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THE FIRST NEGATIVE COEFFICIENTS OF SYMMETRIC
SQUARE L-FUNCTIONS

Y.-K. LAU, J.-Y. LIU & J. WU

ABSTRACT. Let ngym2s be the greatest integer such that Agym2y(n) = 0 for all
n < Ngym2y and (n, N) = 1, where A2 (1) is the nth coefficient of the Dirichlet
series representation of the symmetric square L-function L(s,sym?f) associated
to a primitive form f of level N and of weight k. In this paper we establish
the subconvexity bound: ngym2; < (K*N?2)40/113 where the implied constant is
absolute.

1. INTRODUCTION

A classical question in analytic number theory concerns the least quadratic non-
residue, see for example, [30, 2, 18, 16] for some investigations. More importantly,
along these studies many useful tools were developed, such as the estimates on char-
acter sums [2, 7] and the large sieve inequalities [18, 21]. Recently much attention
is drawn to G Ly analogues, and the generalizations include the first negative Hecke
eigenvalues [11, 9, 13, 20], the recognition of newforms by values or signs of Hecke
eigenvalues [5, 14, 17, 13, 20], etc.

Let k& > 2 be an even integer and N > 1 be an integer. We denote by Hj(N) the
set of all primitive cusp forms of weight k£ and of level N. For each integer n > 1,
let Af(n) be the Hecke eigenvalue of f € Hj(N) under the Hecke operator T,,. The
eigenvalues Af(n)’s are real and verify the Hecke relation:

mn
(1.1) M) = > A (%)
d|(m,n)
(d,N)=1
for all integers m > 1 and n > 1. Note that )\f(l) = 1. The problem of the first
negative Hecke eigenvalues is to evaluate the size of the least integer n; among all
n satisfying

(1.2) Ar(n) <0  and (n,N) =1,

for instance, to give a good bound for n; in term of conductor k*N of f € Hj(N).
This question was firstly studied by Kohnen & Sengupta [11], and subsequently
Iwaniec, Kohnen & Sengupta [9] introduced a new method to achieve the “subcon-

vexity bound” |

nf < (kzN)29/60 .

Date: June 30, 2013.
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Key words and phrases. Fourier coefficients of modular forms.
T The convexity bound means the exponent 1/2 in place of 29/60, which is an immediate con-
sequence of the convexity bound for Hecke L-function on the critical line.
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But interestingly, this bound is obtained without using any subconvexity bound for
Hecke L-functions on the critical line. Their method has been refined very recently
by Kowalski et al. [13] and by Matomaéki [20], and the exponent 29/60 is improved
to 9/20 and 2/5 respectively. The refinement of the method of Iwaniec, Kohnen &
Sengupta in [13, 20] makes use of the following three ingredients:

e Deligne’s result: there is a real number 6¢(p) € [0, 7| such that

(1.3) A(p) = 2cosb(p);
e The Hecke relation for As(p”) in the form of

(1.4) A(pY) = Sin((sl;;re ;()ﬁ)f(p))

e The respective results for the density of integers without large and small
prime factors, and the density of squarefree friable integers coprime with N.

(Pt N, v=1);

This problem is further extended to higher rank cases. In this direction, Qu
[22] obtained a polynomial bound: Let m > 2 be an integer, and 7 an irreducible
unitary cuspidal representation for GL,,(Ag) with arithmetic conductor N, and
analytic conductor @,. We write L(s, ) for the attached automorphic L-function
and let {\;(n)}n>1 be the sequence of coefficients in the Dirichlet series of L(s, )
in the half-plane Re s > 1. Assume that the sequence {\;(n)},>1 is real, and let n,
be the least integer n such that A (n) < 0. ¥ Qu derived the result [22, Theorem
1.2] that for any € > 0,

(1.5) Ny Koo Q2T

where the implied constant depends only on m and €, with her very elegant inequality
[22, Lemma 5.3]

Ax(@)] + -+ (™) = 1/m (pf Nr).

Very recently the exponent m/2 in (1.5) has been improved to 1 by Liu, Qu & Wu
[19]. These results cover generic cases, but are weaker than the convexity bound
when m > 2. Breaking the convexity is doubtless of deeper interest but no such
result for GL,,, m > 3, is available in the literature.

In this paper we establish a subconvexity bound for a special case of GLj3 - the
symmetric square lift of GL, forms. To each f € Hj(N) is associated a symmetric
square L-function, defined as

L(s,sym?f) := H (1 — Ar(p?) 1 Un(p)As(p?) _ ¢N(p)>_1 _. Z Asym? (1)

S 2s 3s S
p p p n
nz=1

p

for Re s > 1, where ¢y denotes the principal character mod N (cf. [24]). Inherited
from the construction, Agm2f(n) is real, multiplicative and satisfies

(1.6) Agmzp(n) = Y Ap(m?) for (n,N)=1.

d?m=n
Let us write ngym2¢ for the least integer n such that

(1.7) Asym2 (1) < 0 and (n,N) = 1.

*Here there is a slight difference from (1.2): without the extra condition (n, N,) = 1.
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By the work of Gelbart & Jacquet [6], there is an irreducible unitary cuspidal rep-
resentation 7 for GL3(Ag) such that L(s,sym?f) = L(s, 7). Thus Qu’s bound (1.5)
with the refinement of [19] reads as

(18) Ngym2f Ke (k3N2)1+6 ’

where the implied constant depends on € only. Extending the method of [9, 13, 20],
we derive a quite good subconvexity bound for ngym2.

