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Oscillations of a liquid bridge resulting
from the coalescence of two droplets

Véronique Chireux, David Fabre, Frédéric Risso, and Philippe Tordjeman
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse and CNRS,
Toulouse, France

The inertial oscillations of a bridge of liquid maintained between two disks are

studied under condition of negligible gravity. Both experimental and theoretical

results are reported. In the experiment, the bridge is formed by the coalescence of two

droplets so that its static equilibrium shape is either concave or convex depending on

its length. After coalescence, the bridge performs weakly damped oscillations until

it reaches its equilibrium shape. Four modes of oscillations are extracted from digital

processing of images recorded by means of a high-speed camera. Their frequency

and damping rate are determined and found to be independent of the initial conditions

that fix the amplitudes of each mode. Concurrently, the eigen modes of oscillations

of a non-cylindrical bridge have been computed by assuming inviscid flow and small

amplitude oscillations. The agreement between theoretical and measured frequencies

confirms that the experimental modes correspond to the eigenmodes of the linear

inviscid theory. Their characteristics turn out to be significantly different from that of

a cylindrical bridge. In particular, the eigenfrequencies scale as

√

γ/ρR3
m, where γ is

the surface tension, ρ the liquid density, and Rm the radius at the middle of the bridge,

which characterizes the shrunk/swollen character of the mean shape.

http://dx.doi.org/10.1063/1.4922474

I. INTRODUCTION

Surface-tension driven flows play a major role in droplet formation.1 When viscous effects are

low, the dynamics of the interface is characterized by the inertial modes of oscillations, which can

be used to describe its behavior in many different situations. By considering the dynamics of a

column of fluid, such an approach has been developed to address the primary formation of drop-

lets from jets, since the pioneering work of Rayleigh,2,3 and is also involved in the fragmentation

of liquid filaments.4 Secondary breakup is also concerned since the fragmentation of droplets or

bubbles in a turbulent flow has been shown to result from excitation of inertial modes by turbulent

eddies.5,6 Concerning droplets, the eigenmodes of oscillations have been determined theoretically

for free7,8 or attached droplets9–13 in the absence of gravity and investigated numerically for rising

droplets.14 Experiments that match theoretical predictions are difficult to realize because of practical

difficulties to levitate15 or attach a droplet16 and of possible contamination by surfactant.17 Con-

cerning liquid columns, the eigenmodes of an infinite liquid filament have been known for a long

time18 while those of a bridge of finite length have been determined theoretically19 and investigated

experimentally20 only recently for oscillations around a cylindrical mean shape. The stability of

non-cylindrical liquid bridges has been considered in several works21,22 but the eigenmodes of

oscillations have not been determined so far.

Despite its high fundamental interest and the number of applications concerned, both in classic

domains (painting, irrigation, and fuel injection) as well as in new technology (ink printing23

and float zone method for crystal growth24), many aspects of the dynamics of liquid bridges are

still unknown. The objective of the present work is to determine the eigenmodes of vibration of

non-cylindrical liquid bridges in situations where gravity and viscosity play a minor role. Both

experimental and theoretical results are reported. In the experiment, the liquid bridge is produced



by the coalescence of two liquid drops mounted on capillary tubes. After formation, the bridge

experiences non-axisymmetrical oscillations around its equilibrium shape. The length of the bridge,

which is fixed by the initial drop sizes, determines the equilibrium shape: concave for short

bridge and convex for large ones. Note that the convexity retards the onset of the static instability

and allows to study stable bridges of longer length. The oscillations essentially involved four modes,

which are distinguished from each other, thanks to a method taking advantage of their symmetry

differences. Concurrently, the theoretical eigenmodes corresponding to the same equilibrium shapes

are computed numerically under the assumption of potential flow and small oscillation amplitudes.

A good agreement is obtained between the theory and the experiment results, which turn out to be

very robust regarding the initial conditions. Thus, the assumptions made to derive the theory are

validated and the relevance of the present numerical method is established. Moreover, the exper-

imental method is proved to be well suited to reveal the fundamental dynamic characteristic of

bridge oscillations.

The paper is organized as follows. The configuration under investigation is described in Sec. II

as well as the experimental setup and measurement methods. Experimental results concerning

frequencies and damping rates are presented in Sec. III. The theoretical approach, the numerical

method, and predicted eigenfrequencies are presented in Sec. IV and detailed in the Appendices.

Experimental and theoretical results are compared and discussed in Sec. V.

II. EXPERIMENTAL CONFIGURATION AND MEASUREMENT METHODS

In practice, it is difficult to generate a liquid bridge in order to study the free oscillations that

result from an initial shape perturbation. The following original experimental technique has been

developed. Two droplets are formed at the extremities of two facing horizontal capillary tubes

(Figure 1) by injecting liquid by means of a syringe pump. The pump is stopped just before the

two drops touch each other. The drops, however, continue growing because of the residual excess of

pressure in the deformable tubes that supply liquid from the syringe to the capillaries. Note that this

growth is very slow (<100 µl h−1) so that the subsequent increase in the droplet volume during the

total duration of an experimental run (<100 ms) is negligible. The droplets then come into contact

and coalesce.

Figure 2 shows a typical sequence of images of the process that occurs after the coalescence.

We first observe a transient stage ((a)-(c)), during which the neck connecting the two drops enlarges.

This first stage lasts until the shape disturbance generated at the initial contact point of the two

droplets reaches the capillary tubes. Then, we are left with a liquid bridge joining two capillaries

which experiences weakly damped shape oscillations ((d)-(i)). The amplitudes of the modes of

oscillations that are excited depend on the initial geometry of the drops and on the details of both

FIG. 1. (a) Schematic of the experimental arrangement. (b) Photograph of the two initial drops attached to the capillary

extremities before coalescence.



FIG. 2. Evolution of the liquid bridge after coalescence of the two drops. ((a)-(c)) Growth of the neck that connects the two

drops. ((d)-(i)) Oscillations of the liquid bridge. (a) t = 0; (b) t = 0.16 ms; (c) t = 0.32 ms; (d) t = 0.56 ms; (e) t = 1.08 ms;

(f) t = 1.64 ms; (g) t = 1.84 ms; (h) t = 2.24 ms; and (i) t = 3.24 ms.

the coalescence process and the transient stage. In particular, the amplitudes of the modes that are

antisymmetric relative to the mid-plane z = L/2 depend on the size difference between the two

drops. Also, the amplitudes of the modes that are not symmetric relative to the z-axis depend on the

minute misalignment of the two capillary tubes. Eventually, when the excess of surface energy has

been dissipated, the bridge reaches a static equilibrium that reveals the mean shape around which

the oscillations have taken place (Figure 3).

