
HAL Id: hal-01277940
https://hal.science/hal-01277940v1

Submitted on 23 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance comparison between Java and JNI for
optimal implementation of computational micro-kernels

Nassim Halli, Henri-Pierre Charles, Jean-François Méhaut

To cite this version:
Nassim Halli, Henri-Pierre Charles, Jean-François Méhaut. Performance comparison between Java and
JNI for optimal implementation of computational micro-kernels. ADAPT 2015 : The 5th International
Workshop on Adaptive Self-tuning Computing Systems, Jan 2015, Amsterdam, Netherlands. �hal-
01277940�

https://hal.science/hal-01277940v1
https://hal.archives-ouvertes.fr

Performance comparison between Java and JNI for optimal
implementation of computational micro-kernels

Nassim Halli
Univ. Grenoble, France

Aselta Nanographics, France
nassim.halli@aselta.com

Henri-Pierre Charles
CEA-LIST, France

Jean-François Mehaut
Univ. Grenoble

ABSTRACT
General purpose CPUs used in high performance computing
(HPC) support a vector instruction set and an out-of-order
engine dedicated to increase the instruction level parallelism.
Hence, related optimizations are currently critical to im-
prove the performance of applications requiring numerical
computation. Moreover, the use of a Java run-time environ-
ment such as the HotSpot Java Virtual Machine (JVM) in
high performance computing is a promising alternative. It
benefits from its programming flexibility, productivity and
the performance is ensured by the Just-In-Time (JIT) com-
piler. Though, the JIT compiler suffers from two main draw-
backs. First, the JIT is a black box for developers. We
have no control over the generated code nor any feedback
from its optimization phases like vectorization. Secondly,
the time constraint narrows down the degree of optimiza-
tion compared to static compilers like GCC or LLVM. So, it
is compelling to use statically compiled code since it bene-
fits from additional optimization reducing performance bot-
tlenecks. Java enables to call native code from dynamic
libraries through the Java Native Interface (JNI). Neverthe-
less, JNI methods are not inlined and require an additional
cost to be invoked compared to Java ones. Therefore, to
benefit from better static optimization, this call overhead
must be leveraged by the amount of computation performed
at each JNI invocation. In this paper we tackle this problem
and we propose to do this analysis for a set of micro-kernels.
Our goal is to select the most efficient implementation con-
sidering the amount of computation defined by the calling
context. We also investigate the impact on performance
of several different optimization schemes which are vector-
ization, out-of-order optimization, data alignment, method
inlining and the use of native memory for JNI methods.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Optimiza-
tion, Run-time environments; D.2.8 [Software Engineer-
ing]: Metrics—Complexity measures, Performance measures

Keywords
Java, JNI, HPC, Performance, Vectorization

1. INTRODUCTION AND MOTIVATION
The initial motivation for this study is to improve the perfor-
mance of a Java application which intensively uses a small
set of computational micro-kernels. Java has become an
important general-purpose programming language and in-
dustry expresses great interest in using it for scientific and
engineering computation [6, 11]. High performance scientific
Java, however, suffers from the lack of optimized libraries
and low-level control [6]. This is in part due to the machine-
independent bytecode representation of Java which prevents
from target specific optimization at the source code level. In
a dynamically compiled environment, the optimizations are
delegated to the JIT compiler which is in charge of translat-
ing bytecode into machine code at run-time, using dynamic
information. JIT optimization like vectorization are essen-
tials for performance and still remain a major concern [2,
3, 8]. They enable programmers to maintain a machine-
independent code and save them from writing several ver-
sions for different target architectures. That is why in Java
applications pure Java methods are often preferred to native
ones.
Though, the JIT compiler suffers from two main drawbacks.
First, the JIT is a black box for developers. We have no
control over the generated code nor any feedback from its
optimization phases like vectorization. Secondly, the time
constraint narrows down the degree of optimization [7, 2]
compared to static compiler like GCC or LLVM. As a re-
sult, it can be interesting to use statically compiled code to
benefit from a deeper optimization for performance bottle-
necks that usually represent a small part of the application.
Java applications enable to call native code from dynamic
libraries through the Java Native Interface (JNI). Neverthe-
less, JNI methods are not inlined and require an additional
cost to be invoked compared to Java ones. Thus, to benefit
from better static optimization, this call overhead must be
leveraged by the amount of computation performed at each
JNI invocation. This is what we call the flop-per-invocation
Considering these aspects (summarized in Table 1) select-
ing the most efficient implementation between JNI and Java
requires an advanced analysis that takes into account the
flop-per-invocation. In this paper we tackle this problem
and we propose to do this analysis for a set of micro-kernels
in order to select the most efficient implementation for a
given range of flop-per-invocation. We also investigate how
the flop-per-invocation impacts the performance of several

