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SYNCHRONIZATION AND FUNCTIONAL CENTRAL LIMIT THEOREMS

FOR INTERACTING REINFORCED RANDOM WALKS

Irene Crimaldi1 , Paolo Dai Pra2, Pierre-Yves Louis3, Ida G. Minelli4

Abstract. We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous
interacting random walks on the simplex of probability measures over a finite set. Due to a rein-
forcement mechanism, the increments of the walks are correlated, forcing their convergence to the
same, possibly random, limit. Random walks of this form have been introduced in the context of
urn models and in stochastic algorithms. We also propose an application to opinion dynamics in a
random network evolving via preferential attachment. We study, in particular, random walks in-
teracting through a mean-field rule and compare the rate they converge to their limit with the rate
of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain
conditions, synchronization is faster than convergence.

Keywords. interacting random systems; synchronization; functional central limit theorems; urn
models; reinforced processes; dynamics on random graphs
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1. Introduction

Let S be a finite set and denote by P(S) the simplex of probabilities on S:

P(S) :=

{
µ : S → [0, 1] :

∑

x∈S

µ(x) = 1

}
.

In this paper we consider stochastic evolutions on P(S) of the form

Zn+1 = (1− rn)Zn + rnKn(In+1), (1)

where 0 ≤ rn < 1 are given numbers, Kn : S → P(S) are given functions, and (In)n≥1 is a sequence
of S-valued random variables such that, for Fn := σ(Z0,Z1, . . . ,Zn),

P(In+1 = x|Fn) = Zn(x). (2)

We think of this as a generalized reinforcement mechanism: note indeed that, in the particular
case Kn(x) = δx, with δx denoting the Dirac measure at x ∈ S, the larger Zn(x), the higher the
probability of increasing it at the next step.

Models of type (1) can be viewed as time-inhomogeneous random walks on P(S), and arise nat-
urally in at least two distinct contexts.
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2Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy,
daipra@math.unipd.it
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2 SYNCHRO AND FCLT FOR INTERACTING RW

1.1. Urn Models. Let S be the set of the colors of the balls in a urn. Consider the following scheme.
A ball is randomly drawn, uniformly among all balls. Suppose this is the (n + 1)-st draw. If its
color is y then we reinsert it in the urn and, for each color x ∈ S, we add An(y, x) balls of color x,
where

An : S × S → N0 = {0, 1, 2, . . .}

is a given function, called reinforcement matrix, satisfying the balance condition: the sum∑

x∈S

An(y, x) = An does not depend on y. As a consequence, the total number

N(n) = N(0) +

n−1∑

k=0

Ak

of balls in the urn after n steps does not depend on the sequence of colors drawn. Denote by
N(n, x) the number of balls in the urn of color x after n steps, and

Zn(x) :=
N(n, x)

N(n)
.

Then Zn ∈ P(S), and it evolves as in (1) with

rn :=
An

N(n+ 1)
Kn(y)(·) =

An(y, ·)

An

.

This model includes the Pólya and the Friedman scheme as special cases, as well as many gen-
eralizations with time dependent reinforcement scheme (see e.g. [33] for an introduction to the
subject). Note that in the most classical schemes (Pólya, Friedman) An is constant in n. More
generally, in all cases in which An grows at most polynomially in n, we have that rn is of order 1

n
as n → +∞.

1.2. Opinion dynamics on preferential attachment graphs. Consider a sequence of random non-
oriented graphs Gn = (Vn, En), evolving through a preferential attachment rule (see e.g. [4, 28]).
More specifically, for a given δ > −1, the graph evolves according to the following rules:

• at time n = 2 the graph consists of the two vertices {1, 2} connected by one edge;
• at time n + 1 the new vertex n + 1 is added and it is linked with an edge to vertex

i ∈ Vn = {1, 2, . . . , n} with probability di(n)+δ
2(n−1)+nδ , where di(n) is the degree of the vertex i

at time n, i.e. the number of edges having i as endpoint.

Note that Gn is a connected graph.
We now define a stochastic dynamics, whose evolution depends on the realization of the graph

sequence (Gn)n≥2, which therefore plays a role analogous of that of a dynamic random environment.
We adopt here the standard “quenched” point of view: we assume a realization of the sequence
(Gn)n≥2 is given, and we aim at proving results that hold for almost every realization of the graph
sequence.
We consider the following random evolution, indexed by the same time variable n ≥ 2. Let S be
a finite set, representing possible choices made by “individuals” i ∈ Vn. To each vertex i ∈ Vn is
associated a probability pn,i ∈ P(S). The quantity pn,i(x) (x ∈ S) represents the inclination of
individual i to adopt the choice x at time n or, in different terms, the relative opinion of individual i
about x: the higher this value, the better the opinion of i on x compared with that on the other
alternatives y 6= x (y ∈ S). The following two-steps dynamics occurs before the arrival of the
(n+ 1)st vertex.
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Step 1 : (consensus) Through a fast consensus dynamics on the graph Gn, the pn,i are homogenized:
every vertex ends up with the same inclination

Zn,i = Zn :=
1

n

n∑

i=1

pn,i.

Step 2 : (hub’s influence) Let jn be a vertex chosen arbitrarily among those of maximal degree.
This vertex exhibits a choice In+1 = x with probability Zn(x), i.e. according to his (and
everyone else’s) inclination. The exhibition of the choice has influence on the inclination of
the vertex jn’s neighbors, so that, given In+1 = x:

pn+1,j = λδx + (1− λ)Zn if j is a neighbor of jn
pn+1,j = Zn otherwise,

where λ ∈ (0, 1) is a given constant and δx denotes the Dirac measure at x ∈ S.

After these two steps, the vertex n+1 is added; its inclination pn+1,n+1 right after arrival could be
taken arbitrarily; just for simplicity in next formulas, we set pn+1,n+1 = Zn.
This dynamics allows to obtain a recursive formula for Zn:

Zn+1 =
1

n+ 1

[
(n+ 1− djn(n))Zn + djn(n)(λδIn+1 + (1− λ)Zn)

]

=
1

n+ 1

[
(n+ 1− λdjn(n))Zn + λdjn(n)δIn+1

]

= (1− rn)Zn + rnδIn+1 ,

where

rn :=
λdjn(n)

n+ 1
. (3)

This has the form (1) with Kn(y) = δy.

It should be stressed that many variants of this consensus-influence dynamics could be considered
as well; for instance, influence could be exercised by vertices other than those with maximal degree,
e.g. with a degree dependent probability. Our specific choice makes particularly easy to verify the
conditions of some of the results below, see Remark 2.4 for details.

Finally, we remark that the dynamics (1) are special cases of stochastic algorithms, that are
treated with stochastic approximation methods and are used in many different contexts and appli-
cations (see [6] for an overview, [30] for a general reference and applications and [19] for classical
results in the spirit of this paper). In particular, (1) admits the following algorithmic interpreta-
tion. Let K : S → P(S) be given. It can be viewed as a stochastic kernel that induces a map
TK : P(S) → P(S) by

TKµ :=
∑

y∈S

µ(y)K(y).

Then, (1) is a version of the Robbins-Monro algorithm (see [30]) to obtain a fixed point of TK , i.e.
a stationary distribution of the S-valued Markov chain with transition kernel K.

This paper is concerned with systems of N interacting random walks in which, to N evolutions
as in (1), we add an interaction term of mean-field type. We are particularly interested in the phe-
nomenon of synchronization, that could be roughly defined as the tendency of different components
to adopt a common long-time behavior. This phenomenon has been subject to recent investigation
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in systems of many interacting particles, where synchronization emerges in the large-scale limit
[11, 22, 37]. More recently, interacting urn models have attracted attention as prototypical dy-
namics subject to reinforcement [2, 7, 34, 36, 38]. For some of these dynamics, synchronization is
induced by reinforcement, so it does not require a large-scale limit [13, 16, 31, 32]. Another context
in which synchronization emerges naturally is that of opinion dynamics in a population [20]. We
have proposed here in Example 1.2 a version of opinion dynamics in an evolving population: the
interacting version could be interpreted as related to different homogeneous groups within a given
population, in the same spirit as in [10, 12].

In this work, to avoid complications, we focus on the case S = {0, 1}, so that there is only
one relevant variable, Zn := Zn(1); moreover we assume Kn(y) = K(y) to be independent of
time. Concerning the examples considered above, this time-independence property holds for the
opinion models in preferential attachment graphs; in urn models a sufficient condition is that the
reinforcement matrix An is of the form An = cnA for some cn > 0 and a given matrix A independent
of n. This includes generalizations of Pólya and Friedman models, where the reinforcement matrix
is allowed to depend on n. The most general function K : S → P(S) can be written in the form

K(y) = ρδy + (1− ρ)q, (4)

for some ρ ∈ [0, 1] and a given q ∈ P(S). After identifying q with q(1), the evolution of the i-th
walk is therefore given by

Zn+1(i) = (1− rn)Zn(i) + rn(ρIn+1(i) + (1− ρ)q). (5)

The interaction enters in the conditional law of In+1(i): Setting

Fn := σ(Zk(i) : i = 1, 2, . . . , N ; 0 ≤ k ≤ n) ,

we assume that the random variables {In+1(i), i = 1, 2, . . . , N} are conditionally independent
given Fn with

P (In+1(i) = 1|Fn) = (1− α)Zn(i) + αZn (6)

where α ∈ [0, 1] is the interaction parameter and

Zn :=
1

N

N∑

i=1

Zn(i). (7)

Under suitable conditions on rn, but actually no conditions if ρ = 1, the sequence (Zn) converges
almost surely to a limit Z. In the spirit of similar results for urn models, we study the correspond-
ing rate of convergence and, in some cases, we obtain a fluctuation Theorem in functional form.
We compare this rate of convergence with the rate of synchronization, which we define as the rate
at which Zn(i)−Zn converges to zero. As observed in [40] for interacting Friedman urns, synchro-
nization may be faster than convergence. In our model we show that this occur when ρ = 1 and
rn ∼ c

nγ with c > 0 and 1
2 < γ < 1. We stress the fact that this is not a large-scale phenomenon,

in the sense that it holds for any value of N .

