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Abstract

Let A3 be the set of all positive integers pqr, where p, q, r are primes such

that at least two of them are not equal. Denote by P (n) the largest prime

factor of n. For n = pqr ∈ A3, define w(n) := P (p + q)P (p + r)P (q + r). In

2006, Wushi Goldring proved that for any n ∈ A3, there exists an i such that

∗The work of Y.-G. Chen and Y. Shi is supported by the National Natural Science Foundation

of China, Grant No 11071121.
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wi(n) ∈ {20, 98, 63, 75}, where w0(n) = n and wi(n) = w(wi−1(n)) (i > 1). If

w(m) = n, then m is called a parent of n. Let B3 be the set of all positive

integers pq2 of A3. In this paper, we study the function w extensively. For

example, one of our results is that there exist infinitely many n ∈ B3 which

have at least n1.1886 parents in B3. Several open problems are posed.

2010 Mathematics Subject Classification: 11A25, 11A41, 37B99

Keywords: w function; primes; dynamics

1 Introduction

Let P be the set of all (rational) positive primes. For any positive integer n let

P (n) denote the largest prime factor of n with the convention P (1) = 1. Let

A3 = {pqr | p, q, r ∈P} \ {p3 | p ∈P}.

Recently Goldring [4] introduced his w-function on A3, which is defined by

w(n) := P (p+ q)P (p+ r)P (q + r) (n = pqr ∈ A3),

and investigated its dynamics. Here and in the sequel, the letters p, q, r and s denote

prime numbers. According to [4, Lemma 2.1], we have w(n) ∈ A3 for all n ∈ A3.

Thus we can consider iteration of w. For every integer i > 0, write

w0(n) := n, wi(n) := w(wi−1(n)) (i = 1, 2, . . . ).

The w-orbit of n is denoted by

W(n) := [n,w(n), . . . , wi(n), . . . ].

For example, one can verify that

w(20) = 98, w(98) = 63, w(63) = 75, w(75) = 20.

Interestingly, Goldring [4, Theorem 1.1] proved that for every n ∈ A3, there exists

an integer i such that wi(n) ∈ {20, 98, 63, 75}. Denoting by ind(n) the smallest

such integer i. We call ind(n) the periodicity index of n. Goldring [4] proved that
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ind(n) 6 4(π(P (n)) − 3), and posed several conjectures related to w(n). Two of

them are

Conjecture A ([4, Conjecture 2.9]). We have ind(n) = O(log π(P (n))).

Conjecture B ([4, Conjecture 2.10]). There are subsets in A3 of arbitrarily

large periodicity index.

Chen and Shi [2] proved Conjecture B and ind(n) = O((logP (n))2).

Let n ∈ A3 and S ⊂ A3. By a parent of n ∈ A3 in S , we mean a posi-

tive integer m ∈ S such that w(m) = n. We also call m a S -parent of n. Let

B3 = {p2q : p 6= q, p, q ∈ P} and C3 = A3 \B3. Goldring [4] proved that there

exist infinitely many elements of B3 that have at least seven B3-parents and posed

the following conjecture:

Conjecture C [4, Conjecture 2.16]). Every element of A3 (respectively B3) has

infinitely many C3-parents (respectively B3).

Chen and Shi [3] proved that for any positive integer k there exist infinitely many

elements of B3 that have at least k parents in B3 and there exist infinitely many

elements of B3 that have no parents in B3.

Define

NS (n) := |{m ∈ S : w(m) = n}|,

Recently Jia [6, Theorem 3] established more precise results:

• There is an element n = pq2 of B3 with x < p 6 2x and
√
x log x < q 6

2
√
x log x such that

NB3(n)� x1/2(log x)−2 � n1/4(log n)−5/2,

provided x is sufficiently large.

• There exists an element n = qr2 of B3 with q 6 4x and
√
x log x < r 6

2
√
x log x such that

NC3(n)� x(log x)−4 � n1/2(log n)−5,
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provided x is sufficiently large.

• There is an element n = qrs of C3 with q 6 4x and
√
x log x < r, s 6 2

√
x log x

such that

NC3(n)� x(log x)−4 � n1/2(log n)−5,

provided x is sufficiently large.

Here we establish some stronger results.

Theorem 1. (i) Let B > −1. As x→∞, we have

(1.1) #{n 6 x : n ∈ B3, NB3(n)� n1/3(log n)B} � x2/3(log x)−B−3.

(ii) There exist infinitely many n ∈ B3 such that NB3(n) > n1.1886.

Theorem 2. For any ε > 0, as x→∞, we have

(1.2) #{n 6 x : n ∈ B3, NC3(n) > 1} �ε x
1/3(log x)−2−ε,

(1.3) #{n 6 x : n ∈ B3, NC3(n)� n1/2(log n)−2−ε} � ε log log x,

where the implied constant in (1.3) is absolute.

