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ON A DIVISOR PROBLEM RELATED TO THE EPSTEIN
ZETA-FUNCTION, III

GUANGSHI LU, JIE WU & WENGUANG ZHAI

ABSTRACT. In this paper we study the mean square of the error term A} (Q,x)
in a divisor problem related to the Epstein zeta-function. An asymptotic formula
has been obtained when k = 2.

1. INTRODUCTION

This is the third part of our series of papers on a divisor problem related to the
Epstein zeta-function [10, 11]. First we recall some notation there. Let ¢ > 2,
y = (y1,...,y¢) and A = (a;;) be an integral matrix such that a;; = 0 (mod 2) for
0 < i < ¢. Thus a positive definite quadratic form Q(y) can be written as

1 1
Qy)=3¥'Ay = Y ayyy;+5 Y aib,
1<i<j<t 1<i<t

where y' is the transpose of y. The corresponding Epstein zeta-function is initially
defined by the Dirichlet series

(1.1) Zo(s) =Y Qy)" =) am™ (Res>(/2),

yezt~{0} nz1

where a,, is the number of the solutions of the equation Q(y) = n with y € Z*. It is
known that Zg(s) has an analytic continuation to the whole complex plane C with
only a simple pole at s = £/2, and satisfies a functional equation of Riemann type
(cf. [13]). For each integer k > 1, we define ax(n) by

(1.2) Zo(s)F =) ap(n)n™  (Res > (/2)
and put
(1.3) A(Q, x) == Z ax(n) — 22 P,(log ),

where Py(logz) := 2% Ress—r/a(Zg(s)*2*s71) is a polynomial of logz of degree
k — 1. The study on asymptotic behavior of the error term A} (Q,z) has received
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much attention [8, 1, 13]. In particular Sankaranarayanan [13] showed that for k > 2
and ¢ > 3,

(1.4) AL(Q, x) < /P ke,

where and throughout this paper € denotes an arbitrarily small positive constant.
Recently inspired by Iwaniec’s book [6], Lii [10] marked that (1.4) can been improved
for the quadratic forms of level one (see [6, Chapter 11]). These quadratic forms are
defined by Q(y) = %ytAy verifying the following supplementary conditions:

¢ =0 (mod 8), A is equivalent to A™!, det(A) = 1.
Denote by Qy the set of such quadratic forms. For ) € Q,, we have [6, (11.32)]

An = Aﬁo-f/Qfl(n) + CLf(TL, Q) (TL 2 1)7
where

L (277)6/2 . k
A= ey T = 2

((s) is the Riemann zeta-function, I'(s) is the Gamma function and as(n, Q) is the
nth Fourier coefficient of a cusp form f(z, Q) of weight ¢/2 with respect to the full
modular group SL(2,7Z). Thus

(1.5) Zqg(s) = AC(s)C(s = £/24+ 1) + L(s, f)  (Res>(/2),
where L(s, f) is the Hecke L-function associated with f(z, Q). According to Deligne’s
well known work [2], we know

(1.6) jag(n, @I < 0l 2r(n) - (n>1),

where 7(n) is the divisor function. With the help of these properties, Lii [10] (for
k > 4) and Lii, Wu & Zhai [11] (for k£ = 2,3) obtained

AZ(Qv :IZ') < x£/271+9k+5’
where 6, is the exponent in the classical k-dimension divisor problem

ZTk Res (C(s)kats™!) < ol te (x > 2).

n<e

In particular we can take 0 = 131/416 [4], 63 = 43/96 [7] and 0, = (k—1)/(k+2) for
k > 4 [15]. Besides, an Q-result has been established in [11]: if 8 | £ and Q(y) € Qy,
then we have for k = 2,3 that

AL(Q. ) = (a2 D2 (log 2) B DR (log, 2)* (logg ) ™),

3k—1

where @ = EL(KR)/(HHD) — 1) 3/ is any constant greater than 2:-1

the r-fold iterated logarithm.
The aim of this paper is to study the mean square of Af(Q, z).

