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ON A DIVISOR PROBLEM RELATED TO THE EPSTEIN ZETA-FUNCTION, II

Keywords: . 2000 Mathematics Subject Classification. 11F30, 11F11, 11F66 Epsetin zeta-function, divisor problem, modular form

Recently by the theory of modular forms and the Riemann zetafunction, Lü improved the estimates for the error term in a divisor problem related to the Epstein zeta-function established by Sankaranarayanan. In this short note, we are able to further sharpen some results of Sankaranarayanan and of Lü, and to establish corresponding Ω-estimates.

Introduction

For a positive definite quadratic form Q(y) = Q(y 1 , . . . , y ) in 2 variables with integral coefficients, we can write it in Siegel's notation as

Q(y) = 1 2 A[y] = 1 2 y t Ay = i<j a ij y i y j + 1 2 i a ii y 2 i ,
where y t is the transpose of y, and the matrix A = (a ij ) has integral entries which are even on the diagonal, i.e., a ii ≡ 0 ( mod 2) for 0 i . Then the corresponding Epstein zeta-function is initially defined by the Dirichlet series (1.1) Z Q (s) := y 1 ∈Z

• • •

y ∈Z (y 1 ,...,y ) =(0,...,0) Q(y 1 , . . . , y ) -s for e s > /2. We can also rewrite it as, in the same region,

Z Q (s) = n 1 a n n -s ,
where a n is the number of the solutions of the equation Q(y) = n with y ∈ Z . It is known that Z Q (s) has an analytic continuation to the whole complex plane C with only a simple pole at s = /2, and satisfies a functional equation of Riemann type

(d 1/ /2π) s Γ(s)Z Q (s) = (d 1-1/ /2π) /2-s Γ( /2 -s)Z Q ( /2 -s) (s ∈ C),
where d is the discriminant of Q and Q(y) := 1 2 y t (dA -1 )y (cf. [START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF]).

If we write for any integer k 1,

Z Q (s) k = n 1 a k (n)n -s , then a k (n) = n 1 •••n k =n a n 1 • • • a n k .
In particular a 1 (n) = a n . It seems interesting to study the asymptotic behavior of the sum n x a k (n). It is easy to show that its main term is

Res s= /2 Z Q (s) k x s s -1 = x /2 P k (log x),
where P k (t) is a polynomial in t of degree k -1. Then the real hard work is to study the error term

(1.2) ∆ * k (Q, x) := n x a k (n) -x /2 P k (log x).
In 1912, Landau [START_REF] Landau | Über die Anzahl der Gitterpunkte in gewissen Bereichen[END_REF] proved that for = 2, ∆ * 1 (Q, x)

x 1/3+ε , where and throughout this paper ε denotes an arbitrarily small positive constant. Landau's method can also be applied to treat the general case. In fact his method implies that for k 1 and 2, ∆ * k (Q, x)

x /2-/(k +1)+ε . Later Chandrasekharan and Narasimhan [START_REF] Chandrasekharan | Functional equations with multiple gamma factors and the average order of arithmetical functions[END_REF] were able to delete the ε in the exponent of x. In [START_REF] Sankaranarayanan | On a divisor problem related to the Epstein zeta-function[END_REF], Sankaranarayanan improved these classical results by showing that for k 2 and 3,

(1.3) ∆ * k (Q, x) x /2-1/k+ε .
Recently inspired by Iwaniec's book [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF], Lü [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF] was able to improve (1.3) for the quadratic forms of level one (see [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]Chapter 11]). These quadratic forms are defined by Q(y) = 1 2 A[y] with diag(A) = diag(A -1 ) ≡ 0 (mod 2), where diag(A) denotes the set of entries on the diagonal of the matrix A. Moreover we have that det(A) = 1, A is equivalent to A -1 , and the number of variables satisfies ≡ 0 ( mod 8). Denote by Q the set of quadratic forms of level one with variables. For Q ∈ Q , we have (see [5, (11.32)] or [8, Lemma 2.1])

