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Introduction

Let P be the set of all (rational) positive primes. For any positive integer n let P (n) denote the largest prime factor of n with the convention P (1) = 1. Let

A 3 = {pqr | p, q, r ∈ P} \ {p 3 | p ∈ P}.
Recently Goldring [START_REF] Goldring | Dynamics of the w function and primes[END_REF] introduced his w-function on A 3 , which is defined by w(n) := P (p + q)P (p + r)P (q + r) (n = pqr ∈ A 3 ), and investigated its dynamics. Here and in the sequel, the letters p, q, r and s denote prime numbers. According to [4, Lemma 2.1], we have w(n) ∈ A 3 for all n ∈ A 3 .

Thus we can consider iteration of w. For every integer i 0, write w 0 (n) := n, w i (n) := w(w i-1 (n)) (i = 1, 2, . . . ).

The w-orbit of n is denoted by

W(n) := [n, w(n), . . . , w i (n), . . . ].
For example, one can verify that w(20) = 98, w(98) = 63, w(63) = 75, w(75) = 20.

Interestingly, Goldring [START_REF] Goldring | Dynamics of the w function and primes[END_REF]Theorem 1.1] proved that for every n ∈ A 3 , there exists an integer i such that w i (n) ∈ {20, 98, 63, 75}. Denoting by ind(n) the smallest such integer i. We call ind(n) the periodicity index of n. Goldring [START_REF] Goldring | Dynamics of the w function and primes[END_REF] proved that ind(n)

4(π(P (n)) -3), and posed several conjectures related to w(n). Two of them are

Conjecture A ([4, Conjecture 2.9]). We have ind(n) = O(log π(P (n))).

Conjecture B ([4, Conjecture 2.10]). There are subsets in A 3 of arbitrarily large periodicity index.

Chen and Shi [START_REF] Chen | Dynamics of the w function and the Green-Tao theorem on arithmetic progressions in the primes[END_REF] proved Conjecture B and ind(n) = O((log P (n)) 2 ).

Let n ∈ A 3 and S ⊂ A 3 . By a parent of n ∈ A 3 in S , we mean a positive integer m ∈ S such that w(m) = n. We also call m a S -parent of n. Let B 3 = {p 2 q : p = q, p, q ∈ P} and C 3 = A 3 \ B 3 . Goldring [START_REF] Goldring | Dynamics of the w function and primes[END_REF] proved that there exist infinitely many elements of B 3 that have at least seven B 3 -parents and posed the following conjecture:

Conjecture C [4, Conjecture 2.16]). Every element of A 3 (respectively B 3 ) has infinitely many C 3 -parents (respectively B 3 ).

Chen and Shi [START_REF] Chen | Distribution of primes and dynamics of the w function[END_REF] proved that for any positive integer k there exist infinitely many elements of B 3 that have at least k parents in B 3 and there exist infinitely many elements of B 3 that have no parents in B 3 .

Define

N S (n) := |{m ∈ S : w(m) = n}|,
Recently Jia [6, Theorem 3] established more precise results:

• There is an element n = pq 2 of B 3 with x < p 2x and

√ x log x < q 2 √ x log x such that N B 3 (n) x 1/2 (log x) -2 n 1/4 (log n) -5/2 ,
provided x is sufficiently large.

• There exists an element n = qr 2 of B 3 with q 4x and √ x log x < r 2 √

x log x such that

N C 3 (n) x(log x) -4 n 1/2 (log n) -5 ,
provided x is sufficiently large.

• There is an element n = qrs of C 3 with q 4x and √ x log x < r, s 2 √

x log x such that

N C 3 (n) x(log x) -4 n 1/2 (log n) -5 ,
provided x is sufficiently large.

Here we establish some stronger results.

Theorem 1. (i) Let B -1. As x → ∞, we have (1.1) #{n x : n ∈ B 3 , N B 3 (n) n 1/3 (log n) B } x 2/3 (log x) -B-3 .
(ii) There exist infinitely many

n ∈ B 3 such that N B 3 (n) n 1.1886 .
Theorem 2. For any ε > 0, as x → ∞, we have

(1.2) #{n x : n ∈ B 3 , N C 3 (n) 1} ε x 1/3 (log x) -2-ε , (1.3) #{n x : n ∈ B 3 , N C 3 (n) n 1/2 (log n) -2-ε } ε log log x,
where the implied constant in (1.3) is absolute.