The paper is organized as follows. In section 2 we present our main results. Section 3 contains
some basic identities often used in the proofs. Sections 4-7 are then devoted to proofs.
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2. Main results

From now on we study interacting dynamics of the form defined by (5), (6) and (7). We assume
that the initial configuration [Z0(i)]

N
i=1 has a permutation invariant distribution with E[Z0(i)] =

1
2

and E[Z0(1 − Z0)] > 0 where Z0 := N−1
∑N

i=1 Z0(i). The value 1
2 could be replaced by z0 ∈ (0, 1)

at the only cost of longer formulas. It is worthwhile also to note that these assumptions will be
used only in some of our proofs and they could be weakened.

2.1. Convergence and synchronization. The following theorem describes the convergence of
the sequence (Zn).

Theorem 2.1.

(i) If ρ = 1, then Zn converges almost surely to a random variable Z. Moreover:
a) If α > 0, then

P(Z ∈ {0, 1}) = 1 ⇔
∑

n

r2n = +∞; (8)

b) If α = 0, each Zn(i) converges almost surely to a random variable Z(i) such that

P(Z(i) ∈ {0, 1}) = 1 ⇔
∑

n

r2n = +∞. (9)

(ii) If ρ < 1 and
∑

n

rn = +∞ and
∑

n

r2n < +∞ , (10)

then Zn → q almost surely.

The following result particularly points out that in the case of a single walk, strengthening
condition (8) one gets the phenomenon of fixation. Note that this phenomenon has been observed
in various urn models, see e.g. [17, 31, 32].

Proposition 2.2. Assume N = 1. If

ρ = 1 and
∑

n≥1

exp

[
−

n∑

k=0

r2k

]
< +∞ (11)

or

ρ < 1, q ∈ {0, 1} and
∑

n

rn = +∞ , (12)

then there exists a random index M such that with probability one the indicator functions {In : n ≥
M} have all the same value.

Note that, if rn = O(n−γ), then (8) holds for γ ≤ 1
2 , while (11) for γ < 1

2 . Moreover, (10) holds

for 1
2 < γ ≤ 1.

Next theorem establishes the fact that synchronization indeed takes place as soon as either
interaction is present (α > 0) or the limit of Zn is deterministic (ρ < 1).
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Theorem 2.3. Suppose that (10) holds and ρ(1−α) < 1. Then, for all i ∈ {1, 2, . . . , N}, we have

Zn(i)− Zn −→ 0 a.s.

In particular, if Z is the almost sure limit of Zn = 1
N

∑N
i=1 Zn(i) (note that, for ρ < 1, by Theorem

2.1, Z = q), we have Zn(i) → Z almost surely.

As we will see, the proof of this result does not require the assumptions on the initial configura-
tion.

Remark 2.4. At this point it is worth discussing the assumptions in the previous results, in the
context of the applications 1.1 and 1.2 proposed in the introduction.

Urn models. Consider an urn model with reinforcement matrix An of the form An = cnA. So,
after the (n + 1)-st drawing, the number of balls added into the urn is An = cnA and therefore

rn =
cnA

N(0) +A
∑n

k=0 ck
.

As observed in the introduction, rn is of order 1
n whenever cn grows polynomially, so (10) holds.

For a different behavior one has to consider a faster growing reinforcement, e.g cn = exp
(
nβ
)
. In

this case, for 0 < β < 1, it is easily shown that rn is of order 1
n1−β , thus (8), (11) or (10) may hold

depending on the value of β.

Opinion dynamics. Note that in this model ρ = 1. By Theorem 8.8 in [28], the maximal degree
djn(n) at time n is such that the limit

lim
n→+∞

djn(n)

n
1

2+δ

=: l

exists for almost every realization of the graph sequence (Gn)n≥2. Thus, given the definition (3) of

rn, we have rn ∼ c
nγ , with γ = 1+δ

2+δ and c = λl. It follows that the conditions (10) hold for every

δ > 0. For −1 < δ ≤ 0, condition (8) holds and so the population’s inclination “polarizes”, i.e. it
converges to the Dirac measure concentrated on one choice.

2.2. Fluctuation theorems. Assume ρ(1 − α) < 1 and rn ∼ c
nγ , where

1
2 < γ ≤ 1, with the

meaning
lim

n→+∞
nγrn = c > 0.

Note that the above assumptions imply that Theorem 2.3 holds. In all the following theorems, the

notation
d

−→ denotes convergence in distribution with respect to the classical Skorohod’s topology
(see e.g. [8]).

Next result describes the fluctuations of Zn around its limit Z in terms of a functional Central
Limit Theorem in the case ρ = 1.

Theorem 2.5. Suppose ρ = 1 (and so α > 0). Then the random limit Z of Zn is such that
P(Z ∈ {0, 1}) < 1 and P(Z = z) = 0 for all z ∈ (0, 1). Moreover the following holds:

(
t2γ−1nγ− 1

2 (Z⌊nt⌋ − Z)
)
t≥0

d
−→ (WVt)t≥0 (13)

where

Vt =
c2

N(2γ − 1)
Z(1− Z)t2γ−1

and W = (Wt)t≥0 is a Wiener process independent of V = (Vt)t≥0.
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Next theorem characterizes the rate of synchronization, i.e. the rate of convergence to zero of
Zn(i)− Zn, in terms of a functional Central Limit Theorem in the case ρ = 1.

Theorem 2.6. Suppose ρ = 1 (and so α > 0).

(i) If 1
2 < γ < 1 then

(
nγ/2ecαt

(
Z⌊n+nγt⌋(i) − Z⌊n+nγt⌋

))
t≥0

d
−→ (WVt)t≥0,

where

Vt =

(
1−

1

N

)
cZ(1− Z)

2α
e2cαt.

and W = (Wt)t≥0 is a standard Brownian motion independent of V = (Vt)t≥0.
(ii) If γ = 1 and 2cα > 1, then

(
n1/2(1 + t)cα

(
Z⌊n+nt⌋(i)− Z⌊n+nt⌋

))
t≥0

d
−→ (WVt)t≥0,

where

Vt =

(
1−

1

N

)
c2Z(1− Z)

2cα − 1
(1 + t)2cα−1.

and W = (Wt)t≥0 is a standard Brownian motion independent of V = (Vt)t≥0

Remark 2.7. When ρ = 1, since γ/2 > γ − 1/2 for 1
2 < γ < 1, by Theorems 2.5 and 2.6, we

have that in this regime synchronization is faster than convergence. More precisely, the proof of
Theorem 2.6 implicitly contains the fact that, for 1/2 < γ < 1,

E
[
(Zn(i)− Zn)

2
]
∼

(
1−

1

N

)
C1 n

−γ (14)

with a suitable constant C1 = c(2α)−1E[Z(1−Z)] > 0 by Theorem 2.1. This fact, by permutation
invariance, implies that we have for i 6= j

E
[
(Zn(i)− Zn(j))

2
]
= 2

N

N − 1
E
[
(Zn(i)− Zn)

2
]
∼ 2C1 n

−γ .

On the other hand, the proof of Theorem 2.5 (see also the proof of Proposition 5.1) implicitly
contains the fact that, for 1/2 < γ < 1,

E
[
(Zn − Z)2

]
∼

1

N
C2 n

−(2γ−1)

with a suitable constant C2 = c2(2γ − 1)−1E[Z(1 − Z)] > 0 by Theorem 2.1. This fact, together
with (14), implies that, for each i, we have

E
[
(Zn(i)− Z)2

]
∼ E

[
(Zn − Z)2

]
∼

1

N
C2 n

−(2γ−1).

Therefore, for ρ = 1 and 1/2 < γ < 1, the velocity of convergence to zero of ‖Zn(i) − Zn(j)‖L2 is
greater than the one of ‖Zn(i)− Z‖L2 .

In the case of ρ < 1 and q 6∈ {0, 1} the rate of convergence of Zn to its limit q is, for 1
2 < γ < 1,

different from the scaling in Theorem 2.5, and matches that in Theorem 2.6, that is γ/2. The
following two results, in particular, show that convergence and synchronization occur at the same
rate.