FIG. 3. Static shapes of the bridge at equilibrium. ((a) and (b)) Convex shape for L∗= 6.6 > L∗c. ((c) and (d)) Concave shape

for L∗ < 2.3. ((a) and (c)) Digital images. ((b) and (d)) Experimental detected contours (points) compared to theory (plain

line).



The capillary tubes are made of PEEK (PolyEtherEtherKetone). Their axes are aligned along

the horizontal z-direction, thanks to a three-axis translating system. Experiments have been con-

ducted with capillary tubes of two different outer diameters, R = 180 ± 5 µm or R = 305 ± 5 µm,

but with the same inner diameter, Rin = 25 µm. It has been checked that the gas-liquid interface

remains attached to the outer edge of the capillaries and that the angle it makes with the tube is free

to change. Furthermore, because R2
in

is less than 2% of R2, it can be assumed a non-slip velocity

boundary condition for the liquid on the capillaries.

The experiments are conducted at room temperature (20 ± 1 ◦C). In most of the tests, the

liquid was distilled water: dynamic viscosity µ = 1.0 × 10−6 Pa s, density ρ = 1.0 kg m−3, and

surface tension γ = 70 N m−1. For the case R = 180 µm, additional tests have been carried out

with aqueous solutions of MgSO4 of various concentrations: 0.4 gl−1, 0.8 gl−1, or 4 gl−1. At such

concentrations, viscosity, density, and surface tension are not significantly different from those of

pure water. MgSO4 is thus expected to have no influence on the proper dynamic of the bridge in the

linear regime. However, the presence of MgSO4 is known to delay the coalescence of air bubbles in

water.25 Since it affects the coalescence process, it is therefore expected to change the amplitudes of

excited eigenmodes. Comparing tests done with pure water or MgSO4 solutions is a way to assess

whether the results are affected or not by the initial conditions.

The liquid is lighted by means of a Light-Emitting Diode (LED) backlight (not represented in

the schematic of Figure 1). Shadow images of the drops or the bridge are recorded, thanks to a

high-speed camera (V1210 Phantom). The framing rate and the exposure time are close to 50 000

frames per second and 16 µs, respectively. The image size is 512 × 320 pixels, which approximately

corresponds to a visualization window of 2.5 mm in the axial direction and 1.6 mm in the radial

one. This leads to a time resolution of 20 µs and a spatial resolution of 5 µm. On each image, the

contour of the gas-liquid interface in the vertical plane of view is detected by classic digital image

processing.

The present experiments therefore allow the study of a liquid bridge of volume V attached to

the edges of two facing solid disks of radius R separated by a distance L (Figure 4). The fluid is a

Newtonian liquid with density ρ and kinematic viscosity µ. The bridge is surrounded by a gas of

negligible density and viscosity. The surface tension γ is assumed to be constant. If we also consider

the acceleration of gravity g, the static shape of the bridge and its oscillations around its equilibrium

shape depend on four dimensionless numbers:

• the Bond number, Bo = ρgR2γ−1, compares gravity to surface tension forces;

• the Ohnesorge number, µ/
√

(ρRγ), compares inertia to viscous stresses in the flow driven by

surface tension;

• the slenderness ratio, L∗ = L/R, compares the length of the bridge to its radius;

• the reduced volume, V ∗ = V/(πR2L), compares the volume of the actual bridge to that of a

circular cylinder of same radius R and length L.

FIG. 4. (a) Schematic of the problem under investigation and notation.



FIG. 5. Geometrical characteristics of the equilibrium shape of the bridge. (a) Reduced volume V ∗: symbols correspond

to measurements and line to Eq. (1). (b) Radius in the middle of the bridge Rm/R versus L∗: symbols correspond to

measurements and line to theoretical result obtained in Sec. IV A. Circles correspond to initial drops of same size for

R = 180 µm, squares to initial drops having different sizes for R = 180 µm, and stars to initial drops having different sizes

for R = 305 µm.

Both the Bond number and the Ohnesorge number are less then 10−2, which means that gravity can

be neglected and that viscosity is expected to only affect the long term evolution by slowly damping

the oscillations.

Since bridge is formed by the coalescence of two drops, the slenderness ratio and the reduced

volume cannot be chosen independently. Considering that the volume of the bridge is the total

volume of the two initial drops, we find the following relation between L∗ and V ∗ (see detail in

Appendix A):

V ∗ =
1

2
(1 +

L∗2

12
). (1)

Figure 5(a) shows the actual values of V ∗ obtained from the measurement of the bridge vol-

ume as a function of L∗. The agreement with theoretical expression (1) is very good regardless of

whether the two drops have the same size or not.

The distance between the capillaries has been varied so that the slenderness ratio L∗ covered

the range from 2 to 7 (by increments of 0.1 for small values of L and increments of 0.2 for large

ones). The size of the two initial drops (200 ≤ Rg ≤ 400 µm) is not always the same, and the ratio

of their radii is varied between 1 and 1.6 in order to vary the departure from symmetry of the

initial conditions. Experiments are repeated once for each value to L∗. The whole set of experiments

represents 50 sequences of 2000–12 000 images each.

From Eq. (1), V ∗ = 1 for L∗ = L∗c =
√

12 ≈ 3.46. The equilibrium shape of the bridge is found

to be concave for L∗ ≤ L∗c, cylindrical for L∗ = L∗c, and convex for L∗ ≥ L∗c (Figure 3). A relevant

length scale to characterize the static shape is the radius Rm at the middle of the bridge, which is

smaller than R for L∗ ≤ L∗c and larger for L∗ ≥ L∗c. Figure 5(b) shows the evolution of Rm/R as a

function of L∗. In the range investigated, Rm is found to be almost proportional to L. It is worth

noting that the final shape of the bridge turns out to depend only on L∗. It is not influenced either by

the various ratios of initial drop sizes investigated or by the presence of MgSO4 dissolved in water.

It is neither influenced by the radius R of the capillary that is used. Finally, no significant difference

is observed between the upper and lower detected contours of the bridge, which confirms that effect

of gravity can be neglected.
For a given point M of the interface defined by its cylindrical coordinates (r, θ, z), the amplitude

of the deformation is defined by the radial displacement ηr of the interface relative to its equilib-
rium location r0: ηr(z, θ, t) = r(z, θ, t) − r0(z, θ, t). Figure 6 shows typical time series of ηr for four
different points in the plane of view of the camera (θ = 0 or π). The signals are quite complex and
clearly involve several different frequencies. This is not surprising since the initial conditions re-
sulting from the coalescence of two droplets are not expected to select a single mode of oscillation.



FIG. 6. Typical experimental time series of the interface radial displacement ηr for case L∗= 4.6 at points TL, TR, BL, and

BR, which are defined in Figure 7.