Theorem 1. Let k > 2 be an even integer and N > 1 be an integer. Then for all
f € Hi(N), we have

(1.9) Neymep < (K°N?

where the implied constant is absolute.

)40/113

Y

It is worth to notice that the exponent 40/113 is smaller than the G Lo-exponent
2/5 of Matomaéki [20]. The underlying reason seems due to the methodology and the
asymmetric distribution of Agmzf(p), for —1 < Agymz(p) < 3 while —2 < Ap(p) < 2,
the sum of Agymz2f(n) over squarefree friable n will heuristically bias towards positive
more rapidly under the assumption Agm2¢(p) > 0 for small p’s.

Plainly ngm2¢; = p” is a prime power due to the multiplicativity of Agmzs(n).
However unlike the least quadratic non-residues, we do not know whether the first
negative coefficient of symmetric square L-function is attained at a prime argument
(i.e. v = 1). Let us introduce nysy for the least prime number p t N such that
Asym2f(p) < 0. Clearly ngym2y < nyo. Under the Grand Riemann Hypothesis for
L(s,sym?f), one can show nss < (log(kN))? where the implied constant is absolute.
In [13], Kowalski et al. obtained an almost-all result: Let £ > 2 be an even integer
and N > 1 be a squarefree integer. There is a positive absolute constant ¢ such that

nyo < log(kN)

for all but except O(kNe closkN)/los2kN)y forms f € Hj(N). Here the implied
constants in the < and O-symbols are absolute. These conditional and almost all
bounds for ny s also hold for ngym2, since ngym2y < ny .

We end this section with an outline of the method. Similarly to [9, 13, 20], let y
be the greatest integer such that

(1.10) Asym2f(n) =20 for n<y and (n,N)=1,
and consider
b
(1.11) Seym2r (") =D Agymzs(n),
nLy®

where Zb = D)=t p(n)? and p(n) is the Mobius function. We shall obtain
an estimate for y by comparing the upper and lower bounds for Sgym2¢(y*). The
former is rather easy, and for the latter, the principle of the methods in [9, 13, 20]
is still effective. Nonetheless we need to invoke new identities and new tools in our
manipulation. More precisely, with (1.6) and (1.4), we can prove that

_ sin((v +2)04(p)) sin((v + 1)0;(p))
sin @ (p) sin(20¢(p))

(1.12) Asym2 (P”) (Pt N, v=1).



4 Y.-K. LAU, J.-Y. LIU & J. WU

However using merely this identity and the positivity hypothesis (1.10), we cannot
derive directly the required lower bound for Agym2¢(p). We must exclude those primes
p for which Agmz2f(p”) = 0 where 1 < v < 4. (See Lemma 3.1 below for details.)
Such primes are few, because it is equivalent to enumerate p with Af(p) = « for
a given algebraic number o # 0. In fact, it was observed in [12] the sparsity of p
where A\(p) = £1. Lemma 2.4 below is a generalization to suit our purpose.

Another technicality is the mean value of a multiplicative function g over friable
integers coprime to q:

(1.13) > g,
n<y®, (n,g)=1
P(n)<y
where P(n) denotes the greatest prime factor of the integer n with the convention
that P(1) = 1. There seems no handy reference in the literature. To this end we
prove Lemma 4.2 below, in which the ranges of ¢, u and y are however rather weak.
Much more general and better results will be obtained if one combines the methods
in [28, 8, 29] (where the case of ¢ = 1 is treated) and in [4] (where g(n) = 1). This
problem deserves more attention because of its own interest and future applications.

Acknowledgements. Lau and Liu wish to thank [’Institut Elie Cartan Nancy
(IECN) for the hospitality and support during the preparation of this article. Lau
is supported by General Research Fund (HKU 702308P) from the Research Grants
Council of Hong Kong, and Liu is supported by the NSFC grant 11031004. We would
like to acknowledge E. Kowalski for his unpublished work [12], which constitutes
Section 2 here.

2. EXCLUDING CERTAIN BAD BEHAVIOR OF HECKE EIGENVALUES

In order to bound Sgm2(y*) from below, we need a control on small Agm2¢(p)
which reduces, via (1.12), to remove the “bad” primes p, all contained in the set:

(2.1) Pii= J {p: o) = 2cos(r/(v +2))}.

A general result of Serre [23, Theorem 15] implies that

X
2.2 —_—
( ) |ng| <16 (logx)1+5

for all § < 1/2 and = > 2. This bound is non-trivial, but unfortunately not sufficient
for our purpose. Instead the unpublished work [12] of Kowalski is fitting more, and
we devote this section to its slight generalization. Firstly we invoke a result of
Besicovitch, see the lemma of Chandrasekharan in [3, p.204].

Lemma 2.1. (Besicovitch) Leta; € Z for j =1,...,r and q; = a;p; wherep,...,p,
are distinct primes. Suppose that (aj,py---p.) = 1. ¥ Then

Vi Q= Qa1 Va5 V)

Below is a direct consequence.

S Remark that (0,m) = m.
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Lemma 2.2. Let K be a finite extension field over Q. Then there are constants
Mg, Nx € N such that for any rational prime p 1 Mg and for any a € 7 with

(a,pNk) =1, we have \/ap ¢ K.