Theorem 2.8. Suppose ρ < 1 and q 6∈ {0, 1}.
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(i) If 1
2 < γ < 1, then

(
nγ/2ec(1−ρ)t

(
Z⌊n+nγt⌋ − q

))
t≥0

d
−→ (WVt)t≥0,

where W = (Wt)t≥0 is a standard Brownian motion and

Vt =
cq(1− q)ρ2

2N(1 − ρ)
e2c(1−ρ)t.

(ii) If γ = 1 and 2c(1 − ρ) > 1, then
(
n1/2(1 + t)c(1−ρ)

(
Z⌊n+nt⌋ − q

))
t≥0

d
−→ (WVt)t≥0,

where W = (Wt)t≥0 is a standard Brownian motion and

Vt =
c2q(1− q)

N(2c(1 − ρ)− 1)
(1 + t)2c(1−ρ)−1.

Theorem 2.9. Suppose ρ < 1 and q 6∈ {0, 1}.

(i) If 1
2 < γ < 1, then

(
nγ/2ec(1−ρ(1−α))t

(
Z⌊n+nγt⌋(i)− Z⌊n+nγt⌋

))
t≥0

d
−→ (WVt)t≥0,

where W = (Wt)t≥0 is a standard Brownian motion and

Vt =

(
1−

1

N

)
cρ2q(1− q)

2(1− ρ(1− α))
e2c(1−ρ(1−α))t .

(ii) If γ = 1 and 2c(1 − ρ(1− α)) > 1, then
(
n1/2(1 + t)c(1−ρ(1−α))

(
Z⌊n+nt⌋(i)− Z⌊n+nt⌋

))
t≥0

d
−→ (WVt)t≥0,

where W = (Wt)t≥0 is a standard Brownian motion and

Vt =

(
1−

1

N

)
c2q(1− q)

2c(1 − ρ(1− α)) − 1
(1 + t)2c(1−ρ(1−α))−1.

Remark 2.10. Functional Central Limit Theorems in the spirit of those above have been proved
for various urn models (e.g. [3, 5, 24, 29, 42]). In particular [3, 24] and [42] contain results for
Friedman urn models and Pólya urn models respectively, that in our model correspond to the case
N = 1 and γ = 1. The results for the fluctuations of the Friedman urn, in particular, show that
the condition 2c(1− ρ(1− α)) > 1 in Theorem 2.9 is essential: the Friedman urn that corresponds
to 2c(1 − ρ(1 − α)) < 1 is known to have non-Gaussian fluctuations (see [21]), so no convergence
to a Gaussian process is possible. The case of one Friedman urn with 2c(1 − ρ) = 1 is considered
in [24]: a functional central limit theorem holds with a logarithmic correction in the scaling. We
do not consider this case here.
For interacting Pólya urns (γ = 1) a non functional version of Theorem 2.6 is proved in [13], under
the same condition 2cα > 1. For interacting Friedman urns (γ = 1) a non functional version of
Theorem 2.9 is proved in [40].
We finally remark that the non-functional version of Theorem 2.8 could be alternatively derived
by following stochastic approximation methods (see e.g. [6, 19, 30]).
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Remark 2.11. Regarding the assumption on q of Theorems 2.8 and 2.9, we note that, if q ∈ {0, 1},
when γ < 1, the behaviors of Zn and Zn(i) are “eventually deterministic” (as can be easily derived
by the same argument used for Proposition 2.2). Therefore the only case to be considered is when
γ = 1, but we will not deal with it in this paper. For N = 1, a functional central limit Theorem
could be obtained as in Proposition 2.2 of [24].

3. Basic properties

In this section we derive some simple recursions on the random walks Zn(i) and on Zn =
1
N

∑N
i=1 Zn(i), that will be used several times.

By averaging over i in (5), we have

Zn+1 − Zn = rn

[
ρ

(
N−1

N∑

i=1

In+1(i)− Zn

)
− (1− ρ)(Zn − q)

]

with

E

[
N−1

N∑

i=1

In+1(i)
∣∣∣Fn

]
= Zn.

Therefore we can write

Zn+1 = Zn − rn(1− ρ)(Zn − q) + ρrn∆Mn+1, (15)

where

∆Mn+1 = N−1
N∑

i=1

In+1(i)− E

[
N−1

N∑

i=1

In+1(i)
∣∣∣Fn

]
= N−1

N∑

i=1

In+1(i)− Zn. (16)

Then, subtracting (15) to (5), we obtain

Zn+1(i)− Zn+1 = [1− rn(1− ρ(1− α))](Zn(i)− Zn) + rnρ[∆Mn+1(i)−∆Mn+1], (17)

where

∆Mn+1(i) = In+1(i) − E[In+1(i)|Fn]. (18)

In particular, from the relations above, we have

E[Zn+1 − q|Fn] = [1− (1− ρ)rn](Zn − q) (19)

E[Zn+1(i)− Zn+1|Fn] = [1− (1− ρ(1− α))rn] (Zn(i)− Zn) (20)

and

Var[Zn+1(i)− Zn+1|Fn] = r2nρ
2E
[
(∆Mn+1(i) −∆Mn+1)

2|Fn

]

= r2nρ
2

(
1−

1

N

)2

Var[In+1(i)|Fn] +
r2nρ

2

N2

∑

j 6=i

Var[In+1(j)|Fn] (21)

Var[Zn+1|Fn] =
r2nρ

2

N2

N∑

j=1

Var[In+1(j)|Fn]. (22)
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4. Proofs: convergence and synchronization

4.1. Proof of Theorem 2.1.

Part (i)(a) Here we assume ρ = 1 and α > 0. By (15), we immediately get that (Zn) is a bounded
martingale. Therefore, it converges a.s. (and in Lp) to a random variable Z, with values in [0, 1].

Since by assumption E[Z0(i)] =
1
2 for every i, we have E(Z) = 1

2 . Moreover P (Z ∈ {0, 1}) = 1 if
and only if

Var(Z) = lim
n→+∞

Var(Zn) =
1

4
.

By using (22), we have

Var[Zn+1] = E[Var(Zn+1|Fn)] + Var[E(Zn+1|Fn)]

= r2nN
−2

N∑

i=1

E [((1− α)Zn(i) + αZn) (1− (1 − α)Zn(i) − αZn)] + Var[Zn]

= r2nE

[
Zn/N − (α2 + 2(1 − α)α)Z2

n/N − (1− α)2
N∑

i=1

Z2
n(i)/N

2

]
+Var[Zn]

= r2nE


Zn/N − (1− (1− α)2)Z2

n/N − (1− α)2Z2
n + (1− α)2

∑

i 6=j

Zn(i)Zn(j)/N
2


+Var[Zn]

= [1/N − (1− α)2(1 − 1/N)]r2n/4 + (1− α)2r2n
∑

i 6=j

E[Zn(i)Zn(j)]/N
2

+
{
1− [1/N + (1− α)2(1− 1/N)]r2n

}
Var[Zn]

= [1/N + (1− α)2(1 − 1/N)]r2n/4− (1− α)2(1− 1/N)r2n/2 + (1− α)2r2n
∑

i 6=j

E[Zn(i)Zn(j)]/N
2

+
{
1− [1/N + (1− α)2(1− 1/N)]r2n

}
Var[Zn].

Now we observe that, using the permutation invariance, we have E[Z2
n(i)] ≤ E[Zn(i)] =

1
2 for all i

and ∑

i 6=j

E[Zn(i)Zn(j)]/N
2 = E[Z2

n]−
1

N
E[Z2

n(1)] ≥ Var[Zn] +
1

4
−

1

2N
.

Using this fact in the formula above, we get

Var[Zn+1] ≥

[
1−

1

N
(1− (1− α)2)r2n

]
Var[Zn] +

1

N
(1− (1− α)2)

r2n
4
,

which, by letting xn := 1
4 −Var[Zn] ≥ 0, is equivalent to

xn+1 ≤
(
1−Cr2n

)
xn (23)

with C := 1−(1−α)2

N ∈ ]0, 1] for 0 ≤ (1− α) < 1. Therefore

xn ≤ x0

n−1∏

k=0

(
1− Cr2k

)

which implies xn → 0 if
∑

n r
2
n = +∞.
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We are left to prove that if
∑

n r
2
n < +∞ then xn 6→ 0. From the above equalities, we have

Var[Zn+1] = r2nN
−2

N∑

i=1

E [(1− α)Zn(i) + αZn]− E
[
((1− α)Zn(i) + αZn)

2
]
+Var[Zn]

=
r2n
N

E[Zn]−
r2n
N2

N∑

i=1

E
[
(Zn + (1− α)(Zn(i)− Zn))

2
]
+Var[Zn]

=
r2n
N

E[Zn]−
r2n
N

E[Z2
n]−

r2n
N2

(1− α)2
N∑

i=1

E
[
(Zn(i)− Zn)

2
]
+Var[Zn]

≤
r2n
N

E[Zn]−
r2n
N

E[Z2
n] + Var[Zn] =

r2n
4N

+

(
1−

r2n
N

)
Var[Zn],

where we have used the identities E(Zn) =
1
2 and E[Z2

n] =
1
4 +Var[Zn]. Thus we have

xn+1 ≥

(
1−

r2n
N

)
xn,

from which it follows

xn ≥ x0

n−1∏

k=0

(
1−

r2k
N

)
,

where x0 > 0 by assumption. Since,
∑

n r
2
n < +∞ by assumption, we obtain limn→+∞ xn > 0.

