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Large deviations principle for biorthogonal ensembles and
variational formulation for the Dykema-Haagerup

distribution.

Raphaël Butez∗

February 23, 2016

Abstract

This note provides a large deviations principle for a class of biorthogonal ensembles.
We extend the results of Eichelsbacher, Sommerauer and Stotlz to more general type
of interactions. Our result covers the case of the singular values of lower triangular
random matrices with independent entries introduced by Cheliotis. In particular, we
obtain as a consequence a variational formulation for the Dykema-Haagerup as it is
the limit law for the singular values of lower triangular matrices with i.i.d. complex
Gaussian entries.

1 Introduction and results
The aim of this note is to extend the work of Eichelbascher, Sommerauer and Stolz [ESS11]
in order to prove a large deviations principle for a wide class of biorthgonal ensembles which
include the matrix models introduced by Cheliotis in [Che14]. The authors of [ESS11]
proved a large deviations principle for wide variety of models, such as the biorthogonal
Laguerre ensembles or the matrix model of Lueck, Sommers and Zirnbauer [LSZ06] for
disordered bosons. Those models deal with particle systems in R or C with a density in-
volving a double interaction term of type

∏
i<j |xi−xj ||xθi −xθj | with θ ∈ N∗. Biorthogonal

ensembles were introduced by Muttalib in physics in [Mut95] and by Borodin in mathe-
matics in [Bor98]. The recent article [BLTW15] develops potential theory for the model
we study. Large deviations for particles systems with general repulsion have been studied
in [CGZ14] and we show that their results apply to this kind of problems.

In the article [Che14], Cheliotis presented a lower-triangular random matrix model
for which the distribution of the singular values can be computed and form a class of
biorthogonal ensembles. Later, in [FW15], Forrester and Wang found another matrix
model for these ensembles. Large deviations principles for the empirical measures of
biorthogonal ensembles enter the general framework of [CGZ14], but it is not clear that
this model fits their technical hypotheses.

Triangular matrices are the elementary object that appear in many factorization algo-
rithms, such at the Cholesky or the LU decomposition, so one could wonder if, starting
from a random matrix, we can compute the distribution of the coefficients of it’s Cholesky
decomposition. Bartlett answered that question in [Bar33] and proved that the entries of
the Cholesky decomposition of a Wishart random matrix are independent Gaussian vari-
ables off diagonal and chi random variables on the diagonal. This result is known as the
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Bartlett decomposition of a Wishart matrix. Cheliotis studied the reverse problem: given
a simple model of random triangular matrices Tn, what can we say about the eigenvalues
of the eigenvalues of TnT ∗n?
Fix a positive integer n ∈ N, and two parameters b > 0 and θ ≥ 0, we consider the random
lower triangular matrix

Tn = (Xi,j)1≤i,j≤n

with independent random coefficients Xi,j distributed according to:

Xi,j ∼

NC(0, 1) if i > j,
1

πΓ(cj)e
−|z|2 |z|2(cj−1)d`C(z) if i = j.

where cj = θ(j− 1) + b and d`C is the Lebesgue measure on the complex plane. Note that
when θ equals 0 and b equals 1, the non-zero entries are i.i.d. complex Gaussians.

In the article [Che14], Cheliotis was able to compute the distribution of the ordered
eigenvalues of the matrices

Sn = TnT
∗
n .

He proved that, if we write λ1 ≥ · · · ≥ λn the eigenvalues of Sn, the distribution of the
random vector

Λn = (λ1, . . . , λn)

is absolutely continuous with respect to the Lebesgue measure on Rn with density:

1∏n
j=1 j!

θ−n(n−1)/2∏n
k=1 Γ(ck)

e−
∑n

i=1 xi

n∏
j=1

xb−1
j

∏
i<j

(xi − xj)(xθi − xθj)1x1>···>xn>0 (1)

when θ > 0. When θ = 0, the density of the distribution of Λn is:

1∏n
j=1 j!

1∏n
k=1 Γ(ck)

e−
∑n

i=1 xi

n∏
j=1

xb−1
j

∏
i<j

(xi − xj)(log xi − log xj)1x1>···>xn>0. (2)

We notice that for good choices of θ and b, we can recover many classical ensembles, such
as the Laguerre ensembles.