Theorem 3. For any ε > 0, as x→∞, we have

(1.4) #{n 6 x : n ∈ C3, NC3(n)� n1/2(log n)−2−ε} � (ε log log x)2,

(1.5) #{n 6 x : n ∈ C3, NC3(n)� n1/2−ε} � (ε log x)2,

where the implied constants are absolute.

In order to improve Goldring’s bound to

ind(n)� (logP (n))2 (n ∈ A3),

Chen & Shi [2] proved their [2, Lemma 4], which is stated as follows: for each n ∈ A3

there is a positive integer i = i(n) such that

1 6 i 6 log(P (n) + 6) + 2 and P (wi(n)) 6
15

16
P (n) + 6.

In Section 5 and 6, we study the distribution of sequences {P (w(n))/P (n)}n∈A3 and

{w(n)/n}n∈A3 and establish the following result.
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Theorem 4. We have

lim inf
n→∞
n∈A3

logP (w(n))

logP (n)
6 0.2962,(1.6)

lim inf
n→∞
n∈A3

logw(n)

log n
6 0.5924,(1.7)

lim sup
n→∞
n∈A3

logw(n)

log n
> 1.354.(1.8)

From Theorem 4, we can deduce the following corollary.

Corollary 5. We have

lim inf
n→∞
n∈A3

P (w(n))

P (n)
= 0 and lim sup

n→∞
n∈A3

P (w(n))

P (n)
= 1,(1.9)

lim inf
n→∞
n∈A3

w(n)

n
= 0 and lim sup

n→∞
n∈A3

w(n)

n
=∞.(1.10)

Introduce the notation

(1.11) A3(x) := |A3 ∩ [1, x]|.

Theorem 6. For all α ∈ (1
2
, 1], we have, as x→∞,

(1.12) #{n 6 x : n ∈ A3, P (w(n)) 6 αP (n)} ∼ A3(x).

When α ∈ (0, 1
2
], we have, as x→∞,

(1.13) #{n 6 x : n ∈ A3, P (w(n)) 6 αP (n)} � α2A3(x),

where the implied constant is absolute.

In view of Corollary 5, it is natural to raise the following problems.

Problem 7. Is the set {P (w(n))/P (n) : n ∈ A3} dense in [0, 1]?

Problem 8. Is the set {w(n)/n : n ∈ A3} dense in [0,∞)?

Theorem 6 shows that the density

DA3(α) := lim
x→∞

1

A3(x)

∑
n6x, n∈A3

P (w(n))6αP (n)

1

exists for 1
2
< α 6 1 and is equal to 1. Naturally we want to know the other case.
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Problem 9. Does DA3(α) exist for α ∈ (0, 1
2
]? If it exists, what is its value?

The lower bound (1.1) of Theorem 1 is probably far from optimal. On the other

hand, Chen & Shi [3, Theorem 4] proved that there exist infinitely many elements

of B3 which have no B3-parent. It is very natural to ask

Problem 10. Does the set {n ∈ B3 : n has no B3-parent} have zero density?

In view of [4, Conjecture 2.16], it is interesting to know if there exist elements n ∈
B3 such that NB3(n) =∞. As Chen & Shi [3, Remark] indicated, this assertion is

equivalent to the following conjecture: For any nonzero integer a there are infinitely

many primes p such that P (a+ p) takes the same value. This conjecture seems very

difficult. Here we propose a slightly easier question.

Problem 11. Let q be a large prime number. Are there infinitely many primes p

such that P (p+ 2) = q?

If the answer to this problem is affirmative, then NB3(2q
2) =∞ (since w(4p) =

2q2). In Section 7, we shall give a heuristic argument for Problem 11.

Acknowledgement. This work was begun during Conference on Number Theory

at Chern Institute of Mathematics, Nankai University, China, August 23–28, 2009.

We would like to thank Chern Institute of Mathematics of Nankai University for

agreeable hospitality and Jia for his excellent talk on the dynamics of Goldring’s

w-function. We also thank the referee for his/her helpful comments.

2 Proof of Theorem 1

First we need to prove a preliminary lemma, which is of independent interest.

Lemma 2.1. For two coprime positive integers a and d with 1 6 a 6 d− 1, denote

by π(x, d, a) the number of primes p 6 x such that p ≡ a (mod d). Let B1 > 0 and
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P = Q(logQ)−B1. Then we have∑
Q<q62Q

∑
p6P

π(Q2,q,q−p)>Q/(8 logQ)

1 ∼ PQ

logP logQ
∼ Q2

(logQ)B1+2
,(2.1)

∑
Q<q62Q

∑
p6P

NB3
(pq2)>Q/(8 logQ)

1 ∼ PQ

logP logQ
∼ Q2

(logQ)B1+2
,(2.2)

as Q→∞.