Part(i)(b). In the case when ρ = 1 and α = 0, each (Zn(i)) is a bounded martingale and so we
have the almost sure (and in Lp) convergence of Zn(i) to a random variable Z(i) with values in
[0, 1]. Moreover, with similar computation as above, we have

Var[Zn+1(i)] =
r2n
4

+ (1− r2n)Var[Zn(i)]

that is
xn+1(i) = (1− r2n)xn(i) (24)

where xn(i) :=
1
4 −Var[Zn(i)]. Therefore the conclusion immediately follows.

Part (ii). We are now assuming ρ < 1 and (10), that is
∑

n rn = +∞ and
∑

n r
2
n < +∞.

Using (15), we have

E
[
(Zn+1 − q)2 |Fn

]
= (Zn−q)2[1−2(1−ρ)rn]+r2n

{
(1− ρ)2(Zn − q)2 + ρ2E

[
(∆Mn+1)

2|Fn

]}
(25)

from which we obtain

E
[
(Zn+1 − q)2 |Fn

]
≤ (Zn − q)2 + r2nξn

where ξn :=
{
(1− ρ)2(Zn − q)2 + ρ2E

[
(∆Mn+1)

2|Fn

]}
is bounded. Therefore, since

∑
n r

2
n < +∞,

we can conclude that
(
(Zn−q)2

)
n
is a positive almost supermartingale (see [39]) and so it converges

almost surely (and in Lp). In order to show that this limit is 0, we are left to show that

lim
n→+∞

E
[
(Zn − q)2

]
= 0. (26)

Averaging in (25) and letting xn := E
[
(Zn − q)2

]
, we have

xn+1 = [1− 2(1 − ρ)rn]xn +Knr
2
n,
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with

0 ≤ Kn :=
{
(1− ρ)2E[(Zn − q)2] + ρ2E

[
(∆Mn+1)

2
]}

≤ 1.

Recalling the assumptions (10) and ρ < 1, the conclusion follows from Lemma A.1.

4.2. Proof of Proposition 2.2. First suppose that (11) holds. Setting xn := 1
4 − Var[Zn] and

using (24), we have, for a suitable positive constant C,

xn = x0

n−1∏

k=0

(1− r2k) ∼ C exp

[
−

n∑

k=0

r2k

]
. (27)

Now
+∞∑

n=1

P (In = 0, In+1 = 1) =

+∞∑

n=1

E[P (In = 0, In+1 = 1|Fn)] =

+∞∑

n=1

E[(1− In)Zn]

=

+∞∑

n=1

E[(1− In)(Zn−1(1− rn−1) + rn−1In)]

=

+∞∑

n=1

E[(1− In)Zn−1(1− rn−1)] then, conditioning on Fn−1,

=

+∞∑

n=1

(1− rn−1)E[Zn−1(1− Zn−1)]

≤
+∞∑

n=1

E[Zn−1(1− Zn−1)] =
+∞∑

n=1

xn−1 < +∞

by (27) and (11). Then by Borel-Cantelli lemma P (lim supn{In = 0, In+1 = 1}) = 0 and the
conclusion follows.

Now, assume (12) and q = 0 (the case q = 1 is specular), by a similar argument as above, we get
∑

n

P (In+1 = 1) =
∑

n

E(Zn) < +∞

since E[Zn] ∼ C exp[−(1− ρ)
∑n

k=0 rk].

4.3. Proof of Theorem 2.3. We aim at showing that

Zn(i) − Zn −→ 0 a.s (28)

Set xn := E
[
(Zn(i)− Zn)

2
]
. The proof is essentially the same as that of Theorem 2.1, (ii): we first

show that
(
(Zn(i)− Zn)

2
)
is a positive almost supermartingale, which implies almost sure (and in

Lp) convergence to a limit, and then we show that

lim
n→+∞

xn = 0, (29)

so that the limit of Zn(i)− Zn is a.s. zero.
By (17), we obtain

E[(Zn+1(i)− Zn)
2|Fn] = [1− 2rn(1− ρ(1− α))](Zn(i)− Zn)

2

+ r2n
{
(1− ρ(1− α))2(Zn(i)− Zn)

2 + ρ2E
[
(∆Mn+1(i)−∆Mn+1)

2|Fn

]}
(30)
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and so

E[(Zn+1(i)− Zn)
2|Fn] ≤ (Zn(i)− Zn)

2 + r2nξn,

where ξn := (1 − ρ(1 − α))2(Zn(i) − Zn)
2 + ρ2E

[
(∆Mn+1(i) −∆Mn+1)

2|Fn

]
is bounded. Since∑

n r
2
n < +∞, this implies that ((Zn+1(i)− Zn)

2) is a positive almost supermartingale.

It remains to prove (29). Taking the expected value in (30), we obtain

xn+1 = [1− 2(1 − ρ(1− α))rn]xn +Knr
2
n

for a bounded sequence (Kn)n of positive numbers. Since we assume (10) and ρ(1 − α) < 1, the
conclusion follows by applying Lemma A.1.

5. Fluctuation theorems I: proof of Theorem 2.5

The synchronization result in Theorem 2.3 gives, for ρ(1− α) < 1,

Var[In+1(i)|Fn] = ((1− α)Zn(i) + αZn) (1− (1− α)Zn(i)− αZn) −→ Z(1− Z) a.s. (31)

for all i. This, together with (21) and (22), implies the following useful relations:

Var[Zn+1(i) − Zn+1|Fn] ∼ r2nρ
2

(
1−

1

N

)
Z(1− Z) (32)

Var[Zn+1|Fn] ∼
r2nρ

2

N
Z(1− Z). (33)

Before proving fluctuation theorems in the functional form, we prove a fluctuation theorem in
non-functional form, but with a stronger form of convergence, the almost sure conditional conver-
gence (see the appendix for details). This result, which has independent interest, is useful here to
prove that the limit Z has no point mass in (0, 1). We recall that, in this section, we assume ρ = 1
and (1− α) < 1.

Proposition 5.1. Under the assumptions of Theorem 2.5,

nγ− 1
2 (Zn − Z)

stably
−→ N

(
0,

c2

N(2γ − 1)
Z(1− Z)

)
.

Moreover, the above convergence is in the sense of the almost sure conditional convergence w.r.t.
F = (Fn).

Proof. We want to apply Theorem B.1. Let us consider, for each n ≥ 1, the filtration (Fn,h)h∈N
and the process (Mn,h)h∈N defined by

Fn,0 = Fn,1 = Fn, Mn,0 = Mn,1 = 0

and, for h ≥ 2,

Fn,h = Fn+h−1, Mn,h = nγ− 1
2 (Zn − Zn+h−1).

By (15) (with ρ = 1), it is easy to verify that, with respect to (Fn,h)h≥0, the process (Mn,h)h≥0 is

a martingale which converges in L1 (for h → +∞) to the random variable Mn,∞ := nγ− 1
2 (Zn −Z).

In addition, the increment Xn,j := Mn,j − Mn,j−1 is equal to zero for j = 1 and, for j ≥ 2, it

coincides with a random variable of the form nγ− 1
2 (Zk − Zk+1) with k ≥ n. Therefore, we have



14 SYNCHRO AND FCLT FOR INTERACTING RW

∑

j≥1

X2
n,j = n2γ−1

∑

k≥n

(Zk − Zk+1)
2 = n2γ−1

∑

k≥n

r2k

(
N−1

N∑

i=1

Ik+1(i)− Zk

)2

a.s.
∼ c2n2γ−1

∑

k≥n

k−2γ

(
N−1

N∑

i=1

Ik+1(i) − Zk

)2

a.s.
−→

c2

N(2γ − 1)
Z(1− Z)

where the last convergence follows from Lemma 4.1 in [13] (where, using the notation of such

lemma, ak = k1−(2γ−1), bk = k2γ−1, Yk =
(
N−1

∑N
i=1 Ik+1(i) − Zk

)2
and Gk = Fk+1) and the fact

that, by (31), we have

E



(
N−1

N∑

i=1

In+1(i) − Zn

)2 ∣∣∣Fn


 = Var

[
N−1

N∑

i=1

In+1(i)
∣∣∣Fn

]

= N−2
N∑

i=1

Var [In+1(i)|Fn]

a.s.
−→ N−1Z(1− Z).

(34)

Moreover, again by (15) (with ρ = 1), we have

X∗
n = sup

j≥1
|Xn,j| = nγ− 1

2 sup
k≥n

|Zk − Zk+1| ≤ sup
k≥n

kγ−
1
2 |Zk − Zk+1|

≤ sup
k≥n

kγ−
1
2 rk

a.s.
−→ 0.

(35)

Hence, if in Theorem B.1 we take kn = 1 for each n and U equal to the σ-field
∨

nFn, then the
conditioning system (Fn,kn)n coincides with the filtration F and the assumptions are satisfied. The
proof is thus complete.

We are now ready for the proof of Theorem 2.5. We split it into two steps.