ar
X

iv
:1

41
2.

67
65

v1
 [

cs
.P

F]
 2

1
D

ec
 2

01
4

different optimization schemes which are vectorization, out-
of-order optimization, data alignment, method inlining and
the use of native memory for JNI methods.
The study is performed using the Java HotSpot Virtual Ma-
chine over a Sandy Bridge x86-64 architecture which sup-
ports the AVX (Advanced Vector Extensions) instruction
set for vectorization. Furthermore, we use GCC for static
compilation of the micro-kernels. Section 2 provides a back-
ground about performance analysis and Section 3 provides
a background about the optimization considered for this
study. Section 4 presents our benchmark methodology and
experimental conditions. In Section 5 we expose and discuss
the obtained results.

Table 1: Performance drawbacks and benefits
overview

Drawbacks Benefits

JIT
Lower level of
optimization

No call overhead

JNI
Higher call over-
head

Higher level of
optimization

2. PERFORMANCE METRICS
2.1 Arithmetic intensity
We call flop-per-invocation the number of floating point op-
erations (flop) performed by the kernel at each invocation.
The performance of a kernel implementation is measured
in flop/s (i.e. the number of floating point operations per-
formed per second). We have the following equation:

F = AI ×M (1)

Where F is the flop-per-invocation, M is the memory-per-
invocation in byte corresponding to the amount of input and
output memory processed by the kernel. AI is the arith-
metic intensity in flop/byte which is the ratio of the flop-
per-invocation by the memory-per-invocation.
The arithmetic intensity allows to locate micro-kernel bot-
tlenecks [12]. If the bottleneck is the memory bandwidth
then the kernel is called memory-bound. Otherwise the bot-
tleneck is the CPU throughput and the kernel is called CPU-
bound. Indeed, we can write the following inequality:

Π > AI × β (2)

Where Π is the CPU peak performance in flop/s and β is
the peak memory bandwidth in byte/s. If Equation 2 is
satisfied then the kernel is memory-bound (otherwise CPU-
bound). Since modern architectures use a multi-level cache
hierarchy, the memory bandwidth depends on the data lo-
cation over this hierarchy. This means that the memory
bandwidth depends on the memory-per-invocation which
impacts cache efficiency therefore increasing the memory-
per-invocation leads to reducing the memory bandwidth.

2.2 Performance profile
We define the performance profile of a kernel implemen-
tation as the performance function of either the flop-per-
invocation, or the memory-per-invocation (since there are
linearly related). By plotting the performance profile of
a kernel implementation for a wide range of memory-per-
invocation, we can observe, for example, the memory band-
width bottleneck.

2.3 Theorical impact of the invocation cost
A simple model to describe the invocation cost impact on
performance when the flop-per-invocation decreases is given
by the following equation:

P =
PmaxF

I + F
(3)

Where P is the performance, F is the flop-per-invocation,
Pmax is the peak performance reached by the kernel and I
is a parameter which describes the invocation cost in flop.
We define the decrease-factor DF as followed:

DF =
P

Pmax
=

F

I + F
(4)

Figure 1 shows the decrease-factor as a function of the flop-
per-invocation for different values of I. We can see that
for relatively small flop-per-invocation, the invocation cost
has a large impact on performance. Accordingly, we must
consider both the flop-at-invocation and the JNI invocation
cost to select the most efficient implementation.