Proof. According to [7, Theorem 7.12], for 1 6 Q 6 x and any A > 0 we have

(2.3)
∑
d6Q

∑
16a6d
(a,d)=1

|E(x, d, a)|2 = Qx logQ+OA

(
Qx+

x2

(log x)A

)
,

where

(2.4) E(x, d, a) :=
∑
p6x

p≡a(mod d)

log p− x

ϕ(d)

and ϕ(q) is the Euler function. Here the implied constant depends only on A.

Clearly (2.3) with the choice of x = Q2 implies

(2.5)

∑
Q<q62Q

∑
p6P

|E(Q2, q, q − p)|2 6
∑

Q<q62Q

∑
16a6q
(a,q)=1

|E(Q2, q, a)|2

�A
Q4

(logQ)A

for all Q > 3.

Introduce

S(Q) := {(q, p) : Q < q 6 2Q, p 6 P},

E(Q) :=
{

(q, p) ∈ S(Q) : |E(Q2, q, q − p)| > Q2/(2ϕ(q))
}
.

From the inequality (2.5), we easily deduce

|E(Q)|
(

Q2

2(2Q− 1)

)2

�A
Q4

(logQ)A
.

Thus

(2.6) |E(Q)| �A
Q2

(logQ)A
·
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For all (q, p) ∈ S(Q)rE(Q), we have

|E(Q2, q, q − p)| < Q2

2ϕ(q)
·

From this we deduce ∑
p′6Q2

p′≡q−p(mod q)

log p′ >
Q2

2ϕ(q)

for all (q, p) ∈ S(Q)rE(Q). Thus

π(Q2, q, q − p) > Q

8 logQ

for all (q, p) ∈ S(Q)rE(Q). Taking A = B1 + 3 in (2.6), we can write

(2.7)

∑
Q<q62Q

∑
p6P

1 =
∑

Q<q62Q

∑
p6P

|E(Q2,q,q−p)|<Q2/(2ϕ(q))

1 +O

(
Q2

(logQ)B1+3

)

6
∑

Q<q62Q

∑
p6P

π(Q2,q,q−p)>Q/(8 logQ)

1 +O

(
Q2

(logQ)B1+3

)

6
∑

Q<q62Q

∑
p6P

1 +O

(
Q2

(logQ)B1+3

)
.

Now the required asymptotic formula (2.1) follows from (2.7) and the prime

number theorem.

Now we prove (2.2). For each pair (q, p) with Q < q 6 2Q, p 6 P and π(Q2, q, q−
p) > Q/(8 logQ), there are at least Q/(8 logQ) prime numbers pi 6 Q2 such that

pi ≡ q − p (mod q). Writting pi = `iq + q − p, we must have 1 6 `i 6 q − 1 for

i = 1, . . . , dQ/(8 logQ)e. Thus

w(p2pi) = pP (p+ pi)
2 = pP ((`i + 1)q)2 = pq2

and

NB3(pq
2) >

Q

8 logQ
.
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From these and (2.1), we deduce that

Q2

(logQ)B1+2
∼

∑
Q<q62Q

∑
p6P

π(Q2,q,q−p)>Q/(8 logQ)

1

6
∑

Q<q62Q

∑
p6P

NB3
(pq2)>Q/(8 logQ)

1

6
∑

Q<q62Q

∑
p6P

1

∼ Q2

(logQ)B1+2
.

This is equivalent to (2.2).

Now we are ready to prove Theorem 1.

The inequality (1.1) is an immediate consequence of (2.2) by writtng n = pq2

and B1 = 3B + 3.

Next we prove the second assertion. According to [1, Theorem 1], for any given

prime q, there are two positive constants c0 = c0(q) and x0 = x0(q) such that∑
p6x, P (p+q)6x0.2961

1 >
x

(log x)c0
(x > x0).

Hence there exists a prime r 6 x0.2961 such that∑
p6x, P (p+q)=r

1 >
x

π(x0.2961)(log x)c0
>

0.2x0.7039

(log x)c0−1
(x > x0).

Let p1 < · · · < pk 6 x with P (pi + q) = r (1 6 i 6 k = [0.2x0.7039/(log x)c0−1]).

Then w(piq
2) = qr2 for i = 1, 2, . . . , k and qr2 6 qx0.5922 < x0.5922 log x. Thus for

nq = qr2 we have

NB3(nq) > k > 0.1x0.7039/(log x)c0−1 > n1.1886
q .

Since there are infinitely many prime numbers q, there are infinitely many n ∈ B3

such that NC3(n) > n1.1886.

3 Proof of Theorem 2

As before, we first prove a preliminary lemma, which is an analogue of Lemma 2.1.
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Lemma 3.1. For two coprime positive integers a and d with 1 6 a 6 d− 1, denote

by π(x, d, a) the number of primes p 6 x such that p ≡ a (mod d). Then, for any

B > 3, we have ∑
Q<q62Q

∑
p6Q

π(Q(logQ)B ,q,q−p)�(logQ)B−1

1 ∼ Q2

(logQ)2
,(3.1)

∑
Q<q62Q

∑
p6Q

∃ r6Q(logQ)B such thatNC3
(q2r)>1

1 ∼ Q2

(logQ)2
,(3.2)

as Q→∞.