Step 1: The fact that P(Z ∈ {0, 1}) < 1 follows from Theorem 2.1. The proof that P(Z = z) = 0
for all z ∈ (0, 1) is now a consequence of the almost sure conditional convergence in Proposition
5.1, exactly as in Theorem 3.2 in [13]. Indeed, if we denote by Kn a version of the conditional

distribution of nγ− 1
2 (Zn − Z) given Fn, then there exists an event A such that P (A) = 1 and, for

each ω ∈ A,

limnZn(ω) = Z(ω) and Kn(ω)
weakly
−→ N

(
0,

c2

N(2γ − 1)
(Z(ω)− Z2(ω))

)
.

Assume now, by contradiction, that there exists z ∈ (0, 1) with P (Z = z) > 0, and set A′ =

A ∩ {Z = z} and define Bn as the Fn-measurable random set {nγ− 1
2 (Zn − z)}. Then P (A′) > 0

and, since E
[
I{Z=z} | Fn

]
converges almost surely to I{Z=z}, there exists an event A′′ such that

P (A′′) > 0, A′′⊂A′ and, for each ω ∈ A′′,

Kn(ω)(Bn(ω))=E
[
I
{nγ− 1

2 (Zn−z)}

(
nγ− 1

2 (Zn − Z)
) ∣∣Fn

]
(ω)=E

[
I{Z=z} | Fn

]
(ω)−→I{Z=z}(ω)=1.
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On the other hand, we observe that Z(ω)−Z2(ω) 6= 0 when ω ∈ A′. Hence, if D is the discrepancy
metric defined by

D[µ, ν] = sup{B∈{closed balls of R}}|µ(B)− ν(B)|,

which metrizes the weak convergence of a sequence of probability distributions on R in the case
when the limit distribution is absolutely continuous with respect to the Lebesgue measure on R

(see [23]), then, for each ω ∈ A′, we have

Kn(ω)(Bn(ω)) =

∣∣∣∣Kn(ω)(Bn(ω))−N

(
0,

c2

N(2γ − 1)
(Z(ω)− Z2(ω))

)
(Bn(ω))

∣∣∣∣

≤ D

[
Kn(ω),N

(
0,

c2

N(2γ − 1)
(Z(ω)− Z2(ω))

)]
−→ 0.

This contradicts the previous fact and the proof of the first step is concluded.

Step 2: We now prove the functional fluctuation result in (13). First of all, we want to verify the
three conditions (a2), (b2), (c2) in Theorem B.5 for the stochastic processes

S
(n)
t =

1

n(2γ−1)/2

⌊nt1/(2γ−1)⌋∑

k=1

k2γ−1(Zk − Zk−1)

in order to obtain a convergence result for S(n) on the space (T,m) defined in the appendix. Finally,
by applying a suitable continuous transformation, we will arrive to (13).

Proof of condition (a2): We want to use Theorem B.2. Let us set Fn,k = Fk,

Xn,k =
k2γ−1(Zk − Zk−1)

n(2γ−1)/2
and kn(t) = ⌊n t1/(2γ−1)⌋

so that S
(n)
t =

∑kn(t)
k=1 Xn,k. We observe that

kn(t)∑

k=1

E[X2
n,k | Fn,k−1] =

1

n2γ−1

kn(t)∑

k=1

k4γ−2E[(Zk − Zk−1)
2|Fk−1]

a.s.
∼

(
kn(t)

n

)2γ−1 c2

(kn(t))
2γ−1

kn(t)∑

k=1

1

k1−(2γ−1)
E



(
N−1

N∑

i=1

Ik(i)− Zk−1

)2 ∣∣∣Fk−1




a.s.
−→ Ṽt =

c2

N(2γ − 1)
Z(1− Z)t

(36)

(where, in the last step, we have used (34) and limn kn(t)/n = t1/(2γ−1)) and so condition (a1) of
Theorem B.2 is verified. Furthermore, for any u > 2, we have

kn(1)∑

k=1

E[ |Xn,k|
u ] =

1

nu(2γ−1)/2

n∑

k=1

ku(2γ−1)E[ |Zk − Zk−1|
u ] =

1

nu(2γ−1)/2

n∑

k=1

ku(2γ−1)O(k−uγ)

=
1

nu(2γ−1)/2

n∑

k=1

O
(
1/k1−[1−u(1−γ)]

)
=





O(n−(u/2−1)) if 1− u(1− γ) > 0

O(n−u(2γ−1)/2) if 1− u(1− γ) < 0

O
(

ln(n)

n(2γ−1)/2(1−γ)

)
if 1− u(1− γ) = 0.
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Hence also condition (b1) of Theorem B.2 holds true (by Remark B.3 with u > 2) and we conclude
that

S
(n)
t =

kn(t)∑

k=1

Xn,k =
1

n(2γ−1)/2

⌊nt1/(2γ−1)⌋∑

k=1

k2γ−1(Zk − Zk−1)
d

−→ W̃ =
(
WṼt

)
t≥0

(w.r.t. Skorohod’s topology).

Proof of condition (b2): For each ǫ > 0, we observe that we have

E[n2(1/2+ǫ)(1−2γ)n4γ−2(Zn − Zn−1)
2] ≤ n2(1/2+ǫ)(1−2γ)+4γ−2r2n−1 ∼ c2n2(1/2+ǫ)(1−2γ)+4γ−2−2γ

=
c2

n1+2ǫ(2γ−1)
.

Therefore the martingale

(
n∑

k=1

k(1/2+ǫ)(1−2γ)k(2γ−1)(Zk − Zk−1)

)

is bounded in L2 and so
∑+∞

k=1 k
(1/2+ǫ)(1−2γ)k(2γ−1)(Zk − Zk−1) is a.s. convergent. By Kronecker’s

lemma, we get
∑n

k=1 k
(2γ−1)(Zk − Zk−1) = o(n(1/2+ǫ)(2γ−1)) a.s. This fact implies that, for each

fixed n, the process S(n) is such that S
(n)
t = o(t(1/2+ǫ)) a.s. as t → +∞.

Proof of condition (c2): Fix θ > 1/2, ǫ > 0 and η > 0. We want to verify that there exists t0 such
that

P

{
sup
t≥t0

|S
(n)
t |

tθ
> ǫ

}
≤ η. (37)

To this purpose, we observe that

S
(n)
t =

1

n(2γ−1)/2
L⌊nt1/(2γ−1)⌋ where Lk =

k∑

j=1

j2γ−1(Zj − Zj−1) =

k∑

j=1

ξj.

Denoting by C a suitable positive constant (which may vary at each step), we have

P

{
sup

t≥(n0/n)2γ−1

|S
(n)
t |

tθ
> ǫ

}
≤ P

{
|Lk| >

ǫk(2γ−1)θ

2n(2γ−1)θ−(2γ−1)/2
for some k ≥ n0

}

≤
+∞∑

i=1

P

{
max

2i−1n0≤k≤2in0

|Lk| >
ǫ
(
2i−1n0

)(2γ−1)θ

2n(2γ−1)θ−(2γ−1)/2

}

≤
16n2(2γ−1)θ−(2γ−1)

ǫ2n
2(2γ−1)θ
0

+∞∑

i=1

2−2i
2in0∑

j=1

E[ξ2j ]

≤ C
n2(2γ−1)θ−(2γ−1)

ǫ2n
2(2γ−1)θ
0

+∞∑

i=1

2−2i(2in0)
2γ−1

=
C

ǫ2

(
n

n0

)(2γ−1)(2θ−1) +∞∑

i=1

(
1

23−2γ

)i

=
C

ǫ2

(
n

n0

)(2γ−1)(2θ−1)
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where the third inequality is the Hájek-Rényi inequality for martingales (see the appendix) and we

used the fact that E[ξ2j ] ∼ C/j1−(2γ−1) with C > 0. Therefore, in order to obtain (37), it is enough

to set t2θ−1
0 = C

ǫ2η .

Conclusion: By Theorem B.5, we have

S(n) d
−→ W̃ =

(
WṼt

)
t≥0

on (T,m).

Now, let g : T → T ∗
1 be the Barbour’s transform (defined in the appendix) and observe that, since

(∆S(n))s = S(n)
s − S

(n)
s− =

{
k2γ−1(Zk−Zk−1)

n(2γ−1)/2 if k = ns1/(2γ−1)

0 otherwise,

we have

g(S(n))(t) =
∑

s≥1/t

(∆S(n))s
s

=
∑

k>⌊nt−1/(2γ−1)⌋

(n
k

)2γ−1 k2γ−1(Zk − Zk−1)

n(2γ−1)/2

= n(2γ−1)/2
∑

k>⌊nt−1/(2γ−1)⌋

(Zk − Zk−1) = n(2γ−1)/2
(
Z − Z⌊nt−1/(2γ−1)⌋

)
.

Therefore, by the properties of g (see the appendix), we get

g(S(n)) =
(
n(2γ−1)/2

(
Z − Z⌊nt−1/(2γ−1)⌋

))
t≥0

d
−→ g(W̃ )

d
= W̃ on (T ∗

1 ,m
∗
1).

Immediately, by symmetry of W , we get the convergence result of
(
n(2γ−1)/2(Z⌊nt−1/(2γ−1)⌋ − Z)

)
t≥0

to the stochastic process W̃ . Then, we can apply the continuous map h : T ∗
1 → D defined as

h(f)(0) = 0 and h(f)(t) = tf(t−1)

(see [27]) and obtain

(
tnγ− 1

2 (Z⌊nt1/(2γ−1)⌋ − Z)
)
t≥0

d
−→

(
h(W̃ )

)
t≥0

d
= W̃ =

(
WṼt

)
t≥0

(w.r.t. Skorohod’s topology).

