where Pk(log x) := x−`/2 Ress=`/2(ZQ(s)kxss−1) is a polynomial of log x of degree
k − 1. The study on asymptotic behavior of the error term ∆∗k(Q, x) has received
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much attention [8, 1, 13]. In particular Sankaranarayanan [13] showed that for k > 2
and ` > 3,

(1.4) ∆∗k(Q, x)� x`/2−1/k+ε,

where and throughout this paper ε denotes an arbitrarily small positive constant.
Recently inspired by Iwaniec’s book [6], Lü [10] marked that (1.4) can been improved
for the quadratic forms of level one (see [6, Chapter 11]). These quadratic forms are
defined by Q(y) = 1

2
ytAy verifying the following supplementary conditions:

` ≡ 0 (mod 8), A is equivalent to A−1, det(A) = 1.

Denote by Q` the set of such quadratic forms. For Q ∈ Q`, we have [6, (11.32)]

an = A`σ`/2−1(n) + af (n,Q) (n > 1),

where

A` :=
(2π)`/2

ζ(`/2)Γ(`/2)
, σk(n) =

∑
d|n

dk,

ζ(s) is the Riemann zeta-function, Γ(s) is the Gamma function and af (n,Q) is the
nth Fourier coefficient of a cusp form f(z,Q) of weight `/2 with respect to the full
modular group SL(2,Z). Thus

(1.5) ZQ(s) = A`ζ(s)ζ(s− `/2 + 1) + L(s, f) (<e s > `/2),

where L(s, f) is the Hecke L-function associated with f(z,Q). According to Deligne’s
well known work [2], we know

(1.6) |af (n,Q)| 6 n(`/2−1)/2τ(n) (n > 1),

where τ(n) is the divisor function. With the help of these properties, Lü [10] (for
k > 4) and Lü, Wu & Zhai [11] (for k = 2, 3) obtained

∆∗k(Q, x)� x`/2−1+θk+ε,

where θk is the exponent in the classical k-dimension divisor problem

∆k(x) :=
∑
n6x

τk(n)− Res
s=1

(ζ(s)kxss−1)� xθk+ε (x > 2).

In particular we can take θ2 = 131/416 [4], θ3 = 43/96 [7] and θk = (k−1)/(k+2) for
k > 4 [15]. Besides, an Ω-result has been established in [11]: if 8 | ` and Q(y) ∈ Q`,
then we have for k = 2, 3 that

∆∗k(Q, x) = Ω
(
x`/2−1+(k−1)/2k(log x)(k−1)/(2k)(log2 x)a(log3 x)−b

′)
,

where a = k+1
2k

(k(2k)/(k+1)− 1), b′ is any constant greater than 3k−1
4k

and logr denotes
the r-fold iterated logarithm.

The aim of this paper is to study the mean square of ∆∗k(Q, x).

Theorem 1. If 8 | `, then for any quadratic form Q(y) ∈ Q`, we have∫ T

1

|∆∗2(Q, x)|2 dx = C`T
`−1/2 +O

(
T `−1(log T )3 log2 T

)
,
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where

(1.7) ga(n) :=
∑
d|n

τ(d)τ(n/d)

da
, C` :=

3A4
`

(2`− 1)π2

∞∑
n=1

g(`−3)/2(n)2

n3/2
·

The estimate O
(
T `−1(log T )3 log2 T

)
follows from the result of [9] on the mean

square of ∆2(x).

Theorem 2. For k > 2, 8 | ` and Q(y) ∈ Q`, we define

βk := inf

{
bk :

∫ T

1

|∆k(x)|2 dx� T 1+2bk+ε

}
,

β∗k := inf

{
b∗k :

∫ T

1

|∆∗k(Q, x)|2 dx� T `−1+2b∗k+ε

}
.

Then β∗k = βk. Further we have β∗k > (k−1)/2k and the equality holds if the Lindelöf
hypothesis of ζ(s) is true.

