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Introduction

This article continues the study of conformally invariant trilinear forms on the sphere S = S n-1 , n ≥ 4 (see [START_REF] Clerc | Conformally invariant trilinear forms on the sphere[END_REF][START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF]), and more specifically achieves the work begun in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]. Notation is same as in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] and sections of the present paper are numbered in continuity with those of [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF].

For λ = (λ 1 , λ 2 , λ 3 ) ∈ C 3 let T ri(λ) be the space of continuous trilinear forms on C ∞ (S)×C ∞ (S)×C ∞ (S) which are invariant under the action of the conformal group G = SO 0 (1, n) by (the tensor product of) three representations of the scalar principal series (π λ 1 , π λ 2 , π λ 3 ). Such trilinear forms, when viewed as distributions on S × S × S are said to be λ-invariant. In [START_REF] Clerc | Conformally invariant trilinear forms on the sphere[END_REF] was constructed (by analytic continuation) a family K λ of λ-invariant trilinear forms, depending meromorphically on λ. Later, in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], a holomorphic family K λ was introduced by renormalizing the family K λ . The zero set Z of the 1 function λ -→ K λ was computed, and a generic multiplicity 1 theorem was proved, namely

λ / ∈ Z ⇐⇒ dim T ri(λ) = 1 ⇐⇒ T ri(λ) = C K λ .
The main purpose of this article is to compute dim T ri(λ) when λ ∈ Z, and to give a basis of T ri(λ).

The fine structure of Z is studied in section 8. The set Z is a denumerable union of affine lines in C 3 , which come in six families, each family being made of parallel lines. There is a natural partition of Z, namely

Z = Z 1 • ∪Z 2 • ∪Z 3
where Z d is the subset of points of Z which belong to exactly d lines of Z (compare [START_REF] Oksak | Trilinear Lorentz invariant forms[END_REF]). Notice that Z 2 and Z 3 are denumerable sets of isolated points in C 3 . The main result of the article is the following.

Theorem 1. Let λ ∈ Z.

for λ ∈ Z 1 dim T ri(λ) = 2 for λ ∈ Z 2 dim T ri(λ) = 2
for λ ∈ Z 3 dim T ri(λ) = 3 .

These results may be heuristically anticipated as follows. Let λ 0 ∈ Z. Let λ(s) be a holomorphic curve in C 3 such that λ(0) = λ 0 . Then s → K λ(s) is a distribution-valued holomorphic function. The first non vanishing term of its Taylor expansion at s = 0 clearly is a λ 0 -invariant distribution. Variations on this idea lead to the following considerations.

When λ 0 is in Z 1 , hence belongs to a unique affine line d 1 ⊂ Z, then ∇ 1 K λ (λ 0 ) = 0, where ∇ 1 stands for the derivative in the direction of d 1 . Let -→ d 2 and -→ d 3 be two complementary directions to -→ d 1 in C 3 . Then ∇ 2 K λ (λ 0 ) and ∇ 3 K λ (λ 0 ) are "natural" candidates to generate T ri(λ 0 ).

When λ 0 is in Z 2 , hence belongs to two distinct lines d 1 and d 2 , let -→ d 3 be a complementary direction to -→ d 1 and -→ d 2 . Then ∇ 1 K λ (λ 0 ) = ∇ 2 K λ (λ 0 ) = 0. In this case, the second mixed derivative ∇ 1 ∇ 2 K λ (λ 0 ) is easily seen to be a λ 0 -invariant distribution. Then ∇ 3 K λ (λ 0 ) and ∇ 1 ∇ 2 K λ (λ 0 ) are "natural" candidates to generate T ri(λ 0 ).

When λ 0 is in Z 3 , hence belong to three lines d 1 , d 2 , d 3 (it turns out that -→ d 1 , -→ d 2 , -→ d 3 form a basis of C 3 ), then all partial derivatives of K λ vanish at λ 0 and any second order partial derivative of K λ (λ) at λ 0 is λ 0 -invariant. Then ∇ j ∇ j K λ (λ 0 ) = 0 for j = 1, 2, 3, so that the three second mixed derivatives ∇ i ∇ j K λ (λ 0 ) = 0, (1 ≤ i < j ≤ 3) are "natural" candidates to generate T ri(λ 0 ). When going to the actual construction of these invariant distributions and proof that they indeed generate T ri(λ), a more refined (and more technical) partition of Z is needed, essentially related to the type of the poles (see details in section 8).

