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Abstract

We give a complete proof of the equivalence between the unbiased and biased definitions of cyclic
operads, through a λ-calculus-style formal language, called the µ-syntax, and a new formalism
of trees that provides a crisp description of the monad of unrooted trees (whose nodes are
decorated with operadic operations).

Introduction

An operad is a collection of abstract operations of different arities, equipped with a notion of how
to compose them and an action of permuting their inputs. An n-ary operation f should be thought
of as a single-node rooted tree, whose node is decorated with the symbol f and that has n inputs,
labeled either by natural numbers from 1 to n (in which case the operad is characterised as skeletal),
or, equivalently, by elements of an arbitrary finite set of cardinality n (in which case the operad is
non-skeletal).

Formally, in the skeletal approach, the set O(n) of n-ary operations is determined by a functor
O : Σop → Set, where Σ is the skeleton of the category Bij of finite sets and bijections, formed
by the sets n = {1, 2, . . . , n}, n ∈ N, and Set is the category of sets and functions. Then, for any
permutation σ of n, the induced map O(σ) determines a permutation of inputs of an operation

f

1 2 · · · n

and this constitutes the action of the symmetric group Sn on O(n).
As for the formal description of operadic composition, the unbiased and biased frameworks pro-

vide two ways to complete the characterisation of an operad.
In the unbiased framework, an operad is defined as an algebra over a monad of rooted trees.

These trees act as pasting schemes, and the operations decorating their nodes are “composed in
one shot” through the structure morphism of the algebra.

In the biased approach, the definition of an operad is biased towards “local” operadic com-
positions, in the sense that these are the only explicitely defined concepts. The various ways to
derive a global operadic composition are then equated by the appropriate associativiy axioms. In
the original definition of an operad, given by May in [M72], the operadic composition structure is
specified by morphisms
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γn,k1,...,kn : O(n)⊗ O(k1)⊗ · · · ⊗ O(kn)→ O(k1 + · · ·+ kn)

and the unit id ∈ O(1), defined for all n ≥ 1 and ki ≥ 0, which are subject to associativity,
equivariance and unit axioms. This kind of composition is refered to as simultaneous, in reference
to the underlying simultaneous grafting operation on rooted trees. The presence of operadic units
allows for an equivalent biased approach for introducing operadic composition. Instead of working
with simultaneous composition, one can introduce it by formulas

f ◦i g = γm,1,...,1,n,1,...,1(f, id , . . . , id , g, id , . . . , id)

where g appears as the i-th argument of f , which specify individual compositions

◦i : O(m) ⊗ O(n)→ O(m+ n− 1)

for all 1 ≤ i ≤ m. This definition of operadic composition, which was first formalised by Markl in
[M96], is called partial.

Precise definitions of skeletal operads can be seen in [M06] (Definition 1, Definition 11, and
Theorem 40, for the simultaneous, partial and unbiased operadic compositions, respectively). The
non-skeletal version of the operad structure is obtained by passing from Σ to Bij, i.e. by building
operadic composition over a functor O : Bijop → Set. Such a definition is found in [L10, Definition
1.3.2], and [L10, Theorem 1.2.7] is a theorem that sets up the equivalence between the skeletal and
non skeletal definitions.

Operads encode categories of algebras whose operations have multiple inputs and one output,
such as associative algebras, commutative algebras, Lie algebras, etc. The interest in encoding
more general algebraic structures was a part of the renaissance of operads in the early nineties of
the last century, when various generalizations of operads came into existence. The formalism of
cyclic operads was originally introduced by Getzler and Kapranov in [GK95]. The motivation came
from the framework of cyclic homology: in their paper, Getzler and Kapranov show that, in order
to define a cyclic homology for O-algebras, O has to be what they call a cyclic operad. Roughly
speaking, an enrichment of the (ordinary) operad structure is provided by adding to the action of
permuting the inputs of an operation an action of interchanging its output with one of the inputs.
This feature essentially makes the distinction between the inputs and the output no longer visible,
which is adequately captured by unrooted trees as pasting schemes.

The notion of a cyclic operad was originally given in the unbiased manner in [GK95, Definition
2.1], over the structure of a monad in a category of unrooted trees. Like operads, biased cyclic
operads can be defined by means of simultaneous compositions [GK95, Theorem 2.2] or of partial
composition [M06, Proposition 42]. In both of these definitions, the action of Sn is extended with
the cycle τn = (0, 1, . . . , n), whose action includes making the output of an operation (denoted
now with 0) to be the first input and the input indexed with n to be the output, in a way that is
compatible with operadic composition and preserves units. The action of τn can be visualised as
the clockwise rotation of all wires of a tree, such that each wire takes the position of its right-hand
side neighboring wire:

0

1 2 · · · n

τn−−−−→

1 2 · · · n

0
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The fact that we can now compose two operations by grafting them along wires that “used to be
outputs” leads to another point of view on cyclic operads, in which they are seen as generalisations
of operads for which an operation, instead of having inputs and an (exchangeable) output, now has
“entries”, and it can be composed with another operation along any of them. One can find such an
entries-only definition in [M14, Definition 48]. By contrast, we shall refer to the definitions based
on describing cyclic operads as operads with extra structure as exchangeable-output ones.

The equivalence between the unbiased and biased definitions of a cyclic operad is formally given
as a categorical equivalence that is, up to some extent, taken for granted in the literature. The
issue that the construction of the structure morphism of an algebra over the monad out of the data
of a biased cyclic operad should be shown independent of the way trees are decomposed has not
been addressed in the proof of [GK95, Theorem 2.2], while the proof of [M06, Proposition 42] is not
given. Also, the monad structure is usually not spelled out in detail, in particular for what regards
the correct treatment of the identities. The primary goal of this paper is to formalise rigorously the
equivalence between the unbiased and biased definitions of cyclic operads. Instead of comparing
one of the two exchangeable-output biased definitions with the unbiased one, as done in [GK95,
Theorem 2.2] and [M06, Proposition 42], we show that the entries-only and the unbiased defini-
tion describe the same structure. Another particularity in our approach is that the appropriate
categorical equivalence will be proved in a syntactical environment: a cyclic operad with biased
composition will be expressed as a model of the equational theory determined by the axioms of the
entries-only definition, while the monad of unrooted trees figuring in the unbiased approach will
be expressed through a formal language called µ-syntax, that we now introduce briefly.

The name and the language of the µ-syntax formalism are motivated by another formal syn-
tactical tool, the µµ̃-subsystem of the λµµ̃-calculus, presented by Curien and Herbelin in [HC00].
In their paper, programs are described by means of expressions called commands, of the form

〈µβ.c1 | µ̃x.c2〉,

which exhibit a computation as the result of an interaction between a term µβ.c1 and an evaluation
context µ̃x.c2, together with a symmetric reduction system

c2[µβ.c1/x]←− 〈µβ.c1 | µ̃x.c2〉 −→ c1[µ̃x.c2/β],

reflecting the duality between call-by-name and call-by-value evaluation. In our syntactical ap-
proach, we follow this idea and view operadic composition as such a program, i.e. as an interaction
between two operations f and g, where f provides an input β (selected with µ) for the output x
of g (marked with µ̃). By moving this concept to the entries-only setting of cyclic operads, the
input/output distinction of the µµ̃-subsystem goes away, leading to the existence of a single binding
operator µ, whose purpose is to select the entries of two operations which are to be connected in
this interaction.

The action of putting in line the characterization of the monad of unrooted trees, built upon the
formalism of unrooted trees with half-edges commonly used in the operadic literature, together with
the characterization by means of µ-syntax, i.e. of proving their equivalence, makes the greatest
part of the paper. It involves setting up an intermediate formalism of unrooted trees, called the
formalism of Vernon trees, that provides concise and lightweight pasting shemes for cyclic operads,
and whose syntactical flavour reflects closely the language of µ-syntax. Roughly speaking, the
formal characterisation of a Vernon tree captures precisely the information relevant for describing
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the corresponding monad, which eases the verifications of the appropriate laws.
Although µ-syntax was originally designed precisely to help us carry out the proof of the equiv-

alence between the unbiased and biased definitions of cyclic operads, it certainly has a value at
the very level of encoding the (somewhat cumbersome) laws of the partial composition operation
for cyclic operads. In other words, we propose it as an alternative representation of the biased
structure of a cyclic operad.

Outline of the paper. Section 1 is a review of the existing definitions of cyclic operads. It
finishes with the statement of the theorem that expresses the equivalence between the unbiased
and the biased definition. In Section 2, we introduce the formalism of Vernon trees and we describe
within it the monad of unrooted trees in full detail. Section 3 will be devoted to the introduction
and analysis of the µ-syntax. We also show how to interpret the µ-syntax in an arbitrary cyclic
operad. In Section 4, we deliver the proof of the main theorem. We summarise the respective
merits of Vernon trees and µ-syntax in this proof in the conclusion.

Notation and conventions. This paper is about non-skeletal cyclic operads introduced in Set.
This is just a matter of convenience: we prefer the non-skeletal setting because we prefer formulas
with “named” (rather than “numbered”) variables, and we chose to work in Set (rather than in
an arbitrary symmetric monoidal category) only to be able to (correctly) speak about operadic
operations in terms of elements. We assume the existence of operadic units. The proofs that
“could be left to the reader” are given in the Appendix, and the corresponding lemmas are labeled
with an asterix.

For a bijection σ : X ′ → X and Y ⊆ X, we denote with σ|Y the restriction of σ on σ−1(Y ).
For y 6∈ X ∪ X ′, we denote with σy the bijection σy : X ′ ∪ {y} → X ∪ {y}, defined as σ on X ′,
and such that σy(y) = y. If σ(x′) = x, we denote with σy/x

′
the bijection defined in the same way

as σ, except that, instead of x′, it contains y in its domain (the inverse image of x now being y).
Finally, if τ : Y ′ → Y is a bijection such that X ′ ∩ Y ′ = X ∩ Y = ∅, then σ + τ : X ′ ∪ Y ′ → X ∪ Y
denotes the bijection defined as σ on X ′ and as τ on Y ′.

1 Cyclic operads

The content of this section is to a great extent a review and a gathering of material coming from
[GK95], [M06] and [M14]. The main definitions are Definition 1 and Definition 2, and the main
theorem is Theorem 1, which claims the equivalence of these two definitions.

1.1 Biased definition of cyclic operads

We introduce below the entries-only definition of cyclic operads, by following Markl’s definition
[M14, Definition 48] for a particular case when the underlying functor is C : Bijop → Set, and
adapting it further by also demanding operadic units.

In the sequel, for f ∈ C(X) and a bijection σ : X ′ → X, we write fσ instead of C(σ)(f).

Definition 1. A cyclic operad is a contravariant functor C : Bijop → Set, together with a
distinguished element idx,y ∈ C({x, y}) for each two-element set {x, y}, and a partial composition
operation

x◦y : C(X)× C(Y )→ C((X\{x}) ∪ (Y \{y})),
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defined for arbitrary non-empty finite sets X and Y and elements x ∈ X and y ∈ Y , such that
(X\{x}) ∩ (Y \{y}) = ∅. These data satisfy the associativity, equivariance and unitality axioms
given below, wherein, for each of the axioms, we assume the set disjointness that ensures that all
the partial compositions involved are well-defined.

Associativity. For f ∈ C(X), g ∈ C(Y ) and h ∈ C(Z), the following two equalities hold:

(A1) (f x◦y g) u◦z h = f x◦y (g u◦z h), where x ∈ X, y, u ∈ Y, z ∈ Z, and

(A2) (f x◦y g) u◦z h = (fu◦z h) x◦y g, where x, u ∈ X, y ∈ Y, z ∈ Z.

Equivariance. For bijections σ1 : X ′ → X and σ2 : Y ′ → Y , and f ∈ C(X) and g ∈ C(Y ), the
following equality holds:

(EQ) fσ1 σ−1
1 (x)◦σ−1

2 (y) g
σ2 = (fx◦y g)

σ,

where σ = σ1|
X\{x} ∪ σ2|

Y \{y}.

Unitality. For f ∈ C(X) and x ∈ X, the following two equalities hold:

(U1) f x◦y idy,z = fσ, and

(U2) idy,z y◦x f = fσ,

where σ = idX\{x} on X\{x} and σ(z) = x. Moreover, the unit elements are preserved under the
action of C(σ), i.e.

(U3) idx,y
σ = idu,v,

for any two two-element sets {x, y} and {u, v}, and a bijection σ : {u, v} → {x, y}.

Note that we impose a slightly weaker condition on the sets X and Y and elements x ∈ X
and y ∈ Y involved in partial composition than in [M14, Definition 48]: instead of requiring X
and Y to be disjoint, as Markl does, we allow the possibility that they intersect, provided that
their intersection is a subset of {x, y}. This also means that we allow the possibility that x = y.
Despite this difference, the characterizations of Definition 1 and [M14, Definition 47] are equivalent.
More precisely, and under the assumption that the unit elements are already integrated in [M14,
Definition 47], all partial compositions allowed in [M14, Definition 47] are obviously covered by the
Definition 1. As for the other direction, if f x◦y g is such that, say, x ∈ X ∩ (Y \{y}), then we can
define f x◦y g as fσ x′◦y g, where x

′ is chosen outside of Y , and σ : (X\{x}) ∪ {x′} → X is identity
everywhere except on x′, which is sent to x, obtaining in this way a valid definition in the sense of
[M14, Definition 47].

The following remark is imported from [L10, Proposition 1.3.4].

Remark 1. The presence of unit elements idx,y ∈ C({x, y}) makes the partial composition operation
commutative in the sense that, for f ∈ C(X), g ∈ C(Y ), x ∈ X and y ∈ Y , the following equality
holds:

(CO) f x◦y g = g y◦x f .

The above definition naturally induces the notion of simultaneous composition, as a sequence
of partial compositions of the form as in the axiom (A2), that is, in which the entry involved in
the next instance of a composition always comes from f ∈ C(X) and which, moreover, ends when
all the entries of f ∈ C(X) are exhausted. In order to avoid writing explicitly such sequences, we
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introduce the following notation. For f ∈ C(X), let

ϕ : x 7→ (gx, x)

be an assignment that associates to each x ∈ X an operation gx ∈ C(Yx) and an element x ∈ Yx,
in such a way that

⋂

x∈X

Yx\{x} = ∅.

Let, moreover, σ : X ′ → X be an arbitrary bijection such that for all x ∈ X,

(X ′\{σ−1(x)}) ∩ (Yx\{x}) = ∅.