Proof. Let p1,...,pq be distinct rational primes, and aq,...,aqs be integers satisfy
(ay-+-aq, p1---pa) = 1. Then by Lemma 2.1, we see that

[Q(vaip, - - -, v/aapa) : Q) = 2%,

and hence, there is an upper bound for the number r for which

Q(vaip1, ... /ap:) CK

where py,...,p, are distinct rational primes and (a; - -a,, p1---p,) = 1. Take r to
be the maximal value and let a;,p; (i = 1,...,r) be a maximal set. We define
Nk = H Di and Mg = Nk H a;.
1<igr 1<igr

Now, any p { Mg and any (a, pNg) = 1 satisfy (ay---a.a, py---p-p) = 1 and thus

Vap ¢ Q(y/aipy, - .., /apr). If \/ap € K, it would follow
Q(vaip1, ..., Varpr, v/ap) C K.

This contradicts to the maximality of r. 0

Next we deduce the following lemma by the argument in the proof of Lemma 2.1
in [3].

Lemma 2.3. Let K be a finite extension field over Q, and Mg, Nk be the numbers
same as in Lemma 2.2. Given any distinct rational primes py, ..., pet Mg, we have

Vip; & K = K(y/prs -, /Dimts \/Djsts - - V/De)
for any integer (n, p1---peNg) =1 and any j =1,... (.
Proof. When ¢ = 1, we have K; = K. This reduces to the case in Lemma 2.2, so the

statement holds. Assume the induction hypothesis for the case of ¢ distinct primes.
Consider distinct primes py, ..., per1 ¥ Mk and suppose

Viperr € K(Vprs s v/pe) = K(Vp1s -5 v/pen) (Vi)

where (n,py -+ piaiNg) = 1. It follows that \/np,q1 = a + B/pr where o, 3 €
K(\/P1,---,+/Pi—1), and consequently,

208\/pe = npes1 — & — FPpr € K(Vpr, - -, v/Pe-1)-
By the induction assumption, we infer that o = 0 or § = 0, for otherwise we have

P € KT, - -, /PiD)-

If o = 0, then \/npripe = Bpe € K(\/P1, -+, /Pe—1)- As (npes1, pr---pelNk) = 1,
it contradicts to the induction assumption. So # = 0, and then we have that
Ve € K(y/p1, ..., \/Pe—1). But now we apply the induction assumption to the

¢ distinct primes py,...,pe—1,Per1, We can infer that /npey € K(y/p1, .- +/De—1)
since (n, p1---pr—1per1Ng) = 1. Contradiction arises again. Our proof is hence

complete. 0

We come to the main result of this section - Lemma 2.4 - which is substantially
verbatim from Kowalski [12], in view of his excellent elucidation.
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Lemma 2.4. Let k > 2 be an even integer and N = 1 be an integer. There is an
absolute constant C' such that the inequality

(2.3) EZIS

log(kN
Tog.2 og(kN) + C

holds for all f € H(N).

Proof. We will need two basic facts on Fourier coefficients of primitive forms, which
are essentially due to Shimura [25]:
— The field

Qr = Q(as(n))nx1
is a number field, where a;(n) := As(n)nk=/2,
— For any automorphism o in the Galois group of Q over Q, the function
fo = Za(af(n))ez’dm (Smz>0)
n>1

is also an element of Hj (). ;jFrom these two properties, we deduce first that

(2.4) [Qy : Q] < [Hi(N)]

Indeed, notice that we have f = f if and only if ¢ is in the subgroup of the Galois
group of Q fixing Q; , so that the number of distinct conjugates f is at most the
index of this subgroup, or in other words the degree of the extension field Q¢ , while
on the other hand there can be no more that |Hj (V)| distinct conjugates by the
second property.

Now since the Fourier coefficients are real numbers, we have
Ar(p)] = 2cos(n/(v +2)) & as(p) = £2cos(n/(v +2))p* V72

Since k is even, this implies in either case that cos(m/(v+2))/p € Q. Fix1 <v <4
and write

o, = cos(m/(v+2)) #0.
Set K = Q(«,) and write M, = My as defined in Lemma 2.3. Let p; < py < --- < pyg
be distinct primes such that p; t M, and |Af(p;)| = 2a,. It follows that

Q(aw/D1, - - - au/pa) C Qy.
Next we claim that
(2.5) [Q(aw/prs -+ uy/pa) - Q) = 24,
which is clearly true once
au/Pj & Qlaw /D1, .- auy/pi1) (G=1,...,4d).

Plainly,

Qawy/p1s -y awy/pi—1) CK(Vp1, - /Pi-1),

but by Lemma 2.3, \/p; & K(y/p1, ..., /Pj—1) and neither does a,/p;.
It follows from (2.4) and (2.5) that

2 < [Qy : Q] < [Hy(N)| < kN.

with an absolute implied constant, we obtain the bound

d <

1
Tog 2 log(kN) + O(1).
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Since there are at most O(log M, ) prime factors of M, the desired bound for |Z|
follows. O

Remark. Bruinier & Kohnen [1, Remark 2.3] gave a non-explicit form of (2.3) for
the simpler case |[Af(p)| = 2. Some interesting applications of (2.3) and (2.2) are
given in [10, 15].

3. PROOF OF THEOREM 1

In this section, we prove Theorem 1 by assuming Lemma 3.2 below, whose proof
will be given in Sections 4 and 5.

We begin with the lower bounds for Agym2¢(p) under the positivity hypothesis
(1.10). Define

(3.1) Ne=]]rx [] ».

p|N peﬂf
where &; is defined as in (2.1). Note that Lemma 2.4 implies
(3.2) w(Ny) < log(kN)

for all f € H}(N), where the implied constant is absolute. The symbol w(n) denotes
the number of distinct prime factors of n with the convention w(1) = 0.

Lemma 3.1. Let k > 2 be even integer and N > 1 be a positive integer.

(i) Formula (1.12) holds for all f € H(N).