Theorem 3. For any ε > 0, as x → ∞, we have

(1.4) #{n x : n ∈ C 3 , N C 3 (n) n 1/2 (log n) -2-ε } (ε log log x) 2 , (1.5) #{n x : n ∈ C 3 , N C 3 (n) n 1/2-ε } (ε log x) 2 ,
where the implied constants are absolute.

In order to improve Goldring's bound to

ind(n) (log P (n)) 2 (n ∈ A 3 ),
Chen & Shi [START_REF] Chen | Dynamics of the w function and the Green-Tao theorem on arithmetic progressions in the primes[END_REF] proved their [2, Lemma 4], which is stated as follows: for each n ∈ A 3 there is a positive integer i = i(n) such that 1 i log(P (n) + 6) + 2 and P (w i (n)) 15 16 P (n) + 6.

In Section 5 and 6, we study the distribution of sequences {P (w(n))/P (n)} n∈A 3 and {w(n)/n} n∈A 3 and establish the following result. 

P (w(n)) P (n) = 1, (1.9) lim inf n→∞ n∈A 3 w(n) n = 0 and lim sup n→∞ n∈A 3 w(n) n = ∞. (1.10) Introduce the notation (1.11) A 3 (x) := |A 3 ∩ [1, x]|.
Theorem 6. For all α ∈ ( 1 2 , 1], we have, as x → ∞,

(1.12) #{n x : n ∈ A 3 , P (w(n)) αP (n)} ∼ A 3 (x).
When α ∈ (0, 1 2 ], we have, as x → ∞,

(1.13) #{n x : n ∈ A 3 , P (w(n)) αP (n)} α 2 A 3 (x),
where the implied constant is absolute.

In view of Corollary 5, it is natural to raise the following problems.

Problem 7. Is the set {P (w(n))/P (n) :

n ∈ A 3 } dense in [0, 1]? Problem 8. Is the set {w(n)/n : n ∈ A 3 } dense in [0, ∞)?
Theorem 6 shows that the density We would like to thank Chern Institute of Mathematics of Nankai University for agreeable hospitality and Jia for his excellent talk on the dynamics of Goldring's w-function. We also thank the referee for his/her helpful comments.

D A 3 (α) := lim x→∞ 1 A 3 (x) n x, n∈A 3 P (w(n)) αP (n)

Proof of Theorem 1

First we need to prove a preliminary lemma, which is of independent interest. 

Q<q 2Q p P π(Q 2 ,q,q-p) Q/(8 log Q) 1 ∼ P Q log P log Q ∼ Q 2 (log Q) B 1 +2 , (2.1) Q<q 2Q p P N B 3 (pq 2 ) Q/(8 log Q) 1 ∼ P Q log P log Q ∼ Q 2 (log Q) B 1 +2 , (2.2) as Q → ∞.
Proof. According to [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]Theorem 7.12], for 1 Q x and any A > 0 we have

(2.3) d Q 1 a d (a,d)=1 |E(x, d, a)| 2 = Qx log Q + O A Qx + x 2 (log x) A , where (2.4) E(x, d, a) := p x p≡a(mod d) log p - x ϕ(d)
and ϕ(q) is the Euler function. Here the implied constant depends only on A.

Clearly (2.3) with the choice of x = Q 2 implies (2.5) Q<q 2Q p P |E(Q 2 , q, q -p)| 2 Q<q 2Q 1 a q (a,q)=1 |E(Q 2 , q, a)| 2 A Q 4 (log Q) A for all Q 3. Introduce S(Q) := {(q, p) : Q < q 2Q, p P }, E(Q) := (q, p) ∈ S(Q) : |E(Q 2 , q, q -p)| Q 2 /(2ϕ(q)) .
From the inequality (2.5), we easily deduce