Under these assumptions, the composite assignment

ϕ ◦ σ : x′ 7→ (gσ(x′), σ(x
′)),

defined for all x′ ∈ X ′, together with fσ ∈ C(X ′), determines the composition

((fσ x′◦σ(x′) gx) y′◦σ(y′) gy) z′◦σ(z′) gz · · · ,

consisting of a sequence of partial compositions indexed by the entries of fσ. We will use the
abbreviation fσ(ϕ◦σ) to denote such a composition. Thanks to the axiom (A2), this abbreviation
is well-defined, i.e. fσ(ϕ ◦ σ) does not depend on the order in which the partial compositions were
carried out. We finally set

f(ϕ) = fσ(ϕ ◦ σ),

and refer to f(ϕ) as the total composition determined by f and ϕ. That f(ϕ) does not depend on
the choice of σ is a consequence of the axiom (EQ).

Notice that without the renaming role of σ, f(ϕ) is not necessarily well-defined. For example,
f(ϕ) = (f x◦x gx) y◦y gy, where f ∈ C({x, y}), gx ∈ C({x, y}) and gy ∈ C({y, v}), is not well-defined,
although ϕ satisfies the required disjointness condition.

In relation to the above construction, the statements of the following lemma are easy conse-
quences of the axioms from Definition 1.

Lemma 1. The total composition f(ϕ) has the following properties.

a) Let ψ : Z →
⋃

x∈X(Yx\{x}) be a bijection such that for all x ∈ X, x 6∈ ψ−1(Yx\{x}). Denote

with ψx the extension on Yx of the bijection ψ|Yx\{x}, which is identity on x, and let ϕψ be

defined as ϕψ : x 7→ (g
ψx
x , x), for all x ∈ X. Then f(ϕ)ψ = f(ϕψ).

b) Let ψ : y 7→ (hy, y) be an assignment that associates to each y ∈
⋃

x∈X(Yx\{x}) an operation
hy ∈ C(Zy) and y ∈ Zy, in such a way that f(ϕ)(ψ) is defined. If ϕψ is the assigment defined

as ϕψ : x 7→ (g
ψx
x , x), where ψx denotes the extension on Yx of the assignment ψ|Yx\{x}, which

is identity on x, then f(ϕ)(ψ) = f(ϕψ).

In what follows, when switching from f ∈ C(X) to fσ ∈ C(X ′) under the action of σ : X ′ → X,
we will refer to σ as the renaming (of the variables) of X to (the appropriate variables of) X ′, and
we will often omit stating explicitly its domain and codomain, always assuming that all the partial
compositions defined in the context including f ∈ C(X) remain well-defined after the renaming has
been done, i.e. in the context with fσ ∈ C(X ′).
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The nature of Definition 1 allows us to easily formalise the cyclic operad structure in a syntactic
manner. Starting from a functor C : Bijop → Set, we take as formal terms

s, t ::= f | idx,y | s x◦y t

typed as
t ∈ C(X)

t : X idx,y : {x, y}

s : X t : Y

s x◦y t : (X\{x}) ∪ (Y \{y})

where x and y are distinct variables in the second rule, while in the third rule x ∈ X, y ∈ Y and
(X\{x}) ∩ (Y \{y}) = ∅. For the set of equations we take the one determined by the axioms from
the definition. We refer to this syntax as the combinator syntax for cyclic operads, and call the
terms t : X combinators. The set of all combinators induced by C will be denoted by cTermC, and,
for a finite set X, cTermC(X) will denote the set of all combinators of type X.

The combinator syntax gives rise to a multi-sorted equational theory: the signature of this
theory is determined by taking as sorts all finite sets, while, having denoted with (s1, . . . , sn; s) the
sort of an n-ary function symbol, for the set of function symbols we take the collection consisting
of

• constants f : ( ;X) (of arity 0),

• identities idx,y : ( ; {x, y}) (of arity 0),

• actions σ : (X;X ′) (of arity 1), and

• partial compositions x◦y : (X,Y ; (X\{x}) ∪ (Y \{y})) (of arity 2),

the equations of the theory being derived from the axioms of Definition 1. We can then turn the
syntactic representation of a cyclic operad into a semantic one, by reformulating Definition 1 as
follows.

Definition 1’. Given C, a cyclic operad structure over C is a model of the equational theory above,
in which every operation f ∈ C(X) is interpreted by itself.

Based on this definition, [ ]C : cTermC → C will denote the appropriate interpretation function.

1.2 Unbiased definition of cyclic operads

We now revisit the original unbiased definition of cyclic operads, [GK95, Definition 2.1], on slightly
adapted grounds: besides switching to a non-skeletal setting, we will reconstruct it within the
formalism of trees that incorporates edges as pairs of half-edges (rather then the usual “indivisible”
edges), due to Kontsevich and Manin [KM94].

1.2.1 Graphs and unrooted trees

We start by recalling the notion of graph that we will use as the basis for describing unrooted trees,
that we took from [M14, Section 4]: a graph Γ is a triple (Flag(Γ), σ, λ), where Flag(Γ) is a finite
set of flags or half-egdes, σ : Flag(Γ)→ Flag(Γ) is an involution, and λ is a partition of Flag(Γ).

The set of vertices Vert(Γ) of Γ is determined by λ: vertices are precisely the blocks of the
partition λ. We denote by Leg(v) the set of half-edges adjacent to the vertex v, i.e. the flags
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belonging to the block v. The set of edges of Γ, edge(Γ), consists of all pairs of flags forming a
two-cycle of σ, with respect to the decomposition of σ into disjoint cycles. The legs of Γ are the
fixpoints of σ, the set of which will be denoted by Leg(Γ). In simple terms, the edges in this
formalism are egdes between two vertices in the usual sense, made by connecting two half-edges
coming from these two vertices, while the legs are half-edges which are not connected with some
other half-edge to form an edge.

For example, the graph given by the triple ({x, y, z, u, v, a, b, c, d}, σ, {{x, y, z, u, v}, {a, b, c, d}}),
where σ = (u c)(v b), should be depicted as

x

y

z

a

d

v b

u c

This graph has two vertices, v1 = {x, y, z, u, v} and v2 = {a, b, c, d}, two edges, (u, c) and (v, b),
and five legs, x, y, z, a, d.

Starting from this notion of graph, we define an unrooted tree1 as a connected graph without
loops, multiple edges and cycles.

The above graph is not an unrooted tree, since it has two edges between v1 and v2. The graph
given by the triple ({x, y, z, a, b, c}, σ, {{x, y, z}, {a, b, c}}), where σ = (x a)(b c), is not an unrooted
tree either, since the edge (b, c) connects the vertex {a, b, c} with itself, i.e. it is a loop:

y

z

c

b

x a

The graph ({x, y, z, u, v, a, b, c, d, p, q, r}, σ, {{x, y, z, u, v}, {a, b, c, d}, {p, q, r}}), with σ = (v b)(c q)
(r u), is another example of a graph which is not an unrooted tree, this time because of the presence
of a cycle that connects its three vertices:

x

y

z

a d

u r

v
b c

q

p

Finally, we get an example of a graph which is an unrooted tree by changing the involution σ of the
previous graph to, say, σ′ = (v b)(c q), producing in this way the unrooted tree whose graphical
representation is

1In [M06], Markl uses the attribute cyclic when refering to unrooted trees, pointing out in this way the fact that
they are pasting schemes for cyclic operads. On the other hand, the same attribute is also used in the literature for
characterizing graphs which contain at least one cycle, i.e. which have the property not allowed by the definition of
an unrooted tree. In order to avoid the confusion caused by this ambiguity, the word cyclic will not be used in the
context of trees in this paper.
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x

y

z

a d

u

v
b c

q

p

r

If T is an unrooted tree and l : Leg(T )→ X is a bijection between the legs of T and a finite set
X, we call a pair (T, l) an unrooted X-tree and we refer to the bijection l itself as an X-labeling of T .
For a finite set X, let UTreeX denote the category of unrooted X-trees and their isomorphisms,
where by an isomorphism between X-trees T1 and T2 we mean a bijection φ : Flag(T1)→ Flag(T2)
that preserves vertices and commutes with the involutions and X-labelings. For the graphical
representation of an unrooted X-tree we take the one of its underlying unlabeled tree in which we
replaced the names of the legs with the corresponding elements of the set X.

Observe that this definition of a graph implies that each unrootedX-tree has at least one vertex.
In what follows, in order to describe the pasting scheme for the identity idx,y, we shall need the
exceptional unrooted tree

x y

without vertices, made only with two half-edges (labeled with x and y in this case), connected into
an edge. Whenever X is a two-element set, we assume that among the objects of UTreeX there is
also the exceptional tree determined by X.

The reason to go for exceptional trees, instead of taking explicit vertices for identities, is that,
otherwise, in the definition of the free cyclic operad (coming up next), we would have to quotient
UTreeX by more than the vertex-preserving isomorphisms, as the validation of the unit laws would
involve the identification of trees that are not isomorphic.

1.2.2 The free cyclic operad

An arbitrary functor C : Bijop → Set induces a functor C : UTreeX
op → Set, as

C(T ) :=
⊗

v∈V ert(T )

C(Leg(v)),

where T is an unrooted X-tree and ⊗ is the unordered tensor product over the set of vertices of T .
The functor F (C) : Bijop → Set, underlying the free cyclic operad structure, is then defined as

F (C)(X) := colim
T∈UTreeX

C(T ),

which, once the definitions of C and of the colimit over it are unrolled, becomes

F (C)(X) =
⊕

T∈UTreeX

(
⊗

v∈V ert(T )

C(Leg(v)))/ ∼,
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where ∼ is the smallest equivalence relation generated by

C(T2) ∋ (f1, f2, . . . , fn) ∼ C(ϕ)((f1, f2, . . . , fn)) ∈ C(T1),

for any two X-labeled trees T1 and T2, a tree isomorphism ϕ : T1 → T2 and (f1, f2, . . . , fn) ∈ C(T2).
Therefore, each isomorphism class of F (C)(X) is determined by a C-decorated unrooted X-tree T ,
i.e. by an unrooted X-tree T and an element (f1, . . . , fn) ∈ C(T ), also called a C-decoration of T . In
particular, for a two-element set, the isomorphism class arising with respect to the corresponding
exceptional tree (in which case the tensor product is taken over the empty set) is determined by
the unit of the tensor product in Set.

As for the rest of the operad structure, the compositions

x◦y : F (C)(X) ⊗ F (C)(Y )→ F (C)((X\{x}) ∪ (Y \{y}))

are induced by grafting of the underlying graphs, and the actions of bijections σ : X ′ → X by
relabeling of their legs. Before composing [T1, (f1, . . . , fn)]∼ ∈ F (C)(X) and [T2, (g1, . . . , gm)]∼
∈ F (C)(Y ), a “precautionary renaming” of the flags of T1 and T2 has to be done. We shall detail
the relevant renaming issues in 2.4, where we will use Vernon trees to redefine the free cyclic operad
in a technically simpler way.

Let CycOp denote the category of cyclic operads (and structure-preserving natural transfor-
mations). The functor F : SetBijop → CycOp described above is left adjoint to the forgetful
functor U : CycOp→ SetBijop, which indeed makes F (C) the free cyclic operad built over C. For
a cyclic operad D, a hom-set bijection

φ : CycOp(F (C),D) → SetBijop(C, U(D))

is determined as follows.
If α : F (C) → D is a morphism of cyclic operads, then, for a finite set X and f ∈ C(X),

φ(αX) : C(X)→ U(D)(X) is defined as

φ(αX)(f) = αX([T, f ]∼),

where T is a single-vertex X-tree, whose legs are given precisely by the set X and whose X-labeling
is the identity.

Conversely, if β : C → U(D) is an element of SetBijop(C, U(D)) and T is an unrooted X-tree
with the labeling l, then the map

⊗

v∈V ert(T )

C(Leg(v))

⊗
v∈V ert(T ) β

−−−−−−−−→
⊗

v∈V ert(T )

D(Leg(v))
γ
−→ D(Leg(T ))

D(l)
−−→ D(X),

where γ stands for iterated application of the operadic compositions of D (coordinated by T ),
determines the corresponding morphism φ−1(β)X : F (C)(X) → D(X). Notice that this definition
has to be shown independent on the order in which iterations behind γ are carried out. We will
come back to this issue in Section 4, where we will take profit from the correspondence between
the classes of F (C)(X) and the µ-syntax to redefine φ−1(β) in a purely syntactical way and prove
this independence.

The definitions of φ(αX) and φ
−1(β)X are adapted naturally for the unit element, and, in the

other direction, the exceptional tree.
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1.2.3 The monad of unrooted trees

The monad of unrooted trees is the monad M = (M,µ, η) on the category SetBijop arising from
the adjunction F ⊣ U described above. At this point, we follow the tradition from the literature
and give below only its intuitive description.

For a functor C : Bijop → Set, the elements of

MM(C)(X) := colim
T∈UTreeX

M(C)(T )

should be imagined as unrooted X-trees with nodes decorated by the unrooted trees ofM(C). With
this intuition, one can say that the multiplication µC : MM(C) → M(C) “flattens” the trees of
MM(C), turning them into “ordinary” C-decorated X-trees:

g

h

k

f

yz

u

v

p

q

e

c
b

m

o
x a

d
n

r
w

µC7−→

g

h

k

f

x a
d n

r
w

y
z

u

v

p

q

e

b
c

m

o

The monad unit ηC : C→M(C) associates to each f ∈ C(X) the isomorphism class determined by
the single-node unrooted X-tree with the node decorated by f :

C(X) ∋ f ηC7−→
f

x v

u

z

y
∈M(C)(X)

Here is the original definition [GK95, Definition 2.1] of a cyclic operad.

Definition 2. A cyclic operad is an algebra over the monad M = (M,µ, η).

The link between this one-sentence definition and Definition 1 becomes intuitively clear from
the mapping given pictorially below, which shows how the structure morphism of such an algebra
induces the individual composition operations of a cyclic operad:

f

guv

w

p
q

r

d
c

b

a
x

y 7−→ f x◦y g

The equivalence of these two definitions is formally given by the following theorem.
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Theorem 1. A functor C : Bijop → Set is a cyclic operad (in the sense of Definition 1) if and only
if it is an M-algebra (where M is the monad from Definition 2), this correspondence establishing
the categorical equivalence

CycOp ∼= AlgM(SetBijop).

The missing ingredient in the proof of this equivalence in the literature is the proof that the
laws satisfied by an M-algebra indeed come down to the axioms from Definition 1, and vice-versa.
This is what our Section 4 provides.

2 Vernon trees

Recall that, in the definition of the free cyclic operad, each isomorphism class of F (C)(X) is de-
termined by an unrooted, C-decorated X-tree T . With respect to the formalism of trees given in
1.2.1, such a tree consists of an unrooted tree T , an X-labeling l : Leg(T ) → X and an element
(f1, . . . , fn) ∈ C(T ). In this section we introduce an alternative way to describe the isomorphism
classes of F (C)(X). The formalism we introduce integrates the leg-labeling and vertex-decorations
of unrooted trees a priori, in the very definition of a tree, while leaving out the information un-
necessary for describing the corresponding monad. More precisely, as opposed to the approach
presented before, which

• involves an explicit X-labeling l : Leg(T )→ X of the legs of a tree, and

• does not carry any information about the names of the vertices of a tree,

in the formalism of Vernon trees

• the labeling of the legs of a tree is handled implicitely, in the sense that the set of the legs of
a Vernon tree will be precisely X, and

• the labels of the vertices of a tree are an integral part of the tree structure.