L and log, denotes

Theorem 1. If 8| ¢, then for any quadratic form Q(y) € Qq, we have

T
/ IANQ, z)|?dx = C,T 1% + O(T" '(logT)*log, T),
1
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where

S ::ZW’ Cri= (%3)_,4;%229@_%@) :
dn —

The estimate O(Tefl(log T)3 log, T) follows from the result of [9] on the mean
square of Ay(z).

Theorem 2. Fork > 2,8 |/( and Q(y) € Qy, we define
T
ﬂk 1nf{ / ’Ak( )‘2 dr < T1+2bk+€},

Br = 1nf{ : / IAX(Q, z)|*dz < Tf—1+2bi+€}.
Then 5 = Px. Further we have 55 > (k—1)/2k and the equality holds if the Lindeldf
hypothesis of ((s) is true.
Ivi¢ [5, | proved that
By=1/3, Bi=3/8, B <119/260, fs<1/2, fr<39/70.

According to Theorem 2, the same estimates for 5; hold.
Acknowledgement. The authors deeply thank the referee for valuable com-
ments and suggestions.

2. AN EXPRESSION OF A}(Q,x)

In [11], we actually established the formula

ANQ,x) = Afx"?" 1Zd£/2 1 ( )+O( fatte),

d<x

From it we can deduce -result of A(Q,z). However, it is not enough to prove
Theorem 1. So first we will give a better expression of A3 (Q, z).

Lemma 2.1. If 8| ¢, then for any quadratic form Q(y) € Qu, we have

23(Quo) = a2 3 ZD (%) - )

d<z

b(d
oy () opnn

d<z

where ¥(t) := {t} — 5 and {t} denotes the fractional part of t.

Proof. From (1.5) we have
Zo(s)* = A{C(s)’C(s = £/2+ 1)* + A((s)C(s = £/2 + 1) L(s, f) + L(s, f)*.
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Here the last two terms do not appear when ¢ = 8, 16 since there are no cusp forms
of weights 4 and 8 with respect to SL(2,Z). Thus we can write

Zag(n) = A? ZT(d) Z T(m)m** 1

(2 1) n<x d<z m<x/d
' +24,3 0(d) Y w7 Y (),
d<z m<z/d d<z

where b(n) and ¢(n) are defined by

C(s)L(s, f) = z:b(n)n_S and L(s, f)? = Z c(n)n™*

for Res > £/2, respectively. By using Deligne’s bound (1.6), it is easy to see that

(2.2) |b(n)| < nWQ_l)/?Tg(n) and le(n)| < nWQ_l)/zu(n).
Thus
(2.3) > ([b(n)] + le(n)]) < 2+ (log x)*.

n<x

By partial summation we have

2 2
Z T(m)m*/? 7t = z#”(logw —7 + 27) + 2P A (2)

m<zx
— (/2 - 1)/ Ay (t)t?724t.
1
By using Voronoi’s well known formula [16]:
! ¢
/ Ag(u)du = 1 + O£,
1
a simple partial summation leads to
* 1
(0/2 — 1)/1 Ay ()t?72dt = me—l + 022754,
Combining these, we find that

2 2
02-1 _ ~ /2 _ ¢z
E< T(m)m i <logx 7 + 2fy>
(2.4) mx
+ %! (Ag(x) — 411) -+ O($€/2_5/4).

Similarly (even easier)

2
(2.5) Z mb/2-1 — Zxém _ $€/2_1¢($) + O(IE/Q—Q).

m<x

Now the required result follows from (2.1), (2.3), (2.4) and (2.5). O
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3. PrROOF OF THEOREM 1

3.1. Beginning of the Proof. Let

e A3 (Q, x) ~ 1 o= g(—3)2(n)?
AQ,x) = —A%xf/Q—l and C,:= = Z TR
n=1

Clearly it is sufficient to prove that

Cy

T
(3.1) /1\£§(Q,x)\2dx ST 4 O(T(loa T) log, T).

According to Lemma 2.1, we can write

EZ(QJ) =U(x) = V(z)+ O(x€/2—5/4)7

LG i)

Next we shall prove

where

T

(3.2) / U?(x %’T?’/MO( (log T)*log, T),
T

(3.3) / U(x)V(z)dr < T(logT)?,

which imply (3.1).