Ivić [5, ] proved that

β3 = 1/3, β4 = 3/8, β5 6 119/260, β6 6 1/2, β7 6 39/70.

According to Theorem 2, the same estimates for β∗k hold.
Acknowledgement. The authors deeply thank the referee for valuable com-

ments and suggestions.

2. An Expression of ∆∗2(Q, x)

In [11], we actually established the formula

∆∗2(Q, x) = A2
`x

`/2−1
∑
d6x

τ(d)

d`/2−1
∆2

(
x

d

)
+O(x`/2−1+ε).

From it we can deduce Ω-result of ∆∗2(Q, x). However, it is not enough to prove
Theorem 1. So first we will give a better expression of ∆∗2(Q, x).

Lemma 2.1. If 8 | `, then for any quadratic form Q(y) ∈ Q`, we have

∆∗2(Q, x) = A2
`x

`/2−1
∑
d6x

τ(d)

d`/2−1

(
∆2

(
x

d

)
− 1

4

)
− 2A`x

`/2−1
∑
d6x

b(d)

d`/2−1
ψ

(
x

d

)
+O

(
x`/2−5/4

)
,

where ψ(t) := {t} − 1
2

and {t} denotes the fractional part of t.

Proof. From (1.5) we have

ZQ(s)2 = A2
`ζ(s)2ζ(s− `/2 + 1)2 + A`ζ(s)ζ(s− `/2 + 1)L(s, f) + L(s, f)2.
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Here the last two terms do not appear when ` = 8, 16 since there are no cusp forms
of weights 4 and 8 with respect to SL(2,Z). Thus we can write

(2.1)

∑
n6x

a2(n) = A2
`

∑
d6x

τ(d)
∑
m6x/d

τ(m)m`/2−1

+ 2A`
∑
d6x

b(d)
∑
m6x/d

m`/2−1 +
∑
d6x

c(d),

where b(n) and c(n) are defined by

ζ(s)L(s, f) =
∞∑
n=1

b(n)n−s and L(s, f)2 =
∞∑
n=1

c(n)n−s

for <es > `/2, respectively. By using Deligne’s bound (1.6), it is easy to see that

(2.2) |b(n)| 6 n(`/2−1)/2τ3(n) and |c(n)| 6 n(`/2−1)/2τ4(n).

Thus

(2.3)
∑
n6x

(|b(n)|+ |c(n)|)� x`/4+1/2(log x)3.

By partial summation we have∑
m6x

τ(m)m`/2−1 =
2

`
x`/2

(
log x− 2

`
+ 2γ

)
+ x`/2−1∆2(x)

− (`/2− 1)

∫ x

1

∆2(t)t
`/2−2dt.

By using Voronöı’s well known formula [16]:∫ t

1

∆2(u) du =
t

4
+O(t3/4),

a simple partial summation leads to

(`/2− 1)

∫ x

1

∆2(t)t
`/2−2dt =

1

4
x`/2−1 +O

(
x`/2−5/4

)
.

Combining these, we find that

(2.4)

∑
m6x

τ(m)m`/2−1 =
2

`
x`/2

(
log x− 2

`
+ 2γ

)
+ x`/2−1

(
∆2(x)− 1

4

)
+O

(
x`/2−5/4

)
.

Similarly (even easier)

(2.5)
∑
m6x

m`/2−1 =
2

`
x`/2 − x`/2−1ψ(x) +O

(
x`/2−2

)
.

Now the required result follows from (2.1), (2.3), (2.4) and (2.5). �
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3. Proof of Theorem 1

3.1. Beginning of the Proof. Let

∆̃∗2(Q, x) :=
∆∗2(Q, x)

A2
`x

`/2−1 and C̃` :=
1

π2

∞∑
n=1

g(`−3)/2(n)2

n3/2
·

Clearly it is sufficient to prove that

(3.1)

∫ T

1

∣∣∆̃∗2(Q, x)
∣∣2 dx =

C̃`
6
T 3/2 +O

(
T (log T )3 log2 T

)
.