20 21 22 23 24 25 26 27 28 29 210 211 212

flop-per-invocation [flop]

0.0

0.2

0.4

0.6

0.8

1.0

D
ec

re
as

e-
fa

ct
or

I=1

I=2

I=4

I=8

I=16

Figure 1: Theoretic performance profile : decrease-
factor function of the flop-per-invocation for differ-
ent value of the invocation cost I

3. CODE OPTIMIZATION
We consider two kinds of optimization, The first ones are
asymptotic optimizations that are significant when the flop-
per-invocation grows. In the second kind we have the opti-
mizations that reduce the invocation cost of a method and
which are significant for lower flop-per-invocation. They are
described respectively in Section 3.1 and 3.2.

3.1 Asymptotic optimization
3.1.1 Vectorization and out-of-order optimization

Since microprocessor performance is limited by a maximum
clock frequency the trend goes towards increasing processor
throughput by handling multiple data in parallel. The prin-
ciple of vectorization is to pack data into a vector register
then perform one operation over all the data. In this study
we consider the AVX instruction set available in the 64-bit
Intel Sandy Bridge architecture. AVX enables to use 256

bits registers called YMM. It allows to perform four dou-
ble precision operations at one time. Additionally to vector
units, the out-of-order (o-o-o) execution can increase the
level of parallelism by dispatching independent instructions
over parallel execution units available in different ports. For
example the Sandy Bridge has six execution ports. Ports 0,
1 and 5 are for arithmetic and logic operations and support
256 bit vector operation. Ports 2 and 3 are two identical
memory-load ports while port 4 is for memory-store. In-
creasing the level of parallelism with o-o-o is done by break-
ing long dependency chains. Hence, the o-o-o engine can
evenly distribute independent operations between the dif-
ferent execution ports. Mixing o-o-o and vectorization leads
to an optimal instruction level parallelism. Table 3 shows
an example of source code optimization using vectorization
and o-o-o for a horizontal sum kernel.

The HotSpot Virtual Machine run-time uses two compil-
ers, the client compiler and the server compiler. The server
version [8], which is the focus in this study, is a highly
optimizing bytecode compiler which targets long running
applications and aims to improve asymptotic performance.
The server compiler supports auto-vectorization, it inter-
nally uses Super-word Level Parallelism (SLP) [5]. SLP de-
tects groups of isomorphic instructions in basic blocks. This
results in a lightweight vectorization approach suitable for
Just-In-Time compilation. However, this approach cannot
optimize across loop iterations and cannot vectorize loop-
carried idioms like reduction. As a result, the JIT can not
mix o-o-o and vectorization. Additionally the JIT compiler
can be seen as a black box. Due to its portability specifi-
cation Java does not provide machine-specific intrinsics like
AVX intrinsics and of course, we can not inline assembly
code directly in the Java source code. Additional meta-
information, for example to ensure the compiler that pointer
won’t alias, cannot be passed to the JIT compiler. Finally,
the JIT does not provide any feedback about its vectoriza-
tion decisions which are invisible to programmers. Thus, to
ensure that the code has been properly vectorized the gener-
ated code must be examined. Table 2 summarizes the Java
vectorization drawbacks.

Table 2: Java vectorization drawbacks summary
HotSpot server
JIT

GCC

Pointer Alias-
ing

Possibly unresolved
Resolved with run-
time checks or re-
strict keyword

Data align-
ment

Possibly unresolved
Alignment at alloca-
tion

Reduction id-
iom

Unvectorized at the
current state

Vectorized

Combine Out-
of-orders and
vectorization

Not supported Supported

Auto-
vectorization
Feedback

No feedback
Vectorization deci-
sions and profitabil-
ity threshold

Source code
vectorization

Not supported
AVX Intrinsics or in-
line assembly

3.1.2 Data alignment
The proper alignment of packed data is required to observe
vectorization benefit. In the considered case of a Sandy
Bridge architecture, packets are 32-byte wide (which cor-
responds to 4 packed double). To ensure a benefit, packets

Table 3: Core vectorization and out-of-order opti-
mizations for a horizontal sum reduction kernel in
double precision

No vectorization Vectorization (AVX intrinsics)

