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ON A DIVISOR PROBLEM RELATED TO THE EPSTEIN
ZETA-FUNCTION, II

GUANGSHI LÜ, JIE WU & WENGUANG ZHAI

Abstract. Recently by the theory of modular forms and the Riemann zeta-
function, Lü improved the estimates for the error term in a divisor problem related
to the Epstein zeta-function established by Sankaranarayanan. In this short note,
we are able to further sharpen some results of Sankaranarayanan and of Lü, and
to establish corresponding Ω-estimates.

1. Introduction

For a positive definite quadratic form Q(y) = Q(y1, . . . , y`) in ` > 2 variables
with integral coefficients, we can write it in Siegel’s notation as

Q(y) =
1

2
A[y] =

1

2
ytAy =

∑
i<j

aijyiyj +
1

2

∑
i

aiiy
2
i ,

where yt is the transpose of y, and the matrix A = (aij) has integral entries which
are even on the diagonal, i.e., aii ≡ 0 ( mod 2) for 0 6 i 6 `. Then the corresponding
Epstein zeta-function is initially defined by the Dirichlet series

(1.1) ZQ(s) :=
∑
y1∈Z

· · ·
∑
y`∈Z

(y1,...,y`) 6=(0,...,0)

Q(y1, . . . , y`)
−s

for <e s > `/2. We can also rewrite it as, in the same region,

ZQ(s) =
∑
n>1

ann
−s,

where an is the number of the solutions of the equation Q(y) = n with y ∈ Z`. It is
known that ZQ(s) has an analytic continuation to the whole complex plane C with
only a simple pole at s = `/2, and satisfies a functional equation of Riemann type

(d1/`/2π)s Γ(s)ZQ(s) = (d1−1/`/2π)`/2−sΓ(`/2− s)ZQ(`/2− s) (s ∈ C),

where d is the discriminant of Q and Q(y) := 1
2
yt(dA−1)y (cf. [9]).
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If we write for any integer k > 1,

ZQ(s)k =
∑
n>1

ak(n)n−s,

then
ak(n) =

∑
n1···nk=n

an1 · · · ank
.

In particular a1(n) = an. It seems interesting to study the asymptotic behavior of
the sum

∑
n6x ak(n). It is easy to show that its main term is

Res
s=`/2

(
ZQ(s)kxss−1

)
= x`/2Pk(log x),

where Pk(t) is a polynomial in t of degree k−1. Then the real hard work is to study
the error term

(1.2) ∆∗k(Q, x) :=
∑
n6x

ak(n)− x`/2Pk(log x).

In 1912, Landau [7] proved that for ` = 2, ∆∗1(Q, x)� x1/3+ε, where and throughout
this paper ε denotes an arbitrarily small positive constant. Landau’s method can
also be applied to treat the general case. In fact his method implies that for k > 1
and ` > 2,

∆∗k(Q, x)� x`/2−`/(k`+1)+ε.

Later Chandrasekharan and Narasimhan [1] were able to delete the ε in the exponent
of x. In [9], Sankaranarayanan improved these classical results by showing that for
k > 2 and ` > 3,

(1.3) ∆∗k(Q, x)� x`/2−1/k+ε.

Recently inspired by Iwaniec’s book [5], Lü [8] was able to improve (1.3) for
the quadratic forms of level one (see [5, Chapter 11]). These quadratic forms are
defined by Q(y) = 1

2
A[y] with diag(A) = diag(A−1) ≡ 0 (mod 2), where diag(A)

denotes the set of entries on the diagonal of the matrix A. Moreover we have
that det(A) = 1, A is equivalent to A−1, and the number of variables satisfies
` ≡ 0 ( mod 8). Denote by Q` the set of quadratic forms of level one with ` variables.
For Q ∈ Q`, we have (see [5, (11.32)] or [8, Lemma 2.1])

an = A`σ`/2−1(n) + af (n,Q) (n > 1),

where

A` :=
(2π)`/2

ζ(`/2)Γ(`/2)
, σk(n) =

∑
d|n

dk,

ζ(s) is the Riemann zeta-function, Γ(s) is the Gamma function and af (n,Q) is the
nth Fourier coefficient of a cusp form f(z,Q) of weight `/2 with respect to the full
modular group SL(2,Z). Thus

(1.4) ZQ(s) = A`ζ(s− `/2 + 1)ζ(s) + L(s, f) (<e s > `/2),

where L(s, f) is the Hecke L-function associated with f(z,Q). According to Deligne’s
well known work [2], we have

(1.5) |af (n,Q)| 6 n(`/2−1)/2τ(n),
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where τ(n) is the divisor function. With the help of these properties, Lü proved, by
complex integration method, a better estimate than Sankaranarayanan’s (1.3) for
all k > 3 and 8 | `. For r > 0, the r-dimensional divisor function τr(n) is defined by

ζ(s)r =
∑
n>1

τr(n)n−s (<e s > 1).