a n = A σ /2-1 (n) + a f (n, Q) (n 1),
where

A := (2π) /2 ζ( /2)Γ( /2) , σ k (n) = d|n d k , ζ(s) is the Riemann zeta-function, Γ(s) is the Gamma function and a f (n, Q) is the nth Fourier coefficient of a cusp form f (z, Q) of weight /2 with respect to the full modular group SL(2, Z). Thus (1.4) Z Q (s) = A ζ(s -/2 + 1)ζ(s) + L(s, f ) ( e s > /2),
where L(s, f ) is the Hecke L-function associated with f (z, Q). According to Deligne's well known work [START_REF] Deligne | La Conjecture de Weil[END_REF], we have

(1.5) |a f (n, Q)| n ( /2-1)/2 τ (n),
where τ (n) is the divisor function. With the help of these properties, Lü proved, by complex integration method, a better estimate than Sankaranarayanan's (1.

3) for all k 3 and 8 | . For r 0, the r-dimensional divisor function τ r (n) is defined by

ζ(s) r = n 1 τ r (n)n -s ( e s > 1).
The r-dimensional divisor problem is concerned with the estimate of the error term

(1.6) ∆ r (x) := n x τ r (n) -Res s=1 ζ(s) r x s s -1 = n x τ r (n) -xG r (log x),
where G r (t) is a polynomial of degree r -1 if r 1 and G 0 (t) ≡ 0. It is known that

(1.7) ∆ r (x) x θr+ε (x 2)
where (The case of r = 0, 1 is trivial. See [START_REF] Huxley | Integer points, exponential sums and the Riemann zeta function[END_REF] for r = 2, [START_REF] Kolesnik | On the estimation of multiple exponential sums[END_REF] for r = 3 and [4, Theorem 12.3] for r 4.) Lü's result (see [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF]Theorem 1.2]) can be stated as follows

(1.8) θ 0 = 0, θ 1 = 0, θ 2 = 131/416, θ 3 = 43/96 and (1.9) θ r =                                (3r -4)/(
(1.10) ∆ * k (Q, x) x /2-1/2+ε if k = 3, x /2-1+θ k +ε if k 4.
In this short note, we can further improve Sankaranarayanan's (1.3) with k = 2 and Lü's (1.10) with k = 3. Theorem 1. Let k 2 and 8 | . Then for any quadratic form Q(y) ∈ Q , we have

∆ * k (Q, x) x /2-1+θ k +ε ,
where θ k is the exponent in (1.7).

For comparison, we note

/2 -1 + θ k = /2 -1/2 -0.185 . . . if k = 2, /2 -1/2 -0.052 . . . if k = 3,
which are better than (1.3) with k = 2 and (1.10), respectively.

For k = 2 or 3, we also can establish Ω-type result.

Theorem 2. Let 2 k 8 and 8 | . If there is a positive constant δ such that

(1.11) θ r (k -1)/(2k) -δ (0 r k -1),
then for any quadratic form Q(y) ∈ Q and ε > 0, we have

(1.12) ∆ * k (Q, x) = Ω x /2-1+(k-1)/(2k) (log x) (k-1)/(2k) (log 2 x) β k (log 3 x) -γ k -ε
where β k := (k (2k)/(k+1) -1)(k + 1)/(2k) and γ k := (3k -1)/(4k).

In particular (1.12) holds unconditionally for k = 2 or 3.

Our method is different from [START_REF] Lü | On a divisor problem related to the Epstein zeta-function[END_REF]. First we shall establish relations between ∆ k (x) and ∆ * k (Q, x) and then deduce Theorems 1 and 2 from known O-type and Ω-type estimates for ∆ k (x).

Preliminary lemmas

This section is devoted to establish three preliminary lemmas, which will be needed in the proof of Theorems 1 and 2.