Proof. We shall prove only (3.2), since (3.1) is very similar to (2.1).

By using (3.1), for each (q, p) counted in the left-hand side of (3.1), there

are c(logQ)B−1 prime numbers pi 6 Q(logQ)B such that pi ≡ q − p (mod q).

Writting pi = `iq + q − p, we must have 1 6 `i 6 (logQ)B < Q 6 q − 1 for

i = 1, . . . , [c(logQ)B−1]. Thus

w(ppipj) = P (p+ pi)P (p+ pj)P (pi + pj) = q2P (pi + pj).

Clearly p 6= pi and P (pi + pj) 6= q for all 1 6 i, j 6 [c(logQ)B−1]. Taking r =

P (pi + pj), we have

NC3(q
2r) > 1.

This and (3.1) imply our required result.

Now we are ready to prove Theorem 2.

From (3.2), we easily deduce that∑
Q<q62Q

∃ r6Q(logQ)B such thatNC3
(q2r)>1

1� Q

logQ

and ∑
n6x, n∈B3

NC3
(n)>1

1 >
∑

0.5x1/3(log x)−B/3<q6x1/3(log x)−B/3

∃ r6x1/3(log x)2B/3 such thatNC3
(q2r)>1

1� x1/3

(log x)(B+3)/3
·

This proves the inequality (1.2) by taking B = 3ε+ 3.
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Next we shall prove the estimate (1.3). The method of proof is the same as in

[6, Theorem 2]. The new ingredient is that we add a process of summation, which

allows us to get the lower bound � log log x.

For k > 1 and 2k+1 6 x1/2/(log x)7, we consider the sum

(3.3)

σk :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2kx1/2<P (p1+p2)=P (p1+p3)62k+1x1/2

log p2 log p3

=
∑

x<p162x

∑
2kx1/2<r62k+1x1/2

( ∑
x<p262x

P (p1+p2)=r

log p2

)2

.

Since for all x < p1 6 2x and 2kx1/2 < r 6 2k+1x1/2, we have

x < p2 6 2x and P (p1 + p2) = r ⇔ x < p2 6 2x and p2 ≡ −p1(mod r),

we can write ∑
x<p262x

P (p1+p2)=r

log p2 =
x

ϕ(r)
+ E∗(x, r,−p1),

where

(3.4) E∗(x, r,−p1) = E(2x, r,−p1)− E(x, r,−p1)

and E(x, d, a) is defined as in (2.4). Thus

(3.5) σk = σ
(1)
k + 2σ

(2)
k + σ

(3)
k ,

where

σ
(1)
k :=

∑
x<p162x

∑
2kx1/2<r62k+1x1/2

(
x

ϕ(r)

)2

,

σ
(2)
k :=

∑
x<p162x

∑
2kx1/2<r62k+1x1/2

x

ϕ(r)
E∗(x, r,−p1),

σ
(3)
k :=

∑
x<p162x

∑
2kx1/2<r62k+1x1/2

|E∗(x, r,−p1)|2.

By the prime number theorem, it is easy to see that

(3.6) σ
(1)
k >

(
x

2k+1x1/2

)2 ∑
x<p162x

∑
2kx1/2<r62k+1x1/2

1� 2−kx5/2

(log x)2

{
1 +O

(
1

log x

)}
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uniformly for

(3.7) k > 1 and 2k 6 x1/2/(log x)7.

By the simple inequality

|E∗(x, r,−p1)|2 6 2
(
|E(2x, r,−p1)|2 + |E(x, r,−p1)|2

)
and formula (2.3) with A = 4, we have

(3.8)

σ
(3)
k =

∑
2kx1/2<r62k+1x1/2

∑
16a<r

∑
x<p162x

p1≡−a (mod r)

|E∗(x, r, a)|2

�
∑

2kx1/2<r62k+1x1/2

∑
16a<r

x

r
|E∗(x, r, a)|2

� 2−kx5/2

(log x)4
,

uniformly for x and k satisfying (3.7).

By the Cauchy-Schwarz inequality and the following simple bound∑
x<p162x

∑
2kx1/2<r62k+1x1/2

1� 2kx3/2

(log x)2

uniformly for x and k satisfying (3.7), it follows that

(3.9)

∣∣σ(2)
k

∣∣2 � (
2−kx1/2

∑
x<p162x

∑
2kx1/2<r62k+1x1/2

|E∗(x, r,−p1)|
)2

� 2−kx5/2

(log x)2

∑
x<p162x

∑
2kx1/2<r62k+1x1/2

|E∗(x, r,−p1)|2

=
2−kx5/2

(log x)2
σ

(3)
k �

2−2kx5

(log x)6

uniformly for x and k satisfying (3.7).

