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In this paper we study the mean square of the error term ∆ * k (Q, x) in a divisor problem related to the Epstein zeta-function. An asymptotic formula has been obtained when k = 2.

Introduction

This is the third part of our series of papers on a divisor problem related to the Epstein zeta-function [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF][START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF]. First we recall some notation there. Let 2, y := (y 1 , . . . , y ) and A = (a ij ) be an integral matrix such that a ii ≡ 0 (mod 2) for 0 i

. Thus a positive definite quadratic form Q(y) can be written as

Q(y) = 1 2 y t Ay = 1 i<j a ij y i y j + 1 2 1 i a ii y 2 i ,
where y t is the transpose of y. The corresponding Epstein zeta-function is initially defined by the Dirichlet series

(1.1) Z Q (s) := y∈Z {0} Q(y) -s = n 1
a n n -s ( e s > /2), where a n is the number of the solutions of the equation Q(y) = n with y ∈ Z . It is known that Z Q (s) has an analytic continuation to the whole complex plane C with only a simple pole at s = /2, and satisfies a functional equation of Riemann type (cf. [START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF]). For each integer k 1, we define a k (n) by

(1.2) Z Q (s) k = n 1 a k (n)n -s ( e s > /2)
and put

(1.3) ∆ * k (Q, x) := n x a k (n) -x /2 P k (log x),
where P k (log x) := x -/2 Res s= /2 (Z Q (s) k x s s -1 ) is a polynomial of log x of degree k -1. The study on asymptotic behavior of the error term ∆ * k (Q, x) has received much attention [START_REF] Landau | Über die Anzahl der Gitterpunkte in gewissen Bereichen[END_REF][START_REF] Chandrasekharan | Functional equations with multiple gamma factors and the average order of arithmetical functions[END_REF][START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF]. In particular Sankaranarayanan [START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF] showed that for k 2 and 3,

(1.4) ∆ * k (Q, x) x /2-1/k+ε ,
where and throughout this paper ε denotes an arbitrarily small positive constant.

Recently inspired by Iwaniec's book [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF], Lü [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF] marked that (1.4) can been improved for the quadratic forms of level one (see [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]Chapter 11]). These quadratic forms are defined by Q(y) = 1 2 y t Ay verifying the following supplementary conditions: ≡ 0 (mod 8),

A is equivalent to

A -1 , det(A) = 1.
Denote by Q the set of such quadratic forms. For Q ∈ Q , we have [6, (11.32)]

a n = A σ /2-1 (n) + a f (n, Q) (n 1),
where

A := (2π) /2 ζ( /2)Γ( /2) , σ k (n) = d|n d k , ζ(s) is the Riemann zeta-function, Γ(s) is the Gamma function and a f (n, Q) is the nth Fourier coefficient of a cusp form f (z, Q) of weight /2 with respect to the full modular group SL(2, Z). Thus (1.5) Z Q (s) = A ζ(s)ζ(s -/2 + 1) + L(s, f ) ( e s > /2),
where L(s, f ) is the Hecke L-function associated with f (z, Q). According to Deligne's well known work [START_REF] Deligne | La Conjecture de Weil[END_REF], we know

(1.6) |a f (n, Q)| n ( /2-1)/2 τ (n) (n 1),
where τ (n) is the divisor function. With the help of these properties, Lü [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF] (for k 4) and Lü, Wu & Zhai [START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF] (for k = 2, 3) obtained

∆ * k (Q, x) x /2-1+θ k +ε ,
where θ k is the exponent in the classical k-dimension divisor problem

∆ k (x) := n x τ k (n) -Res s=1 (ζ(s) k x s s -1 ) x θ k +ε (x 2).
In particular we can take θ 2 = 131/416 [START_REF] Huxley | Integer points, exponential sums and the Riemann zeta function[END_REF], θ 3 = 43/96 [START_REF] Kolesnik | On the estimation of multiple exponential sums[END_REF] and θ k = (k-1)/(k+2) for k 4 [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF]. Besides, an Ω-result has been established in [START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF]: if 8 | and Q(y) ∈ Q , then we have for k = 2, 3 that

∆ * k (Q, x) = Ω x /2-1+(k-1)/2k (log x) (k-1)/(2k) (log 2 x) a (log 3 x) -b
, where a = k+1 2k (k (2k)/(k+1) -1), b is any constant greater than 3k-1 4k and log r denotes the r-fold iterated logarithm.

The aim of this paper is to study the mean square of ∆ * k (Q, x). Theorem 1. If 8 | , then for any quadratic form Q(y) ∈ Q , we have

T 1 |∆ * 2 (Q, x)| 2 dx = C T -1/2 + O T -1 (log T ) 3 log 2 T ,
where

(1.7) g a (n) := d|n τ (d)τ (n/d) d a , C := 3A 4 (2 -1)π 2 ∞ n=1 g ( -3)/2 (n) 2 n 3/2 •
The estimate O T -1 (log T ) 3 log 2 T follows from the result of [START_REF] Lau | On the mean square formula of the error term in the Dirichlet divisor problem[END_REF] on the mean square of ∆ 2 (x).