For given couple (L∗,V ∗), the linear theory of oscillations (see Sec. IV) shows that there exists a
denumerable family of modes defined by two integers (m,n), where m defines the number of nodes
in the azimuthal direction and n the number of nodes in the longitudinal direction. Modes with
m = 0 are symmetric by rotation around z-axis, whereas modes with m , 0 are not. Modes with
even n are symmetric relative to the mid-plane z = L/2 while modes with odd n are antisymmetric
relative to this plane. Since modes of low m and n involve smaller interface curvatures and velocity
gradients, they require less energy to be excited and are less damped by viscous dissipation. We
will therefore assume that only the four lowest modes corresponding to each possible symmetry,
(m,n) = (1,0), (0,1), (1,1), and (0,2), are involved in the bridge oscillations that take place after the
initial transient stage. The deformation amplitude of the interface can hence be decomposed into the
contributions of these four modes,

ηr(z, θ, t) = η0s(z, t) + η0a(z, t) + η1s(z, t) cos(θ) + η1a(z, t) cos(θ) + η∗1s(z, t) sin(θ) + η∗1a(z, t) sin(θ),

(2)

where the first subscript of the η’s denotes the azimuthal number m, and the second one is s for

symmetric modes (even n) and a for antisymmetric modes (odd n) relative to the plane z = L/2. The

correspondence between the two notations is given in Figure 7. The terms η1s and η1a correspond

to oscillations in the vertical plane, while η∗
1s

and η∗
1a

correspond to oscillations in the horizontal

plane. The latter are not measured because we only see the projection of the interface in the plane

θ = 0 or π.

Taking advantage of the symmetries described above, it is possible to decompose the surface

deformation into the contribution of the four modes 0s, 0a, 1s, and 1a. Let us consider four partic-

ular points TL,TR,BL, and BR of respective coordinates (z, θ) = (+z0,0), (L − z0,0), (+z0, π), and

(L − z0, π), which are illustrated in Figure 7. The following linear combinations of the displacements

of these four points achieve the decomposition:



FIG. 7. Illustration of the geometry of the four leading modes and locations of the particular points (TL, TR, BL, and BR)

used for the experimental mode extraction procedure. The continuous curves show the shape of the four modes 0s, 0a, 1s, and

1a analytically derived from the inviscid linear theory for a cylindrical bridge (see Sec. IV B and Appendix C for details about

the theory). (a) Mode 0s (m= 0,n= 2). (b) Mode 0a (m= 0,n= 1). (c) Mode 1s (m= 1,n= 0). (d) Mode 1a (m= 1,n= 1).

η0s(z0, t) =
η(TR) + η(TL) + η(BR) + η(BL)

4
, (3)

η0a(z0, t) =
η(TR) − η(TL) + η(BR) − η(BL)

4
, (4)

η1s(z0, t) =
η(TR) + η(TL) − η(BR) − η(BL)

4 cos(θ1s)
, (5)

η1a(z0, t) =
η(TR) − η(TL) + η(BR) − η(BL)

4 cos(θ1s)
. (6)

This decomposition involves the parameter z0 that defines the axial locations of the considered

measurement points. Ideally, it should be chosen at the antinode of each mode in order to get the

largest amplitude and thereby improve the accuracy. Practically, z0 has been empirically adjusted

in all test runs in order to enhance the amplitude of the measured signals. We are thus not able to

locate each mode relatively to z0. Moreover, since a single plane of view is available, the value of

θ1s is not known. Consequently, the four amplitudes η0s, η0a, η1s, and η1a obtained by the present

method are determined except for an unknown constant factor. It will be, therefore, not possible to

compare the relative amplitudes of the various modes nor to investigate nonlinear effects arising at

large amplitude. However, as long as we consider small amplitudes that belong to the linear regime

of oscillations, we should be able to determine the frequency and the damping rate of the various

modes.

Figure 8 shows the time evolution of the mode amplitudes determined from the four signals

represented in Figure 6. In contrast with raw signals, each signal now clearly exhibits a single

dominant frequency. We can, therefore, conclude that the present technique allows to isolate the

four lowest eigenmodes of oscillation. When the amplitude is large enough, as it is the case for η0s

and η1a in the example shown in Figure 8, the oscillations are, as expected, observed to be regularly

damped. The signals are thus well described by the following equation:

ηij(t) = c + ae−βijtcos(ωijt + φij). (7)

Figure 9(a) shows the fitting of η0s by Eq. (7), while Figure 9(b) presents the spectrum of η0s

computed by means of digital Fourier transform. The frequency ω of the corresponding eigenmode

can be obtained from either the value found from the best fitting by Eq. (7) or at the peak value

Spmax of the spectrum Sp. The values obtained by the two different methods are in agreement within



FIG. 8. Time evolutions of the amplitudes of modes 0s, 0a, 1s, and 1a after application of the extraction method from the

experimental signals at points TL, TR, BL, and BR presented in Figure 6.

1%. Similarly, the damping rate β can be obtained either from the fitting or from the width of the

peak of the spectrum between Spmax(1 − 1/
√

2) and Spmax(1 + 1/
√

2). The two values agree within

10%.

When the amplitudes are lower, a secondary frequency may hide the damping, as it can be seen

in Figures 8(b) and 8(c). This is observed for modes η0a and η1s, which have close eigen frequen-

cies. In the considered example, the main frequency and secondary frequency of η0a are found to be

2.1 × 103 rad/s and 1.8 × 103 rad/s while those of η1s are 1.8 × 103 rad/s and 2.1 × 103 rad/s. The

secondary frequency of a signal therefore corresponds to the main frequency of the other, and vice

versa. This can either be the signature of weak non-linear interactions between two eigenmodes that

a b

FIG. 9. Illustration of the two methods for experimental determination of frequency and damping rate. The present example

corresponds to mode 0s for L∗= 4.6. (a) Fitting of time evolution of mode amplitude by Eq. (7) with ω = 5.6×103 rad s−1

and β = 220 s−1. (b) Spectrum of the signal: the abscissa of the main peak is ω = 5.65×103 rad s−1 and then its width leads

to β = 240 s−1.



have close frequencies or result from the difficulty to experimentally disentangle them. Compari-

sons that will be done later with the linear theory will show that the measured frequencies are not

affected by the possible existence of weak non-linear interactions.

In the following, the experimental values of the eigenfrequencies and damping rates of the four

modes 0s, 1s, 0a, and 1a have been obtained by means of the procedure that has been described in

this section, using either the fitting of the time signals or their spectrum. Frequencies are determined

within ±2%. The accuracy of damping rates strongly depends on each particular signal and will be

shown by error bars on the corresponding plots.