(38)
Finally, we can set t = s2γ−1 and obtain

(
s2γ−1nγ− 1

2 (Z⌊ns⌋ − Z)
)
s≥0

d
−→ (WVs)s≥0 (w.r.t. Skorohod’s topology),

which coincides with (13).

6. Fluctuation theorems II: proof of Theorem 2.6

In all the sequel, we denote by C > 0 a suitable constant (which may vary at each step).

By (17), recalling that we are assuming ρ = 1, we have

E[Zn+1(i)− Zn+1|Fn] = (1− αrn) (Zn(i) − Zn) .

Thus, setting

ln =

n−1∏

k=0

1

1− αrk
,
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so that ln = (1− αrn)ln+1, we have that Ln = ln (Zn(i)− Zn) forms a martingale with

ξn = ∆Ln = Ln − Ln−1 = ln (Zn(i) − Zn − E[Zn(i)− Zn|Fn−1]) .

Observe that, if we fix ǫ ∈ (0, 1), for all n ≥ n̄ and n̄ sufficiently large

ln̄ exp

[
−

n∑

k=n̄

ln
(
1−

αc1
kγ

)]
≤ ln ≤ ln̄ exp

[
−

n∑

k=n̄

ln
(
1−

αc2
kγ

)]

where c1 = c(1− ǫ) and c2 = c(1 + ǫ).
In particular, recalling that the function ϕ(x) = −x− ln(1− x) is such that 0 ≤ ϕ(x) ≤ Cx2 for

0 ≤ x ≤ x̄ < 1, and assuming n̄ large enough such that αc2/k
γ ≤ x̄ for k ≥ n̄, we have for n ≥ n̄

ln̄ exp

[
n∑

k=n̄

αc1
kγ

]
≤ ln ≤ ln̄ exp

[
n∑

k=n̄

(
αc2
kγ

+ C
(αc2)

2

k2γ

)]
. (39)

As a simple consequence, we have for n large enough

ln ≥ ln̄ exp

[
n∑

k=n̄

αc1
kγ

]
≥

{
C exp

(
c1α
1−γn

1−γ
)

for 1/2 < γ < 1

Cnc1α for γ = 1.
(40)

This, in particular, implies

lim
n

nγ

l2n
= 0 and

+∞∑

n=1

l2nr
2
n−1 = +∞. (41)

Indeed, these facts follow from (40) immediately for 1/2 < γ < 1; while, for γ = 1 one has to note
that, since we assume 2cα > 1, we can choose ε small enough so that c1α > 1

2 .
We now use Theorem B.2 to obtain a functional central limit theorem for (Ln), from which the

corresponding result for (Zn(i)− Zn) will follow. Set

Xn,k =
nγ/2ξk
ln

,

Fn,k = Fk and kn(t) = ⌊n+nγt⌋. We start with showing condition (a1) of Theorem B.2. Note that

kn(t)∑

k=1

E[X2
n,k | Fn,k−1] =

nγ

l2n

kn(t)∑

k=1

E
[
ξ2k|Fk−1

]
=

nγ

l2n

kn(t)∑

k=1

l2kVar[Zk(i)− Zk|Fk−1]

a.s.
∼ (1− 1/N)Z(1− Z)

nγ

l2n

kn(t)∑

k=1

l2kr
2
k−1,

(42)
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where, in the last step, we have used the fact that limn n
γ/l2n = 0 and (32) with ρ = 1. In order to

estimate the sum
∑kn(t)

k=1 l2kr
2
k−1, we observe that, for k → +∞, we have

1

kγ
l2k −

1

(k − 1)γ
l2k−1 =

[
1

kγ
−

1

(k − 1)γ

]
l2k−1 +

1

kγ
(
l2k − l2k−1

)

=
[
−

γ

kγ+1
+ o(1/kγ+1)

]
l2k
l2k−1

l2k
+

1

kγ
l2k

(
1−

l2k−1

l2k

)

= −
γ

kγ+1
l2k(1− αrk−1)

2 + o(l2k/k
γ+1) +

1

kγ
l2k
[
1− (1− αrk−1)

2
]

= −
γ

kγ+1
l2k +

1

kγ
l2k
(
−α2r2k−1 + 2αrk−1

)
+ o(l2k/k

γ+1)

=

{ (
2αrk−1

k − 1
k2

)
l2k + o(l2kr

2
k−1) if γ = 1, 2cα > 1

2αrk−1

kγ l2k + o(l2kr
2
k−1) if 1/2 < γ < 1

∼

{
2cα−1

c2
l2kr

2
k−1 if γ = 1, 2cα > 1

2α
c l2kr

2
k−1 if 1/2 < γ < 1.

(43)

Therefore, recalling (41), we have

nγ

l2n

kn(t)∑

k=1

l2kr
2
k−1 ∼





c2

2cα−1
n
l2n

∑kn(t)
k=2

(
1
k l

2
k −

1
(k−1) l

2
k−1

)
∼ c2

2cα−1
n

kn(t)

l2
kn(t)

l2n
if γ = 1, 2cα > 1

c
2α

nγ

l2n

∑kn(t)
k=2

(
1
kγ l

2
k −

1
(k−1)γ l

2
k−1

)
∼ c

2α
nγ

kn(t)γ
l2
kn(t)

l2n
if 1/2 < γ < 1.

(44)

Observing that

lim
n

(
n

kn(t)

)γ

=

{
1 if 1/2 < γ < 1
1

1+t if γ = 1,
(45)

we are left to compute the limit

lim
n

lkn(t)

ln
.

This is done in the following Lemma.

Lemma 6.1. The following convergence holds uniformly over compact subsets of [0,+∞):

lim
n

lkn(t)

ln
=

{
ecαt for 1/2 < γ < 1
(1 + t)cα for γ = 1, 2cα > 1.

(46)

We postpone the proof of Lemma 6.1 and complete the proof of Theorem 2.6. Inserting (45) and
(46) in (44) and (42) we obtain

kn(t)∑

k=1

E[X2
n,k | Fn,k−1]

a.s.
−→

{
(1− 1/N) c

2αe
2cαtZ(1− Z) if 1/2 < γ < 1

(1− 1/N) c2

2cα−1(1 + t)2cα−1Z(1− Z) if γ = 1, 2cα > 1.

and condition (a1) of Theorem B.2 is verified.

We now prove condition (b1) of Theorem B.2, via Remark B.3 (with u > 2) and the sufficient
condition in (63). Let u > 2. Note that, using (17) and (20) with ρ = 1, we have |ξn+1| ≤ 2ln+1rn
for all n. Then

kn(1)∑

k=1

E[ |Xn,k|
u ] ≤ 2u

n
γu
2

lun

kn(1)∑

k=1

lukr
u
k−1. (47)
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This last sum can be estimated as we have done in (44). A computation analogous to the one made
in (43) gives

1

kγ(u−1)
luk −

1

(k − 1)γ(u−1)
luk−1 ∼

{
ucα−(u−1)

cu lukr
u
k−1 if γ = 1, ucα > (u− 1)

uα
cu−1 l

u
kr

u
k−1 if 1/2 < γ < 1.

(48)

Then, for 1/2 < γ ≤ 1 and suitable u > 2 (note that, when γ = 1, we have to choose u > 2 such
that ucα − (u − 1) = u(cα − 1) + 1 > 0 and this choice is possible since in this case 2cα > 1 by
assumption), we have

n
γu
2

lun

kn(1)∑

k=1

lukr
u
k−1 ∼ C

(
lkn(1)

ln

)u
n

γu
2

nγ(u−1)
−→ 0.

Thus, by applying Theorem B.2, we get
(
nγ/2

ln
Lkn(t)

)

t≥0

d
−→ (WVt)t≥0 ,

where (Vt)t≥0 and (Wt)t≥0 are defined in the statement of the theorem. Finally, recalling that
nγ/2

ln
Lkn(t) = nγ/2 lkn(t)

ln

(
Zkn(t)(i)− Zkn(t)

)
and using Lemma 6.1 the proof is complete.

Proof of Lemma 6.1. We begin by proving the claim for 1/2 < γ < 1. Note first that
lkn(t)

ln
= 1 if

t < n−γ , then for any T ≥ 1 we have

sup
t∈[0,T ]

∣∣∣∣
lkn(t)

ln
− ecαt

∣∣∣∣ = max

{
sup

t∈[0,n−γ)
|1− ecαt|, sup

t∈[n−γ ,T ]
ecαt

∣∣∣∣
lkn(t)

ln
e−cαt − 1

∣∣∣∣

}
. (49)

Since supt∈[0,n−γ) |1− ecαt| = ecαn
−γ

− 1 converges to 0, it is enough to show that

lim
n

sup
t∈[n−γ ,T ]

∣∣∣∣
lkn(t)

ln
e−cαt − 1

∣∣∣∣ = 0.