According to Lemma 2.1, we can write

∆̃∗2(Q, x) = U(x)− V (x) +O
(
x`/2−5/4

)
,

where

U(x) :=
∑
d6x

τ(d)

d`/2−1

(
∆2

(
x

d

)
− 1

4

)
, V (x) :=

2

A`

∑
d6x

b(d)

d`/2−1
ψ

(
x

d

)
.

Next we shall prove∫ T

1

U2(x)dx =
C̃`
6
T 3/2 +O

(
T (log T )3 log2 T

)
,(3.2) ∫ T

1

U(x)V (x)dx� T (log T )2,(3.3)

which imply (3.1).

3.2. Preparation. In this subsection, we shall prove some preliminary estimates,
which are useful later.

Lemma 3.1. Let a > 0, b > 1, ` > a+ b and A > 1. We have

∑
d1,d26T
m1,m26M
d1m2=d2m1

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−a/2(m1m2)b/2
=
∞∑
n=1

g(`−a−b)/2(n)2

nb
+OA

(
(log T )3

T b−1

)
,(3.4)

∑
d1,d26T
m1,m26M
d1m2 6=d2m1

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−3/4(m1m2)3/4
1

|
√
m1/d1 −

√
m2/d2|

�A (log T )3 log2 T,(3.5)

∑
d1,d26T
m1,m26M

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−3/4(m1m2)3/4
1√

m1/d1 +
√
m2/d2

�A (log T )3 log2 T.(3.6)

uniformly for 1 6 T 6M 6 TA, where gr(n) is defined as in (1.7).
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Proof. First we write

(3.7)

S1(T,M) =
∑
n6TM

1

nb

( ∑
d6T ;m6M
dm=n

τ(d)τ(m)

d(`−a−b)/2

)2

=
∞∑
n=1

g(`−a−b)/2(n)2

nb
+O

(∑
n>T

g(`−a−b)/2(n)2

nb

)
.

It is easy to see that gr(n) is multiplicative, gr(p) = 2 + 2/pr and gr(p
ν)�r (ν + 1)

for all p and ν > 1. Applying Theorem 2.1 of [14] with x = y and κ = 4 to gr(n)2

leads to the following inequality∑
n6x

gr(n)2 �r x(log x)3 (r > 0, x > 2).

From it and (3.7), we can easily deduce (3.4).
Similarly we can write

S2(T,M) 6
∑

n,n′6TM
n6=n′

g`/2−2(n)g`/2−2(n
′)

(nn′)3/4
1

|
√
n−
√
n′|
�A (log T )3 log2 T.

In the last step we have used the bound of Lau & Tsang [9].
The estimate (3.6) is an immediate consequence of (3.4) with a = b = 2 and (3.5)

if noting that

1√
m1/d1 +

√
m2/d2

�


(
d1d2
m1m2

)1/4

if m1/d1 = m2/d2

1

|
√
m1/d1 −

√
m2/d2|

if m1/d1 6= m2/d2.

�

3.3. Proof of (3.2). According to Meurman [12], we have

(3.8) ∆2(x)− 1

4
=
x1/4√

2π

∑
m6M

τ(m)

m3/4
cos

(
4π
√
xm− π

4

)
+ E(x)

for all M > x > 1, where

(3.9) E(x)�

{
x−1/4 if ‖x‖ > x5/2M−1/2,

xε if ‖x‖ 6 x5/2M−1/2.