3.2. Preparation. In this subsection, we shall prove some preliminary estimates,
which are useful later.

Lemma 3.1. Leta > 0,b> 1,/ >a+b and A > 1. We have

dy)7(d)T a—b)/2( log T')?
(3.4) Z (Cgldz);m 1/2 (mims) b/2 Zgé / +OA ((Tng))’

d1,d2<T
my,ma<M
dimo=dam,

7(d)7(da)7(ma) (o) !
(3.5) Z (dyds)*2=3/%(myms)3/% |/ma/di — \/ma/ds]

<4 (logT)*log, T,

d1,d2<T
my,ma<M
dymaF#damy

7(d1)7(d)T(mq)T (M)
(3.6) dl;KT (dida) />34 (mama )3/ /iy [dy + \/ma ) da

mi1,mo<M

<4 (logT)?log, T.

uniformly for 1 <T < M < T4, where g.(n) is defined as in (1.7).
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Proof. First we write

1 7(d)7(m)\?
Sl(T,M):Zﬁ( > %)

n<TM dgT;mgM

- 9(t—a— b/2 g(efafb)/2(”)2
-y el (3 teenp))
n=1 n>T

It is easy to see that g.(n) is multiplicative, ¢,(p) = 2+ 2/p" and ¢, (p") <, (v + 1)
for all p and v > 1. Applying Theorem 2.1 of [14] with z = y and x = 4 to g,(n)?
leads to the following inequality

Zgr > &, z(logz)® (r>0,z>2).
n<x

From it and (3.7), we can easily deduce (3.4).
Similarly we can write

9es2-2(n)ges2—2(n') 1 ,
So(T, M) < <4 (logT)’log, T
n#n’
In the last step we have used the bound of Lau & Tsang [9].
The estimate (3.6) is an immediate consequence of (3.4) with a = b = 2 and (3.5)
if noting that

dydy \ M
172 ifml/dlzmg/dQ
1 < mi1me
1/a1 mz/dQ-
|\/m1/d1 - \/mz/d2|
O
3.3. Proof of (3.2). According to Meurman [12], we have
1 g/ 7(m) ( >
3.8 Asg(z) — = 4 x
(3.8) x>4ﬁgw4 Vam =1 ) + E(x)
for all M > x > 1, where
(3.9) E(z) o ] > oM
. r) L
T if ||| < 2%2M~1/2,
Thus we can write, with the choice of M =T > z,
(3.10) U(z) = A(x) + B(x),
where
/m T
Z d£/2 3/4 Z m3/4 ( E - Z):
m<M

) :ZWE(a)'

d<z



ON A DIVISOR PROBLEM RELATED TO THE EPSTEIN ZETA-FUNCTION, III

In view of the identity 2 cosucosv = cos(u — v) + cos(u + v), we easily see that

A(x)? = Ay () + Az(z) + As(),

Ai(z) = a2 Z 7(d1)7(d2)7(m1)7(m2)
1 A dy,de<a (dydy)t/?=3/4(mymy)3/4
m11,7m22;M
mida=modi

Ay () 2221—7:22 dhdzmc (6522))6%21/4((”13;(2 34 € ( (\/071 \/d72> )

mi1,mo<M
midaFEmady
!/ 7(d1)7(d2)7(m1)7(my [my
As(x) == ) ddZ< (dvda) 72374 (myms) 3/4 ( ( d1 d2> >
<M

By using (3.4) we have

r ! 7(d)7(da)7(m1)7(ma) [T

Ai(z)de = — / e

/1 ! A dl,dzng (d1da)>=3/4(mymy)3/4 max{d1,d2}
m1,ma<M

mida=mad1

(éeT‘g/z +O(T(logT)?).

With the help of the first derivative test and (3.5), we get

T T/2k1
/ Ay(z)dr < / Ay(z)dx
1

1<k<2logT | Y/ T/2*
< Y (1208 (T/2F T M)
1<k<2logT

< T(logT)*logy T.