Theorem 2. For k 2, 8 | and Q(y) ∈ Q , we define

β k := inf b k : T 1 |∆ k (x)| 2 dx T 1+2b k +ε , β * k := inf b * k : T 1 |∆ * k (Q, x)| 2 dx T -1+2b * k +ε .
Then

β * k = β k . Further we have β * k (k-1)/2k
and the equality holds if the Lindelöf hypothesis of ζ(s) is true.

Ivić [5, ] proved that

β 3 = 1/3, β 4 = 3/8, β 5 119/260, β 6 1/2, β 7 39/70.
According to Theorem 2, the same estimates for β * k hold. Acknowledgement. The authors deeply thank the referee for valuable comments and suggestions.

2. An Expression of ∆ * 2 (Q, x) In [START_REF] Lü | On a divisor problem related to the Epstein zetafunction, II[END_REF], we actually established the formula

∆ * 2 (Q, x) = A 2 x /2-1 d x τ (d) d /2-1 ∆ 2 x d + O(x /2-1+ε ).
From it we can deduce Ω-result of ∆ * 2 (Q, x). However, it is not enough to prove Theorem 1. So first we will give a better expression of ∆ * 2 (Q, x).

Lemma 2.1. If 8 | , then for any quadratic form Q(y) ∈ Q , we have

∆ * 2 (Q, x) = A 2 x /2-1 d x τ (d) d /2-1 ∆ 2 x d - 1 4 -2A x /2-1 d x b(d) d /2-1 ψ x d + O x /2-5/4 ,
where ψ(t) := {t} -1 2 and {t} denotes the fractional part of t. Proof. From (1.5) we have

Z Q (s) 2 = A 2 ζ(s) 2 ζ(s -/2 + 1) 2 + A ζ(s)ζ(s -/2 + 1)L(s, f ) + L(s, f ) 2 .
Here the last two terms do not appear when = 8, 16 since there are no cusp forms of weights 4 and 8 with respect to SL(2, Z). Thus we can write (2.1)

n x a 2 (n) = A 2 d x τ (d) m x/d τ (m)m /2-1 + 2A d x b(d) m x/d m /2-1 + d x c(d),
where b(n) and c(n) are defined by

ζ(s)L(s, f ) = ∞ n=1 b(n)n -s and L(s, f ) 2 = ∞ n=1 c(n)n -s
for es > /2, respectively. By using Deligne's bound (1.6), it is easy to see that

(2.2) |b(n)| n ( /2-1)/2 τ 3 (n) and |c(n)| n ( /2-1)/2 τ 4 (n). Thus (2.3) n x (|b(n)| + |c(n)|)
x /4+1/2 (log x) 3 .

By partial summation we have

m x τ (m)m /2-1 = 2 x /2 log x - 2 + 2γ + x /2-1 ∆ 2 (x) -( /2 -1) x 1 ∆ 2 (t)t /2-2 dt.
By using Voronoï's well known formula [START_REF] Voronoï | Sur une fonction transcendante et ses applications à la sommation de quelques séies[END_REF]:

t 1 ∆ 2 (u) du = t 4 + O(t 3/4 ),
a simple partial summation leads to

( /2 -1) x 1 ∆ 2 (t)t /2-2 dt = 1 4 x /2-1 + O x /2-5/4 .
Combining these, we find that (2.4)

m x τ (m)m /2-1 = 2 x /2 log x - 2 + 2γ + x /2-1 ∆ 2 (x) - 1 4 + O x /2-5/4 .
Similarly (even easier)

(2.5)

m x m /2-1 = 2 x /2 -x /2-1 ψ(x) + O x /2-2 .
Now the required result follows from (2.1), (2.3), (2.4) and (2.5).

3. Proof of Theorem 1

3.1. Beginning of the Proof. Let ∆ * 2 (Q, x) := ∆ * 2 (Q, x) A 2 x /2-1 and C := 1 π 2 ∞ n=1 g ( -3)/2 (n) 2 n 3/2 •
Clearly it is sufficient to prove that (3.1)

T 1 ∆ * 2 (Q, x) 2 dx = C 6 T 3/2 + O T (log T ) 3 log 2 T .
According to Lemma 2.1, we can write

∆ * 2 (Q, x) = U (x) -V (x) + O x /2-5/4 ,
where

U (x) := d x τ (d) d /2-1 ∆ 2 x d - 1 4 , V (x) := 2 A d x b(d) d /2-1 ψ x d .
Next we shall prove

T 1 U 2 (x)dx = C 6 T 3/2 + O T (log T ) 3 log 2 T , (3.2) 
T 1 U (x)V (x)dx T (log T ) 2 , (3.3)
which imply (3.1).