An important ingredient of this article is the connection with the results obtained in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF], were residues (in a generic sense) of the meromorphic function λ → K λ were computed. The normalization (passage from K λ to K λ ) involves four Γ factors. At a generic pole λ 0 (i.e. belonging to a unique plane of poles) exactly one Γ factor becomes singular at λ 0 , and K λ 0 is easily seen to be a multiple of the residue of K λ at λ 0 . For more singular poles, some variation of this relation does make sense. For each plane of poles, the residues at generic poles form a meromorphic family, which can be renormalized to get a holomorphic family. If λ 0 is a non generic pole (i.e. beings to several planes of poles, so that several Γ factors of the renormalization vanish at λ 0 ), then the values at λ 0 of the renormalized families of residues corresponding to the planes of poles containing λ 0 are equal (up to constants) to partial derivatives of K λ at λ 0 .

To each plane of poles, a holomorphic family of invariant distributions is constructed, which generically coincides (up to a scalar) with the residue. Recall that planes of poles come in two types called type I and type II (see [START_REF] Clerc | Conformally invariant trilinear forms on the sphere[END_REF][START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]).

For a plane of poles of type I, the family (generically denoted by T ) constructed in section 9 is obtained by renormalizing the meromorphic family constructed in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF]. The distributions are supported on a submanifold of codimension n -1 and their expression involve covariant differential operators.

For a plane of poles of type II, the family (generically denoted by S) is constructed in section 11. Although based on computations done in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF], the construction as done in this article use new arguments and in particular a more satisfactory determination of the (partial) Bernstein-Sato polynomial for the kernel k α (Proposition 11.3), which has its own interest. The distributions are supported on the diagonal of S × S × S and their expressions involve covariant bi-differential operators.

A last family (generically denoted by R) is constructed in section 12 and has a different nature. The planes in C 3 to which they are attached are not planes of poles. I was led to introduce this family by the heuristic consideration above about derivatives of K λ , when dealing with poles of type II which are in Z 1 . The corresponding distributions generically have full support in S × S × S.

These holomorphic families will be almost sufficient for describing bases of T ri(λ). However, when λ belongs to Z 2 , some exceptional distributions, denoted by Q l 1 ,m 2 ,m 3 are needed. They are obtained as second order derivatives of the function K λ .

Let us observe that all the distributions involved in the description of the invariant trilinear forms are in the closure of the meromorphic family K λ in the sense of Oshima (see [START_REF] Oshima | Annihilators of generalized Verma modules of the scalar type for classical Lie algebras Harmonic Analysis, Group representations, Automotphic forms and Invariant Theory[END_REF] section 6).

Having constructed candidates for a basis of T ri(λ), a proof of their linear independence is required. This is usually obtained by using their Kcoefficients 1 . In [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] was introduced the family p a 1 ,a 2 ,a 3 a 1 ,a 2 ,a 3 ∈N of polynomial functions on S × S × S which have the property that a K-invariant distribution T is equal to 0 if and only if all its K-coefficients T (p a 1 ,a 2 ,a 3 ) are equal to 0. It turns out that it is possible to explicitly compute the K-coefficients of all the distributions we are concerned with, which allows to answer the questions of independence. The main ingredient is the evaluation of an integral (Proposition 3.2 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]), related to the computation of so-called Bernstein-Reznikov integrals (see [START_REF] Clerc | Generalized Bernstein-Reznikov integrals[END_REF] for more examples), and which is recalled for convenience in appendix A1.

On the other hand, the verification that the candidates indeed generate T ri(λ) is more difficult and involve some delicate analysis dealing with singular distributions. This sort of problem was already encountered in establishing the multiplicity 1 theorem for λ / ∈ Z. We refer to the presentation of the main ideas in section 5 and 6 of [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]. The proofs are based on two techniques. The first one consists in non-extension results, obtained in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] and presented (slightly reformulated) in appendix A2. The second technique concerns the determination of the dimension of the space T ri(λ, diag) of λinvariant distributions which are supported on the diagonal of S ×S ×S. The usual technique of Bruhat (see [START_REF] Bruhat | Sur les représentations induites des groupes de Lie[END_REF]) is not powerful enough to give a sharp bound for this dimension, due to the fact that the stabilizer of a generic point in the diagonal is a parabolic subgroup of G, hence not reductive in G. So it is necessary to make a specific study. Those singular distributions are in 1-1 correspondence with covariant bi-differential operators. In turn those have been studied in [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF] and their determination is reduced to solving an explicit system of linear homogeneous equations. A systematic study of this A3 Discussion of the system S (λ 1 , λ 2 ; k)