III. EXPERIMENTAL RESULTS FOR THE FREQUENCY AND THE DAMPING RATE

Figure 10 shows the measured angular frequencies ωij and damping rates βij of the four modes

for all experimental conditions as functions of the slenderness ratio L∗. The frequencies are normal-

ized by ωR =
√

γ/ρR3 and the damping rate by βR = η/ρR2 in order to allow the comparison

between the two considered values of the radius R. First, it is remarkable that the measured frequen-

cies and damping rates of each mode gather on a single curve whatever the value of R, the presence

or the absence of MgSO4 or the size differences between the two initial droplets. The experimental

results are therefore robust with regard to the initial conditions. Measured frequencies and damping

rates thus turn out to not depend on the amplitudes of the excited modes and can be considered as

characteristic of the eigenmodes of oscillation of the liquid bridge.

Considering the frequencies, we observe that the four modes can be grouped two by two. On

the one hand, the frequencies of modes 0s and 1a are larger and converge towards each other at large

L∗. On the other hand, the frequencies of modes 0a and 1s are lower and converge towards each

other at large L∗. The measurements of the damping rate are less accurate since their values are in

any case at least 10 times smaller than the frequencies, confirming that the oscillations are weakly

damped. Despite the scattering of the measurement, a grouping of the values similar to that of the

frequencies seems also to be observed for the damping rates, especially for modes 0s and 1a.

Both the normalized frequency ωij/ωR and the damping rate βij/βR of each mode strongly

depend on the slenderness ratio L∗. For such a bridge of finite length, the mode properties do

not only depend upon the length scale R. They also depend upon the bridge length L and the

bridge longitudinal curvature, which can be characterized by Rm. In Sec. IV, we shall derive the

eigenmodes of bridge oscillations from the inviscid linear theory, since the case of a finite bridge of

non-cylindrical mean shape has never been treated in previous works. Comparisons between theory

and measurements will allow to assess the assumptions made in the interpretation of the experi-

ments: boundary conditions at the bridge extremities for both the fluid motion and the interface,

FIG. 10. Normalized experimental frequencies ωij/ωR (a) and damping rates βij/βR (b) of modes 0s, 0a, 1s, and 1a as a

function of the slenderness ratio L∗. Circles: water with R = 180 µm. Stars: MgSO4 solution with R = 180 µm. Diamonds:

water with R = 350 µm. Dark grey (blue) symbols: mode 0s. Light grey (red) symbols: mode 0a. Black symbols: mode 1s.

Empty (green) symbols: mode 1a.



negligible effects of gravity or of slight misalignments of the capillaries, and negligible non-linear

effects related to finite oscillation amplitudes and of viscous dissipation upon the mode frequencies.

Moreover, the theory may help us to understand the role of the particular curvature of the static

shape of the bridge that results from its generation by coalescence of two droplets.

IV. THEORETICAL DERIVATION

A. Static shape of the bridge at equilibrium

The equilibrium shape of the surface S of a liquid bridge formed by the coalescence of two

droplets is described in cylindrical coordinates by using one of the two following parametric repre-

sentations: r = r0(z), or [r, z] = [r(s0), z(s0)], where s0 is the curvilinear coordinate along the surface

(see Figure 4). The first parametrization is best suited to the description of the experimental results,

while the second is best fitted to the theoretical description.

The surface S is governed by the Young-Laplace equation,

F = K − ∆P

γ
= 0 for (z,r) ∈ S, (8)

which imposes that the curvature K of the surface takes a constant value prescribed by the pressure

difference ∆P between the liquid within the bridge and the atmosphere. The equilibrium is realized

for K ≡ K0, where K0 is given, using curvilinear coordinates, by

K0 = −
dα

ds0

+
cos α

r
, (9)

where α is the angle of the surface with respect to the z-axis (see Appendix B). The boundary

conditions corresponding to attachment at the edges of the bounding disks are

r0(z) = R for z = 0 and z = L. (10)

Moreover, the nondimensional bridge volume V ∗ has to coincide with the one of two touching

spherical drops as given by Eq. (1),

1

R2L

∫
L

0

r0(z)
2dz =

1

2

(

1 +
L∗2

12

)

. (11)

For a given slenderness ratio L∗, there exists a continuous family of axisymmetric shapes of

constant curvature satisfying Laplace equation (8), parametrized by either the pressure difference

∆P or the volume V . Analytical expressions for these particular surfaces, called onduloids, are

available in terms of elliptic integrals. Since our objective is also to compute the oscillations, it is

more relevant for us to solve numerically the system formed by Eqs. (8)–(11). Several methods can

be used. The most common is to use a shooting method: making a guess for ∆P and for the angle

α0 of the surface at the edge [r, z] = [R,0], integrating numerically Eq. (8) in the axial direction,

and iterating over ∆P and α0 until the edge of the second plate at (z,r) = (L,R) is reached for the

prescribed value of the volume.

Here, we use a different and original method, based on an iterative deformation of the whole

surface to reach the equilibrium shape. The method consists of the following steps:

1. Choose a guess value of ∆P/γ and a guess contour [z,r](s0) passing through the two end

points at (z,r) = (0,R) and (z,r) = (L,R) (for instance, a cylindrical shape). Compute the mean

curvature K0 of this guess contour from (8).

2. Expand the target function F as F = F0 + F1 = 0 with F0 = K0 + ∆P/γ and deduce the correc-

tion F1 = K1 to the mean curvature needed to approach the actual equilibrium.

3. Thanks to formula (B5) expressing K1 in terms of η(s0) and its derivatives, solve an inverse

problem yielding the normal displacement η(s0) needed to cancel the curvature mismatch.

4. Deform the guess contour according to the computed value of η. Then, repeat iteratively steps

2–4 until |F | < ǫ , where ǫ is a convergence threshold (say, ǫ = 10−12).



5. Compute the volume corresponding to the converged contour and compare with the desired

value of the volume given by (11). In case of mismatch, change the value of ∆P/γ and iterate

the whole process until V − V0 < ǫ .

As the successive approximations of the curvature in step 2 are based on a Taylor expansion,

the method is by essence a Newton-Raphson method, and the convergence is very fast (typically

less than 8 iterations of steps 2–4 ). The method was originally implemented with Matlab and was

subsequently introduced in the finite-element software FreeFem++ used to perform the eigenvalue

computations (see Sec. IV B), in order to directly generate a mesh fitted to the bridge geometry. This

method is quite versatile and can be used for a large class of problems of static equilibria, including

gravity as pending drops, attached bubbles, menisci. . . .

Computed equilibrium shapes have been superimposed to experimental contours in Figure 3.