|E(Q)| Q 2 2(2Q -1) 2 A Q 4 (log Q) A . Thus (2.6) |E(Q)| A Q 2 (log Q) A • For all (q, p) ∈ S(Q) E(Q), we have |E(Q 2 , q, q -p)| < Q 2 2ϕ(q) • From this we deduce p Q 2 p ≡q-p(mod q) log p > Q 2 2ϕ(q) for all (q, p) ∈ S(Q) E(Q). Thus π(Q 2 , q, q -p) Q 8 log Q for all (q, p) ∈ S(Q) E(Q). Taking A = B 1 + 3 in (2.6), we can write (2.7) Q<q 2Q p P 1 = Q<q 2Q p P |E(Q 2 ,q,q-p)|<Q 2 /(2ϕ(q)) 1 + O Q 2 (log Q) B 1 +3 Q<q 2Q p P π(Q 2 ,q,q-p) Q/(8 log Q) 1 + O Q 2 (log Q) B 1 +3 Q<q 2Q p P 1 + O Q 2 (log Q) B 1 +3 .
Now the required asymptotic formula (2.1) follows from (2.7) and the prime number theorem. Now we prove (2.2). For each pair (q, p) with Q < q 2Q, p P and π(Q 2 , q, qp) Q/(8 log Q), there are at least Q/(8 log Q) prime numbers p i Q 2 such that p i ≡ q -p (mod q). Writting p i = i q + q -p, we must have

1 i q -1 for i = 1, . . . , Q/(8 log Q) . Thus w(p 2 p i ) = pP (p + p i ) 2 = pP (( i + 1)q) 2 = pq 2
and

N B 3 (pq 2 ) Q 8 log Q . Q 2 (log Q) B 1 +2 ∼ Q<q 2Q p P π(Q 2 ,q,q-p) Q/(8 log Q) 1 Q<q 2Q p P N B 3 (pq 2 ) Q/(8 log Q) 1 Q<q 2Q p P 1 ∼ Q 2 (log Q) B 1 +2 .
This is equivalent to (2.2). Now we are ready to prove Theorem 1.

The inequality (1.1) is an immediate consequence of (2.2) by writtng n = pq 2 and B 1 = 3B + 3.

Next we prove the second assertion. According to [1, Theorem 1], for any given prime q, there are two positive constants c 0 = c 0 (q) and x 0 = x 0 (q) such that p x, P (p+q) x 0.2961

1 > x (log x) c 0 (x x 0 ).
Hence there exists a prime r x 0.2961 such that p x, P (p+q)=r

1 x π(x 0.2961 )(log x) c 0 > 0.2x 0.7039 (log x) c 0 -1 (x x 0 ). Let p 1 < • • • < p k x with P (p i + q) = r (1 i k = [0.2x 0.7039 /(log x) c 0 -1 ]).
Then w(p i q 2 ) = qr 2 for i = 1, 2, . . . , k and qr 2 qx 0.5922 < x 0.5922 log x. Thus for n q = qr 2 we have

N B 3 (n q ) k > 0.1x 0.7039 /(log x) c 0 -1 > n 1.1886 q .
Since there are infinitely many prime numbers q, there are infinitely many

n ∈ B 3 such that N C 3 (n) n 1.1886 .

Proof of Theorem 2

As before, we first prove a preliminary lemma, which is an analogue of Lemma 2.1.

by π(x, d, a) the number of primes p x such that p ≡ a (mod d). Then, for any B > 3, we have

Q<q 2Q p Q π(Q(log Q) B ,q,q-p) (log Q) B-1 1 ∼ Q 2 (log Q) 2 , (3.1) Q<q 2Q p Q ∃ r Q(log Q) B such that N C 3 (q 2 r) 1 1 ∼ Q 2 (log Q) 2 , (3.2) as Q → ∞.
Proof. We shall prove only (3.2), since (3.1) is very similar to (2.1).

By using (3.1), for each (q, p) counted in the left-hand side of (3.1), there

are c(log Q) B-1 prime numbers p i Q(log Q) B such that p i ≡ q -p (mod q).
Writting p i = i q + q -p, we must have 1

i (log Q) B < Q q -1 for i = 1, . . . , [c(log Q) B-1 ]. Thus w(pp i p j ) = P (p + p i )P (p + p j )P (p i + p j ) = q 2 P (p i + p j ).
Clearly p = p i and P (p i + p j ) = q for all 1 i, j [c(log Q) B-1 ]. Taking r = P (p i + p j ), we have

N C 3 (q 2 r) 1.
This and (3.1) imply our required result. Now we are ready to prove Theorem 2.

From (3.2), we easily deduce that

Q<q 2Q ∃ r Q(log Q) B such that N C 3 (q 2 r) 1 1 Q log Q and n x, n∈B 3 N C 3 (n) 1 1 0.5x 1/3 (log x) -B/3 <q x 1/3 (log x) -B/3 ∃ r x 1/3 (log x) 2B/3 such that N C 3 (q 2 r) 1 1 x 1/3 (log x) (B+3)/3 •
This proves the inequality (1.2) by taking B = 3ε + 3.

