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Introduction

The study of the structure and size of the group of points of elliptic curves over finite fields has received much attention since Koblitz and Miller independently proposed in 1985 elliptic curve cryptography, an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. Those cryptosystems guarantee, in general, a high level of security with less cost in the size of the keys, whenever the order of the group has a big prime divisor.

Let E be an elliptic curve defined over Q with conductor N E and without complex multiplication (CM), and denote by E(F p ) the reduction of E modulo p. Writing n E (p) := |E(F p )|, it is an interesting problem to study the asymptotic behavior of (1.1) π twin E (x) := p x : n E (p) is prime . Here and in the sequel, the letters p, q and denote prime numbers. Koblitz [START_REF] Koblitz | Primality of the number of points on an elliptic curve over a finite field[END_REF] conjectured that as x → ∞,

(1.2) π twin E (x) ∼ C twin E x (log x) 2 ,
with an explicit constant C twin E depending only on E (see [5, (2.5)] for its precise definition). It is easy to see that if C twin E = 0, then π twin E (x) E 1 for all x 1. The asymptotic formula (1.2) can be regarded as the analogue of the twin prime conjecture for elliptic curves. As in the classical case, Koblitz's conjecture is still open, but was shown to be true on average over all elliptic curves [START_REF] Balog | Average twin prime conjecture for elliptic curves[END_REF]. One can also apply sieve methods to get unconditional or conditional upper bounds for π twin E (x). The best unconditional upper bound is due to Zywina [START_REF] Zywina | The large sieve and Galois representations[END_REF]Theorem 1.3], and the best bound under the Generalised Riemann Hypothesis (GRH) is due to David & Wu [START_REF] David | Almost prime values of the order of elliptic curves over finite fields[END_REF]Theorem 2]. For E an elliptic curve over Q without CM, and for any ε > 0, those bounds are (1.3) π twin E (x)

     (24C twin E + ε) x (log x) log 2 x
(unconditionally), (10C twin E + ε) x (log x) 2 (under the GRH),

where log k denotes the k-fold logarithm function. Let b 2 be an integer. We say that a composite positive integer n is a pseudoprime to base b if the congruence (1.4) b n ≡ b (mod n)

holds. In practice, primality testing algorithms are not fast when one wants to test many numbers in a short amount of time, and pseudoprime testing can provide a quick pre-selection procedure to get rid of most of the pretenders. The distribution of pseudoprimes was studied by many authors, including [START_REF] Erdős | On pseudoprimes and Carmichael numbers[END_REF][START_REF] Pomerance | On the distribution of pseudoprimes[END_REF]. Motivated by applications in cryptography, the question of the distribution of pseudoprimes in certain sequences of positive integers has received some interest (see [START_REF] Cojocaru | Pseudoprime reductions of elliptic curves[END_REF][START_REF] Gordon | The distribution of Lucas and elliptic pseudoprimes[END_REF][START_REF] Luca | Pseudoprime values of the Fibonacci sequence, polynomials and the Euler function[END_REF][START_REF] Luca | Pseudoprime Cullen and Woodall numbers[END_REF][START_REF] Van Der Poorten | On strong pseudoprimes in arithmetic progressions[END_REF]).

In particular Cojocaru, Luca & Shparlinski [START_REF] Cojocaru | Pseudoprime reductions of elliptic curves[END_REF] have investigated distribution of pseudoprimes in {n E (p)} p primes . Define

Q E,b (x) := p x : b n E (p) ≡ b (mod n E (p)) .
According to Fermat's little theorem, if n E (p) is a prime such that n E (p) b, then (1.4) holds with n = n E (p). Thus

(1.5)

π twin E (x) Q E,b (x 
) for all x 2. Cojocaru, Luca & Shparlinski [3, Theorems 1 and 2] proved that for any fixed base b 2 and elliptic curve E without CM, the estimates

(1.6) Q E,b (x) E,b          x(log 3 x) 2 (log x) log 2 x (unconditionally) x(log 2 x) 2 (log x) 2 (under the GRH)
hold for all x 10, where the implied constant depends on E and b. * The first aim of this paper is to improve (1.6). *

We noticed that there are two inaccuracies in Cojocaru, Luca & Shparlinski's proof of (1.6): With the notation of [START_REF] Cojocaru | Pseudoprime reductions of elliptic curves[END_REF], we have [3, page 519]). Thus the inequality (see [3, page 520

t b ( ) | (n E (p) -1) instead of t b ( ) | n E (p) (see
]) #T y< z Π(x; ρ(t b ( )))
does not hold. Secondly the statements of Lemmas 3, 4, 6 and 7 of [START_REF] Cojocaru | Pseudoprime reductions of elliptic curves[END_REF] are not true when (m, M E ) = 1 (see Section 2 for the definition of M E ). Then, the proofs of Lemma 9 and 10 hold only for (m, M E ) = 1. This is not sufficient for the proof bounding #T since t b ( ) is not necessarily coprime with M E . Theorem 1.1. Let E be an elliptic curve over Q without CM and b 2 be an integer. For any ε > 0, we have

(1.7) Q E,b (x)        (48e γ + ε) x log 3 x (log x) log 2 x (unconditionally) (28e γ + ε) x log 2 x (log x) 2
(under the GRH) for all x x 0 (E, b, ε), where γ is the Euler constant.