We fix σ > 0 and take 0 < ǫ < min{ ln(1+σ)
2cαT , 1}. Then, using (39), we have, for all n ≥ n̄ and n̄

sufficiently large,

exp



kn(t)∑

k=n

αc1
kγ


 ≤

lkn(t)

ln
≤ exp



kn(t)∑

k=n

(
αc2
kγ

+ C
(αc2)

2

k2γ

)
 ∀t ∈ [n−γ , T ] (50)

where c1 = c(1− ǫ) and c2 = c(1 + ǫ).
Now we use the following asymptotics, which hold for all p > 0 and n,m ≥ 1:

n+m−1∑

k=n

1

kp
=





εp(n,m) if p > 1
ln
(
1 + m

n

)
+ ε1(n,m) if p = 1

n1−p

1−p

[(
1 + m

n

)1−p
− 1
]
+ εp(n,m) if p < 1

(51)

where εp(n,m) denotes a positive function such that limn supm≥1 εp(n,m) = 0. Thus, recalling
that 1/2 < γ < 1,

exp

{
αc1n

1−γ

1− γ

[(
1 +

⌊nγt⌋

n

)1−γ

− 1

]}
≤

lkn(t)

ln
≤ exp

{
αc2n

1−γ

1− γ

[(
1 +

⌊nγt⌋

n

)1−γ

− 1

]
+An,t

}

(52)
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where An,t = αc2εγ(n, ⌊n
γt⌋) + C(αc2)

2ε2γ(n, ⌊n
γt⌋). Moreover, using the relation 1 + (1 − γ)x −

(1−γ)γ
2 x2 ≤ (1 + x)1−γ ≤ 1 + (1− γ)x for all x ≥ 0 and 1/2 < γ < 1, we have that

t−
1

nγ
−

γt2

2n1−γ
≤

n1−γ

1− γ

[(
1 +

⌊nγt⌋

n

)1−γ

− 1

]
≤ t (53)

Therefore, using (52) and (53) we obtain

e−cαǫt−
cα(1−ǫ)

nγ −
cα(1−ǫ)γt2

2n1−γ ≤
lkn(t)

ln
e−cαt ≤ ecαǫt+An,t ∀t ∈ [n−γ , T ]

and, since limn suptAn,t = 0, for all n sufficiently large we have

e−2cαǫT ≤
lkn(t)

ln
e−cαt ≤ e2cαǫT ∀t ∈ [nγ , T ]

from which it follows

sup
t∈[n−γ ,T ]

∣∣∣∣
lkn(t)

ln
e−cαt − 1

∣∣∣∣ ≤ e2cαǫT − 1 < σ

for all n sufficiently large and the proof is complete, since σ can be taken arbitrarily small.

We now turn to the case γ = 1 and 2cα > 1. As for 1/2 < γ < 1, it is enough to show that

supt∈[n−1,T ]

∣∣∣ lkn(t)

ln
(1 + t)−cα − 1

∣∣∣ converges to 0. We fix σ > 0 and take 0 < ǫ < min{ ln(1+σ)
2cα ln(1+T ) , 1}.

Using (50) and (51) for γ = 1 , we obtain, for all n ≥ n̄ and n̄ sufficiently large,

exp

[
αc1 ln

(
1 +

⌊nt⌋

n

)]
≤

lkn(t)

ln
≤ exp

[
αc2 ln

(
1 +

⌊nt⌋

n

)
+An,t

]
∀t ∈ [n−1, T ] (54)

where c1 = c(1 − ǫ), c2 = c(1 + ǫ) and An,t = αc2ε1(n, ⌊nt⌋) + C(αc2)
2ε2(n, ⌊nt⌋). Then, for all n

sufficiently large
(
1 +

⌊nt⌋

n

)c(1−ǫ)α

(1+ t)−cα ≤
lkn(t)

ln
(1+ t)−cα ≤

(
1 +

⌊nt⌋

n

)c(1+ǫ)α

eAn,t(1+ t)−cα ∀t ∈ [n−1, T ]

and, using the fact that limn suptAn,t = 0, for all n sufficiently large we can write

(1 + T )−2cαǫ ≤
lkn(t)

ln
(1 + t)−cα ≤ (1 + T )2cαǫ ∀t ∈ [n−1, T ]

from which it follows

sup
t∈[n−1,T ]

∣∣∣∣
lkn(t)

ln
(1 + t)−cα − 1

∣∣∣∣ ≤ (T + 1)2cαǫ − 1 < σ

for all n sufficiently large and the proof is complete, since σ can be taken arbitrarily small.

7. Fluctuation theorems III: proof of Theorems 2.8 and 2.9

7.1. Proof of Theorem 2.8. Proof of case (i). The proof is the same as for Theorem 2.6,

part (i). Indeed, using (19) we can define ln =
∏n−1

k=0
1

1−(1−ρ)rk
and Xn,k = nγ/2ξk

ln
, where ξn =

ln(Zn − E[Zn|Fn−1]). Using the estimate (41) and (33) we obtain

kn(t)∑

k=1

E[X2
n,k | Fn,k−1]

a.s.
∼

1

N
q(1− q)ρ2

n

l2n

kn(t)∑

k=1

l2kr
2
k−1. (55)
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Then, using estimate (44) and Lemma 6.1 with (1 − ρ) instead of α, we can conclude that
n
l2n

∑kn(t)
k=1 l2kr

2
k−1 converges to c

2(1−ρ)e
2c(1−ρ)t and so condition (a1) of Theorem B.2 is satisfied.

Using (15) and (19) we have |ξn+1| ≤ ln+1rn and so, fixing u > 2, we can repeat the same
argument used in the proof of Theorem 2.6 in order to prove

kn(1)∑

k=1

E[ |Xn,k|
u ] −→ 0 (56)

and the conclusion follows from Theorem B.2, Remark B.3 (with u > 2) and Lemma 6.1.

Proof of case (ii). Following proof and notations of Theorem 2.6, part (ii), with 1 − ρ in place of
α, since 2c(1 − ρ) > 1, relation (42) becomes

kn(t)∑

k=1

E[X2
n,k | Fn,k−1]

a.s.
∼

1

N
q(1− q)ρ2

n

l2n

kn(t)∑

k=1

l2kr
2
k−1.

and, by estimate (44) and Lemma 6.1 with (1 − ρ) instead of α, the last sum converges to
c2

2c(1−ρ)−1 (1 + t)2c(1−ρ)−1. Analogously, condition (b1) of Theorem B.2 and then the conclusion

can be easily derived as seen in Theorem 2.6.

7.2. Proof of Theorem 2.9. Proof of case (i). We again follow the proof of Theorem 2.6 by

posing β = 1 − (1 − α)ρ, using (20) and defining ln =
∏n−1

k=0
1

1−βrk
. Then, given Xn,k = nγ/2ξk

ln
,

where ξn = ln(Zn(i) − Zn − E[Zn(i)− Zn|Fn−1]), we use the estimate (41) and (32) and we have

kn(t)∑

k=1

E[X2
n,k | Fn,k−1]

a.s.
∼ (1−

1

N
)q(1− q)ρ2

n

l2n

kn(t)∑

k=1

l2kr
2
k−1.

Then, by estimate (44) and Lemma 6.1 with β instead of α, it follows n
l2n

∑kn(t)
k=1 l2kr

2
k−1 −→

c
2(1−(1−α)ρ)e

2c(1−(1−α)ρ)t and condition (a1) of Theorem B.2 is verified.

For condition (b1), by (17) and (20), we obtain |ξn+1| ≤ 2ln+1rn and so, for a fixed u > 2

kn(1)∑

k=1

E[ |Xn,k|
u ] −→ 0

and the conclusion follows from Theorem B.2, Remark B.3 (with u > 2) and Lemma 6.1.

Proof of case (ii). The proof is analogous to the one of case (ii) of Theorem 2.8 above.
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Appendix A. A technical lemma

Lemma A.1. Let (xn) be a sequence of positive numbers that satisfies the following equation:

xn+1 = (1− arn)xn +Knr
2
n (57)

where a > 0, rn ≥ 0 and 0 ≤ Kn ≤ K. Suppose that
∑

n

rn = +∞ and
∑

n

r2n < +∞. (58)

Then

lim
n→+∞

xn = 0.

Proof. The case K = 0 is well-known and so we will prove the statement with K > 0. Let l be
such that arn < 1 for all n ≥ l. Then for n ≥ l we have xn ≤ yn, where{

yn+1 = (1− arn)yn +Kr2n
yl = xl

Set εn = arn and δn = Kr2n. It holds

yn = yl

n−1∏

i=l

(1− εi) +

n−1∑

i=l

δi

n−1∏

j=i+1

(1− εj).

Using the fact that
∑

n εn = +∞, it follows that

n−1∏

i=l

(1− εi) −→ 0.

Moreover, for every m ≥ l,

n−1∑

i=l

δi

n−1∏

j=i+1

(1− εj) =

m−1∑

i=l

δi

n−1∏

j=i+1

(1− εj) +

n−1∑

i=m

δi

n−1∏

j=i+1

(1− εj) (59)

≤
n−1∏

j=m

(1− εj)

m−1∑

i=l

δi +

+∞∑

i=m

δi.

Using the fact that
∏n−1

j=m(1 − εj) −→ 0 and that
∑

n δn < +∞, letting first n → +∞ and then

m → +∞ in (59) the conclusion follows.