2.1 The syntax

Let C : Bijop → Set be a functor. We define the collection of parameters (of C) as

PC = {f | f ∈ C(X) for some finite set X}.

An ordinary corolla is a term
f(x, y, z, . . . ),

where f ∈ C(X) andX = {x, y, z, . . . }. We call the elements ofX the free variables of f(x, y, z, . . . ),
and we shall write FV (f(x, y, z, . . . )) = X (or, shortly, FV (f) = X) to denote this set. In addition
to ordinary corollas, we define special corollas to be terms of the shape

(x, y),

i.e. terms which do not have a parameter as a head symbol and which consist only of two distinct
variables x, y ∈ V . For a special corolla (x, y), we define FV ((x, y)) = {x, y}.

12



A Vernon graph V is a non-empty, finite set of corollas with mutually disjoint free variables,
together with an involution σ on the set

V (V) =
k
⋃

i=1

FV (fi) ∪

p
⋃

j=1

FV ((uj , vj))

of all variables occuring in V. We write

V = {f1(x1, . . . , xn), . . . , fk(y1, . . . ym), . . . , (u1, v1), . . . , (up, vp);σ}.

We will denote with Cor (V) the set of all corollas of V, and we will refer to an ordinary corolla
by its parameter, while we will denote special corollas with s1, s2, . . . . As in the case of graphs with
half-edges, the set of edges Edge(V) of V consists of pairs (x, y) of variables such that σ(x) = y.
Finally, FV (V) will denote the set of fixpoints of σ.

The properties needed to make a Vernon graph an unrooted tree are the same as for graphs
with half-edges: it has to be connected and it must not contain loops, multiple edges and cycles.
However, in moving from graphs to trees, we will now additionally differentiate the classes of trees
with respect to the shape of corollas they contain. Let T be a connected Vernon graph with no
loops, multiple edges and cycles.

• If Cor (T) consists only of ordinary corollas, then T is an ordinary Vernon tree.

• If Cor (T) is a singleton with a special corolla, then T is an exceptional Vernon tree.

• A Vernon tree is either an ordinary Vernon tree or an exceptional Vernon tree.

• If there are no requirements about the type of corollas in Cor (T), T will be called an extended
Vernon tree.

Remark 2. In general, an arbitrary connected Vernon graph with no loops, multiple edges and
cycles is an extended Vernon tree. In particular, every Vernon tree is an extended Vernon tree. On
the other hand, every tree containing at least one ordinary and one special corolla (or at least two
special corollas) is an extended Vernon tree, but not a Vernon tree.

We now define α-conversion on extended Vernon trees. Suppose first that

T = {f(x1, . . ., xn), . . .;σ}

is an ordinary Vernon tree, with f ∈ C(X), xi ∈ FV (f)\FV (T) and σ(xi) = yj. Let τ : X ′ → X be
a bijection that is identity on X ′\{z}, while τ(z) = xi, where z is fresh with respect to V (T)\{xi}.
The α-conversion (for ordinary Vernon trees) is the smallest equivalence relation generated by
equalities

(f(x1, . . . , xi−1, xi, xi+1, . . . , xn), . . .;σ) =α (f τ (x1, . . ., xi−1, z, xi+1, . . . , xn), . . .;σ
′),

where σ′ = σ on V (T)\{xi, yj} and σ′(z) = yj. This generalises in a natural way to extended
Vernon trees: to the set of generators from above we add the clauses

{(x, y), . . . ;σ} =α {(x, z), . . . ;σ
′},
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where, for some variable xi, σ(y) = xi (i.e. y is not a free variable of the tree on the left), z is fresh
in the same sense as above, and σ′ is the obvious modification of σ. In simple terms, we consider
equivalent any two trees such that we can obtain one from another only by renaming variables
which are not fixed points of the corresponding involution.

Let us finally denote with VTC(X) (resp. eVTC(X)) the set of all α-equivalence classes of Vernon
trees (resp. extended Vernon trees) whose parameters belong to PC and whose free variables are
given by the set X. If X is a two-element set, this definition includes the possibility that a Vernon
tree has 0 parameters, in which case the corresponding equivalence class is determined by the
appropriate exceptional Vernon tree. We will write VTC (resp. eVTC) for the collection of all Vernon
trees (resp. extended Vernon trees) determined by C.

2.2 Vernon trees as pasting schemes for cyclic operads

Due to the presence of the labeling bijections in the formalism of trees with half-edges, the equiva-
lence classes of F (C)(X) are bulkier than the ones of VTC(X). However, as we show in the following
lemma, VTC(X) corresponds precisely to the basis spanning F (C)(X).

Lemma 2. The isomorphism classes determined by VTC(X) are in one-to-one correspondence with
the ones of F (C)(X).

Proof. Since the correspondence between exceptional trees of the two formalisms is obvious, we
assume below that the isomorphism classes are determined by ordinary Vernon trees on one hand,
and non-exceptional trees with half-edges, on the other.

Let [T]α ∈ VTC(X) be the isomorphism class of Vernon trees with representative

T = {f1(x1, . . . , xn), . . . , fk(y1, . . . ym);σT}.

The corresponding equivalence class π[T]α := [π1(T), π2(T)]∼ ∈ F (C)(X) is determined by the
X-tree π1(T) defined by

Flag(π1(T)) = V (T), σπ1(T) = σT, λπ1(T) = {FV (fi) | 1 ≤ i ≤ k}, and lπ1(T) = id ,

and its C-decoration π2(T) = (f1, . . . fk).

Conversely, given an isomorphism class [T, (f1, . . . , fk)]∼ ∈ F (C)(X), where

T = (Flag(T ), σT , λT = {v1, . . . , vk}, lT : Leg(T )→ X),

we can first associate to it a “pattern”

( (x1, . . . , xn), . . . , (y1, . . . , ym);σ
′),

where {{x1, . . . , xn}, . . . , {y1, . . . , ym}} is determined by partitioning Flag(T ) with λT followed by
renaming each z ∈ Leg(T ) to lT (z), and σ

′ is obtained by modifying σ so that it agrees with the
in-lined action of lT . We set ν[T, (f1, f2 . . . , fk)]∼ := [ν(T, (f1, f2 . . . , fk))]α, with

ν(T, (f1, . . . , fk)) = (f τ11 (x1, . . . , xn), . . . , f
τk
k (y1, . . . ym);σ

′),

obtained by filling in this pattern with (f τ11 , . . . , f
τk
k ), where each τi is the renaming of variables

from the block vi of λT induced by lT .
We show that π and ν are mutually inverse. The equality ν(π1(T), π2(T)) =α T holds trivially:
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the Vernon trees on the left and the right-hand side are equal. On the other hand, verifying that
(π1(ν(T, (f1, . . . , fk)), π2(ν(T, (f1, . . . , fk)))) =∼ (T, (f1, . . . , fk)) amounts to exhibiting a bijection
φ : Flag(π1(ν(T )))→ Flag(T ) that is an isomorphism between π1(ν(T )) and T . If l : Leg(T )→ X
is the labeling of T , then φ arises by reversing the action of l, as

φ(z) =

{

l−1(z) if z ∈ Leg(π1(ν(T )))

z otherwise .

That φ satisfies the requirements follows straightforwardly.

2.3 The monad of Vernon trees

We now detail the monad structure of unrooted trees in the language of Vernon trees.
By the previous lemma, it is clear that the endofunctor M on SetBijop will be given as

M(C)(X) = VTC(X).

As for the rest of the structure, it is straightforward to translate in the formalism of Vernon trees
the action of the unit of the monad M from before: to f ∈ C(X) it will associate the isomorphism
class of the Vernon tree ({f(x1, . . . , xn)}, id), where X = {x1, . . . , xn}. However, the action of the
monad multiplication, described in 1.2.3 as “flattening”, hasn’t been completely determined back
then: we have omitted the part that deals with the action on trees that, as some vertices, have
the exceptional trees. In order to obtain a complete description, we will translate this action to
ordinary Vernon trees and extend it to extended Vernon trees. It will turn out that this action is
indeed more than just “flattening”.

To this end, we build a rewriting system on extended Vernon trees. Apart from α-conversion,
we will quotient the trees by instances of the following two equalities:

(f(x1, . . . , xi−1, xi, xi+1, . . . , xn), (y, z), . . . ;σ) = (f τ (x1, . . . , xi−1, z, xi+1, . . . , xn), . . . ;σ
′) ,

where σ(xi) = y, τ is as in 2.1, and σ′ is the obvious restriction of σ, and

((x, y), (u, v), . . . ;σ) = ((x, v), . . . ;σ′) ,

where σ(y) = u, and σ′ is again the obvious restriction of σ.
Let → denote (the reflexive and transitive closure of) the union of reductions obtained by

orienting these equations from left to right.

Lemma 3*. The rewriting system (eVTC,→) is confluent and terminating.

As a consequence, an arbitrary normal form nf (T) of an extended Vernon tree T determines a
unique α-equivalence class [nf (T)]α in VTC, i.e. there is an assignment T 7→ [nf (T)]α, defined for
every T ∈ eVTC.

We now formally define the flattening on MM(C)(X). Observe that, analogously as before, the
isomorphism classes of

MM(C)(X) = M(VTC)(X) =VTVTC
(X)
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are determined by Vernon trees whose parameters are Vernon trees themselves (with parameters
from PC), and whose set of free variables is X. Syntactically, a two-level tree of VTVTC

can be either

• an exceptional Vernon tree {(x, y); id}, in which case we trivially have 0 parameters coming
from V TC, or

• an ordinary Vernon tree

{{f(x, y, . . . ), g(u, . . . ), . . . ;σ1}(x, y, u, . . . ), . . . , {(z, t); id}(z, t), . . . ;σ},

whose parameters can be both ordinary and exceptional Vernon trees of VTC.

Remark 3. Let T be a two-level tree in VTVTC
. Suppose that, for 1 ≤ i ≤ n, Ti ∈ VTC(Yi)

are the parameters of T and let Ci be their corresponding corollas. We then have FV (Ci) =
FV (Ti) = Yi. The fact that the set of free variables of each corolla is recorded by the data of the
corresponding parameter allows us to shorten the notation by writing Ti without listing explicitly
the elements of FV (Ti). For example, for the tree from the latter case above, we shall write
{{f(x, y, . . . ), g(u, . . . ), . . . ;σ1}, . . . , {(z, t); id}, . . . ;σ}. We shall extend this abbreviation to trees
in eVTeVTC

, and when the form of the parameters of a two-level tree is irrelevant, we shall write
{T1, . . . ,Tn, s1, . . . , sm;σ}.

The flattening is defined by:

• flat({(x, y); id}) = {(x, y); id}, and

• if T = {{f(x, y, . . . ), g(u, . . . ), . . . ;σ1}, . . . , {(z, t); id}, . . . ;σ}, then

flat(T) = {f(x, y, . . . ), g(u, . . . ), . . . , (z, t), . . . ;σ},

where, having denoted with Ti, 1 ≤ i ≤ n, the corollas of T, and with σi the corresponding
involutions,

σ(x) =

{

σ(x) if x ∈
⋃n
i=1 FV (Ti)

σi(x) if x ∈ V (Ti)\FV (Ti) .

In simple terms, the flattening of a tree in obtained by removing the brackets that delimit its
corollas, and expanding the domain of the involution in the natural way.

Remark 4. Observe that flat(T) is an extended Vernon tree whenever T contains a corolla that is
an exceptional Vernon tree. These are the cases that make a gap between the flattening function
and the action of the monad multiplication.

The complete characterisation of the monad multiplication is obtained by combining the flatten-
ing and the assignment T 7→ [nf (T)]α, as follows. If [T]α ∈ MM(C)(X), then µCX : MM(C)(X) →
M(C)(X) first flattens T, and then takes the unique α-equivalence class determined by a normal
form of the obtained tree, i.e.

µCX : [T]α 7→ [nf (flat(T))]α.

The domain of the above definition of flattening can be extended in a natural way so that it
covers all the trees from M′M′(C), where M′(C)(X) = eVTC(X). The clause that needs to be added
to encompass eVTeVTC

(X) concerns two-level trees of the form

{{f(x, y, . . . ), g(u, . . . ), (v,w) . . . ;σ1}, . . . , {(z, t); id}, . . . , (a, b), . . . ;σ},
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i.e. Vernon trees whose set of corollas allows special corollas and extended Vernon trees. Let us
denote with T the above tree, and let Cor s(T) be the set of its special corollas. The flattening of
T is defined simply as

flat(T) = {f(x, y, . . . ), g(u, . . . ), (v,w) . . . , (z, t), . . . , (a, b), . . . ;σ},

with σ being defined exactly like before for the variables coming from Cor (T)\Cor s(T), while we
set σ(x) = σ(x) for all variables x ∈

⋃

s∈Cors(T)
FV (s).

For Vernon trees T and T′ of eVTeVTC
, the following two lemmas give conditions that ensure

that flat(T)→ flat(T′), in the instance (eVTeVTC
,→) of the rewriting system defined before.

Lemma 4*. For T,T′ ∈ eVTeVTC
, if T → T′, then flat(T)→ flat(T′).

Lemma 5*. For {T1, . . . ,Tn, s1, . . . , sm;σ} ∈ eVTeVTC
and 1 ≤ j ≤ n, if Tj → T′

j , then

flat({T1, . . . ,Tj , . . . ,Tn, s1, . . . , sm;σ})→ flat({T1, . . . ,T
′
j , . . . ,Tn, s1, . . . , sm;σ}).

Lemma 6. For T = {T1, . . . ,Tn, s1, . . . , sm;σ} ∈ eVTeVTC
the following claims hold:

a) nf (flat(T)) =α nf (flat(nf (T))),

b) nf (flat(T)) =α nf (flat({nf (T1), . . . ,nf (Tn), s1, . . . , sm;σ})).

Proof. By the termination of (eVTeVTC
,→), we have T → nf(T), and then, by Lemma 4 and the

termination of (eVTC,→), we know that, in (eVTC,→),

flat(T)→ flat(nf (T))→ nf (flat(nf (T))).

On the other hand, by the termination of (eVTC,→), we also have that flat(T) → nf (flat(T)).
Therefore, the first claim follows by the confluence of (eVTC,→).