Denoting by π(x) the number of primes not exceeding x, and by π pseu b (x) the number of pseudoprimes to base b not exceeding x, then it is known that (see [START_REF] Erdős | On pseudoprimes and Carmichael numbers[END_REF][START_REF] Pomerance | On the distribution of pseudoprimes[END_REF])

(1.8) π pseu b (x) = o(π(x)) as x → ∞. Precisely Pomerance [17, Theorem 2] proved that † (1.9) π pseu b (x) x L(x)
for x x 0 (b), where

(1.10) L(x) := e (log x)(log 3 x)/ log 2 x .
As analogue of π pseu b (x) for elliptic curve, we introduce

π pseu E,b (x) := p x : n E (p) is pseudoprime to base b . Clearly Q E,b (x) = π twin E (x) + π pseu E,b (x) 
. In view of (1.8), it seems reasonable to conjecture

(1.11) π pseu E,b (x) = o π twin E (x) as x → ∞.
In order to establish analogue of (1.9) for π pseu E,b (x), we need a supplementary hypothesis.

Hypothesis 1.2. Let E be an elliptic curve over Q. There is a positive constant δ such that

(1.12) M E (n) := # {p : n E (p) = n} E n δ
holds uniformly for n 1, where the implied constant can depend on the elliptic curve E.

By the Hasse bound

|p + 1 -n E (p)| 2 √ p, it is easy to see that (1.13) n E (p)/16 p 16n E (p)
for all p. Thus the relation n E (p) = n and the Hasse bound imply that |p-n| 9 √ n. Therefore (1.12) holds trivially with δ = 1 2 and an absolute implicit constant. It is conjectured that (1.12) should hold for any δ > 0 (see [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF]Question 4.11]). Kowalski † In [START_REF] Pomerance | On the distribution of pseudoprimes[END_REF], the definition of pseudoprime to base b is slightly stronger: b n-1 ≡ 1 (mod n) in place of b n ≡ b (mod n). It is easy to adapt Pomerance's proof of [START_REF] Pomerance | On the distribution of pseudoprimes[END_REF]Theorem 2] to obtain (1.9), as we do in this paper for the context of elliptic curves pseudoprimes. See Section 5 for more details.

proved that this conjecture is true for elliptic curves with CM [12, Proposition 5.3] and on average for elliptic curves without CM [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF]Lemma 4.10].

The next theorem shows that we can obtain a better conditional upper bound for π pseu E,b (x) than π twin E (x), which can be regarded as analogue of (1.9) for elliptic curves without CM.

Theorem 1.3. Let E be an elliptic curve over Q without CM and b 2 be an integer. If we assume the GRH and Hypothesis 1.2 with δ < 1 24 , we have

(1.14) π pseu E,b (x) 
x L(x) 1/38 for all x x 0 (E, b, δ).

In view of Koblitz's conjecture (1.2), the result of Theorem 1.3 then encourages our belief in Conjecture (1.11).

By combining (1.14) and the second part of (1.3), we immediately get the following result.

Corollary 1.4. Let E be an elliptic curve over Q without CM and b 2 be an integer. If we assume the GRH and hypothesis 1.2 with δ < 1 24 , for any ε > 0 we have

(1.15) Q E,b (x) (10C twin E + ε) x (log x) 2
for all x x 0 (E, b, δ, ε).

We can also consider the same problem for elliptic curves with CM. In this case, we easily obtain an unconditional result by using the bound (1.9) of Pomerance for pseudoprimes and a result of Kowalski [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF] about the second moment of M E (n) for elliptic curves with CM.

Theorem 1.5. Let E be an elliptic curve over Q with CM and b 2 be an integer. Then we have

(1.16) π pseu E,b (x) 
x L(x) 1/4 for all x x 0 (E, b).

It seems be interesting to prove that (1.17)

π pseu E,b (x) → ∞, as x → ∞. We hope to come back to this question in the future.
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Chebotarev density theorem

In order to prove Theorems 1.1 and 1.3, we need to know some information on the distribution of the sequence {n E (p)} p primes in arithmetic progressions. The aim of this section is to give such results with the help of the Chebotarev density theorem. Our main result of this section is Theorem 2.3 below.