8 Refined description of Z For ∈ {+, -}, j ∈ {1, 2, 3}, l ∈ N and m ∈ Z, define D , j l,m = λ ∈ C 3 , λ j = -ρ -l, λ j+1 + λ j+2 = m (1) 
with the convention that j + 1 and j + 2 are interpreted modulo 3. For each quadruple ( , j, l, m), D , j l, m is a complex affine line in 

C 3 . A quadruple ( , j, l, m) is said to be admissible if m ≡ l mod (2), |m| ≤ l .
The description of these lines can also be made in terms of the geometric2 parameter α. The line D -1,j l,m admits the equations

α j+1 = -(n -1) -2k j+1 , α j+2 = -(n -1) -2k j+2 (3) 
where

k j+1 = l+m 2 , k j+2 = l-m 2 ∈ N.
The line D +1,j l,m admits the equations

α 1 + α 2 + α 3 = -2(n -1) -2k, α j = 2p (4) 
where k = l-m 2 , p = l+m 2 ∈ N. This justifies the following terminology.

Definition 8.1. A line D contained in Z will be called i) of type I (or more precisely of type I j ) if D = D -,j l,m for some admissible quadruplet (-, j, l, m) ii) of type II (or more precisely of type II j ) if D = D +,j l,m for some admissible quadruplet (+, j, l, m). Proposition 8.1.

i) if a line of type I j and a line of type II j intersect, then j = j ii) if a line of type I j and a (distinct) line of type I j intersect, then j = j iii) if a line of type II j and a (distinct) line of type II j intersect, then

j = j . Proof. For i), let D = D +, 1 l 1 ,m 1 and D = D -, 2 l 2 ,m 2 . Then we need to show that D +, 1 l 1 ,m 1 ∩ D -, 2 l 2 ,m 2 = ∅.
The intersection is given by the set of equations

λ 1 = -ρ -l 1 , λ 2 + λ 3 = m 1 , λ 2 = -ρ -l 2 , λ 3 -λ 1 = m 2 .
The equations imply

-λ 1 + λ 2 + λ 3 = ρ + l 1 + m 1 = -ρ -l 2 + m 2 .
Hence a necessary condition for a nonvoid intersection is that

l 1 + m 1 = -(n -1) -l 2 + m 2 .
As |m 1 | ≤ l 1 and |m 2 | ≤ l 2 , the LHS is nonnegative, whereas the RHS is ≤ -(n -1). Hence i) is proved.

For ii) observe that two distinct lines D -,j l,m and D -,j l ,m necessarily belong to two distinct parallel planes, hence cannot intersect. A similar observation for D +,j l,m and D +,j l ,m , thus proving iii).

As a consequence, to determine all possible cases where two distinct lines in Z intersect, it suffices to examine the cases where = -and j = j , and the cases where = and j = j . Lemma 8.1. Let (+, 1, l, m) and (-, 1, l , m ) be admissible quadruples.

i) if l = l , then D +, 1 l, m ∩ D -, 1 l , m = ∅ . ii) if l = l , then D +, 1 l, m ∩ D -, 1 l, m = (-ρ -l, m + m 2 , m -m 2 ) . (5) 
Proof. An element λ in D +, 1 l, m ∩ D -, 1 l , m has to satisfy the equations

λ 1 = -ρ -l, λ 2 + λ 3 = m, λ 1 = -ρ -l , λ 2 -λ 3 = m
The intersection is clearly empty if l = l . lf l = l , then the two lines intersect and the intersection point is equal to (-ρ -l, m+m 2 , m-m 2 ).

Lemma 8.2. Let (+, 1, l 1 , m 1 ) and (+, 2, l 2 , m 2 ) be admissible quadruples.

i) if l 1 -m 1 = l 2 -m 2 , then D +, 1 l 1 , m 1 ∩ D +, 2 l 2 , m 2 = ∅ . ii) if l 1 -m 1 = l 2 -m 2 , then D +, 1 l 1 , m 1 ∩ D +, 2 l 2 , m 2 = (-ρ -l 1 , -ρ -l 2 , ρ + m 1 + l 2 ) . (6) 
Proof. An element λ belongs to the intersection D +, 1 l 1 , m 1 ∩ D +, 2 l 2 , m 2 if and only if the following equations are satisfied

λ 1 = -ρ -l 1 , λ 2 + λ 3 = m 1 , λ 2 = -ρ -l 2 , λ 1 + λ 3 = m 2 .
A combination of these equations yields