Lemma 2.1. For any ε > 0, we have where b := 1 + 1/ log x and F r (s; x) := ζ(s) r x s+1 /{s(s + 1)}. Let max{1 -6/r, 0} < a < 1. By using the classical estimate

ζ(s) (|t| + 2) max{(1-σ)/3,0} log(|t| + 2),
we deduce that for all ε > 0 and T > 0,

a σ b, |τ |=T F r (s; x) | ds| x 2 T -2 + x 1+a T -2+max{(1-a)r/3,0} (log T ) r ,
and

σ=b, |t| T F r (s; x) | ds| x 2 T -1 (log T ) r .
Using the preceding estimates and shifting the line of integration from σ = b to σ = a, the residue theorem implies that

1 2πi b+i∞ b-i∞ F r (s; x) ds = 1 2πi b+iT b-iT F r (s; x) ds + O x 2 T (log T ) r = x 0 uG r (u) du + 1 2πi a+iT a-iT F r (s; x) ds + O x 2 T (log T ) r + x 1+a T 2-max{(1-a)r/3,0} (log T ) r ,
where we have used the relation

Res s=1 F r (s; x) = x 0 uG r (u) du.
Making T → ∞ and inserting the formula obtained into (2.2), we find that

x 1 ∆ r (u) du = 1 2πi a+i∞ a-i∞ F r (s; x) ds x 1+a +∞ -∞ |ζ(a + it)| r (|t| + 1) 2 dt.
When r = 2, 4, 6, 8, the last integral is convergent for any a > 1/2 -1/r max{1-6/r, 0} (see [START_REF] Ivić | The Riemann zeta-function[END_REF]Lemma 13.1 and Theorem 13.4]). For r = 2k-1 (1 k 4), we have

+∞ -∞ |ζ(a + it)| r (|t| + 1) 2 dt +∞ -∞ |ζ(a + it)| 2(k-1) (|t| + 1) 2 dt 1/2 +∞ -∞ |ζ(a + it)| 2k (|t| + 1) 2 dt 1/2 < ∞ provided a > 1/2 -1/(2k) = 1/2 -1/(r + 1) max{1 -6/r, 0}
. This completes the proof.

Lemma 2.2. For r 0, we have

(2.3) n x τ r (n)n /2-1 = x /2 G * r (log x) + x /2-1 ∆ r (x) + O x /2-1+δr ,
where G * r (t) is a polynomial of degree r -1 with the convention that G * 0 (t) ≡ 0 and the constant δ r 0 is given by (2.1). In particular

(2.4) n x τ r (n)n /2-1 = x /2 G * r (log x) + O x /2-1+θr .
Proof. With the help of (1.6) and Lemma 2.1, a simple partial summation yields

n x τ r (n)n /2-1 = x 1 t /2-1 (tG r (log t)) dt + x 1- t /2-1 d∆ r (t) = x /2 G * r (log x) + x /2-1 ∆ r (x) + O x /2-1+δr
. This completes the proof.

In order to state our third lemma, it is necessary to introduce some notation. By (1.4), we can write, for e s > /2,

Z Q (s) k = 0 r k A r C r k ζ(s) r L(s, f ) k-r ζ(s -/2 + 1) r , ζ(s -/2 + 1) k = 0 r k A -k C r k (-1) k-r ζ(s) -k L(s, f ) k-r Z Q (s) r .
These imply that

a k (n) = 0 r k A r C r k dm=n b k,r (d)τ r (m)m /2-1 , (2.5) τ k (n)n /2-1 = 0 r k (-1) k-r A -k C r k dm=n c k,r (d)a r (m), (2.6)
where b k,r and c k,r are defined by the relation

ζ(s) r L(s, f ) k-r = n 1 b k,r (n)n -s , ζ(s) -k L(s, f ) k-r = n 1 c k,r (n)n -s ,
for e s > /2. 