We conserve all notation of [5, Sections 2 and 3]. In particular, for an elliptic curve E without complex multiplication defined over the rationals, let E[n] be the group of n-torsion points of E, and let L n be the field extension obtained from Q by adding the coordinates of the n-torsion points of E. This is a Galois extension of Q, and we denote G(n

) := Gal(L n /Q). Since E[n]( Q) Z/nZ × Z/nZ,
choosing a basis for the n-torsion and looking at the action of the Galois automorphisms on the n-torsion, we get an injective homomorphism

ρ n : G(n) → GL 2 (Z/nZ).
If p nN E , then p is unramified in L n /Q. Let p be an unramified prime, and let σ p be the Artin symbol of L n /Q at the prime p. For such a prime p, ρ n (σ p ) is a conjugacy class of matrices of GL 2 (Z/nZ). Since the Frobenius endomorphism (x, y) → (x p , y p ) of E over F p satisfies the polynomial

x 2 -a E (p)x + p, it is not difficult to see that tr(ρ n (σ p )) ≡ a E (p) (mod n) and det(ρ n (σ p )) ≡ p (mod n).
To study the sequence {n E (p)} p primes , we will use the Chebotarev Density Theorem to count the number of primes p such that

n E (p) = p + 1 -a E (p) ≡ det(ρ n (σ p )) + 1 -tr(ρ n (σ p )) ≡ r (mod n)
for integers r, n with n 2. We then define

C r (n) = {g ∈ G(n) : det(g) + 1 -tr(g) ≡ r (mod n)} .
Then, the C r (n) are unions of conjugacy classes in G(n). We also denote C(n) := C 0 (n). For any prime such that ( , M E ) = 1, G( ) = GL 2 (Z/ Z), and it is easy to compute that

(2.1) |C r ( )| =        ( 2 -2) for r ≡ 0 (mod ) ( 2 --1) for r ≡ 1 (mod ) ( 2 --2) for r ≡ 0, 1 (mod )
and then

(2.2) |C r ( )| |G( )| =                  2 -2 ( -1) 2 ( + 1) for r ≡ 0 (mod ) 2 --1 ( -1) 2 ( + 1) for r ≡ 1 (mod ) 2 --2 ( -1) 2 ( + 1)
for r ≡ 0, 1 (mod ).

It was shown by Serre [19] that the Galois groups G(n) ⊆ GL 2 (Z/nZ) are large, and that there exists a positive integer M E depending only on the elliptic curve E such that

If (n, M E ) = 1, then G(n) = GL 2 (Z/nZ); (2.3) If (n, M E ) = (n, m) = 1, then G(mn) G(m) × G(n); (2.4) If M E | m, then G(m) ⊆ GL 2 (Z/mZ) is the full inverse image of (2.5) G(M E ) ⊆ GL 2 (Z/M E Z) under the projection map. Let π Cr(n) (x, L n /Q) := |{p x : p nN E and ρ n (σ p ) ∈ C r (n)}| .
The following proposition (with a better error term) was proved in [5, Theorem 3.9] for the conjugacy class

C(n) = C 0 (n) ⊆ G(n)
when n is squarefree, and can be easily generalised to general n and r.

Proposition 2.1. Let E be an elliptic curve over Q without CM. Let r 0 be an integer, and let n = dm be any positive integer with (d,

M E ) = 1 and m | M E ∞ . ‡ (i) Then, π Cr(n) (x, L n /Q) = |C r (m)| |G(m)| k d |C r ( k )| |GL 2 (Z/ k Z)| Li(x)+O E x exp -An -2 log x
uniformly for log x n 12 log n, where the implied constants depend only on the elliptic curve E and A is a positive absolute constant.

(ii) Assuming the GRH for the Dedekind zeta functions of the number fields L n /Q, we have

π Cr(n) (x, L n /Q) = |C r (m)| |G(m)| k d |C r ( k )| |GL 2 (Z/ k Z)| Li(x) + O E n 3 x 1/2 log (nx) .
Proof. To prove (i) and (ii), one applies the effective Cheboratev Density Theorem due to Lagarias and Odlyzko [START_REF] Lagarias | Effective versions of the Chebotarev Density Theorem[END_REF] and slightly improved by Serre in [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF], as stated in [5, Theorem 3.1] with the appropriate bounds for the discriminants of number fields [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF]Proposition 6], and the bound of Stark [START_REF] Stark | Some effective cases of the Brauer-Siegel theorem[END_REF] for the exceptional zero of Dedekind L-functions for (i). We refer the reader to [START_REF] David | Almost prime values of the order of elliptic curves over finite fields[END_REF] for more details.

Remark 1. There are many cases where we can improve the error term in Proposition 2.1 (ii) by applying a strategy first used in [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF] and [START_REF] Murty | Modular forms and the Chebotarev density theorem[END_REF] to reduce to the case of an extension where Artin's conjecture holds. The error term then becomes

O E n 3/2 x 1/2 log (nx) .
This can be done if r = 0 (as in [5, Theorem 3.9]), or if (n, M E ) = 1 for any r. To apply the strategy of [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF] and [START_REF] Murty | Modular forms and the Chebotarev density theorem[END_REF] and obtain this improved error term, one needs We now need upper and lower bounds on the size of the main term of Proposition 2.1, which are computed in the next lemma. Lemma 2.2. Let E be an elliptic curve over Q without CM. For all primes M E and integers k 1, we have the bounds

to insure that C r (n) ∩ B(n) = ∅,
(2.6) 1 ϕ( k ) • -2 -1 |C r ( k )| |GL 2 (Z/ k Z)| 1 ϕ( k )
when r ≡ 0 (mod ), and the bounds

(2.7) 1 ϕ( k ) • -2 -1 |C r ( k )| |GL 2 (Z/ k Z)| 1 ϕ( k ) 1 + 1 ( 3 -1)( 2 -1) when r ≡ 0 (mod ). Furthermore, for m | M E ∞ such that |C r (m)| = 0, we have that (2.8) 1 ϕ(m) E |C r (m)| |G(m)| E 1 ϕ(m)
with constants depending only on the elliptic curve E. In particular, the upper bound in (2.8) holds without the hypothesis |C r (m)| = 0.