Next we shall prove the estimate (1.3). The method of proof is the same as in [START_REF] Jia | On the inverse problem relative to dynamics of the w function[END_REF]Theorem 2]. The new ingredient is that we add a process of summation, which allows us to get the lower bound log log x.

For k 1 and 2 k+1 x 1/2 /(log x) 7 , we consider the sum (3.3)

σ k := x<p 1 2x x<p 2 2x x<p 3 2x 2 k x 1/2 <P (p 1 +p 2 )=P (p 1 +p 3 ) 2 k+1 x 1/2 log p 2 log p 3 = x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 x<p 2 2x P (p 1 +p 2 )=r log p 2 2 .
Since for all x < p 1 2x and 2 k x 1/2 < r 2 k+1 x 1/2 , we have x < p 2 2x and P (p 1 + p 2 ) = r ⇔ x < p 2 2x and p 2 ≡ -p 1 (mod r), we can write 

σ k = σ (1) 
k + 2σ

(2)

k + σ (3) k , where σ (1) 
k := x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 x ϕ(r) 2 , σ (2) 
k := x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 x ϕ(r) E * (x, r, -p 1 ), σ (3) 
k := x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 |E * (x, r, -p 1 )| 2 .
By the prime number theorem, it is easy to see that

(3.6) σ (1) k x 2 k+1 x 1/2 2 x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 1 2 -k x 5/2 (log x) 2 1 + O 1 log x uniformly for (3.7)
k 1 and 2 k x 1/2 /(log x) 7 .

By the simple inequality

|E * (x, r, -p 1 )| 2 2 |E(2x, r, -p 1 )| 2 + |E(x, r, -p 1 )| 2
and formula (2.3) with A = 4, we have

(3.8) σ (3) k = 2 k x 1/2 <r 2 k+1 x 1/2 1 a<r x<p 1 2x p 1 ≡ -a (mod r) |E * (x, r, a)| 2 2 k x 1/2 <r 2 k+1 x 1/2 1 a<r x r |E * (x, r, a)| 2 2 -k x 5/2 (log x) 4 ,
uniformly for x and k satisfying (3.7).

By the Cauchy-Schwarz inequality and the following simple bound

x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 1 2 k x 3/2 (log x) 2
uniformly for x and k satisfying (3.7), it follows that (3.9)

σ (2) k 2 2 -k x 1/2 x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 |E * (x, r, -p 1 )| 2 2 -k x 5/2 (log x) 2 x<p 1 2x 2 k x 1/2 <r 2 k+1 x 1/2 |E * (x, r, -p 1 )| 2 = 2 -k x 5/2 (log x) 2 σ (3) k 2 -2k x 5 (log x) 6
uniformly for x and k satisfying (3.7).

Inserting (3.6)-(3.9) into (3.5), we find that 

(3.10) σ k 2 -k x 5/
σ * k := x<p 1 2x x<p 2 2x x<p 3 2x 2 k x 1/2 <P (p 1 +p 2 )=P (p 1 +p 3 ) 2 k+1 x 1/2 p 1 p 2 p 3 ∈C 3 log p 2 log p 3 2 -k x 5/2 (log x) 2 1 + O 1 log x
uniformly for x and k satisfying (3.7). On the other hand, we can write

σ * k = q 4x 2 k x 1/2 <r 2 k+1 x 1/2 qr 2 ∈B 3 σ k (q, r) with σ k (q, r) := x<p 1 2x x<p 2 2x x<p 3 2x P (p 2 +p 3 )=q, P (p 1 +p 2 )=P (p 1 +p 3 )=r p 1 p 2 p 3 ∈C 3 log p 2 log p 3 .
Since we have

q 4x 2 k x 1/2 <r 2 k+1 x 1/2 qr 2 ∈B 3 1 2 k x 3/2 (log x) 2
uniformly for x and k satisfying (3.7), the inequality (3.11) guarantees that there is at least a couple (q, r) satisfying q 4x and 2 k x 1/2 < r 2 k+1 x 1/2 such that σ k (q, r) x 2 2k

x (log x) 2ε

(2 k (log x) ε ).