The r-dimensional divisor problem is concerned with the estimate of the error term

(1.6) ∆r(x) :=
∑
n6x

τr(n)− Res
s=1

(
ζ(s)rxss−1

)
=
∑
n6x

τr(n)− xGr(log x),

where Gr(t) is a polynomial of degree r− 1 if r > 1 and G0(t) ≡ 0. It is known that

(1.7) ∆r(x)� xθr+ε (x > 2)

where

(1.8) θ0 = 0, θ1 = 0, θ2 = 131/416, θ3 = 43/96

and

(1.9) θr =



(3r − 4)/(4r) if 4 6 r 6 8,

35/54 if r = 9,

41/60 if r = 10,

7/10 if r = 11,

(r − 2)/(r + 2) if 12 6 r 6 25,

(r − 1)/(r + 4) if 26 6 r 6 50,

(31r − 98)/(32r) if 51 6 r 6 57,

(7r − 34)/(7r) if r > 58.

(The case of r = 0, 1 is trivial. See [3] for r = 2, [6] for r = 3 and [4, Theorem 12.3]
for r > 4.) Lü’s result (see [8, Theorem 1.2]) can be stated as follows

(1.10) ∆∗k(Q, x)�

{
x`/2−1/2+ε if k = 3,

x`/2−1+θk+ε if k > 4.

In this short note, we can further improve Sankaranarayanan’s (1.3) with k = 2
and Lü’s (1.10) with k = 3.

Theorem 1. Let k > 2 and 8 | `. Then for any quadratic form Q(y) ∈ Q`, we have

∆∗k(Q, x)� x`/2−1+θk+ε,

where θk is the exponent in (1.7).

For comparison, we note

`/2− 1 + θk =

{
`/2− 1/2− 0.185 . . . if k = 2,

`/2− 1/2− 0.052 . . . if k = 3,

which are better than (1.3) with k = 2 and (1.10), respectively.
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For k = 2 or 3, we also can establish Ω-type result.

Theorem 2. Let 2 6 k 6 8 and 8 | `. If there is a positive constant δ such that

(1.11) θr 6 (k − 1)/(2k)− δ (0 6 r 6 k − 1),

then for any quadratic form Q(y) ∈ Q` and ε > 0, we have

(1.12) ∆∗k(Q, x) = Ω
(
x`/2−1+(k−1)/(2k)(log x)(k−1)/(2k)(log2 x)βk(log3 x)−γk−ε

)
where βk := (k(2k)/(k+1) − 1)(k + 1)/(2k) and γk := (3k − 1)/(4k).

In particular (1.12) holds unconditionally for k = 2 or 3.

Our method is different from [8]. First we shall establish relations between ∆k(x)
and ∆∗k(Q, x) and then deduce Theorems 1 and 2 from known O-type and Ω-type
estimates for ∆k(x).

2. Preliminary lemmas

This section is devoted to establish three preliminary lemmas, which will be
needed in the proof of Theorems 1 and 2.

Lemma 2.1. For any ε > 0, we have∫ x

1

∆r(t) dt�r,ε x
1+δr+ε (x > 1),

where

(2.1) δr :=

{
1/2− 1/r if r = 2, 4, 6, 8,

1/2− 1/(r + 1) if r = 1, 3, 5, 7.