Proof. Fix

M E and k 1. To count the number of elements in C r ( k ), we count the matrices g ∈ GL 2 (Z/ k Z) which are the inverse images of a matrix g ∈ C r ( ) under the projection map from GL 2 (Z/ k Z) to GL 2 (Z/ Z), and which satisfy det(g) + 1 -tr (g) ≡ r (mod k ). such lifts. A similar argument shows that there are also 3(k-1) lifts if c ≡ 0 (mod ), or a ≡ 1 (mod ) or d ≡ 1 (mod ). This proves (2.6) as the identity matrix does not belong to C r ( ) when r ≡ 0 (mod ). Then, the number of lifts of any matrix from

C r ( ) to C r ( k ) is 3(k-1)
, and the number of lifts from GL

2 (Z/ Z) to GL 2 (Z/ k Z) is 4(k-1) , which gives |C r ( k )| |GL 2 (Z/ k Z)| = 3(k-1) |C r ( )| 4(k-1) |GL 2 (Z/ Z)| ,
and the result follows by using (2.2). Finally, we have to count the number of lifts

1 + k 1 k 2 k 3 1 + k 4 of the identity matrix such that 2 (k 1 k 4 -k 2 k 3 ) ≡ r (mod k ), where 0 k i < k-1 .
We assume that k 2. If r ≡ 0 (mod 2 ), there are no lifts, and we assume that r ≡ 0 (mod 2 ). Let v = min i v (k i ), where v (n) is the -adic evaluation of n, and write

k i = v k i with 0 k i < k-1-v . If r ≡ 0 (mod 2+v ), there is no solution with k 1 , k 2 , k 3 , k 4 such that v = min i v (k i ). Suppose that r ≡ 0 (mod 2+v ). Then we need to solve 2+v (k 1 k 4 -k 2 k 3 ) ≡ 2+v r (mod k ) ⇐⇒ (k 1 k 4 -k 2 k 3 ) ≡ r (mod k-2-v ),
and there are

3(k-1-v) solutions k 1 , k 2 , k 3 , k 4 .
The number of lifts of the identity matrix is then bounded by (2.9)

k-2 v=0 
3(k-1-v) = 3(k-1) k-2 v=0 -3v 3(k-1) 3 3 -1 •
We now prove (2.7). Using (2.9) and the first formula of (2.1), it follows that

k-1 |C r ( k )| |GL 2 (Z/ k Z)| |C r ( )| |GL 2 (Z/ Z)| + 4 /( 3 -1) |GL 2 (Z/ Z)| = ( 3 -1)( 2 -1) + 1 ( -1)( 2 -1)( 3 -1)
•

For the lower bound, we have

k-1 |C r ( k )| |GL 2 (Z/ k Z)| |C r ( )| -1 |GL 2 (Z/ Z)| = ( 2 -2) -1 ( -1)( 2 -1) -2 ( -1) 2 •
We now prove (2.8). Let m = p|m p min (vp(m),vp(M E )) . By (2.5), G(m) is the full inverse image of G(m ) under the projection map from GL 2 (Z/mZ) to GL 2 (Z/m Z). Fix g ∈ C r (m ), and we now count the number of lifts g in C r (m). By the Chinese Remainder Theorem, it suffices to count the number of lifts from C r (p vp(m ) ) to C r (p vp(m) ) for each p | m. In general, fix 1 e k, fix g ∈ GL 2 (Z/p e Z) such that det(g) + 1 -tr(g) ≡ r (mod p e ), and we count the number of lifts g ∈ GL 2 (Z/p k Z) such that det(g)+1-tr(g) ≡ r (mod p k ). If g is not congruent to the identity matrix modulo p, then the same argument as above shows that there are p 3(k-e) lifts of g. If g is congruent to the identity matrix modulo p, we have to count the number of matrices

g = 1 + k 1 p e k 2 p e k 3 p e 1 + k 4 p e such that p 2e (k 1 k 4 -k 2 k 3 ) ≡ r (mod p k )
, where 0 k i < p k-e . If r ≡ 0 (mod min (p k , p 2e )), there are no lifts, and we suppose that r ≡ 0 (mod min (p k , p 2e )). Let v = min i v p (k i ), and write k i = p v k i where 0 v < k -e and 0 k i < p k-e-v . The congruence above rewrites as (2.10)

p 2e+v (k 1 k 4 -k 2 k 3 ) ≡ r (mod p k ).
If 2e + v k, (2.10) has p 4(k-e-v) solutions when r ≡ 0 (mod p k ) and no solutions otherwise. If 2e + v < k, assume that r ≡ 0 (mod (p 2e+v )) (otherwise (2.10) has no solutions). Writing r = r p 2e+v , (2.10) rewrites as k 1 k 4 -k 2 k 3 ≡ r (mod p k-2e-v ) and this leads to p e p 3(k-e-v) solutions k 1 , k 2 , k 3 , k 4 . Then, the number of lifts of the identity matrix from C r (p e ) to C r (p k ) is bounded by (2.11) k-e-1 v=0 2e+v<k