Preparation.

In this subsection, we shall prove some preliminary estimates, which are useful later. Lemma 3.1. Let a > 0, b > 1, > a + b and A 1. We have

d 1 ,d 2 T m 1 ,m 2 M d 1 m 2 =d 2 m 1 τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-a/2 (m 1 m 2 ) b/2 = ∞ n=1 g ( -a-b)/2 (n) 2 n b + O A (log T ) 3 T b-1 , (3.4) d 1 ,d 2 T m 1 ,m 2 M d 1 m 2 =d 2 m 1 τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-3/4 (m 1 m 2 ) 3/4 1 | m 1 /d 1 -m 2 /d 2 | A (log T ) 3 log 2 T, (3.5) d 1 ,d 2 T m 1 ,m 2 M τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-3/4 (m 1 m 2 ) 3/4 1 m 1 /d 1 + m 2 /d 2 A (log T ) 3 log 2 T. (3.6)
uniformly for 1 T M T A , where g r (n) is defined as in (1.7).

Proof. First we write (3.7)

S 1 (T, M ) = n T M 1 n b d T ; m M dm=n τ (d)τ (m) d ( -a-b)/2 2 = ∞ n=1 g ( -a-b)/2 (n) 2 n b + O n>T g ( -a-b)/2 (n) 2 n b .
It is easy to see that g r (n) is multiplicative, g r (p) = 2 + 2/p r and g r (p ν ) r (ν + 1) for all p and ν 1. Applying Theorem 2.1 of [START_REF] Tenenbaum | Moyennes de certaines fonctions multiplicatives sur les entiers friables[END_REF] with x = y and κ = 4 to g r (n) 2 leads to the following inequality

n x g r (n) 2 r x(log x) 3 (r > 0, x 2).
From it and (3.7), we can easily deduce (3.4).

Similarly we can write

S 2 (T, M ) n,n T M n =n g /2-2 (n)g /2-2 (n ) (nn ) 3/4 1 | √ n - √ n | A (log T ) 3 log 2 T.
In the last step we have used the bound of Lau & Tsang [START_REF] Lau | On the mean square formula of the error term in the Dirichlet divisor problem[END_REF]. The estimate (3.6) is an immediate consequence of (3.4) with a = b = 2 and (3.5) if noting that 1

m 1 /d 1 + m 2 /d 2          d 1 d 2 m 1 m 2 1/4 if m 1 /d 1 = m 2 /d 2 1 | m 1 /d 1 -m 2 /d 2 | if m 1 /d 1 = m 2 /d 2 .
3.3. Proof of (3.2). According to Meurman [START_REF] Meurman | On the mean square of the Riemann zeta-function[END_REF], we have

(3.8) ∆ 2 (x) - 1 4 = x 1/4 √ 2π m M τ (m) m 3/4 cos 4π √ xm - π 4 + E(x)
for all M > x > 1, where

(3.9) E(x) x -1/4 if x x 5/2 M -1/2 , x ε if x x 5/2 M -1/2 .
Thus we can write, with the choice of M = T 10 > x,

(3.10) U (x) = A(x) + B(x),
where

A(x) := x 1/4 √ 2π d x τ (d) d /2-3/4 m M d(m) m 3/4 cos 4π m d x - π 4 , B(x) := d x τ (d) d /2-1 E x d .
In view of the identity 2 cos u cos v = cos(u -v) + cos(u + v), we easily see that

A(x) 2 = A 1 (x) + A 2 (x) + A 3 (x),
where

A 1 (x) := x 1/2 4π 2 d 1 ,d 2 x m 1 ,m 2 M m 1 d 2 =m 2 d 1 τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-3/4 (m 1 m 2 ) 3/4 , A 2 (x) := x 1/2 4π 2 d 1 ,d 2 x m 1 ,m 2 M m 1 d 2 =m 2 d 1 τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-3/4 (m 1 m 2 ) 3/4 cos 4π m 1 d 1 - m 2 d 2 √ x , A 3 (x) := x 1/2 4π 2 d 1 ,d 2 x m 1 ,m 2 M τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-3/4 (m 1 m 2 ) 3/4 cos 4π m 1 d 1 + m 2 d 2 √ x .
By using (3.4) we have

T 1 A 1 (x) dx = 1 4π 2 d 1 ,d 2 T m 1 ,m 2 M m 1 d 2 =m 2 d 1 τ (d 1 )τ (d 2 )τ (m 1 )τ (m 2 ) (d 1 d 2 ) /2-3/4 (m 1 m 2 ) 3/4 T max{d 1 ,d 2 } x 1/2 dx = C 6 T 3/2 + O T (log T ) 3 .
With the help of the first derivative test and (3.5), we get