As for the second claim, by the termination of (eVTC,→), we have Ti → nf (Ti), for all i ∈ I.
Hence, by Lemma 5, and then again by the termination of (eVTC,→), we get that

flat(T) → flat({nf (T1), . . . ,nf (Tn), s1, . . . , sm;σ})
→ nf (flat({nf (T1), . . . ,nf (Tn), s1, . . . , sm;σ}))

is a reduction sequence of (eVTC,→). The conclusion follows as in the previous claim.

On the other hand, by the very definition of flattening on extended Vernon trees, we have the
following property.

Lemma 7. For T = {T1, . . . ,Tn;σ} ∈ VTeVTeVT
C

the following equality holds:

flat(flat(T)) = flat({flat (T1), . . . ,flat(Tn);σ}).

Theorem 2. For natural transformations µ : MM → M and η : id → M, the following diagrams
commute for every functor C : Bijop → Set and a finite set X:
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MMM(C)(X) MM(C)(X)

MM(C)(X) M(C)(X)

MµCX

µMCX
µCX

µCX

M(C)(X) MM(C)(X)

M(C)(X)

MηCX

idCX
µCX

M(C)(X) MM(C)(X)

M(C)(X)

ηMCX

idCX
µCX

Proof. We first verify the commutation of the upper diagram. Chasing the associativity of multi-
plication includes treating several cases, according to the shape of the member of

MMM(C)(X) =VTVTVT
C

(X)

we start from. The most interesting is the one starting from (a class determined by) an ordinary
Vernon tree with corollas given by ordinary Vernon trees build upon VTC and we prove the associa-
tivity only for this case. Let, therefore, T = {T1, . . . ,Tn;σ}.

By chasing the diagram to the right, the action of MµCX
corresponds to corolla per corolla

flattening of T, followed by taking the respective normal forms. Then µ flattens additionally the
resulting tree and reduces it to a normal form. Therefore, we have the following sequence on the
right hand side:

T 7→ {flat(T1), . . . ,flat(Tn);σ}
7→ {nf (flat(T1)), . . . ,nf (flat(Tn));σ}
7→ flat({nf (flat(T1)), . . . ,nf (flat(Tn));σ})
7→ nf (flat({nf (flat(T1)), . . . ,nf (flat(Tn));σ})) = R

The action µMCX
on the left hand side corresponds to the action of µ on the tree T itself,

which flattens it and reduces it to a normal form. Followed by µ again, this gives us the following
sequence:

T 7→ flat(T)
7→ nf (flat(T))
7→ flat(nf (flat(T)))
7→ nf (flat(nf (flat(T)))) = L

Let R′ = nf (flat({flat (T1), . . . ,flat(Tn);σ})) and L′ = nf (flat(flat(T))). By the claims of
Lemma 6, we have that R = R′ and L = L′, and by Lemma 7 we have R′ = L′.

We now verify the unit laws for the case when [T]α ∈ M(C)(X) is determined by an ordinary
Vernon tree. Let, therefore, T = {f1(x1, . . . , xk), . . . , fn(y1, . . . , yr);σ}.
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By going to the right in the first diagram, the action of MηCX
turns each corolla fi into a single-

corolla Vernon tree Ti, leading to a two-level Vernon tree, which is then flattened and reduced to
a normal form by µ. Therefore, the right-hand side sequence is as follows:

T 7→ {{f1(x1, . . . , xk), id}, . . . , {fn(y1, . . . , yr); id};σ}

7→ {f1(x1, . . . , xk), . . . , fn(y1, . . . , yr);σ}

7→ {f1(x1, . . . , xk), . . . fn(y1, . . . , yr);σ
′}

the resulting tree being exactly T, since

σ′(x) = σ(x) =

{

σ(x) if x ∈
⋃n
i=1 FV (Ti)

x if x ∈ V (Ti)\FV (Ti)
=

{

σ(x) if x ∈ V (T)

x if x ∈ V (Ti)\FV (Ti)
= σ(x),

the last equality holding because V (Ti)\FV (Ti) = ∅, for all 1 ≤ i ≤ n.
By chasing the second diagram to the right, T will first be turned, by the action of ηMCX

, into
a single-corolla two-level tree, which will then be flattened and reduced to a normal form by the
action of µ. Therefore, we have the sequence

T 7→ {{f1(x1, . . . , xk), . . . , fn(y1, . . . , yr);σ}, id}

7→ {f1(x1, . . . , xk), . . . , fn(y1, . . . , yr); id}

7→ {f1(x1, . . . , xk), . . . , fn(y1, . . . , yr); id
′}

For the resulting involution id ′ we have

id ′(x) = id(x) =

{

x if x ∈ FV (T)

σ(x) if x ∈ V (T)\FV (T)
= σ(x).

Therefore, the resulting tree is exactly T.

2.4 The cyclic operad structure of Vernon trees

We shall now exhibit the biased cyclic operad structure on α-equivalence classes of Vernon trees.
This structure is the free cyclic operad built over the functor VTC : Bijop → Set, defined on a finite
set X as the set of all α-equivalence classes of Vernon trees whose corollas come from C and whose
free variables are given by the set X (cf. end of 2.1).

In the sequel, for a Vernon tree T and a bijection ϑ : V → V (T), we will denote with Tϑ a
Vernon tree obtained from T by renaming its variables in a way dictated by ϑ and adapting its
corollas accordingly. More precisely, if C ∈ Cor (T), Tϑ will, instead of C, contain the corolla Cϑ

defined as follows.

• If C is an ordinary corolla, say f ∈ C(X), then Cϑ is the ordinary corolla fϑ|
X
.

• If C is a special corolla, say (x, y), then Cϑ is the special corolla (ϑ−1(x), ϑ−1(y)).

The involution σϑ of Tϑ is defined as σϑ(v) = ϑ−1(σ(ϑ(v))), v ∈ V . If Y ⊆ V (T) and ϑ : U → Y is
a bijection such that U ∩ (V (T)\Y ) = ∅, we define Tϑ to be T

ϑ+idV (T)\Y .
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For an arbitrary bijection κ : X ′ → X, the image [T]κα of [T]α ∈ VTC(X) under VTC(κ) :
VTC(X) → VTC(X

′) will be the equivalence class [Tκ+ε]α, where ε : V → V (T )\X is an arbitrary
bijection such that X ′ ∩ V = ∅. Notice that any two choices of ε (and V ) satisfying the required
disjointness condition lead to the same equivalence class.

The functoriality of VTC follows easily: for [T]α ∈ VTC(X), we have

VTC(idX)([T]α) = [TidX+ε]α = [T]α = idVTC(X)([T]α),

while for τ : X ′′ → X ′ and κ : X ′ → X we have

VTC(κ ◦ τ)([T]α) = [Tκ◦τ+ε]α = [(Tκ+ε1)τ+ε2 ]α = VTC(τ)([T
κ+ε1 ]α) = (VTC(τ) ◦ VTC(κ))([T]α),

where ε : V → V (T)\X, ε1 : V1 → V (T)\X and ε2 : V2 → V (Tκ)\X ′ are arbitrary bijections such
that V ∩X ′′ = ∅, V1 ∩X

′ = ∅ and V2 ∩X
′′ = ∅. The equality [Tκ◦τ+ε]α = [(Tκ+ε1)τ+ε2 ]α is proved

easily by taking V2 to be precisely V and defining ε2 = ε−1
1 ◦ ε.

The rest of the cyclic operad structure is built as follows. Let X and Y be non-empty finite
sets such that for some x ∈ X and y ∈ Y we have (X\{x}) ∩ (Y \{y}) = ∅, and let [T1]α ∈ VTC(X),
[T2]α ∈ VTC(Y ). The partial composition operation

x•y : VTC(X) × VTC(Y )→ VTC((X\{x}) ∩ (Y \{y}))

is given as
[T1]α x•y [T2]α = [nf (T)]α,

where T is determined as follows.
The set of corollas of T is obtained by taking the union of the sets of corollas of T1 and T2, after

having previously adapted them in a way that makes this union disjoint with respect to the variables
occuring in it. More precisely, if ϑ1 : V1 → (V (T1)\X) ∪ {x} and ϑ2 : V2 → (V (T2)\Y ) ∪ {y} are
bijections such that V1 ∩ V2 = ∅, then

Cor(T) = {Cϑ1 |C ∈ Cor (T1)} ∪ {D
ϑ2 |D ∈ Cor (T2)}.

The involution σ of T is defined as follows, wherein σ1 and σ2 denote the involutions of T1 and
T2, respectively:

σ(v) =































ϑ−1
1 (σ1(ϑ1(v))) if v ∈ V1\ϑ

−1
1 (x)

ϑ−1
2 (y) if v = ϑ−1

1 (x)

ϑ−1
2 (σ2(ϑ2(v))) if v ∈ ϑ−1

2 (y)

ϑ−1
1 (x) if v = ϑ−1

2 (y)

v if v ∈ (X\{x}) ∪ (Y \{y}) .

For an arbitrary two-element set {y, z}, the distinguished unit element of VTC({y, z}) will be
the class determined by the exceptional Vernon tree {(y, z); id}.

Lemma 8*. The functor VTC together with the operation x•y and the identities idx,y, is a cyclic
operad (in the sense of Definition 1).

The definition of the partial composition operation on classes of Vernon trees formalises what we
have so far informally called the action of tree grafting: the grafting of T1 and T2 along x ∈ FV (T1)
and y ∈ FV (T2) is precisely [T1]α x•y [T2]α. Similarly, for f ∈ C(X) and ϕ : x 7→ (Tx, x), the
(simultaneous) grafting of the corolla f and the surrounding trees (determined by ϕ) is [T]α(ϕ),
where T = {f(x, y, z, . . . ); id}, and we will write f(ϕ) instead of [T]α(ϕ).
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3 µ-syntax

Backed up with the graphical ingredient of the biased cyclic operad structure on classes of Vernon
trees, in this section we introduce µ-syntax. For the proof of the main theorem we will be primarily
interested in the normal forms of µ-syntax, which we examine in 3.2.

3.1 The language and the equations

Unlike the combinator syntax, which has only one kind of expressions, the µ-syntax features two
different kinds of typed expressions

commands terms

c ::= 〈s | t〉 | f{txi | i ∈ {1, . . . , n}} s, t ::= x | µx.c

whose respective types we denote with c : X and X | s. Commands mimick operations f ∈ C(X),
and a judgement c : X should be thought of as a Vernon tree whose free variables are precisely the
elements of X. On the other hand, terms represent operations with one selected entry and the role
of the set X in a judgement X | s is to label all entries except the selected one. From the tree-wise
perspective, this is represented by a Vernon tree whose set of free variables is X ∪ {x}, where x is
precisely the variable bound by µ.

The typing rules for terms and commands are as follows:

{x} |x

f ∈ C({x1, . . . , xn}) Yxi | txi for all i ∈ {1, . . . , n}

f{txi | i ∈ {1, . . . , n}} :
⋃n
i=1 Yxi

X | s Y | t

〈s | t〉 : X ∪ Y

c : X x ∈ X

X\{x} |µx.c

where, in the second rule, the sets Yxi are pairwise disjoint, as are X and Y in the third rule. We
shall also denote the commands introduced by the second rule as f{tx |x ∈ X} (with f ∈ C(X)),
or as f{σ}, where σ assigns to every x ∈ X a term tx. Whenever we use the notation, say f{t, u},
for f ∈ C({x, y}), it will be clear from the context whether we mean f{t, u} = f{σ}, with σ(x) = t
and σ(y) = u, or with σ defined in the other way around.

The way commands are constructed is motivated by the action of the simultaneous and partial
tree grafting that we formalised in the last section. The command f{tx |x ∈ X}, introduced by the
second rule, should be imagined as the simultaneous grafting of the corolla f and the surrounding
trees, determined by σ : x 7→ tx and the variables bound by µ in each tx. In the special case
when, for some x ∈ X, the corresponding term tx is a variable, say u, this process of grafting
reduces to the renaming of the variable x of the corolla f as u. Therefore, if all terms associated
to the elements of X by the rule are variables, say u, v, w, ..., then the corresponding command is
f{u, v, w, . . . } and it describes the Vernon tree {fσ(u, v, w, . . . ); id}, where σ : {u, v, w, . . . } → X is
induced by the rule. The command 〈s | t〉 describes the grafting of Vernon trees represented by the
terms s and t along their variables bound by µ. Therefore, the pattern 〈µx. |µy. 〉 corresponds
to the partial composition operation x•y on classes of Vernon trees.

The equations of the µ-syntax are

〈s | t〉 = 〈t | s〉 (MU1) µx.c = µy.c[y/x] (MU3)

〈µx.c | s〉 = c[s/x] (MU2) f{tx |x ∈ X} = fσ{tσ(y) | y ∈ Y } (MU4)
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where in (MU2) c[s/x] denotes the command c in which the unique occurrence of x has been
replaced by s, in (MU3) y has to be fresh with respect to all variables of c except x, and in (MU4)

σ : Y → X is an arbitrary bijection.
The first equation stipulates the symmetry of grafting of Vernon trees, i.e. the commutativity

of the partial composition operation (cf. Remark 1), and the last two are α-conversions.
The second equation, defined in terms of substitution, is quite evidently reminescent of the

β-reduction of λ-calculus, when considered as a rewriting rule 〈µx.c | s〉 → c[s/x], and it essentially
captures the same idea of function application as λ-calculus. The intuition becomes more tangible
from the point of view of trees: the commands 〈µx.c | s〉 and c[s/x], equated with (MU2), describe
two ways to build (by means of grafting) the same Vernon tree. To see this on a simple example,
consider the Vernon tree

T = {f(x, y, z, u), g(a, b, c, d), h(p, q);σ},

where σ = (x a)(y p). One way to build T is to graft along y and p Vernon trees T1 = {f(x, y, z, u),
g(a, b, c, d);σ1}, where σ1 = (x a), and T2 = {h(p, q); id}, singled out with dashed lines in the left
picture below:

f

g

h

u

q

z

d

c

bx
a

y
p

f

g

h

u

q

z

d

c

b
x

a

y
p

Vernon tree T1 (in the upper part of the same picture) can itself be seen as a grafting, namely the
simultaneous grafting of the corolla f and its surrounding trees: in this case this involves explicit
grafting only with the corolla g (along the free variables x and a). This way of constructing T is
described by the command

〈µy.f{µa.g{a, b, c, d}, y, z, w} |µp.h{p, q}〉 (*)

that witnesses the fact that T1 and T2 are connected along their (selected) free variables y and p,
respectively: y and p are bound with µ in the terms corresponding to these two trees. The subterm
f{µa.g{a, b, c, d}, y, z, w} on the left-hand side is the command that accounts for the simultaneous
grafting of the corolla f and its surrounding trees, while h{p, q} on the right-hand side stands for
the corolla h. On the other hand, we could have chosen to build this tree by simply taking the
simultaneous grafting of the corolla f and its surrounding trees, surrounded in the picture on the
right. This way of building T is described with the command f{µa.g{a, b, c, d}, µp.h{p, q}, z, w},
which is, up to substitution, exactly the command

f{µa.g{a, b, c, d}, y, z, w}[µp.h{p, q}/y]

to which (*) reduces by applying the rewriting rule 〈µx.c | s〉 → c[s/x].
Alternatively, we can think of a command as a prescription for a decomposition of a Vernon tree
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(more on this at the end of 3.2).