Thus we can write, with the choice of M = T 10 > x,

(3.10) U(x) = A(x) +B(x),

where

A(x) :=
x1/4√

2π

∑
d6x

τ(d)

d`/2−3/4

∑
m6M

d(m)

m3/4
cos

(
4π

√
m

d
x− π

4

)
,

B(x) :=
∑
d6x

τ(d)

d`/2−1
E

(
x

d

)
.
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In view of the identity 2 cosu cos v = cos(u− v) + cos(u+ v), we easily see that

A(x)2 = A1(x) + A2(x) + A3(x),

where

A1(x) :=
x1/2

4π2

∑
d1,d26x
m1,m26M
m1d2=m2d1

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−3/4(m1m2)3/4
,

A2(x) :=
x1/2

4π2

∑
d1,d26x
m1,m26M
m1d2 6=m2d1

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−3/4(m1m2)3/4
cos

(
4π

(√
m1

d1
−
√
m2

d2

)√
x

)
,

A3(x) :=
x1/2

4π2

∑
d1,d26x
m1,m26M

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−3/4(m1m2)3/4
cos

(
4π

(√
m1

d1
+

√
m2

d2

)√
x

)
.

By using (3.4) we have∫ T

1

A1(x) dx =
1

4π2

∑
d1,d26T
m1,m26M
m1d2=m2d1

τ(d1)τ(d2)τ(m1)τ(m2)

(d1d2)`/2−3/4(m1m2)3/4

∫ T

max{d1,d2}
x1/2 dx

=
C̃`
6
T 3/2 +O

(
T (log T )3

)
.

With the help of the first derivative test and (3.5), we get∫ T

1

A2(x) dx 6
∑

16k62 log T

∣∣∣∣ ∫ T/2k−1

T/2k
A2(x) dx

∣∣∣∣
�

∑
16k62 log T

(T/2k)S2(T/2
k−1,M)

� T (log T )3 log2 T.

Similarly we have ∫ T

1

A3(x)dx� T.

Combining these estimates, we find that

(3.11)

∫ T

1

A(x)2 dx =
C̃`
6
T 3/2 +O

(
T (log T )3 log2 T

)
.

By Cauchy’s inequality, it follows

B(x)2 6
∑
d6x

τ(d)2

d2

∑
d6x

1

d`−4
E

(
x

d

)2

�
∑
d6x

1

d`−4
E

(
x

d

)2

,
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which combining (3.9) allows us to deduce that

(3.12)

∫ T

1

B(x)2 dx�
∑
d6T

1

d`−5

( ∫ T/d

1
‖t‖6t5/2M−1/2

tε dt+

∫ T/d

1
‖t‖>t5/2M−1/2

t−1/2 dt

)

�
∑
d6T

1

d`−5

{(
T

d

)7/2+ε
1

M1/2
+

(
T

d

)1/2}
� T 1/2.

From (3.11) and (3.12), we get, via Cauchy’s inequality, that

(3.13)

∫ T

1

A(x)B(x) dx� T.

Now the asymptotic formula (3.2) follows from (3.10), (3.11), (3.12) and (3.13).

3.4. Proof of (3.3). By using Theorem 4.5 in Graham and Kolesnik [3]

∆2(u) = −2
∑
m6
√
u

ψ(u/m) +O(1)

and (2.2), we have

(3.14)

∫ T

1

U(x)V (x) dx�
∑
d6T

τ(d)

d`/2−1

∑
m6(T/d)1/2

∑
n6T

τ3(n)

n`/4−1/2
|I(d,m, n)|+ T,

where

I(d,m, n) :=

∫ T

max{dm2,n}
ψ

(
x

dm

)
ψ

(
x

n

)
dx.

For ψ(u), it is well-known that the finite Fourier expansion

ψ(u) = −
∑

16h6H

sin(2πhu)

πh
+O

(
min

{
1,

1

H‖u‖

})
holds for any H > 2. It is easily seen that for any r > 0∫ T

max{dm2,n}
min

{
1,

1

H‖x/r‖

}
dx = r

∫ T/r

m2

min

{
1,

1

H‖t‖

}
dt

� T

∫ 1/2

0

min

{
1,

1

Ht

}
dt

� TH−1 logH.