In the rest of this note, we are interested in the eigenvalues of 1
nSn. The factor 1/n is

the proper scaling to observe a convergence of the empirical measure. We will keep the
notation λ1, . . . , λn for the eigenvalues of 1

nSn and we define its empirical measure:

µn = 1
n

n∑
i=1

δλi
.

The special case where θ = 0 and b = 1 corresponds to the case where all the coefficients
areXi,j are independent complex random variables with variance 1 is of particular interest.
In [DH04], using free probability theory, Dykema and Haagerup proved that (µn)n∈N∗

converges weakly in probability towards a deterministic measure, known as the Dykema-
Haagerup distribution. In [Che14], the same result is proved using the moments method
and path counting. The Dykema-Haagerup distribution µDH is compactly supported and
absolutely continuous with respect to the Lebesgue measure on R+∗ with density:

fDH(x) = 1
π

Im
[
− 1
xW0(x)

]
1[0,e]
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Figure 1: Density of the Dykema-Haagerup distribution.

where W0 is the Lambert function. W0 is analytic in C\ (−∞,−e−1] and can be extended
to C so that it is continuous on the upper half plane, see figure 1.
The moments of the Dykema-Haagerup distribution are given by:∫

R
xkdµDH(x) = kk

(k + 1)! .

The Stieljes transform of µDH is defined for all z ∈ C with Im(z) > and is given by:

S(z) = − 1
zW0(1/z) = −1 + eW0(−1/z).

The R-transform of µDH is defined for all z ∈ C such that |z| < 1 and is given by:

R(z) = − 1
(1− z) log(1− z) −

1
z
.

In [DH04], Dykema and Haagerup proved, using free probability tools, that the coeffi-
cients of Tn are i.i.d. complex Gaussians, the empirical measures (µn)n∈N converge weakly
in probability towards a deterministic measure, called the Dykema-Haagerup distribution.
Independently, Cheliotis proved the same result in [Che14] using the moments method
and path counting. This corresponds to the choice of b = 1 and θ = 0 in our model.

In this note, the term "weak topology" corresponds to the topology associated to con-
tinuous and bounded test functions. The Bounded Lipschitz metric d defined as:

∀µ, ν ∈M1(R+) d(µ, ν) = sup
f

∣∣∣∣∫ fµ−
∫
fdν

∣∣∣∣
3



where the supremum is taken over functions bounded by 1 and 1-Lipschitz metricizes the
weak topology and makesM1(R+) a complete space, see [Bog07, Section 8.3].

Definition 1.1 (Logarithmic energy). The logarithmic energy is the functional :

E : M1(R+) −→ R ∪ {∞}
µ 7−→

∫∫
− log |x− y|dµ(x)dµ(y).

We also define the off-diagonal logarithmic energy

E6= : M1(R+) −→ R ∪ {∞}
µ 7−→

∫∫
6=
− log |x− y|dµ(x)dµ(y).

where we integrate on the complement of the diagonal of (R+)2.

We define the confining potential associated to the eigenvalue distribution (1) and (2).
Let V : R→ R given by:

V (x) = x.

As the eigenvalues of 1
nSn are the eigenvalues of Sn divided by n, we can compute

the distribution of the unordered eigenvalues (λ1, . . . , λn). This distribution is absolutely
continuous with respect to the Lebesgue measure on Rn with density:

1
Zn

e−n
∑n

i=1 xi

n∏
j=1

xb−1
j

∏
i<j

|xi − xj ||xθi − xθj | when θ > 0

1
Zn

e−n
∑n

i=1 xi

n∏
j=1

xb−1
j

∏
i<j

|xi − xj || log xi − log xj | when θ = 0

where Zn is a normalizing constant, depending on the model. Those two distributions are
of the form:

1
Zn

e−n
∑n

i=1 V (xi)
n∏
j=1

xb−1
j

∏
i<j

|xi − xj ||g(xi)− g(xj)| (3)

if we chose g = gθ where:

gθ(x) =
{
xθ if θ > 0
log x else.

This density can be written in the form:

1
Zn

exp
[
−n2

(1
2E6=(µn) + 1

2E 6=(g∗µn) +
∫
V (x)dµn(x)

)] n∏
j=1

xb−1
j (4)

where Zn is a normalizing constant and where g∗µ is the push-forward of the measure µ
by the function g.