Theoretical shapes compare well with measurements for both concave and convex bridges. System-

atic comparisons have been carried out for all experimental runs. The computed values of the radius

at the middle of the bridge, Rm, have been reported in Figure 5. They are in good agreement with

experimental results.

B. Eigenmode analysis: Theory and numerical method

The purpose of this section is to determine the eigenmodes and eigenfrequencies of the inertial

oscillations of a liquid bridge under the assumptions of potential flow and small amplitude oscilla-

tions. The solution for an infinite cylinder has been known for a long time.18 The present case of a

cylinder of finite length and non-cylindrical mean shape requires a numerical resolution, which has

been achieved using a finite-element method implemented in the FreeFem++ software.26–29

For the description of the experimental results, the displacement of the bridge surface was

defined as the displacement ηr in the radial direction. For the numerical approach, it is more conve-

nient to introduce the displacement η(s0, θ, t) relative to the mean surface S in the direction of the

normal to the surface (Figure 4). The two quantities are related through η = ηr cos α.

The flow inside the bulk is assumed irrotational and described through a velocity potential

φ(r, z, θ, t). The velocity is directly deduced from the potential,

u = ∇φ(z,r, θ, t), (12)

and the pressure is given by the linearized unsteady Bernoulli equation,

p = −ρ∂φ(z,r, θ, t)
∂t

. (13)

The unknown functions [φ(z,r, θ, t); η(s0, θ, t)] are then governed by the following set of equations

in the bulk domain Ω and boundary conditions and along the free surface S and on the disks at both

bridge extremities:

∆φ = 0 for (z,r) ∈ Ω, (14)

∂zφ = 0 for z = 0 and z = L, (15)

η = 0 for z = 0 and z = L, (16)

n0 · ∇φ =
∂η

∂t
on S, (17)

γK1 = −ρ
∂φ

∂t
on S, (18)

where n0 is the outward normal to the mean surface. Boundary conditions (15) and (16) mean no

mass flux through the two disks that end the bridge, and fixed contact lines at the edge of the

disks. Conditions (17) and (18) give the kinematical and dynamical boundary conditions on the free

surface. The correction K1 to the curvature of the surface relative to the mean shape can be written

as (see Appendix B)



K1(η) = −
1

r

∂

∂s0

(

r
∂η

∂s0

)

−

(

∂α

∂s0

)2

+
cos2 α

r2
− m2

r2

 η. (19)

Owing to the linearity of the equations, the general solution can be searched as a sum of

eigenmodes that can be written in a symbolic form as

[φ(z,r, θ, t); η(s0, θ, t)] =
∑

m,n

Amn [−iφ̂mn(z,r); η̂mn(s0)] eimθ−iωmnt, (20)

where ωmn are the eigenfrequencies, [φ̂mn(z,r); η̂mn(s0)] denote the eigenvectors, and Amn their

amplitudes, which are determined by the initial conditions. Note that m is the number of nodes

in the azimuthal directions while n is the number of nodes in the longitudinal direction. We shall

particularly consider theoretical modes (m,n) = (1,0), (0,1), (1,1), and (0,2) that are expected to

correspond to experimental modes 1s, 0a, 1a, and 0s, respectively.

Introducing two test functions φ∗(r, z) and η∗(s0), the problem is written in variational formula-

tion as follows:

−
∫∫
Ω

φ∗ · ∆φ̂rdrdz +

∫
S
φ∗ ·

!
n0 · ∇φ̂mn − ωη̂mn

�
rds0 +

∫
S
η∗

(

γ

ρ
K1(η̂mn) − ωφ̂mn

)

rds0 = 0.

(21)

Integrating by parts the Laplacian and the term involving the second derivative of η in the expres-

sion for K1 and dropping indices (mn) for simplicity yields

ω

[∫
S

!
η∗φ̂ + φ∗η̂

�
rds0

]

=

∫∫
Ω

(

∇φ∗ · ∇φ̂ + m2

r2
φ∗φ̂

)

rdrdx +
γ

ρ

∫
S

∂η∗

∂s0

∂η̂

∂s0

rds0

− γ

ρ

∫
S
η∗ *,

[
∂α

∂s0

]2

+
cos2 α

r2
− m2

r2
+- η
∗η̂rds0. (22)

This eigenvalue problem is discretized using finite elements. A mesh is first generated by

a triangulation of the domain Ω based on the mean shape S computed by the method detailed

in Sec. IV A. Volume functions φ and φ∗ are discretized by projection along a basis of two-

dimensional P1 elements while surface functions η and η∗ are discretized along a basis of one-

dimensional P1 elements. This results in a matrix equation of the form AX = ωBX , which is

solved by means of a shift-and-invert method. The numerical implementation is realized using the

FreeFem++ software, a tool which has proved its efficiency for linearized hydrodynamic problems

such as wake instabilities past bluff bodies26 or path instability of moving bodies.29 The present

implementation for the surface unknown functions η and η∗ is close to the one used and described in

Refs. 27 and 28 for the study of sloshing modes of a free surface swirling flow.

C. Validations

The validation of the numerical computation has been carried out by considering two particular

cases for which an analytical solution is available. The first case is a spherical drop that is anchored

at the poles ((z,r) = (0,0) and (L,0)), which is equivalent to a free oscillating sphere provided we

consider only non-axisymmetric modes (n , 0). Because their nodes are located at the poles, these

modes naturally satisfy the constraint of attachment. The problem of a free liquid sphere was first

solved by Rayleigh and generalized by Lamb.18 The equilibrium shape is a sphere of radius R0, the

eigenvectors are the spherical harmonics Ylm and the eigenfrequencies are given by

ω∗
l
=

√

l(l − 1)(l + 2)

√

γ

ρR3
0

. (23)

Note that the eigenfrequencies of an oscillating sphere only depend on the principal wavenumber

l, which is equal to m + n when using the notation used here to describe a liquid bridge. For the



TABLE I. Eigenfrequencies of a sphere anchored at both poles. Analytical solution ω∗
l

given by Eq. (23) compared to

numerical results ωmn for various eigenmodes.

l=m+n ω∗
l
/ωR ω1n/ωR ω2n/ωR ω3n/ωR

2 0.089 44 0.091 08 (n = 1) 0.089 45 (n = 0)

3 0.173 20 0.176 74 (n = 2) 0.173 26 (n = 1) 0.173 21 (n = 0)

4 0.268 33 0.274 77 (n = 3) 0.268 35 (n = 2) 0.268 35 (n = 1)

5 0.374 16 0.384 51 (n = 4) 0.374 60 (n = 3) 0.374 22 (n = 2)

validation using the present numerical method, we replaced the anchoring condition at the poles by

the boundary conditions used for bridges, assuming that the sphere is held by two disks of radius R

with R/R0 = 0.1. Table I compares the computed eigenfrequencies ωmn to the analytical expression

of ω∗m+n given by (23) for several values of m and n. The agreement is very satisfactory, especially

for m ≥ 2. The slight discrepancies for m = 1 can be attributed to the replacement of the anchoring

condition at the pole by a pinning condition at disks of finite size.