From these we deduce

(3.15) I(d,m, n)�
∑

h1,h26H

|I(h1, h2)|
h1h2

+
T (logH)2

H
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where

I(h1, h2) :=

∫ T

max{dm2,n}
sin

(
2πh1x

dm

)
sin

(
2πh2x

n

)
dx

�

{
1/|h1/dm− h2/n| if h1n 6= h2dm,

T if h1n = h2dm.

Here we have used the identity 2 sinu sin v = cos(u − v) − cos(u + v) and the first
derivative test when h1n 6= h2dm.

Inserting (3.15) into (3.14), we get∫ T

1

U(x)V (x) dx� TS4(T,H) + S5(T,H) + T +
T 3/2(logH)2

H
,

where

S4(T,H) :=
∑
d6T

τ(d)

d`/2−1

∑
m6(T/d)1/2

∑
n6T

τ3(n)

n`/4−1/2

∑
h1,h26H
h1n=h2dm

1

h1h2

6
∑
r6HT

1

r2

∑
n|r

τ3(n)

n`/4−3/2

∑
h2dm=r

τ(d)m

d`/2−2
�
∑
r6HT

1

r
� log(HT )

and

S5(T,H) :=
∑
d6T

τ(d)

d`/2−1

∑
m6(T/d)1/2

∑
n6T

τ3(n)

n`/4−1/2

∑
h1,h26H
h1n6=h2dm

dmn

h1h2|h1n− h2dm|

=
∑

r1,r26HT
r1 6=r2

1

r1r2|r1 − r2|
∑

h26H,d6T,m6(T/d)1/2

h2dm=r1

τ(d)(dm)2

d`/2−1

∑
n6T,h16H
h1n=r2

τ3(n)

n`/4−5/2

6 T
∑

r1,r26HT
r1 6=r2

1

r1r2|r1 − r2|
∑

h2dm=r1

τ(d)

d`/2−2

∑
h1n=r2

τ3(n)

n`/4−5/2

� T
∑
|r|6HT

1

|r|
∑
r26HT

1

r2

� T (logHT )2.

This proves (3.3) with the choice of H = T .

4. Proof of Theorem 2

For each r > 2, let δr and δ∗r denote the infimum of σ > 0 such that∫ ∞
−∞

|ζ(σ + it)|r

|σ + it|2
dt� 1 and

∫ ∞
−∞

|ZQ(σ + it)|r

|σ + it|2
dt� 1,

respectively. According to [5, Lemma 13.1], we have

(4.1) βk = δ2k.



10 GUANGSHI LÜ, JIE WU & WENGUANG ZHAI

On the other hand, following the proof of this lemma word by word by replacing
ζ(s) by ZQ(s) and ∆k(x) by ∆∗k(Q, x) respectively, we can prove

(4.2) β∗k + `/2− 1 = δ∗2k.

Finally it is easy to see that

|ζ(s− `/2 + 1)| � |ZQ(s)| � |ζ(s− `/2 + 1)|

for `/2− 1 6 σ 6 `/2. Thus

(4.3) δ∗r = `/2− 1 + δr.

Now Theorem 2 follows from (4.1), (4.2) and (4.3) by noting that the Lindelöf
hypothesis implies δr = 1/2− 1/r for any r > 2.
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[11] Guangshi Lü, Jie Wu & Wenguang Zhai, On a divisor problem related to the Epstein zeta-
function, II, J. Number Theory, 131(2011), no. 9, 1734-1742.

[12] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford
Ser. (2) 38 (1987), no. 151, 337–343.

[13] A. Sankaranarayanan, On a divisor problem related to the Epstein zeta-function, Arch. Math.
65 (1995), 303–309.

[14] G. Tenenbaum & J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers
friables, J. Reine Angew. Math. 564 (2003), 119–167.

[15] E. C. Titchmarsh, The theory of the Riemann zeta-function, Second edition. Edited and with
a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York,
1986. x+412 pp.
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