(ii) Let y be defined as in (1.10) and 1 < v < 4. Then for p < y* and pt Ny,
we have
(3.3) Aymzf (D) = K, 1= 3 — 4dsin®(7/(v + 2)).

More precisely

0 if y'? <p<yandpt Ny,

1 if y'P<p<y 2cmdp%Nf,
(34) >‘sym2f(p) = ) 1/4

(V5+1)/2 if y"/* <p<y"® and pt Ny,

\V)

if p<y'* andpt N;.
Proof. For p4 N and v > 1, from (1.6) and (1.4) we can deduce that

A p? 1 Z)\ 4-2) z’/: sin((4¢ — 1>9f<p))_

m2f .
> 7 sin 6 (p)

By using the identity 2sinz siny = cos(z — y) — cos(x + y), it follows that

21y i: cos((4€ — 3)0;(p)) — cos((4¢ + 1)0;(p))

Asym2 (P - 2sin 6 (p) sin (26 (p))
_ cos 05(p) — cos((4v + 1)6¢(p))
2sin 6 (p) sin(26¢(p))

Using the preceding identity again yields
-1y _ sin((2v + 1)0;(p)) sin(2v0,(p))
sin 07 (p) sin(204(p))

/\sym2 f (p
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This proves Part (i), as a similar argument applies to
sin((2v +2)0¢(p)) sin((2v + 1)0¢(p))
sin 0 (p) sin(26;(p))

)\syme(p2V) =

forpt N and v > 1.
Now we know

_ sin(304(p))
(3.5) )\Symzf(p) = 0. (o) 0f<p)

In view of the definitions of y and Ny, we have that for 1 < v <4 and p < yl/ Y with
pt Ny,

=3 — 4sin®6;(p).

Asymy(P7) _ sin((j +2)0¢(p))
)\sym2f(p]71> Sln(jef (p))
recalling Agym2f(1) = 1. The case j = 1 implies
0<0s(p) <m/3 or 2r/3 <0f(p) < 7
(as O¢(p) € [0,7]). Observe that

sin((20+1)0;(p)) 1 Aymzs (077)
sin ef(p) j=1 )\smef(pzj_2)

>0 (1<j5<v),

and
Sin((20+2)05(p) 11 Asymzs (0%)
sin(26;(p))

j=1 )\Symzf(p2j_1)
If 0 < 64(p) < m/3, then both sin §;(p) and sin(26;(p)) > 0. A successive application
of the positivity with the last two formulas yields sin((¢ + 2)0;(p)) > 0 for all
1 < ¢ < v, and hence 0 < b¢(p) < 7/(v+2). In case 21/3 < 0¢(p) < 7, we take
Us(p) = 1—0¢(p) € [0,7/3), then the above formulas hold for ¥+(p) in place of 64(p),
with sin?d;(p) > 0 and sin(29;(p)) > 0. We hence obtain that (v + 1)7/(v 4+ 2) <

0s(p) <.
Thus (3.3) follows with (3.5), and (3.4) is also an immediate consequence, for
k1 =0, k=1, k3= (V/5+1)/2 and xy = 2. O
In view of (3.4) and the fact
(3.6) Aymzs(B) = A (0%) = M0 =12 =1 (1 V),
we introduce the auxiliary multiplicative function h = hy, , defined as
(—1 if p >y and p{ Ny,
0 if Y2 <p<yorp| Ny,
h,y(p) =< 1 if Y3 <p<y?and pt Ny,
(V54 1)/2 if y* < p<y?and pt Ny,
(2 if p<yY*and pt Ny,

and hy, ,(p”) = 0 for all p and v > 2. The key to obtain the required lower bound for
Ssym2(y") is to evaluate the mean value of hy, ,(n) (as shown in (3.11) below). The
size of this mean value is related to the solution of a difference-differential equation.



THE FIRST NEGATIVE COEFFICIENTS OF SYMMETRIC SQUARE L-FUNCTIONS 9

Let £ > 1 and p,(t) be the unique continuous solution of the difference-differential
equation

(3.7) { pu(t) = 171 /T (k) 0<t<),

(B="pu()) = =kt "pelt = 1) (t> 1),

where I'(k) denotes the gamma function. By [26, Lemma 4.2], if x > 1, p,i(t)
is increasing on [0,t,] and decreasing on [t.,00) where max{l,x — 1} < ¢t
furthermore, p,(t) — 0 as t — oo. In particular we note that ty = \/e.

Define

w0 e () (5)

where p(n) is the Euler totient function. We have the following lemma, proven in
Section 5.

Lemma 3.2. With the previous notation, we have

(3.9) > iy y(n) = Ty, 24" (log y1/4)5(U){1 +0 (M> }

logy

nLy®

uniformly for

(3.10) ‘51 <u< % and y = (k:3N2)1/100,
where

d(u) == 01(u) + 0a(u) + d3(u) — 04(u),
and

01 (u) == po(4u),

4/3 . 2 B
a(u) _Hg/ Mm/ Mdt,
4/3

= /13/ / s) ds
4/3dt (du—t — dt (du—t —
+l€3/ / pQ u 8 / / pQ U S) d s,
4/3 § 4/3

da(u) ::/ Mdt—k/ﬁg/ — uds
4 i 4 t 1 S

+ —  Cds+ ks — s
4 4

t Jas s u—4/3 )1 s

with k3 = (V5 + 1)/2. The function 6(u) is decreasing on [1 + \/e/4,3/2] and
d(u) > 0 for all u < ug, where ug is the solution to 6(ug) = 0 in [1++/e/4,3/2]. We
have uy > 113/80.
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Now we are ready to show Theorem 1 with the help of Lemma 3.2. Let us start
with the lower bound for Sgym2(y “) As in [13], we notice that

(311) sym2f Z thy

n<y®

for all u < wg, provided y is large enough, for instance, y > (k>N?)Y/1% and kN is
large enough, which can obviously be assumed in proving Theorem 1.