The term
∏n
j=1 x

b−1
j will play no role in the large deviations and the same results are

valid without this term. We keep this term so that the connection with the model of
random matrices introduced by Cheliotis is straightforward. To recover every Laguerre
ensemble, one can consider "b = bn", which would correspond to change the function V .
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Theorem 1.2 (Large deviations principle for µn). Let g be a C1 function on R+∗, such
that its derivative is positive. Let V be a continuous function on R+ such that there exist
a constant β > b such that we have:

lim
x→∞

V (x)
β log |x| > 1 and lim

x→∞

V (x)
β log |g(x)| > 1.

Let us define I :M1(R+)→ R ∪ {∞} given by:

I(µ) = 1
2E(µ) + 1

2E(g∗µ) +
∫
V (x)dµ(x)

The random sequence (µn)n∈N satisfies a large deviations principle with speed n2 inM1(R)
for the weak topology with good rate function Ĩ = I− inf I. This means that for any Borel
set A ∈M1(R+) we have:

− inf
IntA

Ĩ ≤ lim 1
n2 logP(µn ∈ A) ≤ lim sup 1

n2 logP(µn ∈ A) ≤ − inf
CloA

Ĩ

In addition, the rate function I− inf I is lower semi-continuous and strictly convex on
the set of the measures on which it is finite.

Remark 1.3 (Assumptions on g and V .). The assumptions on g mean that the two
interaction terms play the same role of short range repulsion, but at different scales. Our
hypothesis on g can be rephrased as "g is locally a C1-diffeomorphism of RR+∗.

The assumptions on V are very standard in large deviations for Coulomb gases. They
ensure that

∫
e−V (x)dx is finite and that that rate function is well defined.

In [ESS11], Eichelsbacher, Sommerauer and Stolz proved a large deviations principle
for the empirical measures µn when g = gθ and θ is an integer and where V can depend
on n. The classical techniques to prove large deviations for the empirical measures of
Coulomb gases apply here with no modification.

The novelty of our approach is to extend the result of [ESS11] to any function g. Our
theorem covers the original model of Muttalib from [Mut95] with g(x) = Argsh2(

√
x)

which was the starting point of the study of biorthogonal ensembles. The matrix model
introduced by Cheliotis corresponds to the choice of g = gθ where θ > 0. Choosing
g(x) = exp(x) gives the large deviations for the model of [CW14]. The key of this article
is the way we deal with the lower bound. Instead of inspiring from the proof of the lower
bound originally given by Ben Arous and Guionnet in [BAG97], we adapt the proof of
Hiai and Petz from [HP00]. We show that the article [CGZ14] covers a wide class of
biorthogonal ensembles, which did not seem obvious. The authors of [BLTW15] consider
a very close model as the study holomorphic functions g while the density (3) is integrated
with respect to more general measures on C or R. Our techniques rely on the classical
probabilistic approach of large deviations while they adopt a Bernstein-Markov approach.

From this result we obtain two important corollaries, which are the motivation for
our study: a variational formulation for the Dykema-Haagerup distribution and the al-
most sure convergence of (µn)n∈N towards this measure. We also state a large deviations
principle for the top right particle.

Corollary 1.4 (Almost sure convergence towards the minimizer). Let g be a C1 function
on R+∗, such that its derivative is positive. Let ν be the unique minimizer of the functional
I. Then the random sequence of measures (µn)n∈N converges weakly almost surely towards
the deterministic measure ν.
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Corollary 1.5 (Variational characterization of the Dykema-Haagerup Distribution). The
Dykema-Haagerup distribution µDH is the unique minimizer onM1(R+) of the functional
:

I(µ) = 1
2E(µ) + 1

2E(log∗ µ) +
∫
xdµ(x)

which is strictly convex.

Theorem 1.6 (Large deviations for the largest particle). Let (x1, . . . , xn) be distributed
according to (3) and let x∗n = max1≤i≤n xi. Suppose that the hypotheses of Theorem 1.2
are satisfied and assume that there exist a constant ζ such that:

lim
n→∞

1
n

log
Z∗n−1
Zn

= ζ

where Z∗n−1 is the normalizing constant of the gas (3) with n − 1 particles and confining
potential n

n−1V . Let µeq be the limit measure of (µn)n∈N∗ and let beq be the right endpoint
of its support. The random sequence (x∗n)n∈N∗ satisfies a large deviations principle in R+

with speed n and good rate function:

J(x) =

−
1
2

∫
log |x− y|+ log |g(x)− g(y)|dµeq(y) + V (x)− κ if x ≥ beq

∞ if x < beq.

where κ is such that J(beq) = 0.