Proof. By Perron’s formula [11, Theorem II.2.3], we obtain, with b := 1 + 1/ log x,

(2.2)

∫ x

0

∆r(u) du =
1

2πi

∫ b+i∞

b−i∞
Fr(s;x) ds−

∫ x

0

uGr(log u) du.

where b := 1 + 1/ log x and Fr(s;x) := ζ(s)rxs+1/{s(s+ 1)}.
Let max{1− 6/r, 0} < a < 1. By using the classical estimate

ζ(s)� (|t|+ 2)max{(1−σ)/3,0} log(|t|+ 2),

we deduce that for all ε > 0 and T > 0,∫
a6σ6b, |τ |=T

∣∣Fr(s;x)
∣∣| ds| � (

x2T−2 + x1+aT−2+max{(1−a)r/3,0})(log T )r,

and ∫
σ=b, |t|>T

∣∣Fr(s;x)
∣∣| ds| � x2T−1(log T )r.
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Using the preceding estimates and shifting the line of integration from σ = b to
σ = a, the residue theorem implies that

1

2πi

∫ b+i∞

b−i∞
Fr(s;x) ds =

1

2πi

∫ b+iT

b−iT

Fr(s;x) ds+O

(
x2

T
(log T )r

)
=

∫ x

0

uGr(u) du+
1

2πi

∫ a+iT

a−iT

Fr(s;x) ds

+O

(
x2

T
(log T )r +

x1+a

T 2−max{(1−a)r/3,0} (log T )r
)
,

where we have used the relation

Res
s=1

(
Fr(s;x)

)
=

∫ x

0

uGr(u) du.

Making T →∞ and inserting the formula obtained into (2.2), we find that∫ x

1

∆r(u) du =
1

2πi

∫ a+i∞

a−i∞
Fr(s;x) ds

� x1+a

∫ +∞

−∞

|ζ(a+ it)|r

(|t|+ 1)2
dt.

When r = 2, 4, 6, 8, the last integral is convergent for any a > 1/2 − 1/r >
max{1−6/r, 0} (see [4, Lemma 13.1 and Theorem 13.4]). For r = 2k−1 (1 6 k 6 4),
we have∫ +∞

−∞

|ζ(a+ it)|r

(|t|+ 1)2
dt 6

{∫ +∞

−∞

|ζ(a+ it)|2(k−1)

(|t|+ 1)2
dt

}1/2{∫ +∞

−∞

|ζ(a+ it)|2k

(|t|+ 1)2
dt

}1/2

<∞

provided a > 1/2 − 1/(2k) = 1/2 − 1/(r + 1) > max{1 − 6/r, 0}. This completes
the proof. �

Lemma 2.2. For r > 0, we have

(2.3)
∑
n6x

τr(n)n`/2−1 = x`/2G∗r(log x) + x`/2−1∆r(x) +O
(
x`/2−1+δr

)
,

where G∗r(t) is a polynomial of degree r − 1 with the convention that G∗0(t) ≡ 0 and
the constant δr > 0 is given by (2.1). In particular

(2.4)
∑
n6x

τr(n)n`/2−1 = x`/2G∗r(log x) +O
(
x`/2−1+θr

)
.

Proof. With the help of (1.6) and Lemma 2.1, a simple partial summation yields∑
n6x

τr(n)n`/2−1 =

∫ x

1

t`/2−1(tGr(log t))′dt+

∫ x

1−
t`/2−1d∆r(t)

= x`/2G∗r(log x) + x`/2−1∆r(x) +O
(
x`/2−1+δr

)
.

This completes the proof. �
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In order to state our third lemma, it is necessary to introduce some notation.
By (1.4), we can write, for <e s > `/2,

ZQ(s)k =
∑

06r6k

Ar`C
r
kζ(s)rL(s, f)k−rζ(s− `/2 + 1)r,

ζ(s− `/2 + 1)k =
∑

06r6k

A−k` Cr
k(−1)k−rζ(s)−kL(s, f)k−rZQ(s)r.

These imply that

ak(n) =
∑

06r6k

Ar`C
r
k

∑
dm=n

bk,r(d)τr(m)m`/2−1,(2.5)

τk(n)n`/2−1 =
∑

06r6k

(−1)k−rA−k` Cr
k

∑
dm=n

ck,r(d)ar(m),(2.6)

where bk,r and ck,r are defined by the relation

ζ(s)rL(s, f)k−r =
∑
n>1

bk,r(n)n−s, ζ(s)−kL(s, f)k−r =
∑
n>1

ck,r(n)n−s,

for <e s > `/2.