To see (3.11), let gn,, be the multiplicative function defined by the Dirichlet
convolution identity Agm2y = gn,y * An,y- Then gy, ,(n) = 0 for all squarefree
integers n > 1 with (n, Ny) = 1, since gn, 4 (p) = Asym2¢(p) — A, 4 (p) = 0 for p{ Ny.
This is easily verified from the definition of Ay, ,, (3.4) and (3.6).

According to Lemma 3.2, we have

> g gy(n) =0
nyv
for u < wp and sufficiently large y. But, as gn,, (1) = 1, we infer that
sym2f Z ngy*thy )

nLyY

=Zngf,y<d> S Dy (m

d<y¥ m<y*/d
b
> Z hn £y <m>
msy*
which is (3.11). Then we deduce from Lemma 3.2 the required lower bound

y*logy

(3.12) Ssymzy (y") > {log, (kN)}?

(u < ),

since we have, by (3.8) and (3.2),
Iy, 2 > {log(w(Ny) + 3)} > > {log,(kN)} 2.

Next we establish an upper bound for Sgy2¢(y"). For Res > 1, we have

3 At ) T (1 2 )) — L(s,sym>f)Gy(s),

ns
n=1 PN p

where the Dirichlet series of
Ar(p® M(2)2 = X2 A (P2 =1 M (p?
Gi(s) =] i) (- (P =N ?) AP =1 M)
ps p2s pgs p4s
p|N PN

converges absolutely and so G(s) <. N° in the half-plane Res > 1/2 4+ ¢ and
Gy(s) <. 1for Res > 1+¢€ (as |Af(p”)] < v+ 1 by Deligne’s inequality).
The Perron formula (cf. [27, Theorem 11.2.3]) gives

S : ML( )Gy ()= ds + 0 (2514 2
sym2 £ (1 =5 s, sym s(s)— ds x T

n<e —iT
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where kK = 1 + €. Using the convexity bound
L(s,sym*f) <. (KN2(|7[* + 1))/

(
we move the line of integration e s = k to Re s = %—i—e and select 7' = x° to deduce
that for x < (K3 N?)1/2+e}

Ssym2f(x) <. (k3N2)1/4+6(£1/2+€.
Now, a comparison with (3.12) gives the estimate
y < (k3N2)1/(2u0)+6 .

Quoting the lower bound for ug from Lemma 3.2, the proof of Theorem 1 is done.

s=1+e+ir, 7 €R),

4. MEAN VALUE OF MULTIPLICATIVE FUNCTION OVER FRIABLE INTEGERS
COPRIME WITH q

We prepare for the proof of Lemma 3.2. To this end we consider a mean value
theorem of the multiplicative function n +— u(n)?£“™ over friable integers coprime
with ¢, where kK > 0 is a constant. For z > 1, y > 2 and ¢ € N, define

Eps(my) = > pm)eand E, (7)) = Egu(r, @),
n<z, (n,q)=1
P(n)<y

We begin with the treatment of =, ().

Lemma 4.1. Under the previous notation, there is a positive constant C' = C(k)
depending only on k such that we have

_ an . LZn-i-?
= = ——~z(l " 1
o) = iy etomay {1+0n (52

uniformly for

(4.1) g=1 and x> exp(CLIH?),
where I1, ,; is defined as in (3.8) and
(4.2) L, :=log(w(q) + 3).
Proof. For e s > 1, we have
S pnsen s = T+ mp*) = C(5)°Giys).
(=1 e

where ((s) is the Riemann (-function and

Gy(s) = —p) Q= p*)" (1 + rp™)
plg pig
converges absolutely for fes > 1/2 + ¢ and any € > 0.

In [13], the inequality sign of "2 > Q?7+¢” below (2.1) should be reversed, and @ tacitly means
2N (1 + [t]?).



12 Y.-K. LAU, J.-Y. LIU & J. WU

By the Perron formula (see [27, Theorem I1.2.3]), we can write

1 b-+HiT ) Z.S
4. = = il
(4.3 @) =5 [ PG ds + O(Ra),
where b =14 1/logx, T > 3 and
ﬁw(n)
Ry = .
=) nb(1+ T|log(z/n)))

n>1

The implied constant in the O-term is absolute.
The summation of R over n with |log(z/n)| < T~/? is

<</-c Z KW(")

|n—x|<eT—1/2

1/2 1/2
“«( 2 =) T )
[n—a|<aT=1/2 In—z|<aT—1/2
(1o (k2-1)/2
<. (log ) |
T1/4

and the remaining part of R4, contributed from the sum over n with |log(z/n)| >
T2 is

Z Km) x(log z)~1

<k nb <k T1/2

x
T1/2

|n—x|>aT—1/2
As a result, we have

z(log x) ()
(4.4) Rl <<f‘€ T,
where and in the sequel, ¢;(k) (i = 1,2,...) denotes a positive constant depending
only on k.

It remains to evaluate the integral on the right-hand side of (4.3). Let ¢ be a
suitable positive constant and

o(T):=1—c¢/logT.