The second validation case corresponds to the oscillations of a cylindrical bridge (V ∗ = 1). For

this case, we were able to solve the problem using a different, semi-analytical method which is

described in Appendix C. Table II compares the eigenfrequencies computed by both approaches.

Again, the agreement is excellent, giving further confidence in the finite-elements method used in

the sequel.

D. Results for non-cylindrical bridges

The numerical method can now be used for the non-cylindrical bridges resulting from the coa-

lescence of two drops, with mean shapes as computed and discussed in Sec. IV A. Figure 11 shows

the eigenfrequencies of the four modes 0a (m = 0,n = 1), 0s (m = 0,n = 2), 1a (m = 1,n = 1), and

1s (m = 1,n = 0) as a function of the slenderness ratio L∗. Both the results corresponding to a

cylindrical bridge (V ∗ = 1) and to non-cylindrical one (V ∗ given by Eq. (1)) are presented.

When looking at the experimental results, we saw in Figure 10 that measured frequencies

normalized by ωR were strongly decreasing functions of L∗. In Figure 11, eigenfrequencies have

been normalized by ωL =
√

γ/ρL3 to see whether L could be a more relevant length to define a

frequency scale. It is clearly not the case for a cylindrical bridge since ω1s/ωL and ω1a/ωL strongly

increase with L∗ while ω0s/ωL and ω0a/ωL strongly decrease. In particular, the value of ω0a crosses

TABLE II. Eigenfrequencies of a finite bridge with a cylindrical equilibrium shape for various oscillation modes and

slenderness ratios L∗. Bold characters: semi-analytical results (Appendix A); regular characters: numerical results using

finite-element method. Semi-analytical results were computed by truncating the series (B13) and (B14) to 20 terms, and

numerical results using a grid with average mesh size ∆x = 0.02R.

ω01/ωR ω02/ωR ω03/ωR ω10/ωR ω11/ωR ω12/ωR

mode 0a mode 0s · · · mode 1s mode 1a · · ·

L∗= 2
3.2646 7.5231 12.7978 1.6744 4.3053 8.2671

3.2657 7.5303 12.8207 1.6746 4.3069 8.2749

L∗= 3
1.4416 3.7080 6.5740 1.0990 2.5516 4.5999

1.4418 3.7096 6.5794 1.0990 2.5520 4.6018

L∗= 4
0.7345 2.1318 3.9766 0.8144 1.8046 3.1056

0.7346 2.1323 3.9784 0.8144 1.8048 3.1063

L∗= 5
0.3761 1.3214 2.6117 0.6459 1.3941 2.3252

0.3761 1.3216 2.6187 0.6459 1.3942 2.3256

L∗= 6
0.1298 0.8449 1.8089 0.5350 1.1353 1.8531

0.1298 0.8450 1.8092 0.5350 1.1353 1.8533



FIG. 11. Normalized theoretical eigenfrequencies, ωij/ωL, of a cylindrical bridge (grey lines) and of a bridge resulting of

the coalescence of two drops (black lines) for modes 0s, 0a, 1s, and 1a.

zeros at L∗ = 2π, which means that the equilibrium shape becomes unstable and that a bridge of

longer length should break. Eigenfrequencies for a bridge resulting from the coalescence of two

drops follow a different trend and coincide with those of the cylindrical case only at L∗ = Lc ≈ 3.46,

where the bridge is indeed cylindrical. None of the frequencies approaches zero, which indicates

that the fact that the bridge becomes more and more convex as L∗ increases retards the onset of the

instability. As already commented on experimental results, the modes can be grouped into pairs.

Modes 1a and 0s have larger frequencies and converge towards each other at large L∗. Modes 1s and

0a have lower frequencies which are close to each other over the whole range of L∗ investigated.

Moreover, we remark that the evolutions ωmn/ωL with L∗ are rather flat for the four considered

modes, suggesting that L is a better length scale than R to build a characteristic frequency. The

discussion about the best characteristic length scale will be continued in Sec. V.

V. DISCUSSION

Given that the experimental results are found independent of the radius R of the capillaries,

of the presence of MgSO4 and of differences in the initial size of the two bubbles, the different

cases are no longer distinguished and we will consider that the amplitude of the oscillations has

no influence on the measured eigenfrequencies and damping rates. Comparisons with theoretical

prediction assuming small amplitudes are therefore relevant.

Experimental and theoretical frequencies of the four considered modes are shown in Figure 12

as a function of the slenderness ratio L∗. Overall, owing to the assumptions made in the theory

and the difficulty to precisely align the capillaries in experiment, the agreement is very satisfactory.

Some disparities between experiments and theory are visible for short bridges of concave shape

(L < 3.46) especially for mode 0s. We suspect viscous effects localized close to the ending disks to

be the cause of these differences. For long bridge with convex shapes (L∗ > 3.46), the agreement

is good for all modes. It is therefore reasonable to conclude that the present experimental method

allows the investigation of the eigenmodes of oscillations predicted by the linear inviscid theory.

Comparisons between theoretical modes of cylindrical and non-cylindrical bridges have re-

vealed a strong influence of the mean shape (Figure 11). To consider a length scale characteristic



FIG. 12. Eigenfrequencies of modes 0s, 0a, 1s, and 1a normalized by ωRm
=

√

γ/ρRm
3. Symbols: experiments. Lines:

theoretical predictions.

of the shrunk/swollen character of the mean shape may thus help the interpretation of the results.

The radius Rm at the middle of the bridge seems a good candidate since it is almost propor-

tional to L, which was itself found to be rather good scale to characterize the eigenfrequencies of

non-cylindrical bridges. In Figure 12, all frequencies have been normalized by ωRm =

√

γ/ρR3
m.

It is remarkable to observe that, with such a normalization, the measured frequencies of the four

modes become almost independent of L. Practically, this means that the frequencies ωij/ωRm
are

found to be almost the same whatever are the values of R or L. The mass of fluid involved in the

oscillations of a bridge resulting from the coalescence of two droplets is therefore proportional to

ρR3
m.