This theorem will not be proved in this note as the authors of [CE15] already proved
this theorem for the model of [ESS11]. In the setting of [CE15], the number of particles at
step n is not n but p(n) which makes their result more technical. One could also adapt the
proof of the similar theorem from [AGZ10] as the scheme of the proof is the same. First,
the product structure of the density (3) allows us to separate the variables and integrate
with respect to x1 < · · · < xn−1. Then, the large deviations principle for the empirical
measure allows us to says that the particles x1 < · · · < xn−1 generate the same potential
as the measure µeq. Finally, the assumption on the normalizing constants allows us to
control the error we do by changing the measure from n particles to n− 1 particles.

Remark 1.7 (Large deviations for the top eigenvalue for Cheliotis’ matrix model). In the
article [Che14], Cheliotis gives exact formulas for the normalizing constants Zn when g =
gθ and V (x) = x. It is straightforward to check that this model satisfies the assumptions of
Theorem 1.6. One can also obtain another proof of the fact that for the Dykema-Haagerup
model, λmax converges almost surely towards e.

The rest of the note is devoted to the proofs of the theorems. We start by proving
the large deviations principles and then we deduce the variational formula and the almost
sure convergence.

2 Proof of the large deviations principle.
The proof of Theorem 1.2 is very close to the standard proof of large deviations principle for
Coulomb gases in R. Many authors proved similar results following the steps of [BAG97].
For general b and positive integer θ, theorem 1.2 is a special case of the article [ESS11].
The proof is organized in several classical steps:

Not much is new in the proof that we present here, hence we will focus on what differs
from the usual techniques. The parts of the proof that are omitted can be taken from
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[AGZ10] or [CGZ14]. The classical proof is organized as follows:
Step 1: Study of the rate function;
Step 2: Exponential tightness for the non-normalized measures;
Step 3: Weak upper bound for the non-normalized measures;
Step 4: Weak lower bound for the non-normalized measures;
Step 5: Recover the full large deviations principle for the normalized measures.

We will give the fundamental inequality to prove step 1. Then, the classical proofs of
step 2 and 3 apply with no modification. We will give full details about step 4 as it is
the difficult part of the proof. Once the large deviations principle is proved for the non-
normalized measures, step 5 just consists in obtaining the asymptotic of the normalizing
constants by applying the large deviations inequalities for the whole space of probability
measure.

2.1 Study of the rate function.

Definition 2.1. We set, for any non-negative x and y:

f(x, y) = −1
2 log |x− y| − 1

2 log |g(x)− g(y)|+ 1
2 [V (x) + V (y)]

Using the inequality:
log |x− y| ≤ log(1 + |x|) + log(1 + |y|)

we obtain:

f(x, y) ≥
(
−1

2 log(1 + |x|)− 1
2 log(1 + |g(x)|) + 1

2V (x)
)

+ (5)(
−1

2 log(1 + |y|)− 1
2 log(1 + |g(y)|) + 1

2V (y)
)
. (6)

This inequality shows that the function I is well defined and taxes its values in R∪{∞}.
This inequality is the key to prove that I is a good rate function. All the details are given
in the reference book [AGZ10, Lemma 2.6.2 p.72].

To prove that the rate function I is strictly convex where it is finite, we observe that the
logarithmic energy µ 7→ E(µ) is known to be a strictly convex function where it is finite, see
[AGZ10] or [Dei00]. As the function µ 7→ g∗µ is linear, the function µ 7→ E(g∗µ) is strictly
convex where it is finite. The rate function I is the sum of two strictly convex functions
and a linear function, hence it is strictly convex on the set {µ ∈ M1(R+) | I <∞}. The
exponential tightness is also a consequence of the inequality (5), see for instance [AGZ10,
p.77].

To prove the upper bound for non-normalized measures, the strategy of the proof is
exactly the same as in [CGZ14]. This proof applies with no modification.