In other words, for each integer k with 2 k (log x) ε , there is at least a couple (q, r)

with q 4x and 2 k x 1/2 < r 2 k+1 x 1/2 such that N C 3 (qr 2 ) x/(log x) 2+2ε . Thus

n 4x 2 (log x) 2ε , n∈B 3 N C 3 (n) x/(log x) 2+2ε 1 qr 2 4x 2 (log x) 2ε , qr 2 ∈B 3 q 4x, 2x 1/2 r x 1/2 (log x) ε N C 3 (qr 2 ) x/(log x) 2+2ε 1 k ε log log x qr 2 4x 2 (log x) 2ε , qr 2 ∈B 3 q 4x, 2 k x 1/2 r 2 k+1 x 1/2 N C 3 (qr 2 ) x/(log x) 2+2ε 1 ε log log x -1.
This implies (1.3) by replacing 4x 2 (log x) 2ε with x.
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Since the proof is similar to (1.3), we shall point out the principal lines only.

For 2 j+1 x 1/2 /(log x) 7 and 2 k+1 x 1/2 /(log x) 7 with j 1 and k 1, consider the sum (4.1) σ j,k :=

x<p 1 2x x<p 2 2x x<p 3 2x 2 j x 1/2 <P (p 1 +p 2 ) 2 j+1 x 1/2 , 2 k x 1/2 <P (p 1 +p 3 ) 2 k+1 x 1/2 log p 2 log p 3 .
Similar to (3.5), we have

(4.2) σ j,k = σ (1) j,k + σ (2) j,k + σ (3) j,k + σ (4) j,k , where σ (1) 
j,k := x<p 1 2x 2 j x 1/2 <q 2 j+1 x 1/2 x ϕ(q) 2 k x 1/2 <r 2 k+1 x 1/2 x ϕ(r) , σ (2) 
j,k := x<p 1 2x 2 j x 1/2 <q 2 j+1 x 1/2 x ϕ(q) 2 k x 1/2 <r 2 k+1 x 1/2 E * (x, r, -p 1 ), σ (3) j,k := x<p 1 2x 2 j x 1/2 <q 2 j+1 x 1/2 E * (x, q, -p 1 ) 2 k x 1/2 <r 2 k+1 x 1/2 x ϕ(r) , σ (4) 
j,k :=

x<p 1 2x 2 j x 1/2 <q 2 j+1 x 1/2
E * (x, q, -p 1 )

2 k x 1/2 <r 2 k+1 x 1/2
E * (x, r, -p 1 ), and E * (x, r, -p 1 ) is defined in (3.4).

By the prime number theorem, it is easy to see that

(4.3) σ (1) j,k (log 2) 2 x 3 (log x) 3 1 + O 1 log x uniformly for (4.4) j, k 1, 2 j x 1/2 /(log x) 7 and 2 k x 1/2 /(log x) 7 .

Similar to σ

(2)

k , with the help of (2.3) with A = 6 we easily prove that (4.5)

σ (i) j,k
x 3 (log x) 4 (i = 2, 3) uniformly for x, j and k satisfying (4.4).

By applying the Cauchy-Schwarz inequality two times, it follows that

σ (4) j,k 2 x<p 1 2x 2 j x 1/2 <q 2 j+1 x 1/2 |E * (x, q, -p 1 )| 2 × × x<p 1 2x 2 j x 1/2 <q 2 j+1 x 1/2 2 k x 1/2 <r 2 k+1 x 1/2 E * (x, r, -p 1 ) 2 2 j x 1/2 <q 2 j+1 x 1/2 2 k x 1/2 <r 2 k+1 x 1/2 σ (3) j σ (3) 
k .

Thus (3.8) implies that

(4.6) σ (4) j,k 2 2 j x 1/2 log x 2 k x 1/2 log x 2 -j x 5/2 (log x) 4 2 -k x 5/2 (log x) 4
x 6 (log x) 10 uniformly for x, j and k satisfying (4.4).

Inserting (4.3)-(4.6) into (4.2), we find that (4.7)

σ j,k (log 2) 2 x 3 (log x) 3 1 + O 1 log x
uniformly for x, j and k satisfying (4.4).