N
o

o
-o

-o for (i =0; i<n;++ i){
sum+=a [i] ;
}

for (i =0; i<n ; i+=4){
p=mm256 loadu pd (&(a [i])) ;
sum=mm256 add pd (sum , p) ;
}

o
-o

-o

for (i =0; i<n ; i+=4){
sum0+=a [i] ;
sum1+=a [i +1] ;
sum2+=a [i +2] ;
sum3+=a [i +3] ;
}

for (i =0; i<n ; i +=16){
p0=mm256 loadu pd (&(a [i])) ;
p1=mm256 loadu pd (&(a [i +4])) ;
p2=mm256 loadu pd (&(a [i +8])) ;
p3=mm256 loadu pd (&(a [i +12])) ;
sum0=mm256 add pd (sum0 , p0) ;
sum1=mm256 add pd (sum1 , p1) ;
sum2=mm256 add pd (sum2 , p2) ;
sum3=mm256 add pd (sum3 , p3) ;
}

must be aligned on 16 bytes which is the higher granular-
ity for load and store instructions. With GCC we can use
aligned AVX instructions if data packets are 32-byte aligned
and pointers can be properly aligned using the posix memalign
system call. In Java we cannot explicitly align primitive ar-
rays and the JIT is in charge of aligning memory access. To
do so, compilers perform loop peeling i.e. they begin to load
or store packed data at the first aligned offset. However in
some cases when one loop iterates over several arrays which
are offset relative to each other, peeling cannot resolve align-
ment for all the arrays. This causes a serious performance
penalty which remains unpredictable. As we want to con-
trol the alignment of a Java object and its memory layout,
we can set statically a base offset to ensure aligned memory
access. Figure 2 shows an example of a Java double array
explicitly aligned on 32-byte by setting a base offset at 2
instead of 0.

Object header Padding 0 1 2

32 bytes aligned object First 32 bytes aligned double-word

12 bytes 4 bytes 8 bytes

4-double packet are 32 bytes aligned

2 3 4 5
Packet 0 Packet 1

0 1

Figure 2: Java double array 32-byte aligned. The
first 32-byte aligned packet begins at the offset 2

3.2 Optimizations that reduce the invocation
cost

3.2.1 Java method inlining
Inlining is a core optimization especially in dynamically com-
piled environment. It allows to achieve significant optimiza-
tion by specializing a method considering its calling context.
Inlining also eliminates the invocation cost. In this study,
we only consider inlining as an optimization that eliminates
the invocation cost. To do so we consider kernels which show
a constant complexity through inlining. Thereby the com-
parison between JNI and Java is also consistent because the
experiment is independent of the calling context.

3.2.2 JNI and native memory
JNI is a specification which allows applications to call stat-
ically compiled methods from dynamic libraries and to ma-
nipulate Java objects from there. JNI suffers from an ad-
ditional invocation cost [1, 4, 10]. Invoking a native target
function requires two calls. The first is from the Java appli-
cation to the JNI wrapper which sets up the native function
parameters. The second is from the JNI wrapper to the
native target function. But the most significant source of
overhead occurs during the invocation of JNI callbacks. An
example is to get an array pointer from the Java heap. A
callback pays a performance penalty because two levels of
indirection are used: one to obtain the appropriate function
pointer inside a function table and one to invoke the func-
tion. Yet, these callbacks remains necessary to work with
Java objects while avoiding memory copies that are even
more expensive. In addition to the Java heap, where objects
are allocated and automatically removed by the garbage col-
lector, Java allows programmers to allocate chunks of mem-
ory out of the Java heap. This kind of memory is called
native memory. We explore the use of native memory as an
optimization technique in order to avoid JNI callbacks and
so reduce its invocation cost.

4. BENCHMARK METHODOLOGY
For each kernel we provide several implementations that use
the optimization techniques detailed in Section 3. For each
implementation, we measure and plot its performance profile
(defined in Section 2.2). We aim to select the best imple-
mentation for a given range of flop-per-invocation and also
to analyze the impact of a given optimization.