2.2 Proof of the lower bound.

The proof of the lower bound from [ESS11] does not seem to cover the case where g is not
an integer power function. The classical scheme of proof from Ben Arous and Guionnet
for the lower bound does not suit well for biorthogonal ensembles. We show that scheme
of proof of [HP00] for the lower bound is more robust and allows to deal with more general
types of interactions.

We want to prove that we have, for any σ ∈M1(R+):

lim
δ→0

lim
n→∞

1
n2 logZnP(µn ∈ B(σ, δ)) ≥ −I(σ). (7)
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The classical technique consists in constructing configurations for which the density
of (1) is very close to exp(−I(σ)). It is important to check that the measure of the
configurations we created in Rn does not decay too fast. Unfortunately, it is not easy to
do it for general measure σ. We notice that it suffices to prove the bound for sufficiently
regular measures σ.

First Step: Reduction to "nice" measures.

We will prove that for any sufficiently regular measure σ, we have:

inf
G

lim
n→∞

1
n2 logZnP(µn ∈ G) ≥ −I(σ) (8)

where the infimum is take over G neighborhood of σ. In order to prove that this bound
is sufficient to obtain the lower bound of the large deviations principle, we prove that the
function φ :M1(R+)→ R given by:

φ(σ) = inf{ lim
n→∞

1
n2 logZnP(µn ∈ G), G neighborhood of σ}

is upper semi-continuous. Let σk → σ in M1(R+). Let G be a neighborhood of σ, then
there exists an integer K such that for all k ≥ K, σk ∈ G. This implies that for any
k ≥ K:

inf
Gk

lim
n→∞

1
n2 logP(µn ∈ Gk) ≤ lim

n→∞

1
n2 logP(µn ∈ G)

where Gk are neighborhoods of σk. Then if we take the limit superior of this inequality
and the infimum over G neighborhood of σ we obtain the upper semi-continuity of φ. If
we prove (8) for a dense set of measures, then for any measure σ ∈ M1(R+), there exist
measures σk such that (8) holds and σk → σ we get:

φ(σ) ≥ lim sup
k

φ(σk) ≥ lim sup
k
−I(σk).

We will consider a specific sequence of measures σk such that for any k, σk is absolutely
continuous with respect to the Lebesgue measure on R+, with compact support in R+∗

and density bounded from above and below by positive constants and such that:

−E(σk) ≥ −E(σ)

lim
k→∞

∫
V (x)dσk(x) =

∫
V (x)dσ(x).

Once we obtain this sequence, we will only have to prove the lower bound for the measures
satisfying the regularity conditions given above.

Let σk = 11/k≤x≤k

σ([1/k,k])σ, then, as f is bounded from below, by the monotone convergence
theorem we get:

lim
k→∞

∫∫
f(x, y)dσk(x)dσk(y) =

∫∫
f(x, y)dσ(x)dσ(y)

so we can assume that σ has compact support in R+∗. Now let φε be a C∞ probability
density with support in [0, ε], then we set σε = φε ∗ σ. The measures σε have compact
support in R+∗ with continuous density and converge towards σ as ε goes to zero.

Since it is easy to check that
∫
V (x)dσε(x) −−−→

ε→0

∫
V (x)dσ(x), we only have to prove

that for any ε
−E(φε ∗ σ) ≥ −E(σ).

8



Recall that the function −E is concave, so if we notice that

φε ∗ σ =
∫
φε(y)σ(· − y)dy

then, thanks to the Jensen inequality and the invariance by translation of the logarithmic
energy, we obtained the desired inequality. The last thing we want for our "nice" measures
is that the density is bounded from above and from below. As the density of the measures
σε are continuous with compact support, those densities are already bounded from above.
Changing σε to δm+(1−δ)σε where m is the uniform measure on the support of σε allows
us to deal with measures with continuous density bounded from above and from below.

Second step: lower bound for "nice" measures.

From now, σ will be a measure with compact support [a, b] ⊂ R+∗, with density h with
respect to the Lebesgue measure on R+ for which there exist a constant C > 0 such that

∀x ∈ [a, b] ,
1
C
≤ h(x) ≤ C.