λ 1 + λ 2 + λ 3 = -ρ -l 1 + m 1 = -ρ -l 2 + m 2 .
Hence a necessary condition for a non empty intersection is

l 1 -m 1 = l 2 -m 2
Assume that this condition is satisfied, then the intersection point of the two lines is equal to (-ρ-l 1 , -ρ-l 2 , ρ+m 1 +l 2 ). For later reference, observe that the last coordinate can be written as ρ + m 3 , with

m 3 = m 2 + l 1 = m 1 + l 2 . Then m 3 ≡ l 1 ± l 2 mod 2, |l 1 -l 2 | ≤ m 3 ≤ l 1 + l 2 . Lemma 8.3. Let (-, 1, l 1 , m 1 ) and (-, 2, l 2 , m 2 ) be admissible quadruples. i) if l 1 -l 2 = m 1 + m 2 , then D -,1 l 1 ,m 1 ∩ D -,2 l 2 ,m 2 = ∅. ii) if l 1 -l 2 = m 1 + m 2 , then D -,1 l 1 ,m 1 ∩ D -,2 l 2 ,m 2 = (-ρ -l 1 , -ρ -l 2 , -ρ -l 1 + m 2 ) . Moreover, set l 3 = l 1 -m 2 , m 3 = -l 1 + l 2 . Then m 3 ≡ l 3 mod 2, |m 3 | ≤ l 3 , so that (-, 3, l 3 , m 3 ) is an admissible quadruple. The three lines D -,1 l 1 ,m 1 , D -,2 l 2 ,m 2 and D -,3 l 3 ,m 3 satisfy D -,1 l 1 ,m 1 ∩ D -,2 l 2 ,m 2 ∩ D -,3 l 3 ,m 3 = { -ρ -l 1 , -ρ -l 2 , -ρ -l 3 } .
Proof. An element λ belongs to the intersection D -,1 l 1 ,m 1 ∩ D -,2 l 2 ,m 2 if and only if the following equations are satisfied :

λ 1 = -ρ -l 1 , λ 2 -λ 3 = m 1 , λ 2 = -ρ -l 2 , λ 3 -λ 1 = m 2 . These equations imply λ 2 -λ 1 = (λ 2 -λ 3 ) + (λ 3 -λ 1 ) = l 1 -l 2 = m 1 + m 2 ,
and hence the intersection is empty unless l 1 -l 2 = m 1 + m 2 . Assume that this condition is satisfied. Let

l 3 = l 1 -m 2 = l 2 + m 2 , m 3 = -l 1 + l 2 .
Then l 3 + m 3 = l 2 -m 2 ≡ 0 mod 2 and hence m 3 ≡ l 3 mod 2. Moreover,

m 3 = -l 1 + l 2 ≤ m 1 + l 2 = l 3 , -m 3 = l 1 -l 2 ≤ l 1 -m 2 = l 3 . so that |m 3 | ≤ l 3 , showing that (-, 3, l 3 , m 3 ) is an admissible quadruplet. Now D -,1 l 1 ,m 1 ∩ D -,2 l 2 ,m 2 = (-ρ -l 1 , -ρ -l 2 , -ρ -l 1 + m 2 )
. Observe that the third coordinate can be written as -ρ -l 3 , whereas -ρl 1 -(ρ -l 2 ) = -l 1 + l 2 = m 3 , so that the intersection point also belongs to D -,3 l 3 ,m 3 .

For later reference, observe that in the last situation,

l 1 + l 2 + l 3 ≡ 0 mod 2, |l 1 -l 2 | ≤ l 3 ≤ l 1 + l 2 , (7) 
and observe that these conditions are invariant under permutation of 1, 2, 3. Conversely, let l 1 , l 2 , l 3 satisfy [START_REF] Juhl | Families of conformally covariant differential operators, Qcurvature and holography[END_REF]. Then the three lines

D -,1 l 1 ,-l 2 +l 3 D -,2 l 2 ,-l 3 +l 1 and D -,3 l 3 ,-l 1 +l 2 have a common point, namely (-ρ -l 1 , -ρ -l 2 , -ρ -l 3 ). Proposition 8.2.
i) The intersection of three distinct lines D, D , D contained in Z is non empty, if and only if, up to a permutation of {1, 2, 3} there exist l 1 , l 2 , l 3 ∈ N satisfying [START_REF] Juhl | Families of conformally covariant differential operators, Qcurvature and holography[END_REF] such that

D = D -,1 l 1 ,-l 2 +l 3 , D = D -,2 l 2 ,-l 3 +l 1 , D = D -,3 l 3 ,-l 1 +l 2 .
If this is the case, then

D ∩ D ∩ D = {(-ρ -l 1 , -ρ -l 2 , -ρ -l 3 )} .
ii) The intersection of four distinct lines contained in Z is always empty.