Appendix B. Some definitions and known results

B.1. Stable convergence and its variants. We recall here some basic definitions and results.
For more details, we refer the reader to [15, 25] and the references therein.

Let (Ω,A, P ) be a probability space, and let S be a Polish space, endowed with its Borel σ-field.
A kernel on S, or a random probability measure on S, is a collection K = {K(ω) : ω ∈ Ω} of
probability measures on the Borel σ-field of S such that, for each bounded Borel real function f
on S, the map

ω 7→ Kf(ω) =

∫
f(x)K(ω)(dx)
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is A-measurable. Given a sub-σ-field H of A, a kernel K is said H-measurable if all the above
random variables Kf are H-measurable.

On (Ω,A, P ), let (Yn) be a sequence of S-valued random variables, let H be a sub-σ-field of A,
and let K be a H-measurable kernel on S. Then we say that Yn converges H-stably to K, and we

write Yn
H−stably
−→ K, if

P (Yn ∈ · |H)
weakly
−→ E [K(·) |H] for all H ∈ H with P (H) > 0.

In the case when H = A, we simply say that Yn converges stably to K and we write Yn
stably
−→ K.

Clearly, if Yn
H−stably
−→ K, then Yn converges in distribution to the probability distribution E[K(·)].

Moreover, the H-stable convergence of Yn to K can be stated in terms of the following convergence
of conditional expectations:

E[f(Yn) |H]
σ(L1, L∞)
−→ Kf (60)

for each bounded continuous real function f on S.

In [15] the notion of H-stable convergence is firstly generalized in a natural way replacing in (60)
the single sub-σ-field H by a collection G = (Gn) (called conditioning system) of sub-σ-fields of A
and then it is strengthened by substituting the convergence in σ(L1, L∞) by the one in probability
(i.e. in L1, since f is bounded). Hence, according to [15], we say that Yn converges to K stably in
the strong sense, with respect to G = (Gn), if

E [f(Yn) | Gn]
P

−→ Kf (61)

for each bounded continuous real function f on S.

Finally, a strengthening of the stable convergence in the strong sense can be naturally obtained
if in (61) we replace the convergence in probability by the almost sure convergence: given a condi-
tioning system G = (Gn), we say that Yn converges to K in the sense of the almost sure conditional
convergence, with respect to G, if

E [f(Yn) | Gn]
a.s.
−→ Kf (62)

for each bounded continuous real function f on S. Evidently, this last type of convergence can
be reformulated using the conditional distributions. Indeed, if Kn denotes a version of the con-
ditional distribution of Yn given Gn, then the random variable Knf is a version of the conditional
expectation E [f(Yn)|Gn] and so we can say that Yn converges to K in the sense of the almost sure
conditional convergence, with respect to F , if, for almost every ω in Ω, the probability measure
Kn(ω) converges weakly to K(ω). The almost sure conditional convergence has been introduced in
[14] and, subsequently, employed by others in the urn model literature (e.g. [1, 42]).

We now conclude this section with a convergence result for martingale difference arrays.
Given a conditioning system G = (Gn)n, if U is a sub-σ-field of A such that, for each real integrable
random variable Y , the conditional expectation E[Y | Gn] converges almost surely to the conditional
expectation E[Y | U ], then we shall briefly say that U is an asymptotic σ-field for G. In order that
there exists an asymptotic σ-field U for a given conditioning system G, it is obviously sufficient that
the sequence (Gn)n is increasing or decreasing. (Indeed we can take U =

∨
n Gn in the first case

and U =
⋂

n Gn in the second one.)
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Theorem B.1. (Theorem A.1 in [14])
On (Ω,A, P ), for each n ≥ 1, let (Fn,h)h∈N be a filtration and (Mn,h)h∈N a real martingale with
respect to (Fn,h)h∈N, with Mn,0 = 0, which converges in L1 to a random variable Mn,∞. Set

Xn,j := Mn,j −Mn,j−1 for j ≥ 1, Un :=
∑

j≥1X
2
n,j , X∗

n := supj≥1 |Xn,j|.

Further, let (kn)n≥1 be a sequence of strictly positive integers such that knX
∗
n

a.s.
→ 0 and let U be a

sub-σ-field which is asymptotic for the conditioning system G defined by Gn = Fn,kn. Assume that
the sequence (X∗

n)n is dominated in L1 and that the sequence (Un)n converges almost surely to a
positive real random variable U which is measurable with respect to U .

Then, with respect to the conditioning system G, the sequence (Mn,∞)n converges to the Gaussian
kernel N (0, U) in the sense of the almost sure conditional convergence.

B.2. Durrett-Resnick result. We recall the following convergence result for martingale difference
arrays:

Theorem B.2. (Th. 2.5 in [18])
Let (Xn,k) be a square-integrable martingale difference array with respect to (Fn,k). Suppose that
(Fn,k) increases as n increases and let kn(t) a non-decreasing right continuous function with values
in N such that the following conditions hold true:

(a1) for each t > 0,

kn(t)∑

k=1

E[X2
n,k | Fn,k−1]

P
−→ Vt

where P (t 7→ Vt is continuous) = 1;

(b1) for each ǫ > 0,

kn(1)∑

k=1

E[X2
n,kI{|Xn,k|>ǫ} | Fn,k−1]

P
−→ 0.

Then, if we set Sn,kn(t) =
∑kn(t)

k=1 Xn,k, we have

S(n) = (Sn,kn(t))t≥0
d

−→ W̃ =
(
WVt

)
t≥0

(w.r.t. Skorohod’s topology),

where W = (Wt)t≥0 is a Wiener process independent of V = (Vt)t≥0.

Remark B.3. If there exists a number u ≥ 2 such that

kn(1)∑

k=1

E[ |Xn,k|
u ] −→ 0, (63)

then condition (b1) holds true with convergence in L1. Indeed, it is enough to observe that

kn(1)∑

k=1

E[X2
n,kI{|Xn,k|>ǫ}] =

kn(1)∑

k=1

E[|Xn,k|
u|Xn,k|

−(u−2)I{|Xn,k|>ǫ}] ≤
1

ǫu−2

kn(1)∑

k=1

E[ |Xn,k|
u ] −→ 0.
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B.3. Hájek-Rényi inequality. We recall the following martingale inequality (e.g. [9]):

Theorem B.4. If Mn =
∑n

j=1 ξj is a square integrable martingale and (an) is a positive, nonde-
creasing sequence of numbers, then for each λ > 0, we have

P

(
max
1≤j≤n

|Mj |

aj
≥ λ

)
≤

1

λ2

n∑

j=1

E[ξ2j ]

a2j
.

B.4. Barbour’s transform. Let D = D[0,+∞) be the space of right-continuous functions with
left limits on [0,+∞), endowed with the classical Skorohod’s topology (e.g. [8]).

Let T be the subspace of functions f(t) in the space D such that

lim sup
t→+∞

|f(t)|

t
= 0 (64)

∫ +∞

1

|f(t)|

t2
dt < +∞ (65)

∫ 1

0

|f(t)|

t
dt < +∞. (66)

Let m be the metric on T such that m(f1, f2) is the infimum of those ǫ > 0 for which there exists
some continuous strictly increasing function λ : [0,+∞) 7→ [0,+∞) with λ(0) = 0, such that

sup
t≥0

f1(t)− f2(λ(t))

t+ 1
< ǫ (67)

∫ +∞

1

|f1(t)− f2(λ(t))|

t2
dt < ǫ (68)

∫ 1

0

|f1(t)− f2(λ(t))|

t
dt < ǫ (69)

sup
t6=s

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣ < ǫ. (70)

Let T1 and m1 be defined similarly, without the restrictions (66) and (69). We shall denote by
T ∗ and T ∗

1 the corresponding subspaces of the space D∗ = D∗[0,+∞) of left-continuous functions
with right limits on [0,+∞) (endowed with the corresponding Skorohod’s topology).

The topology induced by m on T is stronger than the Skorohod’s topology. Moreover, the
Barbour’s transform g : T → T ∗

1 defined as

g(f)(0) = 0 and g(f)(t) :=

∫ +∞

1/t
s−1df(s) = −tf(t−1) +

∫ +∞

1/t
s−2f(s) ds for t ∈ (0,+∞).

is continuous and, if W is a Wiener process, then also g(W ) is a Wiener process. Finally, the
following result holds (for more details, see [24, 26, 35, 41]).

Theorem B.5. Let (Y (n))n be a sequence of stochastic processes satisfying the following conditions:

(a2) Y (n) d
−→ W̃ (w.r.t. Skorohod’s topology), where W̃ is a stochastic process of the form

W̃t = WVt where W is a Wiener process and V is a stochastic process, independent of W
and with P (t 7→ Vt is continuous) = 1;

(b2) for each n and ǫ > 0, Yn(t) = o(t1/2+ǫ) a.s. as t → +∞;
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(c2) for each θ > 1/2, ǫ > 0 and η > 0, there exists t0 such that

P

{
sup
t≥t0

|Y
(n)
t |

tθ
> ǫ

}
≤ η. (71)

Then each Y (n) takes values in the space T and Y (n) d
−→ W̃ on (T,m).
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