p e p 3(k-e-v) + k-e-1 v=0 2e+v k p 4(k-e-v) p 3(k-e) p 4e+1 .
Then, applying (2.11), we have that

|C r (m)| |G(m)| |C r (m )| |G(m )| p|m p 3(vp(m)-vp(m )) p 4vp(m )+1 p 4(vp(m)-vp(m )) = |C r (m )| |G(m )| 1 ϕ(m) p|m p vp(m )-1 p 4vp(m )+1 (p -1) E |C r (m )| |G(m )| 1 ϕ(m) •
Finally we suppose that |C r (m)| = 0 and prove the lower bound in (2.8). Denoting by C r (m ) ≡ the subset of C r (m ) consisting of matrices not equivalent to the identity matrix modulo p (notice that C r (m ) ≡ is not empty since |C r (m)| = 0), we have that

|C r (m)| |G(m)| |C r (m ) ≡ | |G(m )| p|m p 3(vp(m)-vp(m )) p 4(vp(m)-vp(m )) = p k m 1 p k-1 (p -1) p|m (p -1)p vp(m ) p |C r (m ) ≡ | |G(m )| E 1 ϕ(m) ,
and the lower bound in (2.8) follows from the last two inequalities.

Theorem 2.3. Let E be an elliptic curve over Q without CM. Let r 0 be an integer, and let n = dm be any positive integer with (d,

M E ) = 1 and m | M E ∞ . (i) We have that |{p x : n E (p) ≡ r (mod n)}| E Li(x) ϕ(n) + x exp -An -2 log x
uniformly for log x n 12 log n, where the implied constants depend only on the elliptic curve E and A is a positive absolute constant.

(ii) Assuming the GRH for the Dedekind zeta functions of the number fields L n /Q, we have that

|{p x : n E (p) ≡ r (mod n)}| E Li(x) ϕ(n) + n 3 x 1/2 log (nx).
(iii) Assuming the GRH for the Dedekind zeta functions of the number fields L n /Q, we have that

|{p x : n E (p) ≡ r (mod n)}| E Li(x) ϕ(n)
holds uniformly for n x 1/8 / log x, where the implied constant depends only on the elliptic curve E.

Further if r = 0 or (n, M E ) = 1, then the condition n x 1/8 / log x in the third assertion can be relaxed to n x 1/5 / log x and the term n 3 x 1/2 log(nx) in the second can be replaced by n 3/2 x 1/2 log(nx).

Proof. It follows from the estimates of Lemma 2.2 that

|C r (m)| |G(m)| k d |C r ( k )| |GL 2 (Z/ k Z)| E 1 ϕ(d) 1 ϕ(m) = 1 ϕ(n) ,
and first two statements are obtained by using this upper bound in the estimates of Proposition 2.1 for

π Cr(n) (x, L n /Q) = |{p x : n E (p) = p + 1 -a E (p) ≡ r (mod n)}| .
We now prove (iii). If |C r (m)| = 0, Proposition 2.1 implies trivially the required inequality, and we suppose that |C r (m)| = 0. Clearly, it is sufficient to show that

1 ϕ(n) log 2 n E |C r (m)| |G(m)| k d |C r ( k )| |GL 2 (Z/ k Z)| E 1 ϕ(n) • (2.12) It follows from Lemma 2.2 that 1 ϕ(d) |d -2 -1 k d |C r ( k )| |GL 2 (Z/ k Z)| 1 ϕ(d) , (2.13)
and the lower bound of (2.12) follows from (2.13), (2.8) and the estimate

|d -2 -1 |n -2 -1 1 log 2 n •
This completes the proof of the Theorem.

Rosser-Iwaniec's linear sieve formulas

We state in this section the Rosser-Iwaniec linear sieve [9, Theorem 1], which will be used in the proof of Theorem 1.1. It is worth indicating that the Selberg linear sieve [START_REF] Halberstam | Sieve Methods[END_REF]Theorem 8.4] cannot be applied for our purpose since the condition (Ω 2 (1, L)) of Selberg's linear sieve (see [8, page 228]) is not satisfied by the function w y ( ). But the corresponding condition (Ω 1 ) of the Rosser-Iwaniec's sieve is satisfied by the w y ( ) (see (4.5) 

below).

Let A be a finite sequence of integers and P a set of prime numbers. As usual, we write the sieve function Let B = B(P) denote the set of all positive squarefree integers supported on the primes of P. For each d ∈ B, define

A d := {a ∈ A : a ≡ 0 (mod d)}.
We assume that A is well distributed over arithmetic progressions 0 (mod d) in the following sense: There are a convenient approximation X to |A| and a multiplicative function w(d) on B verifying §

(A 0 ) 0 < w(p) < p (p ∈ P)
such that (i) the "remainders"

(3.2) r(A, d) := |A d | - w(d) d X (d ∈ B)
are small on average over the divisors d of P (z);

(ii) there exists a constant K 1 such that

(Ω 1 ) V (z 1 ) V (z 2 ) log z 2 log z 1 1 + K log z 1 (2 z 1 < z 2 ),
where

V (z) := p<z 1 - w(p) d .
The next result is the well known theorem of Iwaniec [9, Theorem 1].