4.1 Experimental Conditions
Performance results are measured on an Intel(R) Sandy Bridge
Core(TM) i5-2500 3.30GHz CPU. The Linux system version
is 2.6.3 and we use the OpenJDK Runtime Environment
1.8.0, 64-Bit Server VM (build 25.0-b70, mixed mode). For
JNI implementation we use GCC 4.4.7. The CPU has three
levels of cache, for each we give its size and approximate
latency:

• The L1 data cache is 32kB, its approximate latency is
around 4 cycles.

• The L2 cache is 256kB, its approximate latency is
around 12 cycles

• The L3 cache is 6MB, its approximate latency is around
30 cycles

The theoretical performance peak is 41.6 Gflop/s and we
measure the approximate memory bandwidth peak around
40 GB/s. According to Equation 2 in Section 2 a kernel is
memory-bound (resp. CPU-bound) if its arithmetic inten-
sity is lower (resp. greater) than 1 flop/byte.

4.2 Kernels sample and notations
We select basic micro-kernels, described in Table 5, for our
experimentation. Tested kernels computes in double preci-
sion. Vectorization is always profitable since data are al-
ready packed into memory.

For each kernel we provide several implementation. An im-
plementation is described by the following label:

Type InvocationOpt AsymptoticOpts

Where Type is the type of the implementation, InvocationOpt
is the optimization that reduces the invocation cost and
AsymptoticOpts are the asymptotic optimizations. Table
4 details the values taken by each attributes.

Table 4: Implementation label description
Type InvocationOpt AsymptoticOpts

• java: pure
Java meth-
ods + JIT

• jni: JNI
methods +
GCC

• inline: inlining for
Java methods

• native: native
memory for JNI
methods

• empty if no opti-
mization

• vect: vectorization
with aligned data

• vect unalign: vec-
torization with un-
aligned data

• ooo: out-of-order
optimization

• empty if no opti-
mization

Table 5: Micro-kernels Sample

kernels description
arithmetic
intensity

properties

Array addition. Adds an
array inside the other

1/16 memory-bound

Horizontal sum. Sums the
values of an array

1/8
memory-bound,
unvectorized by
the JIT

Horner coefficient-1st.
Computes a 64-degree poly-
nomial on N data using the
Horner method. Loops over
the coefficients array at first.

192N
8(64+2N+1)

cpu-bound
(N > 4)

Horner data-1st. Com-
putes a 64-degree polynomial
on N data using the Horner
method. Loops over the data
array at first.

192N
8(64+2N+1)

cpu-bound,
unvectorized by
the JIT

4.3 Measurements
Measurements are performed using timers inside a caller
method. The caller executes the method we want to bench-
mark with a given number of iterations then returns the
mean time spent executing the method. We also iterate over
the caller to get the best mean time and then calculate the
performance in flop/s performed by the method. Measure-
ments are taken in a steady state considering the warm-up
phase to compile the hotpots, but also the memory state.
Since the caller invokes the method over the same data set,
the memory bandwidth reaches its maximum for the given
memory complexity. The caller arithmetic intensity is al-
most equal to the arithmetic intensity of the method mul-
tiplied by the method invocation count performed by the
caller. Theoretically, by inlining at source code, we could
increase the memory bandwidth and peak performance by
swapping the loop iterating over the data with that iter-
ating over the method computation. However, by default
compilers do not perform this kind of optimization which
can disturb numerical precision by switching floating point
operations.

5. RESULTS AND ANALYSIS

For each kernel we provide the performance profile for sev-
eral different implementations (Figures 3, 4, 5 and 6). Per-
formance profiles are plotted as a function of the memory-
per-invocation. Thereby we can analyze the result by ac-
counting for the cache hierarchy.