Let r = 1/(2logz) and assume 1 —r > o(7T). The truncated Hankel contour I is
a positively oriented contour formed from the circle |s — 1| = r excluding the point
s = 1 — r and joining with the half-segment [0(7"), 1 — r] which is traced out twice
with respective arguments +7m and —7. We apply the residue theorem to the integral
over the closed path that consists of the vertical line segments [b — iT,b + iT] and
LE = [o(T),o(T) £iT], two horizontal line segments £i := [o(T) +1iT, b+ iT] and
the contour I'.
For Res > o(T'), we have

Gy(s) < J] (@ +po™)"

plg

<exp{r » p "}

pgpu(q)

c/logT
< exp {Hpa;/(q)g 10g2 pw(q)}v
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where p, is the nth prime. Since p,, ~ nlogn by prime number theorem, we have

(4.5) |Gy(s)] < exp {rexp (2cLy/logT)log Ly} < L&~
provided
(4.6) T > exp{2cL,}.

Together with the well-known bound ((s) < log T for s € £ U LT UT, it follows

that
K z® ek £ o(T) Kk+1
/L . (()°Gy(9) = ds < L ( 427 ) (log T)

if (4.6) is satisfied.
By (4.5) and the properties of ((s), we have

57 (s = 1)¢(5))"Gy(s) = Go(1) + Ou(LY|s = 1))
for s € I, under the hypothesis (4.6). The error term contributes a term

<<L2“/|(s—1 ) 2| | ds]

r
1-r

<<LZH/ (1_0_)lnad0_+x1+r2n
(T)

L LFa(logx) 2.
y [27, Corollary I1.5.2.1], we get from G,(1) the main term,

Gq(.l) /F<S — 1)z ds = Gy(1) (log z)"~ 1{1 40, ( —c logr)/logT)}

27i (k)
Combining them gives
1 Kk+iT s Gq(1>
- K i _ 1 =111 —c(logx)/log T
omi ) C(s)"G,(s) . ds T(n) z(logz)* {1+ O(e )}

T er KR—
+ O (LZ” (T + x”(T)> (log T)"*' + L*z(log x) 2>

under the hypothesis (4.6).
Inserting into (4.3) with (4.4), we obtain that

(4.7) Eyn() = Gq(1)

NG
where

z(logz)* " + 0,(R2)

Gy(L)z(logz)*™

ec(logz)/logT

RQ =

+ L (T1/4 +x (T)) (log T')*2%) 4 L (log x)?

if (4.6) holds.
It is easy to see that

Mg = Gy(1) > L2
We take
T—exp{c3 (log x) 1/2}
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then the condition (4.6) holds valid since = > exp(CL?). Moreover we can easily see
that

) 1Len+2 1Len+2
_ K— q K— q
(4.8) Ro <, L, “z(log z) Tog 2 < I, z(log ) gz

uniformly for ¢ and x verifying (4.1). The required result follows from (4.8) into
(4.7). O

The next lemma plays a key role in the proof of Lemma 3.2. As mentioned in the
introduction, we do not make effort to widen the ranges of the parameters involved.

Lemma 4.2. Let k > 1 and U > 1 be two fixed constants. For some suitable
constant C' = C(k,U) depending only on k and U, we have

Ler(log, )= ) }

logy

(4.9) Zox("y) =1, y*(logy)" " pe(u) { 1+ Oy (

uniformly for
(4.10) qg=>1, Yy = exp(20L§“+2), Ul'<u<U,

where 11, ., L, and p,(u) are defined as in (3.8), (4.2) and (3.7), respectively, and

1 =1
5&1::{ if k=1,

0 otherwise.

Proof. It U™t < u < 1, we have Z,,.(y*,y) = Z,.(y*). Thus Lemma 4.1 gives us
immediately the required asymptotic formula since p,(u) = u*~! /T'(k).
Next we suppose that 1 < u < 2. Write

(4.11) Eon("y) = Egu(") — 5 Y Egu(y"/p).

y<p<y“
plq

With the help of Lemma 4.1, we have

rk—1 Len+2
T (") = Ty y"(log )" 3 1 4 O, ( =2
’ ’ I'(x) log y

and so

Z Egs(y"/p)

exk+2
y<p<yve “Fa

-y P ()

exk+2
CLq

y<p<y'e

The O-terms are absorbed in the O-term of (4.9) by partial integration with the
prime number theorem and the fact that p,(u) >, 1 uniformly for 1 < u < 2. The
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mailn term is

S o, y"(logp)<~* o (log(y“/p)>

P log p

exk+2
y<p<yve “Fa

u t—l) Len+2
—1I . u(] u\k—1 Ldt 1 q .
an Y (logy") /1 ” { +0(1Ogy

On the other hand, we have

>+ > )Eqﬁ(y“/p)

y<p<y"

pla e <Pyt
{log(y"/p)}"!
(X + X )
y<p<y" —cLert2 p
plg yte 7 <psy"
Le/i+2 K
<<Hy“(10gy)"‘1( 4 )
log y

which is admissible, for logy > Lg"‘“. Inserting these estimates into (4.11) and
noticing that

p,ﬁ(u):u“_l(ﬁ—m/jwdo (1<u<?),

we find that the asymptotic formula (4.9) holds uniformly for ¢ > 1, y > exp(CL"+?)
and 1 < u < 2. Recursively we get the result for the general case 1 <u < U. 0

5. PrROOF OF LEMMA 3.2

Lastly we complete the postponed proof of Lemma 3.2, and there are two asser-
tions.