Let a0, . . . , an be the 1
n -quantiles of σ, with a0 = a and an = b. We have that for any k,

1
Cn
≤ ak+1 − ak ≤

C

n
. (9)

Now divide each interval [ak−1, ak] in 3 equal parts and let [ck, dk] be the central interval.
If we set ∆n =

∏n
i=1[ci, di], then for any (z1, . . . , zn) ∈ ∆n, we have:

d( 1
n

n∑
i=1

δzi , σ) ≤ max
k
|ak+1 − ak| ≤

C

n

where d is the bounded-Lipschitz distance. We are now ready to prove the lower bound.
Let ρ1 be the finite measure on R+ xb−1e−V (x)dx and ρn = ρ1 ⊗ · · · ⊗ ρ1 the finite n-th
product measure on (R+)n.

ZnP(µn ∈ B(σ, δ))

=
∫

1µn∈B(σ,δ) exp
[
−n2

(1
2E 6=(µn) + 1

2E6=(g∗µn) + n− 1
n

∫
V (x)dµn(x)

)]
dρn(x)

≥
∫

1∆n exp
[
−n2

(1
2E 6=(µn) + 1

2E6=(g∗µn) + n− 1
n

∫
V (x)dµn(x)

)]
dρn(x)

≥ exp
(
−n2

[
n− 1
n2

n∑
k=1

max
[ci,di]

V (x)
])
× exp

−n2

− 1
n2

∑
i<j

min
[ci,di]×[cj ,dj ]

log |x− y|

×
exp

−n2

− 1
n2

∑
i<j

min
[ci,di]×[cj ,dj ]

log |g(x)− g(y)|

∫ 1∆ndρn(x).

We notice that:
1
n2 log

∫
1∆ndρn(x) −−−→

n→∞
0.

Hence, to obtain the lower bound, it is sufficient to prove that we have:

lim
n→∞

1
n

n∑
k=1

max
[ci,di]

V =
∫
V (x)dσ(x), (10)

9



and, using the fact that the functions logarithm and g are increasing:

lim
n→∞

1
n2

∑
i<j

− log(dj − ci) ≥
1
2

∫∫
− log |x− y|dσ(x)dσ(y) = 1

2E(σ) (11)

and also:

lim
n→∞

1
n2

∑
i<j

log(g(dj)− g(ci)) ≥
1
2

∫∫
log |g(x)− g(y)|dσ(x)dσ(y) = 1

2E(g∗σ). (12)

If we admit temporarily the inequalities (10), (11) and (12), the proof of the lower
bound for regular measures is completed. The last step will consist in proving those three
inequalities.

Last step: Proof of the inequalities.

First, (10) is easy to check as we approximate a continuous integrable function on [a, b]
by simple functions.

We now prove (11) following the proof of [HP00]. We admit temporarily that there
exist a constant A > 0 such that for i < j:

A(dj − ci) ≥ (aj − ai−1) (13)

and also that:
lim
n→∞

2
n2 #{i < j | (aj − ai−1)

(dj − ci)
≤ 1 + ε} = 1. (14)

We postpone the proof of the inequalities (13) and (14) to prove (11). We call:

Bn = E(σ)− 2
n2

∑
i 6=j

(
min

[ci,di]×[cj ,dj ]
log |x− y|

)

and we want to prove that:
lim
n→∞

Bn ≤ 0

Since ∫∫
log |z − w|dσ(z)dσ(w) ≤ 2

n2

∑
i<j

log |aj − ai−1|+
1
n2

n∑
i=1

log |ai − ai−1|

then for every ε > 0 we have :

Bn ≤
2
n2

∑
i<j

log |aj − ai−1| −
2
n2

∑
i<j

log |dj − ci|+
1
n2

n∑
i=1

log |ai − ai−1|

≤ 2
n2 #{i < j | (aj − ai−1)

(dj − ci)
≤ 1 + ε} log(1 + ε)

+ 1
n2

[
1− 2

n2 #{i < j | (aj − ai−1)
(dj − ci)

≤ 1 + ε}
]

logA+ 1
n2

n∑
i=1

log |ai − ai−1|.

Then we take the limit superior in both sides, and the limit when ε→ 0

E(σ)− lim
n→∞

2
n2

∑
i<j

log |dj − ci| ≤ 0
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which proves (11).
We prove now inequality (13). From inequality (9), we get for any k > 0:

ai+k − ai−1
di+k − ci

≤ (k + 1)C/n
(k + 2/3)/Cn.