Lemma 2.3. Let j > 0, k > 2, 0 6 r 6 k, 8 | ` and θ > (` + 2)/4. Then for any
quadratic form Q(y) ∈ Q` and dk,r = bk,r or ck,r, we have∑

n6x

|dk,r(n)|
nθ

�j,`,θ 1 (x > 2),(2.7)

∑
n6x

dk,r(n)(log n)j

nθ
= Cf (j, k, r, θ) +O

(
x−θ+(`+2)/4+ε

)
(x > 2),(2.8)

where Cf (j, k, r, θ) is a constant.

Proof. By the definition of bk,r and ck,r, we have

bk,r(n) =
∑

d1···drm1···mk−r=n

af (Q,m1) · · · af (Q,mk−r),

ck,r(n) =
∑

d1···dkm1···mk−r=n

µ(d1) · · ·µ(dk)af (Q,m1) · · · af (Q,mk−r).

We treat only the case of bk,r and the latter is completely similar. With the help of
the Deligne inequality (1.5), we have∑

n6x

|bk,r(n)| 6
∑
d6x

τr(d)
∑
m6x/d

τ2(k−r)(m)m(`−2)/4

6
∑
d6x

τr(d)(x/d)`/4+1/2(log x)2k−2r−1

�j,` x
(`+2)/4(log x)2k−2r−1 (0 6 r 6 k).

From this, a simple partial integration allows us to deduce (2.7) and (2.8). �
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3. Proof of Theorem 1

By (2.5), (2.4) of Lemma 2.2 and (2.7) of Lemma 2.3, it follows that∑
n6x

ak(n) = x`/2
∑

06r6k

Cr
kA

r
`

∑
d6x

bk,r(d)

d`/2
G∗r(log(x/d)) +O

(
x`/2−1+θk+ε

)
.

Since `/2 > (`+ 2)/4, (2.8) of Lemma 2.3 implies that∑
06r6k

Cr
kA

r
`

∑
d6x

bk,r(d)

d`/2
G∗r(log(x/d)) = Pk(log x) +O

(
x1/2−`/4+ε

)
.

Inserting it into the preceding formula, we get the required result. �

4. Proof of Theorem 2.

From (2.6) and (1.2), we can deduce that∑
n6x

τk(n)n`/2−1 = x`/2G∗k(log x) +O
(
x(`+2)/4+ε

)
+
∑

06r6k

(−1)k−jA−k` Cr
k

∑
d6x

ck,r(d)∆∗r(Q, x/d),

where we have used the following estimate∑
06r6k

(−1)k−jA−k` Cr
k

∑
d6x

ck,r(d)(x/d)`/2Pr(log(x/d)) = x`/2G∗k(log x) +O
(
x(`+2)/4+ε

)
.

Comparing with (2.3) of Lemma 2.2 yields

x`/2−1∆k(x) =
∑

06r6k

(−1)k−rA−k` Cr
k

∑
d6x

ck,r(d)∆∗r(Q, x/d) +O
(
x`/2−1+δk

)
.

Under hypothesis (1.11), by (2.5), (2.3) of Lemma 2.2 and (2.7) of Lemma 2.3 we
have

∆∗r(Q, x)� x`/2−1+r/{2(r+1)}−δ+ε

� x`/2−1+(k−1)/(2k)−δ/2

for 0 6 r 6 k − 1. Inserting into the preceding formula and using (2.7), we can
deduce

(4.1) x`/2−1∆k(x) = A−k`
∑
d6x

ck,k(d)∆∗k(Q, x/d) +O
(
x`/2−1+(k−1)/(2k)−δ/2).

On the other hand, according to Soundararajan [10], we have, for any k > 2,

(4.2) ∆k(x) = Ω
(
(x log x)(k−1)/(2k)(log2 x)βk(log3 x)−γk

)
.

Now on noting (2.7) of Lemma 2.3, the first assertion of Theorem 2 follows from
(4.1) and (4.2).

Finally in view of (1.8), it is easy check that the hypothesis (1.11) is satisfied
when k = 2 or 3. Therefore (1.12) holds unconditionaly for these two values of k.

This completes the proof of Theorem 2.
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Boulevard des Aiguillettes, B.P. 239, 54506 Vandœuvre-lès-Nancy, France

E-mail address: wujie@iecn.u-nancy.fr

Department of Mathematics, China University of Mining and Technology, Bei-
jing 100083, China

E-mail address: zhaiwg@hotmail.com