Inserting (3.6)-(3.9) into (3.5), we find that

(3.10) σk �
2−kx5/2

(log x)2

{
1 +O

(
1

log x

)}
uniformly for x and k satisfying (3.7).

Since ∑
x<p162x

∑
x<p262x

∑
x<p362x

p1p2p3 /∈C3

log p2 log p3 � x2 log x,
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the inequality (3.10) yields immediately

(3.11)

σ∗k :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2kx1/2<P (p1+p2)=P (p1+p3)62k+1x1/2

p1p2p3∈C3

log p2 log p3

� 2−kx5/2

(log x)2

{
1 +O

(
1

log x

)}
uniformly for x and k satisfying (3.7). On the other hand, we can write

σ∗k =
∑
q64x

∑
2kx1/2<r62k+1x1/2

qr2∈B3

σk(q, r)

with

σk(q, r) :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

P (p2+p3)=q, P (p1+p2)=P (p1+p3)=r
p1p2p3∈C3

log p2 log p3.

Since we have ∑
q64x

∑
2kx1/2<r62k+1x1/2

qr2∈B3

1� 2kx3/2

(log x)2

uniformly for x and k satisfying (3.7), the inequality (3.11) guarantees that there is

at least a couple (q, r) satisfying q 6 4x and 2kx1/2 < r 6 2k+1x1/2 such that

σk(q, r)�
x

22k
� x

(log x)2ε
(2k 6 (log x)ε).

In other words, for each integer k with 2k 6 (log x)ε, there is at least a couple (q, r)

with q 6 4x and 2kx1/2 < r 6 2k+1x1/2 such that NC3(qr
2)� x/(log x)2+2ε. Thus∑

n64x2(log x)2ε, n∈B3

NC3
(n)�x/(log x)2+2ε

1 >
∑

qr264x2(log x)2ε, qr2∈B3

q64x, 2x1/26r6x1/2(log x)ε

NC3
(qr2)�x/(log x)2+2ε

1

>
∑

k6ε log log x

∑
qr264x2(log x)2ε, qr2∈B3

q64x, 2kx1/26r62k+1x1/2

NC3
(qr2)�x/(log x)2+2ε

1

> ε log log x− 1.

This implies (1.3) by replacing 4x2(log x)2ε with x.
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4 Proof of Theorem 3

Since the proof is similar to (1.3), we shall point out the principal lines only.

For 2j+1 6 x1/2/(log x)7 and 2k+1 6 x1/2/(log x)7 with j > 1 and k > 1, consider

the sum

(4.1) σj,k :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2jx1/2<P (p1+p2)62j+1x1/2, 2kx1/2<P (p1+p3)62k+1x1/2

log p2 log p3.

Similar to (3.5), we have

(4.2) σj,k = σ
(1)
j,k + σ

(2)
j,k + σ

(3)
j,k + σ

(4)
j,k ,

where

σ
(1)
j,k :=

∑
x<p162x

∑
2jx1/2<q62j+1x1/2

x

ϕ(q)

∑
2kx1/2<r62k+1x1/2

x

ϕ(r)
,

σ
(2)
j,k :=

∑
x<p162x

∑
2jx1/2<q62j+1x1/2

x

ϕ(q)

∑
2kx1/2<r62k+1x1/2

E∗(x, r,−p1),

σ
(3)
j,k :=

∑
x<p162x

∑
2jx1/2<q62j+1x1/2

E∗(x, q,−p1)
∑

2kx1/2<r62k+1x1/2

x

ϕ(r)
,

σ
(4)
j,k :=

∑
x<p162x

∑
2jx1/2<q62j+1x1/2

E∗(x, q,−p1)
∑

2kx1/2<r62k+1x1/2

E∗(x, r,−p1),

and E∗(x, r,−p1) is defined in (3.4).

By the prime number theorem, it is easy to see that

(4.3) σ
(1)
j,k > (log 2)2 x3

(log x)3

{
1 +O

(
1

log x

)}
uniformly for

(4.4) j, k > 1, 2j 6 x1/2/(log x)7 and 2k 6 x1/2/(log x)7.

Similar to σ
(2)
k , with the help of (2.3) with A = 6 we easily prove that

(4.5) σ
(i)
j,k �

x3

(log x)4
(i = 2, 3)

uniformly for x, j and k satisfying (4.4).
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By applying the Cauchy-Schwarz inequality two times, it follows that∣∣σ(4)
j,k

∣∣2 6 ∑
x<p162x

∑
2jx1/2<q62j+1x1/2

|E∗(x, q,−p1)|2×

×
∑

x<p′162x

∑
2jx1/2<q′62j+1x1/2

( ∑
2kx1/2<r62k+1x1/2

E∗(x, r,−p′1)
)2

6
∑

2jx1/2<q′62j+1x1/2

∑
2kx1/2<r′62k+1x1/2

σ
(3)
j σ

(3)
k .