Lemma 3.1. Under the hypotheses (A 0 ), (3.2) and (Ω 1 ), we have x log y (log x) log z uniformly for y 0 y z (log x) 1/24 / log 2 x.

S(A, P, z) XV (z){F (s) + E} + 2 ε -γ R(A, M, N ), where 0 < ε < 1 8 , s := (log M N )/ log z, E εs 2 e K + ε -8 e K-s (log M N ) -1/3 and
F (s) = 2e γ s (0 < s 3), V (z) 
(ii) If we assume the GRH, we have 

X = Li(x), w y ( ) = ( 2 -2) ( -1)( 2 -1) ( ∈ P y ), |r(A , d)| E x e -Ad -2 √ log x (d (log x) 1/12 / log 2 x), d 3/2 x 1/2 log(dx) (under the GRH), (4.5) 
where A > 0 is a positive absolute constant.

In order to apply Lemma 3.1, we must show that w y ( ) satisfies conditions (A 0 ) and (Ω 1 ). The former is obvious, and we now check the latter. Writing

(4.6) V y (z) := p<z 1 - w y (p) p -1 , then V y (z 1 ) V y (z 2 ) V 1 (z 1 ) V 1 (z 2 )
for all z 2 > z 1 2. On the other hand, by using the prime number theorem, it follows that

(4.7) V 1 (z) = p<z 1 - w 1 (p) p = p<z 1 - 1 p p<z 1 - p 2 -p -1 (p -1) 3 (p + 1) = 1 + O 1 log z Ce -γ log z ,
where γ is the Euler constant and

C := p 1 - p 2 -p -1 (p -1) 3 (p + 1)
.

Clearly this implies that for any 2

z 1 < z 2 (4.8) V 1 (z 1 ) V 1 (z 2 ) = log z 2 log z 1 1 + O 1 log z 1 , and (4.6) and (4.8) 
show that the condition (Ω 1 ) is satisfied. Therefore we can apply Lemma 3.1 to write (4.9)

S(A , P y , z) (e γ + ε)XV y (z) + R S ,
where

R S := d<z 2 d|P (z) 2 ω(d) |r(A , d)|.
In view of the bounds for |r(A , d)| of (4.5), we can deduce that (4.10) R S x/(log x) 3 for all (4.11) z (log x) 1/24 / log 2 x (unconditionally),

x 1/10 /(log x) 4 (under GRH).

On the other hand, in view of (4.7), we have for any z > y,

(4.12) V y (z) = V 1 (z) V 1 (y) = 1 + O 1 log y log y log z •
Inserting (4.10) and (4.12) into (4.9), we obtain the required results.

In order to estimate |T (x, y, z)|, we need to prove a preliminary result. Proof. Let 0 < η < 1 be a parameter to be choosen later. We have (4.15)

ord (b)=m 1 |(b m -1) 1 log(b m -1) log 2 log b log 2 m.
Thus

u ord (b)< η 1 ord (b) = m u η 1 m u ord (b)=m 1 m u η log b log 2 b,η u η .
A simple partial summation leads to

t ord (b)< η 1 ord (b) = ∞ t 1 u d u ord (b)< η 1 ord (b) b,η 1 t 1-η •
On the other hand, we have trivially

t ord (b) η 1 ord (b) t 1 1+η η 1 t η •
Combining these estimates and taking η = 1 2 , we obtain (4.13). Similarly we have

ord (b) t ord (b)< η 1 ord (b) t 1/(1+η) ord (b)< η 1 ord (b) b,η 1 t (1-η)/(1+η) , ord (b) t ord (b) η 1 ord (b) = k 1 ord (b) t 2 k-1 η ord (b)<2 k η 1 ord (b) k 1 1 2 k (2 -k t) 1/(1+η) 1 1+η η 1 t η/(1+η) •
The inequality (4.14) follows from these estimates with the choice of η = 1 2 . We now estimate |T (x, y, z)|. |T (x, y, z)| E,b Li(x) log 2 z y 1/2 + x exp -Az -4 log x uniformly for (4.17) y 0 y < z (log x) 1/24 / log 2 x.