28 210 212 214 216 218 220 222 224

memory-per-invocation [byte]

0

1

2

3

4

5

6

7

Pe
rf

or
m

an
ce

 [G
flo

p/
s]

L1 L2 L3

java_inline_vect
java_vect
jni_native_vect
jni_vect
java_inline

Figure 3: Array addition performance profile

26 28 210 212 214 216 218 220 222 224

memory-per-invocation [byte]

0

2

4

6

8

10

12

14

Pe
rf

or
m

an
ce

 [G
flo

p/
s]

L1 L2 L3

java_inline
java_inline_ooo
java_ooo
jni_vect_ooo
jni_native_vect_ooo

Figure 4: Horizontal sum performance profile

5.1 Most efficient implementation
The performance profile allows to locate the most efficient
implementation for a given range of memory-per-invocation.
This range is supposed to be known for a particular calling
context.
The most efficient implementation of the Array addition ker-
nel is the vectorized and inlined Java version (java inline vect)
for the whole range of memory-per-invocation considered.
This is an example where the JIT works as well as GCC,
hence there is no benefits from using JNI in such a case.
Concerning the Horizontal sum kernel, the best implementa-
tion depends on the considered range of memory-per-invocation.
Since native memory breaks the Java language, we don’t
consider JNI with native memory as eligible. Thus, until
2kB the best implementation is the inlined Java version with

210 212 214 216 218 220 222 224 226

memory-per-invocation [byte]

0

2

4

6

8

10

12

14

16

18

Pe
rf

or
m

an
ce

 [G
flo

p/
s]

L1 L2 L3

java_inline
java_inline_vect
jni_native_vect

Figure 5: Horner coefficient-1st performance profile

210 212 214 216 218 220 222 224 226

memory-per-invocation [byte]

0

5

10

15

20

25

30

35

40

45

Pe
rfo

rm
an

ce
 [G

flo
p/

s]

L1 L2 L3

cpu peak

java_inline
java_inline_ooo
jni_vect
jni_vect_ooo

Figure 6: Horner data-1st performance profile

an out-of-order optimization (java inline ooo). From 2kB
the most efficient implementation is the vectorized and out-
of-order optimized JNI version (jni vect ooo). This kernel is
an example where using static compilation leads to benefits
but only when the amount of computation is sufficient to
cover the invocation cost. The performance profile allows to
quantify this threshold.
For the Horner kernel we provide two different algorithms.
The coefficient-1st iterates over the polynomial coefficients
at first then over the input values. The data-1st iterates over
the data-values at first then over the coefficient values. The
most efficient implementation considering both algorithm is
provided by the JNI version which is vectorized and out-of-
order optimized (jni vect ooo). This is true for the whole
range of memory-per-invocation considered.

5.2 Vectorization
The efficiency of vectorization is related to the memory band-
width. To observe a substantial speed-up, the bottleneck

must be computational. For memory-bound kernels, we ob-
serve a performance decrease along with the memory-per-
invocation that reduces the memory bandwidth.
Considering the Array addition kernel for a range of memory-
per-invocation between L2 size and L3 size, all vectorized
implementations are almost equal with a benefit of at least
30%. For memory-per-invocation greater than L3 size there
is no longer a vectorization benefit since the memory band-
width is the major bottleneck. Vectorization is really signif-
icant if the memory-per-invocation is lower than the L1 size
and optimal for a memory-per-invocation of 16kB.
Java implementations of the Horizontal sum kernel are not
vectorized since the JIT doesn’t support the vectorization
of reduction idioms. Since the kernel is memory bound,
vectorized JNI implementations are sensible to the memory
bandwidth and from a memory-per-invocation greater than
the L3 size we have no more vectorization benefits. This
threshold is greater for this kernel than the Array addition
one because its arithmetic intensity is also greater.
Contrary to the array addition and the horizontal sum ker-
nels, the Horner algorithm has an arithmetic intensity re-
solved at run-time since it depends on the polynomial de-
gree and the number of points to evaluate. For the range
of inputs considered, the kernel is CPU-bound (the polyno-
mial degree is fixed to 64 and the number of points greater
than 4). However, the coefficient-1st version is affected by
the memory bandwidth like a memory-bound kernel. The
coefficients fills a constant amount of memory that is rela-
tively small and fits into the L1 data-cache (512 bytes for
a 64-degree polynomial). However, for each coefficient this
version needs to load all the input data which causes a lot of
cache misses when the amount of data exceeds the L1 size.
And this drastically reduces the memory bandwidth. The
data-1st version iterates over the coefficient array through
a dependency chain for each data. Data is loaded only one
time and since the coefficient array fits onto the L1 data-
cache the memory bandwidth is optimal. However the data-
1st version is not vectorized by the JIT because it exposes a
reduction idiom. Vectorization of the coefficient first imple-
mentation leads to a significant speed-up factor of 2 but only
for a memory-per-invocation lower than L3 size. Beyond
that size, vectorization has no impact due to the memory
bottleneck.