We will denote with µExpC the set of all expressions of the µ-syntax induced by C, while its
subsets of terms and commands will be denoted by µTermC and µCommC, respectively. As in the
case of the combinator syntax, the set of expressions (resp. terms and commands) of type X will
be denoted by µExpC(X) (resp. µTermC(X) and µCommC(X)).

3.2 µ-syntax as a rewriting system

Let → be the rewriting relation defined on expressions of the µ-syntax as (the reflexive, transitive
and congruent closure of) the union of rewriting rules

(MU1’) 〈s | t〉 → 〈t | s〉

(MU2’) 〈µx.c | s〉 → c[s/x]

corresponding to equations (MU1) and (MU2), respectively, which is, moreover, congruent with
respect to (MU3) and (MU4).

The non-confluence of the term rewriting system (µExpC,→) shows up immediately: non-
joinable critical pairs

c2[µx.c1/y]←− 〈µx.c1 |µy.c2〉 −→ c1[µy.c2/x]

arise due to the commutativity rule (MU1’), which makes the whole reduction system symmetric.
Nevertheless, all three commands above describe the same Vernon tree.

On the other hand, modulo the trivial commuting conversion, this rewriting system is ter-
minating: as a consequence of linearity of terms, the number of µ-binders in an expression is
strictly decreasing at each (MU2’) reduction step. It is straightforward to prove that the set

µExpnf
C

= µCommnf
C
∪ µTermnf

C
of normal forms is generated by the following rules:

x ∈ µTermnf
C

f ∈ C(X) tx ∈ µTerm
nf
C

for all x ∈ X

f{tx |x ∈ X} ∈ µComm
nf
C

c ∈ µCommnf
C

µx.c ∈ µTermnf
C

Let us examine the normal forms in relation with Vernon trees. By “unrolling” the recursive
definition, we generate the following list of commands in normal form that decompose the tree from
the previous axample:

f{µa.g{a, b, c, d}, µp.h{p, q}, z, w},

g{µx.f{x,w, z, µp.h{p, q}}, b, c, d}, g{µx.h{µy.f{x, y, z, w}, q}, b, c, d},

h{µy.f{µa.g{a, b, c, d}, y, z, w}, q}, h{µy.g{µx.f{x, y, z, w}, b, c, d}, q}.

Each of the commands records completely the free variables and corollas of this tree: free
variables are those not bound with µ (u, z, q, b, c and d), while underlined symbols correspond to
the corollas (g, f and h). The bound variables, i.e., variables involved in edges, i.e., here x, a, y, p,
can also be recovered. For example, in the first command we get, a, p explicitly bound by µ and
x, y implicitly bound by their replacement by a non-variable term.

More generally, the µ-normal forms describe decompositions of Vernon trees of the following
kind: pick a node f (i.e., a corolla) of the tree, and then proceed recursively so in all the connected
components of the graph resulting from the removal of f . (We provide in 4.1 an algorithmic
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computation of these connected components).
Amusingly, one can show that if we instead decide to orient (MU1) the other way around, then

the normal forms with respect to this other orientation are in one-to-one correspondence with the
combinators of Section 1, and thus describe decompositions of Vernon trees of the following kind:
pick an edge e of the tree, and then proceed recursively so in the two connected components of the
graph resulting from the removal of e.

These two extremes substantiate our informal explanation of the µ-syntax as a mix of partial
composition and simultaneous composition styles.

3.3 The cyclic operad interpretation of µ-syntax

We next formalise the semantic aspect of the µ-syntax relative to Vernon trees, that we brought up
in 3.1 and 3.2, by defining an interpretation function of µ-syntax into an arbitrary cyclic operad.
We will ascribe meaning to the µ-syntax by first translating it to the combinator syntax given in
Section 1.

The translation function

[[ ]] : µExpC → cTermC

is defined recursively as follows, wherein the assignment of a combinator to a term t ∈ µTermC is
indexed by a variable that is fresh relative to t.

• [[x]]y = idx,y,

• if, for each x ∈ X, [[tx]]x is a translation of the term tx, then the translation of the command
f{tx |x ∈ X} is given as

[[f{tx |x ∈ X}]] = f(ϕ),

where f(ϕ) denotes the total composition determined by f ∈ C(X) and ϕ : x 7→ ([[tx]]x, x)
(cf. page 6),

• [[µx.c]]y = [[c[y/x]]], and

• [[〈s | t〉]] = [[s]]x x◦y [[t]]y .

In order to show that [[ ]] is well-defined, we introduce the following notational conventions.
For a command c : X (resp. term X | t) and a bijection σ : X ′ → X, we define

cσ := c[. . . , σ−1(x)/x, . . . ] (resp. tσ := t[. . . , σ−1(x)/x, . . . ])

as a simultaneous substitution (renaming) of the variables from the set X (guided by σ). One of
the basic properties of the introduced substitution is the equality (µa.c)σ = µa.cσa .

The way cσ is defined clearly indicates that its translation should be the combinator C(σ)([[c]]) :
X ′. The following lemma ensures that this is exactly the case. In its statement, [[ ]]X will
denote the restriction of [[ ]] on the set µExpC(X). Furthermore, for a bijection σ : X ′ → X,
( )σ : cTermC(X) → cTermC(X

′) will be the mapping of combinators canonically induced by
C(σ) : C(X)→ C(X ′).

Lemma 9*. For an arbitrary bijection σ : X ′ → X the following diagram commutes:
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µExpC(X) µExpC(X
′)

cTermC(X) cTermC(X
′)

( )σ

[[ ]]X [[ ]]X′

( )σ

In other words,

a) for t ∈ µTermC(X), [[tσ]]y = [[t]]
σy
y , and

b) for c ∈ µCommC(X), [[cσ ]] = [[c]]σ.

To verify the soundness of [[ ]] we also need the following result.

Lemma 10*. Let X ∩ Y = ∅, t ∈ µTermC(Y ) and x ∈ X. Then

a) for s ∈ µTermC(X), [[s[t/x]]]u = [[s]]u x◦v [[t]]v, and

b) for c ∈ µCommC(X), [[c[t/x]]] = [[c]] x◦v [[t]]v .

The equation (MU1) is obviously valid in the world of combinators (see Remark 1). As for
(MU2), we have, using the previous lemma:

[[〈µx.c | t〉]] = [[µx.c]]u u◦v [[t]]v = [[c[u/x]]] u◦v [[t]]v
= [[c]]id

u/x

u◦v [[t]]v = [[c]] x◦v [[t]]v = [[c[t/x]]],

For the two equations expressing the α-convertion laws, we have

[[µx.c]]u = [[c[u/x]]] = [[c[y/x][u/y]]] = [[µy.c[y/x]]]u

and
[[fσ{tσ(y) | y ∈ Y }]] = fσ(ϕ′) = fσ(ϕ ◦ σ) = f(ϕ) = [[f{tx |x ∈ X}]],

where ϕ′ : y 7→ ([[tσ(y)]]σ(y), σ(y)) and ϕ : σ(y) 7→ ([[tσ(y)]]σ(y), σ(y)). This proves the following

theorem.

Theorem 3. The translation function [[ ]] : µExpC → cTermC is well-defined, i.e., it induces a map
from µExpC/=µ to cTermC/=, where =µ (resp. =) is the smallest equality relation on µExpC (resp.
cTermC) generated by the equations of µ-syntax (resp. by the equations of Definition 1).

We now define the interpretation of µ-syntax into an arbitrary (biased) cyclic operad C as the
composition [ [[ ]] ]C : µExpC → C.

It can be actually shown that the translation function induces a bijection from µExpC/=µ to
cTermC/=. An inverse translation from combinators to commands is obtained via the correspon-
dence

x◦y 7→ 〈µx. |µy. 〉.
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4 Putting everything together

In 4.1 we prove that the free cyclic operad can be described in terms of the µ-syntax, which is the
basis of the proof of Theorem 1 in 4.2. We finish by taking profit of the main result to complement
the intuitive description of the monad of unrooted trees from 1.2.2.

4.1 µ-syntax does the job!

The theorem below, together with Lemma 2, puts the µ-syntax in line with already established
approaches for defining a cyclic operad.

Theorem 4. The quotient set of the commands of the µ-syntax relative to the relation =µ, is
in one-to-one correspondence with the one of Vernon trees relative to the α-conversion. In other
words, for every finite set X, there exists a categorical isomorphism

µCommC(X)/=µ ≃ VTC(X)/α.

The proof goes through a new equality =′ on normal forms of the µ-syntax, which will be
the key for establishing the injectivity of the correspondence. Namely, the proof of the injectivity
involves certain decompositions of Vernon trees and their equivalence and µCommnf

C
(X)/=′ (which

is better understood in the broader context of the full µ-syntax) provides a crisp way to encompas
them. We first describe these decompositions and the new equality and we then prove the theorem.

4.1.1 “Pruning” of Vernon trees

We shall describe an algorithm that takes an ordinary Vernon tree T ∈ VTC(X), a corolla C ∈ Cor (T)
and a variable v ∈ FV (C)\X and returns a proper subtree Tv of T, the subtree “plucked” from
C at the junction of v and σ(v). Here, by a proper subtree of T, we mean a proper connected
subgraph of T. In the sequel, for an arbitrary corolla D ∈ Cor(T) and x ∈ FV (D)\X, Sx(D) will
denote the corolla adjacent to D along the edge (x, σ(x)).

We first specify how to generate a set Cor(Tv)
+ of pairs of a corolla of Tv and one of its free

variables, by the following formal rules:

(Sv(C), σ(v)) ∈ Cor (Tv)
+

(D,u) ∈ Cor(Tv)
+ x ∈ FV (D)\(X ∪ {u})

(Sx(D), σ(x)) ∈ Cor (Tv)
+

Remark 5. This system has the following properties.

1. Each element (Sx(D), σ(x)) ∈ Cor (Tv)
+ is such that Sx(D) is adjacent to D in T.

2. For each (D,u) ∈ Cor (Tv)
+ we have that D 6= C.

We obtain the set of corollas of Tv by erasing from the elements of the set Cor (Tv)
+ the data

about the distinguished free variables, i.e. we define

Cor(Tv) = {D | (D,u) ∈ Cor (Tv)
+ for some u ∈ FV (D)}.

The involution σTv of Tv is defined as
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σTv(x) =

{

σ(x) if x ∈
(
⋃

D∈Cor(Tv)
FV (D)

)

\σ(v)

x if x = σ(v) .

We will denote the algorithm with P, and the result P(T, C, v) of instatiating P on a tree T, a
corolla C ∈ Cor (T), and a variable v ∈ FV (C)\FV (T) will often be denoted as Tv , as we have just
done above. The following claim guarantees that P is correct.

Lemma 11. Tv is a proper subtree of T.

Proof. By the construction we have that Cor (Tv) ⊆ Cor (T) and that Tv is connected. By the claim
(2) of Remark 5, it follows that Cor(Tv) is a proper subset of Cor (T). Finally, since σTv = σ on
V (Tv)\FV (Tv), we can conclude that Tv is indeed a subtree of T.

Corollary 1. For a Vernon tree T ∈ VTC(X) and a corolla C ∈ Cor (T),

P(T, C) := {C; id} ∪ {Tv | v ∈ FV (C)\X}

is a decomposition of the tree T into disjoint subtrees.

Proof. We trivially have that {C; id} is a subtree of T and, by the previous lemma, we know that
this is also true for all Tv, where v ∈ FV (C)\X.

By the claim (2) of Remark 5, it follows that {C; id} and Tv are disjoint, for all v ∈ FV (C)\X.
Since T does not contain any cycles, this is also true for arbitrary Tu and Tv , with u, v ∈ FV (C)\X.
Namely, if D would be a corolla of both Tu and Tv , then the concatenation of the path from C to
D in Tu (starting with the edge (u, σ(u))) and the path from D to C in Tv (ending with the edge
(v, σ(v))) would be a cycle of T.

What remains to be shown is that for any corolla D of T we have that either D = C, or there
exists v ∈ FV (C)\X such that D ∈ Cor(Tv ). Suppose that D 6= C. By the connectedness of T,
we know that there exist a path p between C and D. Let v ∈ FV (C) ∩ p and u ∈ FV (D) ∩ p be
the ending half-edges of p. We prove by induction on the length n of p that (D,u) ∈ Cor(Tv )

+. If
n = 1, then (D,u) = (Sv(C), σ(v)) ∈ Cor(Tv )

+. Suppose that the claim holds for all pairs (D′, u′) ∈
Cor(Tv )

+ such that the length of the path p′ between C andD′ is less than n, where u′ ∈ FV (D′)∩p′

is the ending half-edge of p′. By the induction hypothesis, we have that (Su(D), w) ∈ Cor(Tv )
+,

where w ∈ FV (Su(D)) ∩ p. But then, since σ(u) ∈ FV (Su(D))\(X, {w}), we also have that

(D,u) = (Sσ(u)(Su(D)), σ(σ(u))) ∈ Cor(Tv )
+.

Therefore, D is indeed a corolla of Cor(Tv ).

Lemma 12. Let C = f(x1, . . . , xn) and I = {i1, . . . ik} = {i ∈ {1, . . . , n} |xi ∈ FV (C)\X}. Then,
if {C; id} ∪ {Txi | i ∈ I} is the decomposition of T obtained by the algorithm, we have that

[T]α = (([{f(x1, . . . , xn); id}]α xi1•σ(xi1 ) [Txi1 ]α) · · · ) xik •σ(xik ) [Txik ]α .

Proof. By induction on the size of T. If C is the only corolla of T, then the decomposition obtained
by the algorithm is {f(x1, . . . , xn); id} and the claim holds trivially.

Suppose that T has k corollas, k ≥ 2, and that the claim holds for all proper subtrees of T that
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contain the corolla C. Since there exists at least one corolla other than C in T, we know that there
exists 1 ≤ j ≤ n such that xj ∈ FV (C)\X. Let T′ be a Vernon tree whose set of corollas is

Cor(T′) = {C} ∪ {Cor (Txi) | i ∈ I\{j}}

and whose involution σ′ is defined as

σ′(x) =

{

σ(x) if x ∈ FV (C)\{xj} ∪
⋃

D∈Cor(T′)\{C} FV (D)

x if x = xj .

Clearly, T′ is a proper subtree of T, and, by the induction hypothesis, we have

[T′]α = (([{f(x1, . . . , xn); id}]α xi1•σ(xi1 ) [Txi1 ]α) · · · ) xik •σ(xik ) [Txik ]α,

where i1, . . . , ik ∈ I\{j}. The claim holds since [Tα] = [T′]α xj•σ(xj ) [Txj ]α.