(ii) If we assume the GRH, we have 

d | n E (p) | b(b n E (p)-1 -1) ⇒ d | (b n E (p)-1 -1) ⇒ b n E (p)-1 ≡ 1 (mod d).
Using Fermat's little theorem, it follows that Then, using (i) and (ii) of Theorem 2.3 with the bound ϕ(n) n/ log 2 n, we have that 

R T :=          y< z
x exp -A -4 log x (z (log x) We shall adapt Pomerance's method [START_REF] Pomerance | On the distribution of pseudoprimes[END_REF] to prove Theorem 1.3. We split the primes p x such that n E (p) is pseudoprimes to base b into four possibly overlapping classes: 

• n E (p) x/L(x); • there is | n E (p) with ord (b) L(x) and > L(x) 3 ; • there is | n E (p) with ord (b) > L(x); • n E (p) > x/L(x
1 x L(x) • B. Estimate for S 2 Clearly S 2 >L(x) 3 ord (b) L(x) p x |n E (p) 1.
Using (iii) of Theorem 2.3 with r = 0 and (4.15), we deduce that the contribution of L(x) 3 

< x 1/5 / log x to S 2 is E L(x) 3 < x 1/5 / log x ord (b) L(x) Li(x) ϕ( ) E x L(x) 3 ord (b) L(x) 1 E,b x L(x)
• Furthermore, using Hypothesis 1.2 with δ < 1 5 , we have

x 1/5 / log x< ord (b) L(x) p x |n E (p) 1 x 1/5 / log x< 2x ord (b) L(x) m 2x/ p x n E (p)=m 1 E x 1/5 / log x< 2x ord (b) L(x) m 2x/ (m ) δ E x 1/5 / log x< 2x ord (b) L(x)
x 1+δ

E,b x 4/5+δ L(x) , and using again the bound ϕ(n) n/ log 2 n, the contribution of those to S 3 is bounded by

ord (b) x 1/8 / log x ord (b)>L(x) Li(x) ϕ( ord (b)) E Li(x) log 2 x L(x) ord (b) x 1/8 / log x 1 E Li(x)(log 2 x) 2 L(x) •
With the help of Hypothesis 1.2 with δ < 1 24 and (4.14) of Lemma 4.2, the contribution of x 1/8 / log x < ord (b) 4x to S 3 is bounded by x 1+δ ord (b) E x 1+δ-1/24 log x.

Inserting these estimates into (5.4), we find that M E (n) 2 1/2 .

To bound the second sum on the right-hand side of (6.1), we use a result of Kowalski [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF] who proved that for a curve E with complex multiplication and for any ε > 0, (6.2)

n 4x M E (n) 2 x (log x) 1-ε .
We remark that in [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF], there are no curves with complex multiplication defined over Q as the field of complex multiplication must be included in the field of definition of the elliptic curve. Then, (6.2) is first proven for the sequence {n E (p) = #E(F p )} associated to E, where p runs over the primes of the CM field [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF]Theorem 5.4]. This first result can then be used to deduce the upper bound (6.2) by separating the rational primes into ordinary and supersingular primes of E, and by using [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF]Theorem 5.4] to obtain (6.2) (see [START_REF] Kowalski | Analytic problems for elliptic curves[END_REF]Proposition 7.4]).

Theorem 1.5 then follows by replacing (6.2) and (1.9) in (6.1).

  If b ≡ 0 (mod ), then b is invertible, and we have to count the number of ã, b, c, d lifting a, b, c, d such that c ≡ b-1 (ã d -(ã + d) -r + 1) (mod k ), and there are 3(k-1)

  S(A, P, z) := |{a ∈ A : (a, P (z)) = 1}|,

4 . 1 As

 41 The second error term R(A, M, N ) has the form R(A, M, N ) := m<M,n<N mn|P (z) a m b n r(A, mn), where the coefficients a m , b n are bounded by 1 in absolute value and depend at most on M, N, z and ε. Proof of Theorem 1.y, z) := {p x : (n E (p), L) = 1}, T (x, y, z) := {p x : (n E (p), L) > 1, b n E (p) ≡ b (mod n E (p))}. Clearly (4.1) Q E,b (x) |S(x, y, z)| + |T (x, y, z)|.First we estimate |S(x, y, z)|.

Lemma 4 . 1 .

 41 Let E be an elliptic curve over Q without CM and b 2 be an integer. For any ε, there is a constant y 0 = y 0 (E, b, ε) such that (i) We have (4.2) |S(x, y, z)| (e γ + ε)

(4. 3 )

 3 |S(x, y, z)| (e γ + ε) x log y (log x) log z uniformly for y 0 y z x 1/10 /(log x) 4 . Proof. We shall sieve A := {n E (p) : p x} by P y := {p : p y}. By definition, |S(x, y, z)| = S(A , P y , z) for all 1 y z x. Without loss of generality, we can suppose that y 0 M E + b. Thus we have (d, M E ) = 1 for all d ∈ B(P y ). Using Proposition 2.1 (with the improved error term discussed in the remark following the proposition under the GRH) and (2.2), we get that (4.4) |A d | = w y (d) d X + r(A , d) for all d ∈ B(P y ), with

  For integers b 2 and d 1, denote by ord d (b) the multiplicative order of b modulo d (i.e. the smallest positive integer k with b k ≡ 1 (mod d)).

Lemma 4 . 2 .

 42 For all t 1, we have

Lemma 4 . 3 .