In the range of Ohnesorge number investigated, the problem is almost inviscid. The role of

viscosity is limited to cause a weak dissipation that slowly damps the oscillations. As for the case of

the oscillations of a drop in a vacuum,18 the dissipation of the mechanical energy can be calculated

from the potential flow field. Assuming that the potential flow is characterized by the length scale

Rm, the damping rate of all modes should scale as βRm
= µ/ρR2

m. Figure 13 shows the measured

damping normalized by βRm
. Compared to Figure 10(b), the evolutions of βij/βRm

s are rather flat,

indicating that the dependence of the damping rate with L∗ is mostly accounted for by βRm
. How-

ever, the scatter is too large to allow a definitive conclusion. Moreover, it is probable that dissipation

in the vicinity of the ending disks plays a role that cannot be accounted for by the viscous potential

flow approximation. This point should be decided by including viscous effect in the theory.

To conclude, we want to stress that the present method, which combines theory and experi-

ments, has been proved to be well suited to reveal the fundamental dynamic characteristics of bridge

oscillations. It can be used in future work to investigate complex systems to get insights into liquid

fracture and high-speed dynamic interfacial rheology.



FIG. 13. Experimental damping rate of modes 0s, 0a, 1s, and 1a normalized by βRm
= µ/ρR2

m.

APPENDIX A: RELATION BETWEEN THE REDUCED VOLUME
AND SLENDERNESS RATIO

Prior to coalescence, the two drops are truncated spheres of radius Rg in contact at z = L/2 and

limited by two disks of radius R (Figure 14). The following relation is found between Rg , R, and L:

Rg =
R2

L
+

L

4
, (A1)

and the total volume of the two drops is given by

FIG. 14. Schematic of the two drops prior to coalescence.



V =
2

3
π

(

L

2

)2 (

3Rg −
L

2

)

. (A2)

Substituting the expression of Rg from (A1) into (A2) leads to

V =
2

3
π

(

L

2

)2 (

3
R2

L
+

L

4

)

. (A3)

Considering that the volume of the bridge is the total volume of the two truncated spheres, we

obtain the following relation between L∗ and V ∗ which is imposed by the present configuration:

V ∗ =
V

πR2L
=

1

2

(

1 +
L∗2

12

)

. (A4)

APPENDIX B: EXPRESSIONS FOR THE CURVATURE

1. Cylindrical coordinates

We first assume that the free surface admits a parametrization in cylindrical coordinates. We

note r(z) the position of the mean surface, and ηr(z, θ, t) the displacement with respect to the

mean surface in the radial direction. The instantaneous position of the interface is thus given by

G(r, z, θ, t) = 0, where G is a distance function defined by G(r, z, θ, t) = r − [r(z) + ǫηr(z, θ, t)]. The

normal vector is then deduced as n = ∇G
|∇G |

. We assume ǫ ≪ 1 and make an expansion in power

series of ǫ . Noting z-derivative with primes, e.g., r ′ = dr/dz, and replacing θ-derivatives by im for

sake of modal dependence, we get

n = n0 + ǫn1,

with

n0 =
1

(1 + r ′2)
1/2


−r ′

1

0

 (z,r,θ)
, n1 =

1

(1 + r ′2)
3/2


−η ′r
−r ′η ′r

im(1 + r ′2)/r

 (z,r,θ)
.

The curvature is then given by K = ∇ · n. Expressing this quantity at r = r(z) + ǫηr and devel-

oping in series with ǫ , we get

K = K0(z) + ǫK1(z),

with

K0(z) = −
r ′′

(1 + r ′2)
3/2
+

r ′

r(1 + r ′2)
1/2

(B1)

and

K1(z) = −
1

(1 + r ′2)
3/2

η ′′r +
*,

3r ′r ′′

(1 + r ′2)
5/2
− r ′

r(1 + r ′2)
3/2

+- η
′
r +

(m2 − 1)

r2(1 + r ′2)
1/2

ηr . (B2)

2. Curvilinear coordinates

We now express the previous expressions for K0 and K1 in terms of the curvilinear abscissa

s0 of the mean surface. We note η the displacement in the direction of the normal n0 to the mean

surface. Derivatives with respect to s0 are denoted by dots, in order to distinguish from z-derivative

that are denoted by primes.

Noting α(s0) the angle between the mean free surface and the x-axis, the following geometrical

relations are found in Ref. 30:



ż = cos α; ṙ = sin α; r ′ =
dr

dz
= tan α;

r ′′ =
d tan α

dz
=

d tan α

dα

dα

ds0

ds0

dz
=

α̇

cos3 α
.

Substituting these expressions into (B1), we obtain the following classical formula for the

curvature of the mean surface:

K0(s0) = −α̇ +
cos α

r
. (B3)

We now express the curvature perturbation K1 in curvilinear coordinates. For that purpose,

we first need to express the radial displacement ηr and its z-derivatives in terms of the normal

displacement η and its s0-derivatives. Geometrical considerations and elementary manipulations

lead to

ηr =
η

cos α
;

η ′r =
1

cos α

dηr

ds0

=
1

cos α2
η̇ +

α̇ sin α

cos α2
η;

η ′′r =
1

cos α

dη ′r
ds0

=
1

cos α3
η̈ +

α̇ sin α

cos α2
η +

3α̇ sin α

cos α4
η̇ +

(

α̇2(3 − 2 cos2 α)

cos5 α
+
α̈ sin α

cos α4

)

η.

Recasting these expressions into (B2) and rearranging the terms eventually lead to

K1(z) = K1(s0) +
dK0

ds0

tan α η, (B4)

where K1(s0) is the desired expression of the curvature perturbation in curvilinear coordinates,

K1(s0) = −η̈ −
sin α

r
η̇ +

(

m2

r2
− cos2 α

r2
− α̇2

)

η. (B5)

The term involving the derivative of K0 in (B4) accounts for the fact that the direction in which

the displacement is measured is different in both parametrizations (see Figure 2).

APPENDIX C: STABILITY AND OSCILLATION FREQUENCIES OF CYLINDRICAL
LIQUID BRIDGES

1. Problem formulation

We consider a cylindrical liquid bridge of radius R and length L. R and
√

ρR3/γ are used as

characteristic length and time for nondimensionalization. The slenderness is defined by L∗ = L/R.