T 1 A 2 (x) dx 1 k 2 log T T /2 k-1 T /2 k A 2 (x) dx 1 k 2 log T (T /2 k )S 2 (T /2 k-1 , M ) T (log T ) 3 log 2 T.
Similarly we have

T 1 A 3 (x)dx T.
Combining these estimates, we find that (3.11)

T 1 A(x) 2 dx = C 6 T 3/2 + O T (log T ) 3 log 2 T .
By Cauchy's inequality, it follows

B(x) 2 d x τ (d) 2 d 2 d x 1 d -4 E x d 2 d x 1 d -4 E x d 2 ,
which combining (3.9) allows us to deduce that (3.12)

T 1 B(x) 2 dx d T 1 d -5 T /d 1 t t 5/2 M -1/2 t ε dt + T /d 1 t t 5/2 M -1/2 t -1/2 dt d T 1 d -5 T d 7/2+ε 1 M 1/2 + T d 1/2 T 1/2 .
From (3.11) and (3.12), we get, via Cauchy's inequality, that For ψ(u), it is well-known that the finite Fourier expansion

ψ(u) = - 1 h H sin(2πhu) πh + O min 1, 1 H u holds for any H 2. It is easily seen that for any r > 0 T max{dm 2 ,n} min 1, 1 H x/r dx = r T /r m 2 min 1, 1 H t dt T 1/2 0 min 1, 1 Ht dt T H -1 log H.
From these we deduce

(3.15) I(d, m, n) h 1 ,h 2 H |I(h 1 , h 2 )| h 1 h 2 + T (log H) 2 H
where

I(h 1 , h 2 ) := T max{dm 2 ,n} sin 2πh 1 x dm sin 2πh 2 x n dx 1/|h 1 /dm -h 2 /n| if h 1 n = h 2 dm, T if h 1 n = h 2 dm.
Here we have used the identity 2 sin u sin v = cos(u -v) -cos(u + v) and the first derivative test when h 1 n = h 2 dm. Inserting (3.15) into (3.14), we get

T 1 U (x)V (x) dx T S 4 (T, H) + S 5 (T, H) + T + T 3/2 (log H) 2 H ,
where

S 4 (T, H) := d T τ (d) d /2-1 m (T /d) 1/2 n T τ 3 (n) n /4-1/2 h 1 ,h 2 H h 1 n=h 2 dm 1 h 1 h 2 r HT 1 r 2 n|r τ 3 (n) n /4-3/2 h 2 dm=r τ (d)m d /2-2 r HT 1 r log(HT )
and 

S 5 (T, H) := d T τ (d) d /2-1 m (T /d) 1/2 n T τ 3 (n) n /4-1/2 h 1 ,h 2 H h 1 n =h 2 dm dmn h 1 h 2 |h 1 n -h 2 dm| =

1 A 3 . 4 . 1 m

 1341 (x)B(x) dx T. Now the asymptotic formula (3.2) follows from (3.10), (3.11), (3.12) and (3.13). Proof of (3.3). By using Theorem 4.5 in Graham and Kolesnik [3]∆ 2 (u) = -2 m √ u ψ(u/m) + O(1) (T /d) 1/2 n T τ 3 (n) n /4-1/2 |I(d, m, n)| + T,

r 1 ,r 2 HT r 1 =r 2 1 r 1 r 2 h 2 dm=r 1 τ 1 n T,h 1 H h 1 n=r 2 τ 3 2 T r 1 ,r 2 HT r 1 =r 2 1 r 1 r 2 |r 1 -r 2 | h 2 dm=r 1 τ 2 T 4 .

 122211123212212124 |r 1 -r 2 | h 2 H,d T,m (T /d) 1/2 (d)(dm) 2 d /2-(n) n /4-5/(log HT ) 2 . This proves (3.3) with the choice of H = T . Proof of Theorem 2For each r 2, let δ r and δ * r denote the infimum of σ > 0 such that∞ -∞ |ζ(σ + it)| r |σ + it| 2 dt 1 and ∞ -∞ |Z Q (σ + it)| r |σ + it|2 dt 1, respectively. According to [5, Lemma 13.1], we have (4.1) β k = δ 2k . On the other hand, following the proof of this lemma word by word by replacing ζ(s) by Z Q (s) and ∆ k (x) by ∆ * k (Q, x) respectively, we can prove (4.2) β * k + /2 -1 = δ * 2k . Finally it is easy to see that |ζ(s -/2 + 1)| |Z Q (s)| |ζ(s -/2 + 1)| for /2 -1 σ /2. Thus (4.3) δ * r = /2 -1 + δ r . Now Theorem 2 follows from (4.1), (4.2) and (4.3) by noting that the Lindelöf hypothesis implies δ r = 1/2 -1/r for any r 2.
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