Lemma 13. If T is a Vernon tree that has at least two corollas, then there exists D ∈ Cor (T) such
that FV (D)\FV (T) is a singleton.

Proof. Let σ be the involution of T. We prove the claim by induction on the number n of corollas of
T. For the base case, suppose that Cor(T) = {C1, C2}. Then, by the connectedness and the absence
of cycles in T, we know that there exist x ∈ FV (C1) and y ∈ FV (C2) such that σ(x) = y, while all
other variables of T are fixpoints of σ. Hence, FV (C1)\FV (T) = {x} and FV (C1)\FV (T) = {x},
i.e. C1 and C2 both satisfy the claim.

Assume now that T has n corollas, where n > 2. Let C be a corolla of T such that there
exists v ∈ FV (C)\FV (X). If v is the unique such element, we are done. If not, let {C; id} ∪
{Tv | v ∈ FV (C)\FV (T)} be the decomposition of T obtained by applying P on C. Let v ∈
FV (C)\FV (T) be fixed. Then, if Cor (Tv) = {Sv(C)}, by the definition of P we know that
FV (Sv(C))\(FV (T) ∪ {σ(v)}) = ∅, i.e. that FV (Sv(C))\FV (T) = {σ(v)}. Therefore, since
Cor (Tv) ⊆ Cor (T), Sv(C) is a corolla that satisfies the claim. On the other hand, if Tv con-
tains more than one corolla, by the induction hypothesis on Tv , we get D ∈ Cor (Tv) such
that FV (D)\FV (Tv) = {u}. Since FV (D)\FV (T) ⊆ FV (D)\FV (Tv), we know that either
FV (D)\FV (T) = {u}, or FV (D)\FV (T) = ∅. The latter is impossible because D would be
the only corolla of T.

Let T and D be as in the previous lemma, and let {v} = FV (D)\FV (T). We will denote with
T/D a Vernon tree whose set of corollas is Cor (T/D) = Cor (T)\{D} and whose involution σ/D
agrees with the involution σ of T everywhere, except on σ(v), which is a fixpoint of σ/D. Notice
that the previous lemma guarantees that T/D is well-defined.

We next establish a non-inductive characterisation of the output of the algorithm P.

Lemma 14. Let T ∈ VTC(X), C ∈ Cor(T) and v ∈ FV (C)\X. Let σ be the involution of T. The
following are equivalent characterisations of a subtree T′ of T:

1. T′ = P(T, C, v),

2. σ(v) ∈ FV (T′) and FV (T′)\{σ(v)} ⊆ X.
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Proof. That (1) implies (2) is clear. We prove that (2) implies (1) by induction on the number
n of corollas of T′. If n = 1, then, since σ(v) ∈ FV (T′), Sv(C) is the only corolla of T′ and
the conclusion follows since, by the assumption, FV (T′)\{σ(v)} = FV (Sv(C))\{σ(v)} ⊆ X, i.e.
FV (Sv(C))\{X ∪ {σ(v)}} = ∅.

Suppose that T′ has n corollas where n ≥ 2, and let, by Lemma 13, D be a corolla of T′ such
that FV (D)\FV (T′) is a singleton, say {u}. If D = Sv(C), then it follows easily that T′ = Tv. If
not, by applying the induction hypothesis on T′

/D, we get that T′
/D = P(T/D, C, v). Observe that

(Su(D), w) ∈ Cor (T′
/D)

+, for some w ∈ FV (Su(D)) that is different from σ(u). By instantiating P

on (Su(D), w) and σ(u), we get the pair (D,u), and the claim follows because FV (D)\(X∪{u}) = ∅
(i.e. the algorithm stops) and because T′

/D ∪ {D; id} is a decomposition of T.

Lemma 15. Let f ∈ C(X), and let for all x ∈ X, γ : x 7→ ([Tx]α, x) and τ : x 7→ ([T′
x]α, x̃) be such

that f(γ) and f(τ) are defined. Then, if f(γ) = f(τ), we have that [Tx]
κ
α = [T′

x]α for all x ∈ X,
where κ renames x to x̃.

Proof. By removing the corolla f from T = f(γ) = f(τ), we get precisely the set P(T, f)\{f, id},
where P(T, f) is the decomposition introduced by Corollary 1. It is straightforward to show that,
for each x ∈ FV (f)/FV (T), Tx and T′

x both satisfy the assumptions of Lemma 14, i.e. that they
are both equal (up to renaming) to the output P(T, f, x) of the algorithm P, which proves the
claim.

We shall need Lemmas 12 and 15 in the proof of Theorem 4.

4.1.2 The equality induced on mu-normal forms

Let f ∈ C(X) and let σ : x 7→ tx be an association of terms to variables from the set X such that
f{σ} is defined. The equality =′ is defined as follows:

if σ(x) = µy.c, then f{σ} =′ c[µx.f{σ[x/x]}/y],

where σ[x/x] denotes the same association as σ, except for x, to which is now associated x itself.
The intuition behind this equality is about equating commands that reflect two ways to build

the same tree. Consider the two pictures below.

f

ga

b

c

p q

r

s
x
y

f

g
a

b

c

p q

r

s
x
y

The difference between these two graphical realisations of the same Vernon tree is meant to reflect
the two possible ways to build this tree by means of simultaneous grafting relative to f and g.
As suggested by the larger black dot on f , the picture on the left represents the grafting of the
corolla f and its surrounding trees, which we describe in the language of µ-syntax by the command
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f{µy.g{y, p, q, r, s}, a, b, c}, while the command that reflects the interpretation of the other picture
is g{µx.f{x, a, b, c}, p, q, r, s}. The new equality says that

f{µy.g{y, p, q, r, s}, a, b, c} =′ g{µx.f{x, a, b, c}, p, q, r, s}.

The proof of the following lemma shows that =′ is a “macro” for =µ’s.

Lemma 16. If f{σ} =′ c[µx.f{σ[x/x]}/y], then f{σ} =µ c[µx.f{σ[x/x]}/y].

Proof. If f{σ} =′ c[µx.f{σ[x/x]}/y], then we know that σ(x) = µy.c, which justifies the following
sequence of equalities:

f{σ} =µ 〈µx.f{σ[x/x]} |µy.c〉 =µ 〈µy.c |µx.f{σ[x/x]}〉 =µ c[µx.f{σ[x/x]}/y].

In the sequel, we shall work with the reflexive and transitive closure of =′, denoted in the same
way. Clearly, the previous lemma holds for this generalisation as well.

Corollary 2. For any c1, c2 ∈ µComm
nf
C
(X), if c1 =

′ c2, then c1 =µ c2.

The equality =′ (with different notation) appears in a paper of Lamarche [L07], where it is
called Adjunction. There, unlike in our work, it is not derived from a more primitive notion of
equality.

4.1.3 Proof of Theorem 4

Let Φ : µExpC → VTC be the composition of the translation function [[ ]] : µExpC → cTermC (de-
fined in 3.3) with the interpretation function [ ]VTC

: cTermC → VTC (see Lemma 8). Let us show
explicitely how Φ looks like. The assignment of an α-equivalence class (of Vernon trees) to a term
t ∈ Termµ will be indexed by a fresh variable y involved in the corresponding interpretation [[t]]y.

• Φy(x) = [{(x, y); id}]α ,

• if, for each x ∈ X, Φx(tx) = [Tx]α, then Φ(f{tx|x ∈ X}) = [f(ϕ)]α, where f(ϕ) denotes the
total composition determined by the Vernon tree {f(x, y, z, . . . ); id} and ϕ : x 7→ (Tx, x) (cf.
end of Section 2),

• Φy(µx.c) = (Φ(c))κ, where κ renames x to y, and

• if Φx(s) = [Ts]α and Φy(t) = [Tt]α, then Φ(〈s | t〉) = [Ts]α x•y [Tt]α.

By Theorem 3, we have that the correspondence Φ : µCommC(X)/=µ 7→ VTC(X)/α, canonically
induced by Φ, is well-defined. We prove that it is both injective and surjective.

To prove the surjectivity, suppose given an α-equivalence class [T]α ∈ VTC(X)/α. We differen-
tiate two cases, according to whether T is an ordinary or an exceptional Vernon tree.

If T = {(x, y); id}, we have

Φ(〈x | y〉) = [{(x, u); id}]α u◦v [{(y, v); id}]α = [nf ({(x, u), (y, v);σ})]α = [T]α,

the last of the equalities holding since σ(u) = v and x and y are the fixpoints of σ.
Suppose now that T is an ordinary Vernon tree and let FV (T) = X. We reconstruct a
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command whose equivalence class is mapped to [T]α by induction on the number of corollas of
T. Let f(x1, . . . , xn) be an arbitrary corolla of T.

For the base case, assume that f(x1, . . . , xn) is the only corolla of T. We then have
Φ(f{x1, . . . , xn}) = f(ϕ), where ϕ : xi 7→ (ϕxi(xi), xi) = ({(xi, xi); id}, xi). Therefore, by the
axiom (U1), we have that

f(ϕ) = (· · · ([{f(x1, . . . , xn); id}]
κ1
α )κ2 · · · )κn ,

where, trivially, each κi is the renaming of xi to xi, i.e. the identity on FV (f), and consequently,
we have Φ(f{x1, . . . , xn}) = [f(x1, . . . , xn); id ]α.

Suppose now that f(x1, . . . , xn) is not the only corolla of T, i.e. that T has k corollas, with
k ≥ 2, and let σ be the involution of T. Suppose also that the claim holds for all ordinary Vernon
trees whose number of corollas is less than k. In order to exhibit an appropriate command in this
case, we will apply the algorithm P on C = f(x1, . . . , xn) and all v ∈ FV (C)\X and then apply
the induction hypothesis on the resulting subtrees. Let IC = {i ∈ {1, . . . , n} |xi ∈ FV (C)\X} and
JC = {1, . . . , n}\IC . The assignments (C, xi) 7→ Txi determined by the algorithm for all i ∈ IC ,
together with the induction hypothesis for each Txi , provide us with a set

{ci | i ∈ IC and Φ(ci) = [Txi ]α}.

We now set for all i ∈ IC , txi = µσ(xi).ci, and for all j ∈ J , txj = xj, and we claim that
Φ(f{tx |x ∈ X}) = [T]α. We have Φ(f{tx |x ∈ X}) = f(ϕ), where

ϕ : x 7→

{

([Txi ]
κi
α , zi) if x = xi for some i ∈ I

([{(xj , xj); id}]α, xj) if x = xj for some j ∈ J

with [Txi ]
κi
α = Φzi(µσ(xi).ci) being the class associated to the term µσ(xi).ci with respect to the

interpretation under the fresh variable zi. Therefore, if IC = {i1, . . . , ikI} and JC = {j1, . . . , jkJ },
then, by the axiom (U1), Φ(f{tx |x ∈ X}) is equal to

(· · · ([{f(x1, . . . , xn); id}]
κj1κj2 ···κjkJ
α xi1

•zi1 [Txi1 ]
κi1
α ) · · · ) xikI

•zikI
[TxikI

]
κikI
α

where each κjk , 1 ≤ k ≤ kJ is the renaming of xjk to xjk , i.e. the identity on FV (f), and each κik ,
1 ≤ k ≤ kI , is the renaming of σ(xik) to zik . Finally, by (EQ), we have that

Φ(f{tx |x ∈ X}) = (([{f(x1, . . . , xn); id}]α xi1•σ(xi1 ) [Txi1 ]α) · · · ) xik •σ(xik ) [Txik ]α,

and, consequently, by Lemma 12, that Φ(f{tx |x ∈ X}) = [T]α.

Notice that, in order to establish the injectivity of Φ, it suffices to prove it for commands
c1, c2 ∈ µCommnf

C
(X). Indeed, since for an arbitrary command c, by Theorem 3, we know that

[[c]] = [[nf (c)]], and consequently that Φ(c) = Φ(nf (c)), then, from Φ(nf (c1)) = Φ(c1) = Φ(c2) =
Φ(nf (c2)), by the injectivity for commands that are normal form we can conclude that c1 =µ

nf (c1) =µ nf (c2) =µ c2. By Corollary 2, the injectivity for normal forms follows if we show that

for arbitrary commands c1, c2 ∈ µComm
nf
C
(X), if Φ(c1) = Φ(c2), then c1 =′ c2. We prove the last

implication by case analysis with respect to the shapes of c1 and c2.
If c1 and c2 have the same head symbol, we proceed by induction on the structure of c1 and c2.

Let us spell out the induction hypothesis here: it tells that, if µx.c′1 and µy.c′2 are subterms of c1
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and c2 that are normal forms and if Φz(µx.c
′
1) = Φz(µy.c

′
2), then c

′τ1
1 =′ c′τ22 , where τ1 renames x

to z and τ2 renames y to z.
Suppose that c1 = f{sx|x ∈ X} = f{σ} and c2 = f{tx|x ∈ X} = f{σ′}. The assumption

Φ(c1) = Φ(c2) means that f(ϕ) =α f(ψ), where ϕ : x 7→ (Φx̃(sx), x̃) and ψ : x 7→ (Φx(tx), x), and
consequently, by Lemma 15, that for all x ∈ X, Φx̃(sx)

κ = Φx(tx), where κ renames x̃ to x. Now,
the claim holds by the reflexivity of =′ if all sx and tx are variables: if sx = u and tx = v, then

[{(u, x); id}]α = (Φx̃(u))
κ = Φx(v) = [{(v, x); id}]α,

and, therefore, it must be the case that u = v.
Suppose, therefore, that sx = µu.cx and tx = µv.c′x. Then we have

[[cτ1x ]] = [[cx]]
τ1 = [[sx]]

κ
x̃ = [[tx]]x = [[c′x]]

τ2 = [[c′τ2x ]],

and consequently Φ(cτ1x ) = Φ(c′τ2x ), where τ1 renames u to x and τ2 renames v to x. By the induction
hypothesis we now have cτ1x =′ c′τ2x and, consequently, we get that

c1 = f{σ} =′ cx[µx.f{σ[x/x]}/u] = cτ1x [µx.f{σ[x/x]}/x]
=′ c′τ2x [µx.f{σ[x/x]}/x] = c′x[µx.f{σ[x/x]}/v] =′ f{σ′} = c2.

Suppose now that c1 and c2 do not have the same head symbol, i.e. that c1 = f{sx|x ∈ X} =
f{σ1} and c2 = g{ty|y ∈ Y } = g{σ2}, and let Φ(c1) = [Tc1 ]α and Φ(c2) = [Tc2 ]α. Notice first that,
since Tc1 =α Tc2 , there exist a bijection

ϑ : V (Tc2)\FV (Tc2)→ V (Tc1)\FV (Tc1)

such that Tϑc1 = Tc2 . Then, since g ∈ Cor(Tc2), there exists C ∈ Cor(Tc1) such that Cϑ = g.
Clearly, C must have the shape gτ , for some bijection τ : Y ′ → Y . We can conclude, by the con-
struction of Tc1 , that g appears in the command c1. Let x ∈ X be such that σ1(x) = µz.c contains
g. We define the distance between f and g in c1 as the natural number dc1(f, g) determined as
follows.