5.1. Proof of (3.9). According to the definition of Ay, , after (3.6), we have

(5'1) Zth,y(n): Z th,y(n>_ Z Z th,y(n)

nLyY ny® y<p<y“ n<y*/p
P(n)<yy Ny

for all v and y satistying (3.10).
With the Buchstab identity, it follows that

S ) =Enalt )+ (X e Y)Y ),

N y/A<py!/? y/3<pyt/? n<yt/p
P(n)<vy PINg PINy P(n)<p

Repeating this procedure, we obtain
Z thhy(TL) 2 Sl + SQ + 53,

n<y"

P(n)<y
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Sy 1= < Z K3 =+ Z >ENf,2 <£, Z/l/4>a

y1/4<p<y1/3 y1/3<p<y1/2
PtNy PtNy

S 1= < Z /@% + Z K3 + Z >5Nf72( yY y1/4).

)
P1p2
Yy i<pi<pa<yt’® YV r<pi<y B<payl/? Y 3<pi<payl/?
pitNy pitNy pitNy

In view of (3.2), we have
Ly, = log(w(Ny) +3) < logy(kN) < log, y,

since y > (kK3N?)Y/190 Thus y > eXp(C’L?Ve;L?) provided k3N? is suitably large. So
we can apply Lemma 4.2 with ¢ = Ny and k = 2 to write
(5.2) Sy = P2(4U)0Nf (y, u),

where

" (logy y)°
C, (y,u) == Iy, 2y"(log y1/4){1 + 0(@ :

Similarly, by Lemma 4.2 with ¢ = Ny, we have

3 3 1 (log(y"/p)
SQZCNf(y7u)< :‘ig—f— )—,02(1—1/4 .
1/4 1 c p Og y
y!/t<p<y! /3 y!/3<p<yt/?
PNy PNy
Integration by parts with the prime number theorem yields

(5, 5, () -sfeo(ch)}

y1/4<p<y1/3 y1/3<p<y1/2

Trivially we have the estimate

> 2%pz(log(y“/zo)) < Lo8(kN) (logy y)°

log y!/4 yt/4 log y

)
y1/4<p<y1/2
pINy

and in summary,

(5.3) Sy = 02(u)On, (y, u).
Similarly we prove that

(54) 53 = 53(U)CNf (ya U)



THE FIRST NEGATIVE COEFFICIENTS OF SYMMETRIC SQUARE L-FUNCTIONS 17

The treatment of the double sum in (5.1) is even simplier. For u,y verifying
(3.10), we have

Z Z hn,y(n) < Z ENf,z(%u,yl/A‘)

y<p<y“ n<y*/p y<p<y“
u
’: y
+ R3 + + R3 |ZN,2 .
u—1/3 u—1/3 u—1/3 u—1/4 " plp2
y<p1<y y<p1<y y <p1<y
Y/t <pa<yl/3 y/3<pay™/;m Yy 4<pa<y /o1

The previous argument applies and we get that
(5.5) Z Z b y(n) < 0a(u)Cn, (y, u).
y<p<y" n<y“/p
Inserting (5.2), (5.3), (5.4) and (5.5) into (5.1), we get the desired inequality in
(3.9).

5.2. Study of §(u). To facilitate the numerical computation, we put
v = 4u, i (v) == &;(v/4) and o(v) = b(v/4).
Thus we have
0(v) = 01(v) + 02(v) + d3(v) — d4(v)  (16/3 < v < 6).

After some standard manipulations with the change of variables, the interchange of
integrals and integration by parts, we deduce that

01(v) = pa(v),
5o(v) = /v_4/3 p2(t) dt + /v_l p2(t) dt,

—9 v—1 _4/3U—t

v—10/3 v—2
N p2(t) 2 / p2(t)
5 () = 1 dt P2 Yoo — 1 — ) dt
)= [ 2o (2 Jars [ 20001

v—3
p2(t) 2 4/3 v—4/3—t
: log | —— ) ¢ dt
Jr/vlo/:sv—f{ﬁ3 Og(1}—2—1N)—41/i’>—75 +log 4/3
v=T/3 (t) 4/3
2_1/ P2 1 a
+(K}3 ) v—8/3 v—1 ©8 U—4/3—t ’
- 4/3 (9 e o
54(U)zvlog( 1) _1+/ (38— ma)t — (2~ m)tlogt — (2 — ) .
v 1

v—1
N /“—4 (24 (k3 — 1) log(4/3))t — tlogt — (2 + Kk3)/3 &
4/3 v—t )

Next we show that all summands on right-hand side of &;(v) (1 < i < 3) are
decreasing on [4 + /e, 6]. The proofs are quite similar, so we only consider, as an

example, the third summand in the expression of d3(v). Denote this term by d5(v)
and define

Fys(t,0) = ﬁ{mg log (U — _Zi - t) +log (%) }
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Noticing
OF}33 ,
go () == (o),

we infer that

- B v—3 _/”3 O0F3 3
550) = | F)] e S CRL

v—3
_ / oL (#) Fys(t, v) dt

~10/3
<0,

since ph(t) < 0 for t > /e and F33(t,v) >0 for v —10/3 <t <v—3.
Consequently we have

_ 431 _ (9 _
5(v) = log (—U ) + / L= 2= rylost
1

v—1 v—t
N /”_4 1+ (kg —1)log(4/3) — logt
> 0.

dt

Hence 6(v) is decreasing on [4 + Ve, 6]. i
Using MAPLE, we check that 6(40/113) > 0.002.... Thus &(iig) = 0 with i >
113/20 > 4 + /e, and we have 0(ug) = 0 with ug = /4 > 113/80.

REFERENCES

[1] J.-H. Bruinier & W. Kohnen, Sign changes of coefficients of half integral weight modular
forms, In: Modular forms on Schiermonnikoong (eds. B. Edixhoven et. al.), 57-66, Cambridge
Univ. Press, 2008.