 43 Let E be an elliptic curve over Q without CM and b 2 be an integer. Then there is a constant y 0 = y 0 (E, b) and a positive absolute constant A such that (i) We have(4.16) 

(4. 18 )

 18 |T (x, y, z)| E,b Li(x) log 2 z y 1/2 + z 7 x 1/2 uniformly for (4.19) y 0 y < z. The implied constants depend on E and b only. Proof. If n E (p) is a pseudoprime to base b and d | n E (p) with (d, b) = 1, then

( 4 .π

 4 [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF])n E (p) ≡ 0 (mod d), n E (p) ≡ 1 (mod ord d (b)), (d, ord d (b)) = 1.By the Chinese remainder theorem, there is an integerr b,d ∈ {1, . . . , dord d (b)} such that n E (p) ≡ r b,d (mod dord d (b)).Clearly for each p ∈ T (x, y, z), there is a prime such that (4.21) y < z, | (L, n E (p)) and n E (p) | b n E (p) -b. Applying (4.20) with d = , we have |T (x, y, z)| y< z p x n E (p)≡r b, (mod ord (b)) Cr b, (x, L ord (b) /Q).

(4. 22 )

 22 |T (x, y, z)| E Li(x)(log 2 z)

1 . 3 ord

 13 If n is a pseudoprime and d | n, then (5.3) n ≡ 0 (mod d), n ≡ 1 (mod ord d (b)), (d, ord d (b)) = 1. Thus the number of pseudoprimes n 4x with d | n at most 1 + 4x/(dord d (b)). If d = , a prime, then we throw out the solution n = to (5.3), so that in this case there are at most 4x/( ord (b)) solutions in pseudoprimes n. Then, if ord (b) > 4x, there are no solution in pseudoprimes n and no contribution to S 3 , and we can suppose that ord (b) 4x. Thus S ord (b)>L(x) p 4x, |n E (p) n E (p) pseudoprime 1. Applying (4.20) with d = , there is an integer r b, ∈ {1, . . . , ord (b)} such that n E (p) ≡ r b, (mod dord d (b)). Thus (5.4) S 3 ord (b) 4x ord (b)>L(x) p x n E (p)≡r b, (mod ord (b)) 1. If ord (b) x 1/8 / log x, then by Theorem 2.3(iii) p x n E (p)≡r b, (mod ord (b)) 1 E Li(x) ϕ( ord (b))

x 1 / 8 / 1 E x 1 / 8 /

 18118 log x< ord (b) 4x 0 m 4x/ ord (b) p x n E (p)=r b, +m ord (b) log x< ord (b) 4x 0 m 4x/ ord (b) (r b, + m ord (b)) δ E x 1/8 / log x< ord (b) 4x

5 / 6 ( 4 x 1 /

 5641 Estimate for S 4In order to adapt the proof of[START_REF] Pomerance | On the distribution of pseudoprimes[END_REF] to the more general definition(1.4) of pseudoprimes (which includes the case where b and n are not coprime), we write n E (p) = n E (p)n E (p) with n E (p) | b ∞ and (n E (p), b) = 1. Denote by S 4 and S 4 the contribution of n E (p) > x 2/3 and n E (p) x 2/3 to S 4 , respectively. By the Hasse bound (formulated as the statement of Hypothesis 1.2 with δ = 1 log x) b . If p is counted in S 4 , then n E (p) > x 1/3 /L(x) and all prime factors of n E (p) are L(x) 3 . Thus n E (p) must have a divisor d with x 1/18 < d x 1/17 and (d, b) = 1. Thus, by the comment following (4.20), n E (p) ≡ r b,d (mod dord d (b)) for some residue r b,d , and by Theorem 2.3, we have S 18 <d x 1/17 (d,b)=1 p x n E (p)≡r b,d (mod dord d (b))With the help of the following inequality (see[START_REF] Pomerance | On the distribution of pseudoprimes[END_REF] Theorem 1])d t ord d (b)=m 1 t L(t) (t t 0 (b), m 1),a simple partial integration allows us to deduce that x 1/18 <d x 1/17 ord d (b)=m ) 1/37 , and S 4 E x(log x)L(x) -1/37 . Thus (5.6) S 4 = S 4 + S 4 E,b x L(x) + x log x L(x) 1/37 x L(x) 1/38 • The statement of Theorem 1.3 then follows from (5.1), (5.2), (5.5) and (5.6).

6 .

 6 Proof of Theorem 1.5First writeπ pseu E,b (x) = p x n E (p) is pseudoprime to base b 1 n 4x n is pseudoprime to base b M E (n).By using the Cauchy-Schwarz inequality, it follows that (

  1/24 / log 2 x)

	The required results follow from (4.22), (4.23) and (4.13) of Lemma 4.2.
	Taking, in Lemmas 4.1 and 4.3
	y =	(log 2 x) 2 log 3 x (unconditionally), (log x) 2 log 2 x (under the GRH),
	z =	(log x) 1/24 / log 2 x (unconditionally), x 1/14 / log x (under the GRH),
	which satisfy (4.11) and (4.17), and using the bounds of those lemmas in (4.1), this
	proves Theorem 1.1.	
		5. Proof of Theorem 1.3
		6 x 1/2 log( 2 x)	(under the GRH)
	y< z
	  x exp -Az -4 log x	(z (log x) 1/24 / log 2 x),
	 z 7 x 1/2	(under the GRH).

§ Since we need (3.2) below only for d | P (z), we are freely to define w(p) = 0 for p / ∈ P.