• If g is the head symbol of c, then dc1(f, g) = 1.

• If h is the head symbol of c, h 6= g, then dc1(f, g) = dc(h, g) + 1.

We prove that c1 =
′ c2 by induction on dc1(f, g). If dc1(f, g) = 1, then, for some x ∈ X and y ∈ Y ,

we have that σ1(x) = µy.g{σ2[y/y]} and σ2(y) = µx.f{σ1[x/x]} (since, symmetrically, f appears
in c2 and its distance from g clearly must also be 1). Therefore,

f{σ1} =
′ g{σ2[y/y]}[µx.f{σ1[x/x]}/y] = g{σ2[µx.f{σ1[x/x]}/y]} = g{σ2}.

If dc1(f, g) ≥ 2, then, since dc1(f, h) = 1 (where h is as above), we have that c1 =′

c[µx.f{σ1[x/x]}/z]. On the other hand, by the induction hypothesis for dc(h, g) < n, we have
that c2 =

′ c[µx.f{σ1[x/x]}/z], and the conclusion follows by the transitivity of =′. This completes
the proof of Theorem 4.

Note that we have in fact proved two categorical isomorphisms:

µCommC(X)/=µ ≃ µCommnf
C
(X)/=′ ≃ VTC(X)/α,

the first isomorphim being induced by nf : indeed, we have that nf (c1) =
′ nf (c2) implies c1 = c2,

and conversely, if c1 = c2, then Φ(nf (c1) = Φ(nf (c2)) implies nf (c1) =
′ nf (c2).
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4.2 The equivalence established

We finally show how all this allows us to prove in full rigor the main theorem of the first section,
which, thanks to Lemma 2, can be reformulated as follows.

A functor C : Bijop → Set is a cyclic operad (in the sense of the Definition 1) if and
only if it is an M-algebra (where M is the monad of Vernon trees).

Suppose first that (C, δ) is an M-algebra. The partial composition operation

x◦y : C(X)× C(Y )→ C((X\{x}) ∪ (Y \{y}))

is characterised via δ : M(C)((X\{x}) ∪ (Y \{y}))→ C((X\{x}) ∪ (Y \{y})) as

f x◦y g = δ(η(f) x•y η(g)),

where f ∈ C(X), g ∈ C(Y ), x ∈ X, y ∈ Y , η is is the unit of the monad M, and x•y is the operation
on (classes of) Vernon trees defined in 2.4.

As a structure morphism of M-algebra (C, δ), δ satisfies the coherence conditions given by
commutations of the following two diagrams:

MM(C) M(C)

M(C) C

Mδ

µC δ

δ

C M(C)

C

ηC

idC δ

which allows us to verify the axioms from Definition 1 as follows.
As for the proof of the associativity axiom (A1), let f and g be as above, h ∈ C(Z) and let z ∈ Z

and u ∈ Y . Suppose also that f, g and h are all different from identity and that X, Y and Z are mu-
tually disjoint (only to avoid the renaming technicalities). We will chase the left diagram from above
two times, starting with two-level Vernon trees T1 = {{f(x, . . . ), g(y, u, . . . );σ

′
1}, {h(z, . . . ); id};σ1}

and T2 = {{f(x, . . . ); id}, {g(y, u, . . . ), h(z, . . . );σ′2};σ2}. Here, σ′1 = (x y), σ1 = (u z), σ′2 = (u z)
and σ2 = (x y). If we start with T1, then, by chasing the diagram to the right, the action of Mδ
corresponds to the action of δ on {f(x, . . . ), g(y, u, . . . );σ′1} and {h(z, . . . ); id} separately. Followed
by the action of δ again, we get the following sequence

T1
Mδ
7−→ {(f x◦y g)(u, . . . ), h(z, . . . );σ}

δ
7−→ (f x◦y g) u◦z h.

In the other direction, the action of the monad multiplication flattens T1, the resulting tree already
being in normal form. Followed by the action of δ, we obtain the sequence:

T1
µC7−→ {f(x, . . . ), g(y, u, . . . ), h(z, . . . );σ}

δ
7−→ δ({f(x, . . . ), g(y, u, . . . ), h(z, . . . );σ}).

Hence, (f x◦y g) u◦z h = δ({f(x, . . . ), g(y, u, . . . ), h(z, . . . );σ}). The diagram chasing with respect
to T2 gives us that f x◦y (g u◦z h) = δ({f(x, . . . ), g(y, u, . . . ), h(z, . . . );σ}). Therefore,
(f x◦y g) u◦z h = f x◦y (g u◦z h). The axiom (A2) is proved similarly.

The axiom (EQ) holds by the equivariance of x•y and the naturality of η and δ:
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fσ1 σ−1
1 (x)◦σ−1

2 (y) g
σ2 = δ(η(fσ1) σ−1

1 (x)•σ−1
2 (y) η(g

σ2)) = δ(η(f)σ1 σ−1
1 (x)•σ−1

2 (y) η(g)
σ2)

= δ((η(f) x•y η(g))
σ) = δ(η(f) x•y η(g))

σ

= (f x◦y g)
σ.

We prove the unit axioms (U1) and (U3) by the corresponding laws for Vernon trees and
naturality of η ((U2)is proved analogously as (U1)):

f x◦y idy,z = δ(η(f) x•y η(idy,z)) = δ(η(f)κ) = δ(η(fκ)) = fκ,

idσx,y = δ(η(idσx,y)) = δ(η(idx,y)
σ) = δ(η(idu,v)) = idu,v .

In the other direction, we define δ : M(C) → C as the map induced by the composition of
[[ ]] : µExpC → cTermC and [ ]C : cTermC → C, i.e. (with Φ as in the proof of Theorem 4):

δ(T) = [ [[c]] ]C, where c is any command such that Φ(c) = T.

Note that this definition is sound, by Theorem 4. Let us check that δ indeed satisfies the equations
for an M-algebra. We do this on simple examples, but the general case follows naturally. Let

T = {{f(x, . . . ), g(y, u, . . . );σ1}, {h(z, . . . ); id};σ}

be a two-level Vernon tree such that σ1(x) = y, and σ(u) = z. and suppose, say, that Φ(f{tx |x ∈
X}) = {f(x, . . . ), g(y, u, . . . );σ1} and Φ(h{sz | z ∈ Z}) = {h(z, . . . );σ2}.

By chasing the first diagram to the right, the action of Mδ provides the interpretations of the
commands that correspond to each of the corollas of T. Thus, setting [[f{tx |x ∈ X}]] = f(ϕ) and
[[h{sz | z ∈ Z}]] = h(τ), we get that

Mδ(T) = {[f(ϕ)]C(x, . . . , y, u, . . . ), [h(τ)]C(z, . . . );σ}.

If now Φ([f(ϕ)]C{ku |u ∈ FV (f(ϕ))}) = Mδ(T), then setting [[[f(ϕ)]C{ku |u ∈ FV (f(ϕ))}]] =
[f(ϕ)]C(ψ), we get

δ(Mδ(T)) = [f(ϕ)(ψ)]C.

By chasing the diagram to the left, we first get

µC(T) = {f(x, . . . ), g(y, u, . . . ), h(z, . . . );σ} .

We shall construct a command c such that Φ(c) = µC(T) in a way guided by the choices we
made in chasing the diagram to the right. More precisely, in that direction, f was the corolla of
{f(x, . . . ), g(y, u, . . . );σ1} chosen in constructing the corresponding command, and h was the one for
{h(z, . . . );σ2}, and then, in the next step, [f(ϕ)]C was the chosen corolla of
{[f(ϕ)]C(x, . . . , y, u, . . . ), [h(τ)]C(z, . . . );σ}. Therefore, we set c = f{σ}, where σ(x) =
µy.g{µz.h{z, . . . }, . . . }. Thus, setting [[f{σ}]] = f(ξ), we get

δ(µC(T)) = [f(ξ)]C

as a result of chasing the diagram to the left. That f(ϕ)(ψ) = f(ξ) now follows directly by the
claim (b) of Lemma 1.

As for the second diagram, if f ∈ C(X), where X = {x1, . . . , xn}, then ηC(f) = {f(x1, . . . , xn);
id}, and, since [{f(x1, . . . , xn); id}]α = Φ(f{x1, . . . , xn}), we have that δ(ηC(f)) =
[ [[f{x1, . . . , xn}]] ]C = f . This completes the proof.
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We can finally take profit of this result and define in a rigorous way the mapping
⊗

v∈V ert(T )

D(Leg(v))
γ
−→ D(Leg(T )),

intuitively described in 1.2.2. Let TD ∈
⊗

v∈V ert(T )D(Leg(v)) be an unrooted, D-decorated tree
(with half-edges) and let T be the Vernon tree that corresponds to it as in the proof of Lemma
2. Any “sequence of iterated applications of operadic composition maps of D coordinated by
T” corresponds to a way of decomposing T, codified by a combinator s. We can assign to s a
command c of the µ-syntax by the translation sketched at the end of Section 3. Then the result
of applying γ is precisely the interpretation of the command c in D. Therefore, if c1 and c2 are
commands associated to two sequences γ1 and γ2, then proving that γ is well-defined comes down
to showing that [ [[c1]] ]D = [ [[c2]] ]D. This equality follows from c1 =µ c2, which in turn holds
because Φ(c1) = Φ(c2).

Conclusion

The correspondences exhibited in this paper are

F (C)(X)⇔ VTC(X)/α, VTC(X)/α ⇔ µCommC(X)/=µ and VTC(X)/α ⇔ µCommnf
C
(X)/=′ .

The first one links us with the literature: Vernon trees are a handy “in-lined” notation for trees-
with-half-edges-whose-vertices-are-decorated-by-operadic-operations, and it eases the proof that
the latter have, on one hand, the structure of a monad, and, on the other hand, the structure of
a biased cyclic operad. The second correspondence gives the representation of Vernon trees in the
µ-syntax formalism and it is the natural context for arriving at the last correspondence, which was
our formal tool for establishing Theorem 1.

In future work, we hope to apply a similar syntactic approach to other variations of operads
(like modular or wheeled operads), and wish to investigate the adjustments to be made in the case
where symmetries (other than cyclic permutations) are not present.
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Appendix

Proof of Lemma 3. The termination of the system is obvious: in an arbitrary reduction sequence, each
subsequent tree has one special corolla less, and the sequence finishes either when all of them are exhausted
(in the case when the initial tree has at least one ordinary corolla), or when there is only one special corolla
left (in the case when the initial tree consists only of special corollas). Due to the connectedness of Vernon
trees, all special corollas (except one in the latter case) will indeed be exhausted. Clearly, the set of normal
forms is VTC.

Suppose that T1 and T2 are reduced from T ∈ eVTC in one step, and let 〈u1, v1〉 and 〈u2, v2〉 be the
pairs of corollas involved in the respective reductions, with v1 and v2 being special corollas. We prove local
confluence by case analysis, with respect to whether v1 and v2 are equal or not.

Let v1 = v2 = (x, y). Notice that, if x, y ∈ FV (T), then (x, y) is the only corolla of T,
i.e. T is already in normal form. Also, if σ(x) = x, σ(y) = xi (or σ(y) = y, σ(x) = xi) and xi ∈ FV (f), then
u1 = u2 = f(. . . , xi, . . . ) and T1 and T2 are trivially equal. Let us therefore assume that x, y 6∈ FV (T). Let
σ(x) = xi and σ(y) = yj , where xi and yj come from u1 and u2, respectively. Since extended Vernon trees
contain no cycles, u1 and u2 must be different. We proceed by analysing the shapes of u1 and u2.

i) If u1 = f(x1, . . . , xi, . . . , xn) and u2 = g(y1, . . . , yj , . . . , ym), i.e. if

T = (f(x1, . . . , xi, . . . , xn), (x, y), g(y1, . . . , yj , . . . , ym), . . . ;σ),

then both reductions arise from the first equation, leading to

T1 = (f τ1(x1, . . . , xi−1, y, xi+1, . . . , xn), g(y1, . . . , yj , . . . , ym), . . . ;σ′
1),

where σ′
1(y) = yj , on one hand, and

T2 = (f(x1, . . . , xi, . . . , xn), g
τ2(y1, . . . , yj−1, x, yj+1, ym), . . . ;σ′

2),

where σ′
2(x) = xi, on the other hand. T1 and T2 are clearly α-equivalent with

T3 = (f τ1(x1, . . . , xi−1, y, xi+1, . . . , xn), g
τ2(y1, . . . , yj−1, x, yj+1, ym), . . . ;σ′

3),

where σ′
3=σ

′
1=σ

′
2 on Flag(T1)\{y, yj}=Flag(T2)\{x, xi} and σ′

3(x)=y. Therefore, T1 =α T2.

ii) Suppose now that u1 is like above and that u2 is a special corolla (yj , zj), i.e. that

T = (f(x1, . . . , xi, . . . , xn), (x, y), (yj , zj), . . . ;σ).

In this case, by the reduction coming from the first equation, we get

T1 = (f τ (x1, . . . , xi−1, y, xi+1, . . . , xn), (yj , zj), . . . ;σ
′
1),

where σ′
1(y) = yj , and, by the other one,

T2 = (f(x1, . . . , xi, . . . , xn), (x, zj), . . . ;σ
′
2),

where σ′
2(x) = xi. T1 and T2 can be reduced again, the respective reductions leading to

T
′
1 = ((f τ )τ1(x1, . . . , xi−1, zj, xi+1, . . . , xn), . . . ;σ

′′
1 ),

and
T
′
2 = (f τ2(x1, . . . , xi−1, zj, xi+1, . . . , xn), . . . ;σ

′′
2 ).