The unknowns are a potential φ defined in the volume, and the normal displacement η defined on

the surface (extending from z = 0 to z = L∗). The system to be solved is

u = ǫ∇φ(z,r)ei(mθ+ωt),

r = R + ǫη(z)ei(mθ+ωt),

∆φ = 0, (C1)

∂zφ = 0 for z = 0 and z = L∗, (C2)

∂rφ = iωη for r = 1, (C3)

γK1 = γ(−∂2
z + m2 − 1)η = iωφ for r = 1, (C4)

η = 0 for z = 0 and z = L∗. (C5)

2. Analytical solution

The method is in the line with that developed by Henderson and Miles31 for studying sloshing

modes in a cylindrical container with a fixed contact line. We first expand the potential as follows



(which automatically satisfies the boundary conditions at z = 0,L) :

φ =

∞
∑

n=0

φn cos(knz)
Im(knr)

Im(kn)
(C6)

=

∞
∑

n=0

φ2n(−1)n cos(k2nz′)
Im(k2nr)

Im(k2n)
+

∞
∑

n=0

φ2n+1(−1)n sin(k2n+1z′)
Im(k2n+1r)

Im(k2n+1)
, (C7)

where kn = nπ/L∗.
The second expression is expressed in terms of z′ = z − L/2, which spans the bridge from

−L/2 to L/2. In terms of this centered variable, this expression allows to separate the symmetrical

and anti-symmetrical components, which contain, respectively, only even and odd terms. However,

in what follows, we stay with the first expression in terms of z, in order to avoid mixing between

sines and cosines. We first work with the dynamic boundary condition which can be written in the

following form:

γ(−∂2
z + m2 − 1)η =

∞
∑

n=0

(iω)φn cos(knz). (C8)

Unless if the right-hand side contains resonant terms (see below), the solution of this equation

will be generally written as follows:

η =

∞
∑

n=0

An cos(knz) − (AsCs(z) + AaCa(z)) . (C9)

We recognize two parts. The first is the solution proportional to the forcing terms, with amplitudes

An,

An =
−iωφn

γ(k2
n + m2 − 1)

.

The second part is the solution of the homogeneous equation. This part contains two auxiliary

functions, noted Cs(z) and Ca(z). These functions are chosen so that Cs(z) is symmetric and Ca(z)

is antisymmetric, and are normalized such that Cs(0) = Ca(0) = 1. Physically, these two functions

represent displacements of the free surface which do not modify the mean curvature. The expres-

sions for these functions depend upon m and will be given below.

We now consider the kinematic boundary condition, which yields

η = (iω)−1

∞
∑

n=0

φn cos(knz)Tn, with Tn =
I ′m(kn)

Im(kn)
. (C10)

Using the previous expression for An, this expression leads to

η =

∞
∑

n=0

(

ω∗n
ω

)2

An cos(knz), (C11)

where

(ω∗n)
2 =

!
k2
n + m2 − 1

�
Tn

are the free frequencies, i.e., the eigenfrequencies that would be obtained if we remove the boundary

condition of anchoring of the contact line. We now have two different expressions for η(z), namely,

(C9) and (C11), and must equate them. One clearly sees that if the complementary functions are

absent, the solution is trivially ω = ω∗n, which means that the Fourier components are uncoupled and

the frequencies are those of free problem. These modes do not verify the condition of fixed line, but

instead they verify ∂zη = 0; physically, this represents a bridge located between two parallel planes

and allowed to slip along them. When the constraint of fixed line is imposed, the complementary



functions have to be introduced. To equate the two expressions for η, these functions have to be

decomposed along the Fourier basis. The decomposition is as follows:

Cs(z) =

∞
∑

n=0

Cs
n cos(k2nz),

Ca(z) =

∞
∑

n=0

Ca
n cos(k2n+1z).

The Fourier coefficients will be given below. We can now treat separately the symmetric and

antisymmetric parts of the expression for η. For symmetric perturbations, equating the Fourier

coefficients leads to

(

ω∗
2n

ω

)2

A2n = A2n + AsC
s
n, (C12)

which can also be written as

A2n = AcC
s
n

(

ω2

ω2 − ω∗
2n

)

.

It remains to sum over all indices n, and recognize that
∑

A2n = As (which comes from the

fixed-line condition η(0) = 0), to get the following dispersion relation:

Fs(ω
2) =

∑

Cs
n

(

ω2

ω2 − ω∗
2n

)

= 1. (C13)

The case of antisymmetric modes is similar and yields

Fa(ω
2) =

∑

Ca
n

(

ω2

ω2 − ω∗
2n+1

)

= 1. (C14)

We can note that the functions Fs and Fa change sign through an infinite branch at the free

frequencies ω∗n and are monotonous between these roots; so we can conclude that the frequencies

for the fixed-line problem lie between those for the free-line problem.

3. Details about Fourier coefficients

• For m = 0, the auxiliary functions are given as

Cs(z) =
cos(z − L∗/2)

cos(L∗/2)
; Ca(z) =

sin(L∗/2 − z)

sin(L∗/2)
. (C15)

The Fourier coefficients for these functions are as follows:

Cs
n =

4L∗

L∗2 − π2(2n)2
tan(L∗/2) if n , 0,

Cs

0 =
2

L∗
tan(L/2),

Ca
n = −

4L∗

L∗2 − π2(2n + 1)2
cot(L∗/2).

Note that if L∗ = nπ, the problem for η becomes non-homogeneous and a special treatment is

required. However, these cases are of no particular significance, so we omit the details.

• For m ≥ 2, the auxiliary functions are given as by

Cs(z) =
cosh(µ(z − L∗/2))

cosh(µL∗/2)
; Ca(z) =

sinh(µ(L∗/2 − z))

sinh(µL∗/2)
, (C16)



with µ =
√

m2 − 1. The Fourier coefficients for these functions are as follows:

Cs
n =

4L∗µ

µ2L∗2 + π2(2n)2
tanh(µL∗/2) if n , 0,

Cs

0 =
2

L∗
tanh(L∗/2),

Ca
n =

4L∗µ

µ2L∗2 + π2(2n + 1)2
coth(µL∗/2).

• The case m = 1 requires a specific treatment. In that case, the left-hand side of Eq. (C8) is

simply ∂2
xη = 0, the homogeneous solutions of which are constant or linear functions, but the

right-hand side contains the constant term iωφ0 which is proportional to the homogeneous

solution, hence, resonant. In that case, the auxiliary function Cs(x) has to be taken as the

response to this resonant term, namely,

Cs(z) = (2z/L∗ − 1)2.

The antisymmetric auxiliary function is Ca(x) and is not resonant and is taken as

Ca(z) = (1 − 2z/L∗).

The Fourier coefficients for these auxiliary functions are

Cs
n =

16

π2n2
if n , 0,

Cs

0 = 1/3,

Ca
n =

8

π2n2
.

The solution to the antisymmetric problem is still given by (C14). The symmetric problem

is slightly different. In this case, the expressions for An given above (C12) are still valid for

n , 0, but the case n = 0 is different, and the expressions has to be replaced by

A0 =

(

8

π2L∗2
+ Cs

0

)

As .

Hence, in this case, the dispersion relation reads

Fs(ω
2) =

(

8

π2L∗2
+

1

3

)

+

∞
∑

n=1

Cs
n

(

ω2

ω2 − ω∗
2n

)

= 1. (C17)
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