We deduce from this inequality that the left part of the inequality is bounded by a constant
independent of k and n, which proves (13). In order to prove (14), we start from:

ai+k − ai−1
di+k − ci

= 1 + ai+k − di+k
di+k − ci

+ ci − ai−1
di+k − ci

.

If we show that:
ai+k − di+k
di+k − ci

and ci − ai−1
di+k − ci

can be made as small as desired when k is bigger than a certain constant independent of
n, then (14) will be proved. Using (9) we get:

ai+k − di+k
di+k − ci−1

≤ C/3n
k/Cn

and
ci − ai−1
di+k − ci

≤ C/3n
k/Cn

.

Those two terms can be made as small as desired is k is sufficiently large, independently
of n, which proves (14).

The proof of the inequality (12) mimics the proof of inequality (11). Like in the
previous case, it is sufficient to find a constant A′ such that for any i < j:

A′(g(dj)− g(ci−1)) ≥ g(aj)− g(ai−1) (15)

and to prove that:

lim
n→∞

2
n2 #{i < j | g(aj)− g(ai−1)

g(dj)− g(ci))
≤ 1 + ε} = 1. (16)

As the support of σ is a compact included in R+∗, there exist two constants m and M
such that for all x ∈ [a, b]:

m ≤ g′(x) ≤M.

The inequality (15) is a consequence of (13), using the mean value theorem for g and the
fact that its derivative is bounded from above and from below. The inequality (16) is
equivalent to prove that the quantities

g(ai+k)− g(di+k)
g(di+k)− g(ci)

and g(ci)− g(ai)
g(di+k)− g(ci)

are as small when k is large enough. Using the mean value theorem we get:

g(ai+k)− g(di+k)
g(di+k)− g(ci)

≤ M

m

ai+k − ai−1
di+k − ci

≤ M

m

(k + 1)C/n
(k + 2/3)/Cn.

The other term is treated in the same way. Now that we have proved (15) and (16), the
proof of (12) is the exactly the same as the proof of (11).
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3 Proof of Corollary 1.4 and Corollary 1.5.
As the function I is lower semi-continuous and strictly convex, it has a unique minimizer,
called µb,/theta. Consider the sets:

Aε =M1(R+) \B(ν, ε).

As I is lower semi-continuous, inf{I(µ), µ ∈ Aε} > 0, then, thanks to the Borel-Cantelli
lemma, we get:

d(µn, ν) −−−→
n→∞

0.

As we already know that when b = 1 and θ = 0 the random sequence (µn)n∈N∗

converges weakly in probability towards the Dykema-Haagerup distribution µDH . We
also know from Corollary 1.4 that (µn)n∈N∗ converges almost surely weakly towards the
minimizer of I. Hence we obtain the following characterization of µDH :

µDH = inf{1
2E(µ) + 1

2E(log∗ µ) +
∫
xµ(x), µ ∈M1(R+)}.

4 Perspectives.
We can extend to any finite number of interactions of type:∏

i<j

|f1(xi)− f1(xj)|β1
∏
i<j

|f2(xi)− f2(xj)|β2 · · ·
∏
i<j

|fp(xi)− fp(xj)|βp

where each of the fk is locally a C1 diffeomorphism and the βk are positive numbers. Large
deviations will be valid if the confining potential V dominates all the functions fk at the
same time at infinity. The proof of this result would be similar to the proof of Theorem
1.2.

The result of this note can be extended in any dimension if we make additional as-
sumptions on the function g. One could assume that g is continuously differentiable and
that on any compact K, there exist a constant mK such that for any x, y ∈ K:

‖g(x)− g(y)‖ ≥ mK‖x− y‖.

This condition is equivalent to g being locally a C1 diffeomorphism. The article [BLTW15]
covers the complex case.

The model studied by Götze and Vencker in [GV14] is not covered by this note, as
they deal with a double interaction term of the type

∏
i<j |xi − xj |2φ(xi − xj). This is

really the combination of two different interactions whereas our model deals with the
usual logarithmic interaction at two different scales. As this model is covered by the study
[CGZ14], one could try to find the optimal conditions of φ so that a large deviations
principle is valid.

We would like to thank Dimitris Cheliotis whose work [Che14] is the starting point of
this study.
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