Thus (3.8) implies that

(4.6)
∣∣σ(4)
j,k

∣∣2 � 2jx1/2

log x

2kx1/2

log x

2−jx5/2

(log x)4

2−kx5/2

(log x)4
� x6

(log x)10

uniformly for x, j and k satisfying (4.4).

Inserting (4.3)-(4.6) into (4.2), we find that

(4.7) σj,k > (log 2)2 x3

(log x)3

{
1 +O

(
1

log x

)}
uniformly for x, j and k satisfying (4.4).

In order to remove p1, p2, p3 in σj,k such that w(p1p2p3) /∈ C3, we consider the

subsums of σj,k:

σ′j,k :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2jx1/2<P (p1+p2)62j+1x1/2, 2kx1/2<P (p1+p3)62k+1x1/2

P (p1+p2)=P (p1+p3)

log p2 log p3,

σ′′j,k :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2jx1/2<P (p1+p2)62j+1x1/2, 2kx1/2<P (p1+p3)62k+1x1/2

P (p1+p2)=P (p2+p3)

log p2 log p3,

σ′′′j,k :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2jx1/2<P (p1+p2)62j+1x1/2, 2kx1/2<P (p1+p3)62k+1x1/2

P (p1+p3)=P (p2+p3)

log p2 log p3.
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For σ′j,k, we must have j = k and

σ′j,k =
∑

2jx1/2<q62j+1x1/2

∑
x<p162x

∑
x<p262x

P (p1+p2)=q

∑
x<p362x

P (p1+p3)=q

log p2 log p3

6 4(log x)2
∑

2jx1/2<q62j+1x1/2

∑
x<p162x

∑
x<p262x

p2≡−p1(mod q)

∑
x<p362x

p3≡−p1(mod q)

1

6 16(log x)2
∑

2jx1/2<q62j+1x1/2

∑
x<p162x

x2

q2

6 20x5/2(log x)2.

The same bound holds for σ′′j,k and σ′′′j,k. These estimates allow us to remove the

p1, p2, p3 in σj,k such that w(p1p2p3) /∈ C3:

(4.8)

σ∗j,k :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

2jx1/2<P (p1+p2)62j+1x1/2, 2kx1/2<P (p1+p3)62k+1x1/2

w(p1p2p3)∈C3

log p2 log p3

> (log 2)2 x3

(log x)3

{
1 +O

(
1

log x

)}
uniformly for x, j and k satisfying (4.4). On the other hand, we can write

σ∗j,k =
∑
q64x

∑
2jx1/2<r62j+1x1/2

∑
2kx1/2<s62k+1x1/2

qrs∈C3

σj,k(q, r, s)

with

σj,k(q, r, s) :=
∑

x<p162x

∑
x<p262x

∑
x<p362x

P (p2+p3)=q, P (p1+p2)=r, P (p1+p3)=s

log p2 log p3.

Since we have ∑
q64x

∑
2jx1/2<r62j+1x1/2

∑
2kx1/2<s62k+1x1/2

qrs∈C3

1� 2j+kx2

(log x)3

uniformly for x, j and k satisfying (4.4). The inequality (4.8) guarantees that there is

at least a triple (q, r, s) with q 6 4x, 2jx1/2 < r 6 2j+1x1/2 and 2kx1/2 < s 6 2k+1x1/2

such that

σj,k(q, r, s)�
x

2j+k
�


x/(log x)2ε for 2j 6 (log x)ε and 2k 6 (log x)ε,

x1−2ε for 2j 6 xε and 2k 6 xε.
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In other words, for each couple (j, k) with 2j 6 (log x)ε and 2k 6 (log x)ε (resp. 2j 6

xε and 2k 6 xε), there is at least a triple (q, r, s) with q 6 4x, 2jx1/2 < r 6 2j+1x1/2

and 2kx1/2 < s 6 2k+1x1/2 such that NC3(qrs)� x/(log x)2+2ε (resp. x1−3ε). Thus∑
n64x2(log x)2ε, n∈C3

NC3
(n)�x/(log x)2+2ε

1 >
∑

qrs64x2(log x)2ε, qrs∈C3

q64x, 2x1/26r6x1/2(log x)ε, 2x1/26s6x1/2(log x)ε

NC3
(qrs)�x/(log x)2+2ε

1

>
∑

j6ε log log x

∑
k6ε log log x

∑
qrs64x2(log x)2ε, qrs∈C3

q64x, 2jx1/26r62j+1x1/2, 2kx1/26s62k+1x1/2

NC3
(qrs)�x/(log x)2+2ε

1

> (ε log log x)2 − 1.

This implies (1.4) by replacing 4x2(log x)2ε with x. The inequality (1.5) can proved

in the same way.

5 Proofs of Theorem 4 and Corollary 5

According to [1, Theorem 1], there are two positive constants c1 and x0 such that

(5.1)
∑

p6x, P (p+2)6x0.2961

1� x

(log x)c1
(x > x0).