k,r (n) = d 1 •••drm 1 •••m k-r =n a f (Q, m 1 ) • • • a f (Q, m k-r ), c k,r (n) = d 1 •••d k m 1 •••m k-r =n µ(d 1 ) • • • µ(d k )a f (Q, m 1 ) • • • a f (Q, m k-r ).
We treat only the case of b k,r and the latter is completely similar. With the help of the Deligne inequality (1.5), we have

n x |b k,r (n)| d x τ r (d) m x/d τ 2(k-r) (m)m ( -2)/4 d x τ r (d)(x/d) /4+1/2 (log x) 2k-2r-1 j, x ( +2)/4 (log x) 2k-2r-1 (0 r k).
From this, a simple partial integration allows us to deduce (2.7) and (2.8).

Proof of Theorem 1

By (2.5), (2.4) of Lemma 2.2 and (2.7) of Lemma 2.3, it follows that

n x a k (n) = x /2 0 r k C r k A r d x b k,r (d) d /2 G * r (log(x/d)) + O x /2-1+θ k +ε . Since /2 > ( + 2)/4, (2.8) of Lemma 2.3 implies that 0 r k C r k A r d x b k,r (d) d /2 G * r (log(x/d)) = P k (log x) + O x 1/2-/4+ε .
Inserting it into the preceding formula, we get the required result.

4. Proof of Theorem 2.

From (2.6) and (1.2), we can deduce that

n x τ k (n)n /2-1 = x /2 G * k (log x) + O x ( +2)/4+ε + 0 r k (-1) k-j A -k C r k d x c k,r (d)∆ * r (Q, x/d),
where we have used the following estimate

0 r k (-1) k-j A -k C r k d x c k,r (d)(x/d) /2 P r (log(x/d)) = x /2 G * k (log x) + O x ( +2)/4+ε .
Comparing with (2.3) of Lemma 2.2 yields

x /2-1 ∆ k (x) = Under hypothesis (1.11), by (2.5), (2.3) of Lemma 2.2 and (2.7) of Lemma 2.3 we have ∆ * r (Q, x) x /2-1+r/{2(r+1)}-δ+ε

x /2-1+(k-1)/(2k)-δ/2 for 0 r k -1. Inserting into the preceding formula and using (2.7), we can deduce (4.1)

x /2-1 ∆ k (x) = A -k d x c k,k (d)∆ * k (Q, x/d) + O x /2-1+(k-1)/(2k)-δ/2 .
On the other hand, according to Soundararajan [START_REF] Soundararajan | Omega results for the divisor and circle problems[END_REF], we have, for any k 2, (4.2) ∆ k (x) = Ω (x log x) (k-1)/(2k) (log 2 x) β k (log 3 x) -γ k . Now on noting (2.7) of Lemma 2.3, the first assertion of Theorem 2 follows from (4.1) and (4.2).

Finally in view of (1.8), it is easy check that the hypothesis (1.11) is satisfied when k = 2 or 3. Therefore (1.12) holds unconditionaly for these two values of k.

This completes the proof of Theorem 2.

x 1 ∆ 2 -F

 12 r (t) dt r,ε x 1+δr+ε (x 1), 1/(r + 1) if r = 1, 3, 5, 7.Proof. By Perron's formula[11, Theorem II.2.3], we obtain, with b := 1 + 1/ log x, r (s; x) ds -x 0 uG r (log u) du.

Lemma 2 . 3 .

 23 Let j 0, k 2, 0 r k, 8 | and θ > ( + 2)/4. Then for any quadratic form Q(y) ∈ Q and d k,r = b k,r or c k,r , we have r (n)(log n) j n θ = C f (j, k, r, θ) + O x -θ+( +2)/4+ε (x 2), (2.8) where C f (j, k, r, θ) is a constant. Proof. By the definition of b k,r and c k,r , we have b

(- 1 )

 1 k-r A -k C r k d x c k,r (d)∆ * r (Q, x/d) + O x /2-1+δ k .
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