5.3 Out-of-order optimization
Out-of-order optimizations are performed by dividing a de-
pendency chain into several independent sub dependency-
chains. Kernels which expose a dependency chain are the
Horizontal sum and the Horner data-1st. The number of
divisions to achieve an optimal out-of-order execution de-
pends on the CPU execution units requested. For example,
we need 4 dependency-chains for the Horizontal sum and
8 for the Horner data-1st. Mixing out-of-order and vector-
ization leads to an optimal instruction level parallelism and
performance. Since the JIT can not vectorize such idioms,
JNI proves to be an efficient alternative in such case. Consid-
ering the Horner data-1st kernel, mixing vectorization and
out-of-order allows performance to reach the CPU peak.

5.4 Call-bound part
For all implementations, the performance penalty when the
memory-per-invocation decreases is initially due to the con-
stant cost of the loop in the measurements. In this decreas-

ing part, implementations are call-bound since the invoca-
tion cost is the main bottleneck. Considering the Array ad-
dition kernel, the unvectorized Java implementation shows
that this cost is rather limited since its performance remains
relatively stable. The JNI and Java invocation cost is ob-
served comparing the un-inlined version of the Java method
with the JNI method which use native memory. Disabling
inlining for Java methods shows that the invocation cost is
limited since inlining yields a mean improvement of about
20%. Finally the comparison between native memory and
heap memory for JNI methods shows that the call bound is
mainly due to the invocation of JNI callbacks, first, to get
a pointer from the Java array inside the heap and then to
release it when the work is done. This causes a penalty of
about 40%. The observation is the same for the Horizontal
sum kernel where using native memory leads to a benefit of
60%.

5.5 Data Alignment
Misalignment performance penalty occurs when four-double
packets are not aligned on 16-bytes. Peeling is used by com-
pilers to begin vectorization at the first aligned packet. In
Java we can’t explicitly align data at allocation, moreover
the garbage collector can move the data and as a result
change their alignment. In Java double arrays are at least
8-byte aligned. Considering the Array addition kernel, if
one array is aligned on 8-byte and the second one on 16-
byte then peeling is inefficient and memory access will be
unaligned for one array. As showed in Figure 7, this leads
to a performance decrease of around 45% which is totally
unpredictable since alignment is resolved at allocation (in-
visible to Java programmer) and can be modified by the
garbage collector.

0 1 2 3 4 5 6 7
Performance [Gflop/s]

jav
a

jav
a_

ve
ct_

un
ali

gn

jav
a_

ve
ct

Figure 7: Array addition performance for a memory-
per-invocation equal to 16kB

6. RELATED WORKS
There is so far no performance comparison between pure
Java and JNI that takes into account both the overhead of
JNI calls and potential deeper optimization provided by the
static compilation. Nuzman et al. presented a split auto-
vectorization framework [7] combining dynamic compilation
with an off-line compilation stage aiming at being compet-
itive with static compilation while conserving application
portability. Parri et al. [9] designed an API called jSIMD
that uses JNI as a bridge to map Java code to SIMD in-
structions using vectorized data of various types. Regarding
JNI performance issues, Grimmer et al. implemented the

Graal Native Function Interface (GNFI) for the Graal Vir-
tual Machine [1] as an alternative to JNI. GNFI aims to
mitigate all the disadvantages met using JNI both concern-
ing programming flexibility than performance. Stepanian et
al. [10] proposed an approach for the IBM TR JIT compiler
to widen the compilation span by inlining native code. Fi-
nally, Kurzinyec and Sunderam [4] studied the performance
of different JNI implementations for several different JVM.