Since ∑
p6x, P (p+2)6x0.2961

1 =
∑

x0.2961/0.2962<p6x, P (p+2)6x0.2961

1 +O
(
x0.2961/0.2962

)
6

∑
p6x, P (p+2)6p0.2962

1 +O
(
x0.2961/0.2962

)
,

the inequality (5.1) implies∑
p6x, P (p+2)6p0.2962

1� x

(log x)c1
(x > x0).

For such p, we have

logP (w(4p))

logP (4p)
=

logP (p+ 2)

log p
6 0.2962,

logw(4p)

log(4p)
=

log(2P (p+ 2)2)

log(4p)
6

0.5924 log p+ log 2

log(4p)
.
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These imply (1.6) and (1.7).

By applying [1, Theorem 2], there are infinitely many prime numbers pi with

P (pi + 2) > p0.677
i . Thus

logw(4pi)

log(4pi)
=

log(2P (pi + 2)2)

log(4pi)
>

1.354 log pi + log 2

log pi + log 4
·

Hence (1.8) follows immediately. This proves Theorem 4.

Clearly Theorem 4 implies Corollary 5 except for the second formula of (1.9). In

order to prove it, we first notice that P (w(n)) 6 P (n) + 2 for all n ∈ A3. Thus

(5.2) lim sup
n→∞
n∈A3

P (w(n))

P (n)
6 1.

On the other hand, according to the Green-Tao Theorem on arithmetic progressions

in primes [5], for any integer k > 2, there are two positive integers a = a(k) and

d = d(k) such that a+ id is prime for i = 0, . . . , 2k. Put

p := a+ 2kd, q := a+ (2k − 2)d, r := a

and

p′ :=
p+ q

2
= a+ (2k − 1)d,

q′ :=
p+ r

2
= a+ 2k−1d,

r′ :=
q + r

2
= a+ (2k−1 − 1)d.

Obviously w(pqr) = p′q′r′ and P (w(pqr)) = p′. Thus

(5.3) lim
k→∞

P (w(pqr))

P (pqr)
= lim

k→∞

p′

p
= 1.

Now the second relation of (1.9) follows from (5.2) and (5.3).

6 Proof of Theorem 6

We need to establish two preliminary lemmas.
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Lemma 6.1. With the notation of (1.11) (B3(x) and C3(x) can be defined similarly),

we have, for x→∞,

A3(x) ∼ x

2 log x
(log log x)2,(6.1)

B3(x) ∼ B3
x

log x
with B3 :=

∑
p

1

p2
,(6.2)

C3(x) ∼ x

2 log x
(log log x)2.(6.3)

Proof. By the prime number theorem, we can write

B3(x) =
∑

p2q6x, p 6=q

1 ∼
∑

p6(x/2)1/2

x

p2 log(x/p2)
·

On the other hand, we have∑
log x<p6(x/2)1/2

x

p2 log(x/p2)
�

∑
p>log x

x

p2

� x

(log x) log log x
,∑

p6log x

x

p2 log(x/p2)
∼ x

log x

∑
p6log x

1

p2

∼ B3
x

log x
·

Inserting these into the preceding formula, we get (6.2).

According to a classic result of Landau (see [8, Chapter II.6]), we have∑
n6x

Ω(n)=3

1 ∼ x

2 log x
(log log x)2 (x→∞).

From this and (6.2), we immediately deduce (6.3), since

C3(x) =
∑
n6x

Ω(n)=3

1−
∑
n6x

Ω(n)=3, ω(n)=2

1−
∑
n6x

Ω(n)=3, ω(n)=1

1.

Finally (6.1) follows from (6.2) and (6.3), since A3(x) = B3(x) + C3(x).
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Lemma 6.2. For k ∈ N, define

C3(k) := {pqr : r < q < p, q ≡ r (mod 2k), p ≡ −r (mod 2k)}.

For any ε ∈ (0, 1
2k+1 ), we have, as x→∞,

(6.4)
∑

n6x, n∈C3(k)

P (w(n))6(1+ε)2−kP (n)

1 ∼
∑

n6x, n∈C3(k)

1.

Further we have ∑
n6x, n∈C3(1)

1 ∼ x

2 log x
(log log x)2,(6.5)

∑
n6x, n∈C3(k)

1� A3(x)

22k
,(6.6)

where the implied constant in the �-symbol is absolute.

Proof. For any ε ∈ (0, 1
2k+1 ), we have∑

r6x1/3

∑
q6(x/r)1/2

∑
p6q/ε

1�ε

∑
r6x1/3

∑
q6(x/r)1/2

q

log q

�ε

∑
r6x1/3

x

r log2(x/r)

�ε
x log log x

(log x)2
.

Thus we can write∑
n6x, n∈C3(k)

1 =
∑
r6x1/3

∑
r<q6(x/r)1/2

q≡r(mod 2k)

∑
q<p6x/(qr)
p≡−r(mod 2k)

1

=
∑
r6x1/3

∑
r<q6(x/r)1/2

q≡r(mod 2k)

∑
q/ε<p6x/(qr)
p≡−r(mod 2k)

1 +Oε

(
x log log x

(log x)2

)
.