In order to remove p 1 , p 2 , p 3 in σ j,k such that w(p 1 p 2 p 3 ) / ∈ C 3 , we consider the subsums of σ j,k :

σ j,k := x<p 1 2x x<p 2 2x x<p 3 2x 2 j x 1/2 <P (p 1 +p 2 ) 2 j+1 x 1/2 , 2 k x 1/2 <P (p 1 +p 3 ) 2 k+1 x 1/2 P (p 1 +p 2 )=P (p 1 +p 3 ) log p 2 log p 3 , σ j,k := x<p 1 2x x<p 2 2x x<p 3 2x 2 j x 1/2 <P (p 1 +p 2 ) 2 j+1 x 1/2 , 2 k x 1/2 <P (p 1 +p 3 ) 2 k+1 x 1/2 P (p 1 +p 2 )=P (p 2 +p 3 ) log p 2 log p 3 , σ j,k := x<p 1 2x x<p 2 2x x<p 3 2x 2 j x 1/2 <P (p 1 +p 2 ) 2 j+1 x 1/2 , 2 k x 1/2 <P (p 1 +p 3 ) 2 k+1 x 1/2 P (p 1 +p 3 )=P (p 2 +p 3 ) log p 2 log p 3 .
For σ j,k , we must have j = k and

σ j,k = 2 j x 1/2 <q 2 j+1 x 1/2 x<p 1 2x x<p 2 2x P (p 1 +p 2 )=q x<p 3 2x P (p 1 +p 3 )=q log p 2 log p 3 4(log x) 2 2 j x 1/2 <q 2 j+1 x 1/2 x<p 1 2x x<p 2 2x p 2 ≡-p 1 (mod q) x<p 3 2x p 3 ≡-p 1 (mod q) 1 16(log x) 2 2 j x 1/2 <q 2 j+1 x 1/2 x<p 1 2x x 2 q 2 20x 5/2 (log x) 2 .
The same bound holds for σ j,k and σ j,k . These estimates allow us to remove the

p 1 , p 2 , p 3 in σ j,k such that w(p 1 p 2 p 3 ) / ∈ C 3 : (4.8) σ * j,k := x<p 1 2x x<p 2 2x x<p 3 2x 2 j x 1/2 <P (p 1 +p 2 ) 2 j+1 x 1/2 , 2 k x 1/2 <P (p 1 +p 3 ) 2 k+1 x 1/2 w(p 1 p 2 p 3 )∈C 3 log p 2 log p 3 (log 2) 2 x 3 (log x) 3 1 + O 1 log x
uniformly for x, j and k satisfying (4.4). On the other hand, we can write σ * j,k = q 4x 2 j x 1/2 <r 2 j+1 x 1/2 2 k x 1/2 <s 2 k+1 x 1/2 qrs∈C 3 σ j,k (q, r, s) with σ j,k (q, r, s) :=

x<p 1 2x x<p 2 2x x<p 3 2x P (p 2 +p 3 )=q, P (p 1 +p 2 )=r, P (p 1 +p 3 )=s log p 2 log p 3 .

Since we have

q 4x 2 j x 1/2 <r 2 j+1 x 1/2 2 k x 1/2 <s 2 k+1 x 1/2 qrs∈C 3 1 2 j+k x 2 (log x) 3
uniformly for x, j and k satisfying (4.4). The inequality (4.8) guarantees that there is at least a triple (q, r, s) with q 4x, 2 j x 1/2 < r 2 j+1 x 1/2 and 2 k x 1/2 < s 2 k+1 x 1/2 such that

σ j,k (q, r, s) x 2 j+k     
x/(log x) 2ε for 2 j (log x) ε and 2 k (log x) ε , x 1-2ε for 2 j x ε and 2 k x ε .

In other words, for each couple (j, k) with 2 j (log x) ε and 2 k (log x) ε (resp. 2 j

x ε and 2 k x ε ), there is at least a triple (q, r, s) with q 4x, 2 j x 1/2 < r 2 j+1 x 1/2 and 2 k x 1/2 < s 2 k+1 x 1/2 such that N C 3 (qrs)

x/(log x) 2+2ε (resp. x 1-3ε ). Thus

n 4x 2 (log x) 2ε , n∈C 3 N C 3 (n) x/(log x) 2+2ε 1 qrs 4x 2 (log x) 2ε , qrs∈C 3 q 4x, 2x 1/2 r x 1/2 (log x) ε , 2x 1/2 s x 1/2 (log x) ε N C 3 (qrs) x/(log x) 2+2ε 1 j ε log log x k ε log log x qrs 4x 2 (log x) 2ε , qrs∈C 3 q 4x, 2 j x 1/2 r 2 j+1 x 1/2 , 2 k x 1/2 s 2 k+1 x 1/2 N C 3 (qrs) x/(log x) 2+2ε 1 (ε log log x) 2 -1.
This implies (1.4) by replacing 4x 2 (log x) 2ε with x. The inequality (1.5) can proved in the same way.