7. CONCLUSION
In this paper we have presented a performance analysis for
a set of micro-kernels considering the JIT vectorization lim-
itation and the JNI invocation cost. By plotting the perfor-
mance profile for several different implementations of a ker-
nel, we have aimed to select the most efficient implementa-
tion for a specific amount of computation. We have showed
that one major performance issue in Java concerns reduction
kernels that are not vectorized. As a consequence Java im-
plementations may suffer from severe performance penalties
compared to JNI ones. By using native memory we showed
that JNI suffers from a major performance penalty coming
from callbacks use to access data inside the Java heap.

8. REFERENCES
[1] M. Grimmer, M. Rigger, L. Stadler, R. Schatz, and

H. Mössenböck. An efficient native function interface
for java. In Proceedings of the 2013 International
Conference on Principles and Practices of
Programming on the Java Platform: Virtual
Machines, Languages, and Tools, PPPJ ’13, pages
35–44, New York, NY, USA, 2013. ACM.

[2] M. R. Jantz and P. A. Kulkarni. Performance
potential of optimization phase selection during
dynamic jit compilation. In Proceedings of the 9th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’13, pages
131–142, New York, NY, USA, 2013. ACM.

[3] S. Kulkarni, J. Cavazos, C. Wimmer, and D. Simon.
Automatic construction of inlining heuristics using
machine learning. In Code Generation and
Optimization (CGO), 2013 IEEE/ACM International
Symposium on, pages 1–12, Feb 2013.

[4] D. Kurzyniec and V. Sunderam. Efficient cooperation
between java and native codes jni performance
benchmark. In In The 2001 International Conference
on Parallel and Distributed Processing Techniques and
Applications, 2001.

[5] S. Larsen and S. Amarasinghe. Exploiting superword
level parallelism with multimedia instruction sets.
SIGPLAN Not., 35(5):145–156, May 2000.

[6] J. Moreira, S. Midkiff, M. Gupta, P. Artigas, M. Snir,
and R. Lawrence. Java programming for
high-performance numerical computing. IBM Systems
Journal, 39(1):21–56, 2000.

[7] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen,
K. Williams, D. Yuste, A. Cohen, and A. Zaks. Vapor
simd: Auto-vectorize once, run everywhere. In
Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and
Optimization, CGO ’11, pages 151–160, Washington,
DC, USA, 2011. IEEE Computer Society.

[8] M. Paleczny, C. Vick, and C. Click. The java

hotspottm server compiler. In Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and
Technology Symposium - Volume 1, JVM’01, pages
1–1, Berkeley, CA, USA, 2001. USENIX Association.

[9] J. Parri, D. Shapiro, M. Bolic, and V. Groza.
Returning control to the programmer: Simd intrinsics
for virtual machines. Queue, 9(2):30:30–30:37, Feb.
2011.

[10] L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents,
and K. Stoodley. Inlining java native calls at runtime.
In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments, VEE
’05, pages 121–131, New York, NY, USA, 2005. ACM.

[11] G. L. Taboada, J. Touriño, and R. Doallo. Java for
high performance computing: Assessment of current
research and practice. In Proceedings of the 7th
International Conference on Principles and Practice of
Programming in Java, PPPJ ’09, pages 30–39, New
York, NY, USA, 2009. ACM.

[12] S. Williams, A. Waterman, and D. Patterson. Roofline:
An insightful visual performance model for multicore
architectures. Commun. ACM, 52(4):65–76, Apr. 2009.

	1 Introduction and Motivation
	2 Performance metrics
	2.1 Arithmetic intensity
	2.2 Performance profile
	2.3 Theorical impact of the invocation cost

	3 Code optimization
	3.1 Asymptotic optimization
	3.1.1 Vectorization and out-of-order optimization
	3.1.2 Data alignment

	3.2 Optimizations that reduce the invocation cost
	3.2.1 Java method inlining
	3.2.2 JNI and native memory

	4 Benchmark methodology
	4.1 Experimental Conditions
	4.2 Kernels sample and notations
	4.3 Measurements

	5 Results and analysis
	5.1 Most efficient implementation
	5.2 Vectorization
	5.3 Out-of-order optimization
	5.4 Call-bound part
	5.5 Data Alignment

	6 Related works
	7 Conclusion
	8 References