[2] D. A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. (3) 13 (1963),
524-536.

[3] K. Chandrasekharan, Arithmetical functions, Die Grundlehren der mathematischen Wis-
senschaften, Band 167 Springer-Verlag, New York-Berlin (1970).

[4] R. de la Breteche & G. Tenenbaum, Propriétés statistiques des entiers friables, Ramanujan
J. 9 (2005), 139-202.

[5] W. Duke & E. Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for
automorphic representations, With an appendix by Dinakar Ramakrishnan, Invent. Math.
139 (2000), no. 1, 1-39.

[6] S. Gelbart & H. Jacquet, A relation between automorphic representations of GL(2) and
GL(3), Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 471-552.

[7] S. W. Graham & C. J. Ringrose, Lower bounds for least quadratic nonresidues, in: Analytic
number theory, edited by Bruce C. Berndt, Harold G. Diamond, H. Halberstam and A.
Hildebrand, Progr. Math., Vol. 85 (Birkhauser Boston, 1990), pp. 269-309.

[8] G. Hanrot, G. Tenenbaum & J. Wu, Moyennes de certaines fonctions multiplicatives sur les
entiers friables, 2, Proc. London Math. Soc. (3) 96 (2008), 107-135.

[9] H. Iwaniec, W. Kohnen & J. Sengupta, The first sign change of Hecke eigenvalue, Interna-
tional J. Number Theory 3 (2007), no. 3, 355-363.

[10] W. Kohnen, Y.-K. Lau & J. Wu, Fourier coefficients of cusp forms of half-integral weight,
Preprint 2009.



THE FIRST NEGATIVE COEFFICIENTS OF SYMMETRIC SQUARE L-FUNCTIONS 19

[11] W. Kohnen & J. Sengupta, On the first sign change of Hecke eigenvalues of newforms, Math.
Z. 254 (2006), no. 1, 173-184.

[12] E. Kowalski, Excluding certain bad behavior of Fourier coefficients of modular forms, preprint
2007, http://www.math.u-bordeauxl.fr/~kowalski/notes-unpublished.html

[13] E. Kowalski, Y.-K. Lau, K. Soundararajan & J. Wu, On modular signs, Math. Proc. Camb.
Phil. Soc. 149 (2010), 389-411.

[14] E. Kowalski, P. Michel & J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke
Math. J. 114 (2002), no. 1, 123-191.

[15] Y.-K. Lau, J.-Y. Liu & J. Wu, Coefficients of symmetric square L-functions, Science in China
Series A: Mathematics 53 (2010), No. 9, 2317-2328.

[16] Y.-K. Lau & J. Wu, On the least quadratic non-residue, International J. Number Theory 4
(2008), no. 3, 423-435.

[17] Y.-K. Lau & J. Wu, A large sieve inequality of Elliott-Montgomery-Vaughan type and two
applications, IMRN, Vol. 2008, Number 5, Article ID rnm 162, 35 pages.

[18] Yu.V. Linnik, A remark on the least quadratic non-residue, C. R. (Doklady) Acad. Sci. URSS
(N.S.) 36 (1942), 119-120.

[19] J.-Y. Liu, Y. Qu & J. Wu, Two Linnik-type problems for automorphic L-functions, Preprint
2010.

[20] K. Matoméki, On signs of Fourier coeffcients of cusp forms, Preprint 2010.

[21] H. L. Montgomery & R. C. Vaughan, Eztreme values of Dirichlet L-functions at 1, in: Number
theory in progress, Vol. 2, Zakopane-Koscielisko, 1997 (K. Gyory, H. Iwaniec & J. Urbanowicz,
Eds), 1039-1052, de Gruyter, Berlin, 1999.

[22] Y. Qu, Linnik-type problems for automorphic L-functions, J. Number Theory 130 (2010),
no. 3, 786-802.

[23] J.-P. Serre, Quelques applications du théoréme de densité de Chebotarev, Inst. Hautes Etudes
Sci. Publ. Math. 54 (1981), 323-401.

[24] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31
(1975), 79-98.

[25] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Reprint of the
1971 original, Publications of the Mathematical Society of Japan, 11, Kandé Memorial Lec-
tures, 1. Princeton University Press, Princeton, NJ, 1994, xiv+271 pp.

[26] H. Smida, Sur les puissances de convolution de la fonction de Dickman, Acta Arith. 59
(1991), 123-143.

[27] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Translated from the
second French edition (1995) by C. B. Thomas. Cambridge Studies in Advanced Mathematics,
46. Cambridge University Press, Cambridge, 1995, xvi+448 pp.

[28] G. Tenenbaum & J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers
friables, J. Reine Angew. Math. 564 (2003), 119-167.

[29] G. Tenenbaum & J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers
friables, 3, Compositio Math. 144 (2008), No. 2, 339-376.

[30] I. M. Vinogradov, Sur la distribution des résidus et non résidus de puissances, Permski J.
Phys. Isp. Ob. -wa 1 (1918), 18-28 and 94-98.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM ROAD,
Honc Kona
E-mail address: yklau@maths.hku.hk

SCHOOL OF MATHEMATICS, SHANDONG UNIVERSITY, JINAN, SHANDONG 250100, CHINA
E-mail address: jyliu@sdu.edu.cn

INsTITUT ELIE CARTAN NANCY (IECN), NANCY-UNIVERSITE CNRS INRIA, BOULEVARD
DES AIGUILLETTES, B.P. 239, 54506 VAND@®UVRE-LES-NANCY, FRANCE
E-mail address: wujie@iecn.u-nancy.fr