Similarly we have

T
/ Ag(z)de < T.
1
Combining these estimates, we find that
(3.11) / Az 5 T3/2+O( (log T)*log, T').

By Cauchy’s inequality, it follows

AT Ln(t) « X ake(5)

d<z d<x d<z

7
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which combining (3.9) allows us to deduce that

T ) 1 T/d T/d 12

d<T

lltl|<t5/2 M —1/2 [tl|=t5/20—1/2
(3'12) <<Z 1 T /e 1 i T 1/2
d<T de=? d M1/ d
< TV2,

From (3.11) and (3.12), we get, via Cauchy’s inequality, that
T
(3.13) / A(w)B(x)de < T.
1
Now the asymptotic formula (3.2) follows from (3.10), (3.11), (3.12) and (3.13).

3.4. Proof of (3.3). By using Theorem 4.5 in Graham and Kolesnik [3]

Ds(u) = =2 ) (u/m)+O(1)
m<y/u
and (2.2), we have

T
d)
(3.14) /1 U(x d:zc<<Z:d£/2 - Z Z 7 1/2|[dm n)| + 17,

d<T m<(T/d)1/2 n<T

T X T
I(d7 " n) - /max{de,n} w (%) d} (E) dr

For v (u), it is well-known that the finite Fourier expansion

by =— Y W +O<mm{1’ﬁ}>

1<h<H

where

holds for any H > 2. It is easily seen that for any r» > 0

/T { 1 } T/r 1
minq 1, ——— dx:r/ min{l,—}dt
max{dm?,n} Hilz/r| m? HJt]
1/2 1
T i dt
o[

< TH 'logH.

From these we deduce

(3.15) I(d,m,n) < >

hi,ho<H

[1(hs, )| | T(log HY?
hihs H
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T 21th 21h
I(hy, hy) ;:/ sin( 7T 1x> sin( T ﬂ) dx
max{dm?2n} dm n

if hln = hgdm

where

Here we have used the identity 2sinusinv = cos(u — v) — cos(u + v) and the first
derivative test when hyn # hodm.
Inserting (3.15) into (3.14), we get

T3/2(log H)?

/ U )V (w) de < TS,(T, H) + S5(T, H) + T 4 —— L

where

Zd€/2)1 Z Z f/4 1/2 Z hlhg

a<T m<(T/d)t/2 n<T h1,ho<H
h1n hodm

7(d)m
S Z 2 an/4 3/2 Z ) < Z — < log(HT)
r<HT n"r' hodm=r 7”<HT
and

d) d
Ss(T, H) _Zde/z 1 Z Z £/4 1/2 Z h1h2|h1:1nil hodm|

d<T m<(T/d)1/2 n<T hi,ho<H
hin#hadm

Z 1 7(d)(dm)? 73(n)
S F— 2 : Je/2-1 } : nt/A—5/2
71,2 <HT ha<H,d<T,m<(T/d)"/? nsT.m<H

T13£T2 hodm=r1 hin=ro

3(n)

ri,ro<HT hodm=rq hin=ry
r1#£r2

<y byl

|r\<HT 7”2<HT

< T(log HT)?.
This proves (3.3) with the choice of H =T.

4. PROOF OF THEOREM 2

For each r > 2, let 0, and d; denote the infimum of o > 0 such that

t Z t
/ KO+ o1 and / [Zalo+10)I" 4,
o |o+it]? o |o+it]?

respectively. According to [5, Lemma 13.1], we have
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On the other hand, following the proof of this lemma word by word by replacing
((s) by Zg(s) and Ag(z) by Ax(Q,x) respectively, we can prove

(4.2) Br+0/2—1=05,.
Finally it is easy to see that
[C(s = £/2 + 1) < [Zg(s)| < [C(s = £/2 4 1)]
for (/2 —1 < o < /2. Thus
(4.3) o =10/2 -1+,

Now Theorem 2 follows from (4.1), (4.2) and (4.3) by noting that the Lindel6f
hypothesis implies 6, = 1/2 — 1/r for any r > 2.
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