It is easy to verify that τ1τ = τ2 and σ′′
1 = σ′′

2 , from which we conclude that T′
1 = T′

2.

iii) If both u1 and u2 are special corollas, say (wi, xi) and (yj , zj) respectively, i.e. if

T = ((wi, xi), (x, y), (yj , zj), . . . ;σ),

then we get
T1 = ((wi, y), (yj , zj), . . . ;σ

′
1),

with σ1(y) = yj , and
T2 = ((wi, xi), (x, zj), . . . ;σ

′
2),

with σ′
2(x) = xi. The conclusion follows since, by the reduction arising from the second equation,

both T1 and T2 can now be reduced to the tree

T3 = ((wi, zj), . . . ;σ
′
3).
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On the other hand, if v1 = (a, b) and v2 = (c, d), we proceed by comparing u1 and u2.

iv) If u1 = u2 = f(x1, . . . , xi, . . . , xj , . . . , xn), and if σ(a) = xi and σ(c) = xj , then the corresponding
reductions of

T = (f(x1, . . . , xi, . . . , xj , . . . , xn), (a, b), (c, d), . . . ;σ)

lead to
T1 = (f τ1(x1, . . . , b, . . . , xj , . . . , xn), (c, d), . . . ;σ1)

and
T2 = (f τ2(x1, . . . , xi, . . . , d, . . . , xn), (a, b), . . . ;σ2),

where σ1(c) = xj and σ2(a) = xi. This configuration of T1 and T2 is analogous to the one from ii)
and the conclusion follows by the same argument.

v) If u1 = u2 = (x, y), σ(a) = x and σ(c) = y, the reasoning is the same as in iii).

vi) Finally, if u1 6= u2, then T1 arises by reducing 〈u1, v1〉, while u2 and v2 remain unchanged, and,
symmetrically, T2 arises by reducing 〈u2, v2〉, while u1 and v1 remain unchanged. By reducing 〈u2, v2〉
in T1 and 〈u1, v1〉 in T2, we clearly obtain the same tree.

All the cases being covered, the local confluence of the system is established.

Proof of Lemma 4. Suppose that T = {T1, . . . ,Tn, s1, . . . , sm;σ}, and that, for some j ∈ {1, . . . , n}
and k ∈ {1, . . . ,m}, Tj = {f(x1, . . . , xi, . . . , xn), . . . ;σj} and sk = (y, z), and let σ(xi) = y. Let T′ be a tree
obtained from T by a reduction with respect to Tj and sk, i.e.

T
′ = {. . . , {f τ (x1, . . . , z, . . . , xn), . . . ;σ

′
j}, . . . ;σ

′},

where σ′
j = σj on V (Tj)\{xi} and σ′

j(z) = z, and σ′ = σ|V (Tj)\{xi,y}.

Let T′
j = {f

τ (x1, . . . , z, . . . , xn), . . . ;σ
′
j}. The flattenings of T and T

′ are then given as

flat(T) = {. . . , f(x1, . . . , xi, . . . , xn), . . . , (y, z), . . . ;σ},

where

σ(x) =

{

σ(x) if x ∈
⋃n

i=1 FV (Ti) ∪
⋃m

j=1 FV (sj)

σi(x) if x ∈ V (Ti)\FV (Ti)
,

and
flat(T′) = {. . . , f τ (x1, . . . , z, . . . , xn), . . . ;σ

′},
where

σ′ =







σ′(x) if x ∈
⋃n

i=1
i6=j

FV (Ti) ∪ FV (T′
j) ∪

⋃m
j=1
j 6=k

FV (sj)

σi(x) if x ∈ V (Ti)\FV (Ti), i 6= j
σ′
j(x) if x ∈ V (Tj)\FV (Tj)

Now, since xi ∈ FV (Tj), for flat(T) we have σ(xi) = σ(xi) = y. Therefore,

flat(T)→ {{f τ(x1, . . . , z, . . . , xn), . . . ;σ
′},

where

σ′ = σ|X\{xi,y} =

{

σ(x) if x ∈
⋃n

i=1 FV (Ti)\{xi, y} ∪
⋃m

j=1
j 6=k

FV (sj)

σi(x) if x ∈ V (Ti)\FV (Ti)
.

That σ′ and σ′ are equal, i.e. that flat(T)→ flat(T′), follows easily.

The same kind of analysis proves the claim for the cases when the corolla of Tj involved in reduction is

special, and when the reduction T → T′ is done with respect to two special corollas.
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Proof of Lemma 5. Denote

T = {T1, . . . ,Tj, . . . ,Tn, s1, . . . , sm;σ} and T
′ = {T1, . . . ,T

′
j , . . . ,Tn, s1, . . . , sm;σ},

and suppose that Tj = {. . . , f(x1, . . . , xi, . . . , xn), . . . , (y, z), . . . ;σj}, where σj(xi) = y. Let T′
j be a tree

obtained from Tj by a reduction with respect to f(x1, . . . , xi, . . . , xn) and (y, z), i.e.

T
′
j = {. . . , f

τ (x1, . . . , z, . . . , xn), . . . ;σ
′
j},

where σ′
j = σj |V (Tj)\{xi,y}.

By the definition of flattening, we have

flat(T) = {. . . , f(x1, . . . , xi, . . . , xn), . . . , (y, z), . . . ;σ},

where

σ(x) =

{

σ(x) if x ∈
⋃n

i=1 FV (Ti) ∪
⋃m

k=1 FV (sk)

σi(x) if x ∈ V (Ti)\FV (Ti)

with σi, 1 ≤ i ≤ n, being the involutions corresponding to Ti. Now, since σj(xi) = y, it follows that
xi, y ∈ V (Tj)\FV (Tj), and, consequently, that σ(xi) = σj(xi) = y. Therefore,

flat(T)→ {. . . , f τ (x1, . . . , z, . . . , xn), . . . ;σ
′},

where σ′ = σ|V (flat(T))\{xi,y}.

On the other hand, we have

flat(T′) = {. . . , f τ (x1, . . . , z, . . . , xn), . . . ;σ
:

},

where

σ
:

(x) =











σ(x) if x ∈
⋃n

i=1
i6=j

FV (Ti) ∪ FV (T′
j) ∪

⋃m
k=1 FV (sk)

σi(x) if x ∈ V (Ti)\FV (Ti), i 6= j

σ′
j(x) if x ∈ V (T′

j)\FV (T′
j)

Since FV (T′
j) = FV (Tj) and σ′

j = σj on V (Tj)\{xi, y} = V (T′
j) ⊇ V (T′

j)\FV (T′
j), it follows that σ′ = σ

:

,

i.e. that flat(T)→ flat(T′).

The proof goes analogously for the case when the reduction Tj → Tj
′ is done with respect to two special

corollas of Tj .

Proof of Lemma 8. It is straightforward to check that the partial composition is well defined. In
order to illustrate that it also satisties the cyclic operad laws, we now show that (U1) holds. We verify the
equality [T]α x•y [{(y, z); id}]α = [T]κα, where FV (T) = X and κ is the renaming of x to z, by case analysis
with respect to whether y and z appear in V (T ). We handle each case by choosing the renamings ϑ1 and
ϑ2 of (V (T)\X) ∪ {x} and y, respectively, that are closest to the identity.

Suppose, say, that y ∈ V (T) and z ∈ V (T). Then, since (X\{x})∩ ({y, z}\{y}) = ∅, it must be the case
that z ∈ (V (T)\X)∪ {x}, and we take ϑ1 : (((V (T)\X)∪ {x})\{z})∪ {w} → (V (T)\X)∪ {x} to be identity
everywhere, except on w, which is mapped to z, and ϑ2 : {u} → {y}. Let x ∈ FV (Cx), y ∈ FV (Cy) and
z ∈ FV (Cz). Suppose also that Cx, Cy and Cz are mutually different corollas.

By the definition of x•y , we have that [T]α x•y [{(y, z); id}]α = [nf (T′)]α, where

Cor(T′) = {Cϑ1

z } ∪ Cor (T)\{Cz} ∪ {(u, z)}

and

σT′(v) =























σ(v) if v ∈ V (T)\{x,w}
σ(z) if v = w
u if v = x
x if v = u
v if v = z
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with σ being the involution of T. Clearly, nf (T′) is obtained by the reduction with respect to (u, z) and Cx.
Therefore,

Cor (nf (T′)) = {Cϑ1

z } ∪ Cor (T)\{Cz, Cx} ∪ {C
τ
x},

where τ is renames x to z, and the involution σ′
T′ of nf (T′) is defined as

σ′
T′(v) =







σ(v) if v ∈ V (T)\{x,w}
σ(z) if v = w
v if v = z

Our goal is to show that nf (T′) =α Tκ+ε, for an arbitrary bijection ε : V → V (T)\X such that V ∩X ′ = ∅.
We choose ε to be the restriction of ϑ1 on (V (T1)\(X ∪ {z}))∪ {w}. Therefore, ε is simply the renaming of
z to w. For the tree Tκ+ε we now have

Cor (Tκ+ε) = (Cor(T)\{Cx, Cz}) ∪ {C
κ+ε
x , Cκ+ε

z },

and the involution σκ+ε of Tκ+ε is defined as

σκ+ε(v) =

{

σ(ε(v)) if v ∈ V (Tκ+ε)\X ′

v if v ∈ X ′

=







σ(v) if v ∈ V (Tκ+ε)\(((X\{x}) ∪ {z}) ∪ {w})
σ(z) if v = w

v if v ∈ (X\{x}) ∪ {z}

=







σ(v) if v ∈ V (Tκ+ε)\{x, z, w}
σ(z) if v = w
v if v = z

Clearly, Cτ
x = Cκ+ε

x and Cϑ1

z = Cκ+ε
z , and for the respective involutions, since

V (Tκ+ε)\{x, z, w} = V (T)\{x,w}, we have σ′
T′ = σκ+ε, which completes the claim.

As for the rest of the axioms from Definition 1, the verifications are lengthy but straightforward, and

are done in a similar fashion.

Proof of Lemma 9. The proof goes by structural induction on t and c.

a) If t ≡ x and σ(z) = x, then

[[xσ]]y = [[z]]y = id z,y = idx,y
σy = [[x]]σy

y ,

where the third equality holds thanks to the axiom (U3).
Suppose now that the claim holds for c : X ∪ {x} and let t ≡ µx.c. Then we have

[[(µx.c)σ ]]y = [[µx.(cσx)]]y = [[cσx [y/x]]] = [[(cσx)τ1 ]] = [[c]]τ1σx ,

where τ1 = idX′∪{x}
y/x, on one hand, and, on the other,

[[µx.c]]σy
y = [[c[y/x]]]σy = [[cτ2 ]]σy = ([[c]]τ2)σy = [[c]]σyτ2 ,

where τ2 = idX∪{x}
y/x. The claim follows from the equality of composites τ1σx and σyτ2.

b) Let c ≡ f{tz | z ∈ Z} :
⋃

z∈Z Yz = X and suppose that the claim holds for all terms Yz | tz. Then

[[f{tz | z ∈ Z}
σ]] = [[f{tσ|

Yz

z | z ∈ Z}]] = f(ϕ),

where ϕ : z 7→ ([[t
σ|Yz

z ]]z , z), and
[[f{tz | z ∈ Z}]]

σ = f(ϕ′)σ,

where ϕ′ : z 7→ ([[tz ]]z, z). The conclusion follows from the sequence of equalities
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f(ϕ′)σ = f(ϕ′
σ) = f(ϕ),

that holds thanks to the Lemma 1 and the induction hypothesis:

([[tσ|
Yz

z ]]z, z) = ([[tz ]]
(σ|Yz )z
z , z), for each z ∈ Z.

Finally, if c ≡ 〈t1 | t2〉 : X1 ∪X2 = X , where X1 | t1 and X2 | t2 satisfy the claim, then

[[〈t1 | t2〉
σ]] = [[〈t

σ|X1

1 | t
σ|X2

2 〉]] = [[t
σ|X1

1 ]]u u◦v [[t
σ|X2

2 ]]v = [[t1]]
(σ|X1 )u
u u◦v [[t2]]

(σ|X2 )v
v ,

and
[[〈t1 | t2〉]]

σ = ([[t1]]u u◦v [[t2]]v)
σ,

the two combinators on the right-hand sides being equal thanks to the axiom (EQ).

Proof of Lemma 10. First of all, if t is a variable, say y, then

[[s[y/x]]]u = [[sid
y/x

]]u = [[s]]u
idy/x

= [[s]]u x◦v idv,y = [[s]]u x◦v [[y]]v ,

and, analogously,
[[c[y/x]]] = [[cid

y/x

]] = [[c]]id
y/x

= [[c]] x◦z idz,y = [[c]] x◦z [[y]]z.

Otherwise, i.e. if t ≡ µy.c1, we proceed by induction on the structure of s, i.e. c.
a) Suppose first that s ≡ x. Then

[[x[µy.c1/x]]]u = [[µy.c1]]u = [[c1[u/y]]] = [[cid
u/y

1 ]]

= [[c1]]
idu/y

= [[c1]] y◦x idx,u = [[c1]] y◦x [[x]]u = [[c1[u/y]]] u◦x [[x]]u.

Next, assume that c : X ∪ {z} satisfies the claim and let s ≡ µz.c. We have

[[µz.c[µy.c1/x]]]u = [[µz.(c[µy.c1/x])]]u = [[c[µy.c1/x][u/z]]] = [[c[µy.c1/x]
idu/z

]]

= [[c[µy.c1/x]]]
idu/z

= ([[c]] x◦y [[c1]])id
u/z

= [[c]]id
u/z

x◦y [[c1]]

= [[c[u/z]]] x◦v [[c1[v/y]]] = [[µv.c]]u x◦v [[c1[v/y]]].

b) Let X = X1 ∪X2 and suppose c ≡ 〈t1 | t2〉, where X1 | t1 and X2 | t2 satisfy the claim. Without loss of
generality, we can assume that x ∈ X2. Then we have

[[〈t1 | t2〉[µy.c1/x]]] = [[〈t1 | t2[µy.c1/x]〉]] = [[t1]]a a◦b [[t2[µy.c1/x]]]b

= [[t1]]a a◦b ([[t2]]b x◦v [[µy.c1]]v) = ([[t1]]a a◦b [[t2]]b) x◦v [[µy.c1]]v

= [[〈t1 | t2〉]] x◦v [[µy.c1]]v.

Finally, let X =
⋃

z∈Z Yz and suppose that c ≡ f{tz | z ∈ Z}, where for all z ∈ Z, Yz | tz satisfy the
claim. Suppose, moreover, that for a ∈ Z, x ∈ Ya. Then, on one hand, we have

[[f{tz | z ∈ Z}[µy.c1/x]]] = [[f{{tz | z ∈ Z\{a}} ∪ {ta[µy.c1/x]}}]] = f(ϕ),

where ϕ : z 7→ ([[tz ]]z, z), for all z ∈ Z\{a}, and ϕ : a 7→ ([[ta[µy.c1/x]]]a, a). On the other hand,

[[f{tz | z ∈ Z}]] x◦v [[µy.c1]]v = f(ψ1) x◦v [[µy.c1]]v,

where ψ1 : z 7→ ([[tz ]]z, z), for all z ∈ Z. By Lemma 1,

f(ψ1) x◦v [[µy.c1]]v = f(ψ2),

where ψ2 = ψ1 on Z\{a}, and ψ2 : a 7→ ([[ta]]a x◦v [[µy.c1]]v, a). Hence, we need to prove that

[[ta[µy.c1/x]]]a = [[ta]]a x◦v [[µy.c1]]v,

but this equality is exactly the induction hypothesis for the term ta.
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