Proofs of Theorem 4 and Corollary 5

According to [1, Theorem 1], there are two positive constants c 1 and x 0 such that (5.1) p x, P (p+2) x 0.2961 1 x (log x) c 1 (x x 0 ). Since p x, P (p+2) x 0.2961 1 =

x 0.2961/0.2962 <p x, P (p+2) x 0.2961 Clearly Theorem 4 implies Corollary 5 except for the second formula of (1.9). In order to prove it, we first notice that P (w(n)) P (n) + 2 for all n ∈ A 3 . Thus (5.2) lim sup

n→∞ n∈A 3 P (w(n)) P (n) 1.
On the other hand, according to the Green-Tao Theorem on arithmetic progressions in primes [START_REF] Green | The primes contain arbitrarily long arithmetic progressions[END_REF], for any integer k 2, there are two positive integers a = a(k) and d = d(k) such that a + id is prime for i = 0, . . . , 2 k . Put

p := a + 2 k d, q := a + (2 k -2)d, r := a and p := p + q 2 = a + (2 k -1)d, q := p + r 2 = a + 2 k-1 d, r := q + r 2 = a + (2 k-1 -1)d.
Obviously w(pqr) = p q r and P (w(pqr)) = p . Thus Now the second relation of (1.9) follows from (5.2) and (5.3).

Proof of Theorem 6

We need to establish two preliminary lemmas.

Lemma 6.1. With the notation of (1.11) (B 3 (x) and C 3 (x) can be defined similarly), we have, for x → ∞,

A 3 (x) ∼ x 2 log x
(log log x) 2 , (6.1)

B 3 (x) ∼ B 3 x log x with B 3 := p 1 p 2 , (6.2) C 3 (x) ∼ x 2 log x (log log x) 2 . (6.3)
Proof. By the prime number theorem, we can write

B 3 (x) = p 2 q x, p =q 1 ∼ p (x/2) 1/2 x p 2 log(x/p 2 )
•

On the other hand, we have

log x<p (x/2) 1/2 x p 2 log(x/p 2 ) p>log x x p 2 x (log x) log log x , p log x x p 2 log(x/p 2 ) ∼ x log x p log x 1 p 2 ∼ B 3 x log x •
Inserting these into the preceding formula, we get (6.2).

According to a classic result of Landau (see [8, Chapter II.6]), we have

n x Ω(n)=3 1 ∼ x 2 log x (log log x) 2 (x → ∞).
From this and (6.2), we immediately deduce (6.3), since

C 3 (x) = n x Ω(n)=3 1 - n x Ω(n)=3, ω(n)=2 1 - n x Ω(n)=3, ω(n)=1 1.
Finally (6.1) follows from (6.2) and (6.3), since A 3 (x) = B 3 (x) + C 3 (x). Lemma 6.2. For k ∈ N, define C 3 (k) := {pqr : r < q < p, q ≡ r (mod 2 k ), p ≡ -r (mod 2 k )}.

For any ε ∈ (0, 1 2 k+1 ), we have, as x → ∞, (6.4)

n x, n∈C 3 (k) P (w(n)) (1+ε)2 -k P (n) 1 ∼ n x, n∈C 3 (k)
1.

Further we have

n x, n∈C 3 (1) 1 ∼ x 2 log x (log log x) 2 , (6.5) n x, n∈C 3 (k) 1 A 3 (x) 2 2k , (6.6)
where the implied constant in the -symbol is absolute.

Proof. For any ε ∈ (0, 1 2 k+1 ), we have

r x 1/3 q (x/r) 1/2 p q/ε 1 ε r x 1/3 q (x/r) 1/2 q log q ε r x 1/3 x r log 2 (x/r) ε x log log x (log x) 2 .
Thus we can write n x, n∈C 3 (k)

1 = r x 1/3 r<q (x/r) 1/2 q≡r(mod 2 k ) q<p x/(qr) p≡-r(mod 2 k ) 1 = r x 1/3 r<q (x/r) 1/2 q≡r(mod 2 k ) q/ε<p x/(qr) p≡-r(mod 2 k ) 1 + O ε x log log x (log x) 2 .
For each (p, q, r) counted in the last triple sums, we have obviously that