For each (p, q, r) counted in the last triple sums, we have obviously that

P (p+ q) 6
p+ q

2k
6

1 + ε

2k
p,

P (p+ r) 6
p+ r

2k
6

1 + ε

2k
p,

P (q + r) 6 2q 6 2εp 6
1 + ε

2k
p.
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Thus

P (w(pqr)) = max{P (p+ q), P (p+ r), P (q + r)} 6 (1 + ε)2−kp

and ∑
n6x, n∈C3(k)

1 6
∑
r6x1/3

∑
r<q6(x/r)1/2

∑
q/ε<p6x/(qr)

P (w(pqr))6(1+ε)2−kP (pqr)

1 +Oε

(
x log log x

(log x)2

)

6
∑
r6x1/3

∑
r<q6(x/r)1/2

∑
q<p6x/(qr)

P (w(pqr))6(1+ε)2−kP (pqr)

1 +Oε

(
x log log x

(log x)2

)

=
∑

n6x, n∈C3(k)

P (w(n))6(1+ε)2−kP (n)

1 +Oε

(
x log log x

(log x)2

)
.

This implies (6.4).

The asymptotic formula (6.5) is an immediate consequence of (6.3), since∑
n6x, n∈C3

1 =
∑
r6x1/3

∑
r<q6(x/r)1/2

∑
q<p6x/(qr)

1

=
∑

36r6x1/3

∑
r<q6(x/r)1/2

∑
q<p6x/(qr)

1 +O

(
x log log x

log x

)

=
∑

n6x, n∈C3(1)

1 +O

(
x log log x

log x

)
.

In order to show the lower bound of (6.6), we begin by the following trivial

inequality ∑
n6x

n∈C3(k)

1 >
∑
r6x1/6

∑
r<q6x1/3

q≡r(mod 2k)

∑
x1/3<p6x/(qr)
p≡−r(mod 2k)

1.
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Then we apply the prime number (in arithmetic progressions) theorem to write∑
n6x

n∈C3(k)

1� x

2k log x

∑
r6x1/6

∑
r<q6x1/3, q≡r(mod 2k)

1

qr

� x

22k log x

∑
r6x1/6

1

r

{
log log x1/3 − log log r +O(1)

}
� x

22k log x

{
(log log x1/3)(log log x1/6)− 1

2
(log log x1/6)2 +O(log log x)

}
� 1

22k

x

log x
(log log x)2

� 1

22k
A3(x).

This completes the proof.

Now we are ready to prove Theorem 6.

For any α ∈ (0, 1], we can choose k and ε such that (1 + ε)2−k < α 6 2−k+1. In

particular for α ∈ (1
2
, 1], we can take k = 1. Thus∑

n6x, n∈A3

P (w(n))6αP (n)

1 >
∑

n6x, n∈C3(k)
P (w(n))6αP (n)

1

>
∑

n6x, n∈C3(k)

P (w(n))6(1+ε)2−kP (n)

1.

The asymptotic formula (1.12) follows from (6.4) with k = 1, (6.5), (6.1) and the

trivial inclusion relation C3 ⊂ A3. The inequality (1.13) can be obtained in the

same way (i.e. by replacing (6.5) with (6.6)).

7 A heuristic argument on Problem 11

The aim of this section is to present an heuristic proof of

(7.1)
∑

p6x, P (p+2)=q

1→∞ (x→∞),

where q is a large fixed prime number.

Since P (n+ 2) = q is equivalent to n+ 2 = q` with P (`) 6 q, we have∑
n6x, P (n+2)=q

1 =
∑

`6(x+2)/q, P (`)6q

1 = Ψ((x+ 2)/q, q),
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where

Ψ(x, y) :=
∑

n6x, P (n)6y

1.

According to [8, Theorem III.5.2], we have

log Ψ((x+ 2)/q, q) = Z

{
1 +O

(
1

log q
+

1

log log((x+ 2)/q)

)}
uniformly for x+ 2 > q2 > 10000, where

Z :=
log((x+ 2)/q)

log q
log

(
1 +

q

log((x+ 2)/q)

)
+

q

log q
log

(
1 +

log((x+ 2)/q)

q

)
.

From this we deduce

Z >
q

2 log q
log log x

and

(7.2) Ψ((x+ 2)/q, q) > (log x)q/(4 log q)

for x > x0(q), provided the constants q and x0(q) are suitably large.

According to Cramér’s model [9, Section 3.2] it seems reasonable to assume that

(7.3)
∑

p6x, P (p+2)=q

1 ≈
∑

n6x, P (n+2)=q

1

log n
(x→∞).

Thus (7.2) implies (under the hypothesis (7.3))∑
p6x, P (p+2)=q

1� (log x)q/(4 log q)−1 →∞,

as x→∞.
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