P (p + q) p + q 2 k 1 + ε 2 k p, P (p + r) p + r 2 k 1 + ε 2 k p, P (q + r) 2q 2εp 1 + ε 2 k p. 20 
Thus P (w(pqr)) = max{P (p + q), P (p + r), P (q + r)} (1 + ε)2 -k p and n x, n∈C 3 (k)

1 r x 1/3 r<q (x/r) 1/2 q/ε<p x/(qr) P (w(pqr)) (1+ε)2 -k P (pqr)

1 + O ε x log log x (log x) 2 r x 1/3 r<q (x/r) 1/2 q<p x/(qr) P (w(pqr)) (1+ε)2 -k P (pqr) 1 + O ε x log log x (log x) 2 = n x, n∈C 3 (k) P (w(n)) (1+ε)2 -k P (n) 1 + O ε x log log x (log x) 2 .
This implies (6.4).

The asymptotic formula (6.5) is an immediate consequence of (6.3), since

n x, n∈C 3 1 = r x 1/3 r<q (x/r) 1/2 q<p x/(qr) 1 = 3 r x 1/3 r<q (x/r) 1/2 q<p x/(qr) 1 + O x log log x log x = n x, n∈C 3 (1)
1 + O x log log x log x .

In order to show the lower bound of (6.6), we begin by the following trivial inequality n x n∈C 3 (k) 1 r x 1/6 r<q x 1/3 q≡r(mod 2 k )

x 1/3 <p x/(qr) p≡-r(mod 2 k )

1.

21

Then we apply the prime number (in arithmetic progressions) theorem to write This completes the proof. Now we are ready to prove Theorem 6.

For any α ∈ (0, 1], we can choose k and ε such that (1 + ε)2 -k < α 2 -k+1 . In particular for α ∈ ( The asymptotic formula (1.12) follows from (6.4) with k = 1, (6.5), (6.1) and the trivial inclusion relation C 3 ⊂ A 3 . The inequality (1.13) can be obtained in the same way (i.e. by replacing (6.5) with (6.6)).

A heuristic argument on Problem 11

The aim of this section is to present an heuristic proof of (7.1)

p x, P (p+2)=q 1 → ∞ (x → ∞),
where q is a large fixed prime number.

Since P (n + 2) = q is equivalent to n + 2 = q with P ( ) q, we have n x, P (n+2)=q 1 = (x+2)/q, P ( ) q 1 = Ψ((x + 2)/q, q), 22 where Ψ(x, y) := n x, P (n) y 1.

According to [8, Theorem III.5.2], we have log Ψ((x + 2)/q, q) = Z 1 + O 1 log q + 1 log log((x + 2)/q) uniformly for x + 2 q 2 10000, where Z := log((x + 2)/q) log q log 1 + q log((x + 2)/q) + q log q log 1 + log((x + 2)/q) q .

From this we deduce Z q 2 log q log log x and (7.2) Ψ((x + 2)/q, q) (log x) q/(4 log q)

for x x 0 (q), provided the constants q and x 0 (q) are suitably large.

According to Cramér's model [9, Section 3.2] it seems reasonable to assume that Thus (7.2) implies (under the hypothesis (7.3))

p x, P (p+2)=q 1 (log x) q/(4 log q)-1 → ∞, as x → ∞.

Lemma 2 . 1 .

 21 For two coprime positive integers a and d with 1 a d -1, denote by π(x, d, a) the number of primes p x such that p ≡ a (mod d). Let B 1 0 and

  x<p 2 2x P (p 1 +p 2 )=r log p 2 = x ϕ(r) + E * (x, r, -p 1 ), where (3.4) E * (x, r, -p 1 ) = E(2x, r, -p 1 ) -E(x, r, -p 1 ) and E(x, d, a) is defined as in (2.4). Thus (3.5)

log log x 1 / 3 - 2 (log log x 1 / 6 ) 2 +

 132162 log x r x 1/6 r<q x 1/3 , q≡r(mod 2 k ) log log r + O(1) x 2 2k log x (log log x 1/3 )(log log x 1/6 ) -1 O(log log x)

1 2 ,

 2 1], we can take k = 1. Thusn x, n∈A 3 P (w(n)) αP (n) 1 n x, n∈C 3 (k) P (w(n)) αP (n) 1 n x, n∈C 3 (k) P (w(n)) (1+ε)2 -k P (n) 1.
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