Proof. Suppose first the lines are of type I j ,I j and II k . If they have a non empty intersection, by Proposition 8.1, k = j and k = j , but j = j , a contradiction. A similar argument shows that three distinct lines of type I j ,II k ,II k have an empty intersection. If the three lines are of type II j ,II j ,II j , by Proposition 8.1 j, j , j have to be mutually distinct, hence up to a permutation, we may assume that j = 1, j = 2 and j = 3. The equations of the lines are

λ 1 = -ρ -l 1 , λ 2 + λ 3 = m 1 , λ 2 = -ρ -l 2 , λ 3 + λ 1 = m 2 λ 3 = -ρ -l 3 , λ 1 + λ 2 = m 3
so that the coordinates of the intersection have to satisfy

2(λ 1 + λ 2 + λ 3 ) = -3(n -1) -2(l 1 + l 2 + l 3 ) = m 1 + m 2 + m 3
which contradicts the conditions |m j | ≤ l j for j = 1, 2, 3. Hence it remains to examine the case where the three lines are of type I j , I j and I j . Again by Proposition 8.1, j, j , j have to be mutually distinct, hence, up to a permutation of {1, 2, 3}, we may assume j = 1, j = 2, j = 3. But then it is just the situation observed in Lemma 8. To these definitions correspond the following partitions

Z = Z 1 • ∪Z 2 • ∪Z 3 , Z 1 = Z 1,I • ∪Z 1,II , Z 2 = Z 2,I • ∪Z 2,II .
The next propositions describe (up to a permutation of the indices 1, 2, 3) the different subsets of Z just introduced, in terms of the spectral parameter and in terms of the geometric parameter. They are easily obtained form the previous study of the intersections of the lines contained in Z. 

λ 2 / ∈ l -m 2 , l -m 2 + 1, . . . , l + m 2 ∪ -ρ - l -m 2 -N .
Proposition 8.4. Let D be the line of type I defined by the equations

α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 ,
where

k 2 , k 3 ∈ N. Let α ∈ D. Then α ∈ Z 1 ⇐⇒ α 1 / ∈ {0, 2, . . . , 2(k 2 + k 3 )} ∪ -(n -1) -2N .
Proposition 8.5. Let λ belong to the line D +,1 l,m . Then λ ∈ Z 1 if and only if

λ 2 / ∈ m 2 - l 2 , m 2 - l 2 +1, . . . , m 2 + l 2 ∪ -ρ+ m 2 - l 2 -N ∪ ρ+ m 2 + l 2 +N
Proposition 8.6. Let α satisfy

α 1 + α 2 + α 3 = -2(n -1) -2k, α 1 = 2p ,
where k, p ∈ N. Then α ∈ Z 1 if and only if

α 2 / ∈ -(n-1), -(n-1)-2, . . . , -(n-1)-2k-2p ∪ 2N ∪ -2(n-1)-2k-2p-2N Proposition 8.7. Let λ ∈ C 3 . i) λ belongs to Z 2,I if and only if , up to a cyclic permutation of 1, 2, 3, λ = (-ρ -l 1 , m 2 , m 3 ), m 2 ± m 3 ≡ l 1 mod (2), |m 2 ± m 3 | ≤ l 1 (8) 
ii) λ belongs to Z 2,II if and only if, up to a permutation of 1, 2, 3

λ = (-ρ -l 1 , -ρ -l 2 , ρ + m 3 ), m 3 ≡ l 1 ± l 2 mod (2) |l 1 -l 2 | ≤ m 3 ≤ l 1 + l 2 . ( 9 
)
iii) λ belongs to Z 3 if and only

λ = (-ρ -l 1 , ρ -l 2 , -ρ -l 3 ), l 1 + l 2 + l 3 ≡ 0 mod (2)
|l 1 -l 2 | ≤ l 3 ≤ l 1 + l 2 . ( 10 
)
Remark. The conditions [START_REF] Oshima | Annihilators of generalized Verma modules of the scalar type for classical Lie algebras Harmonic Analysis, Group representations, Automotphic forms and Invariant Theory[END_REF] are symmetric in the three variables (l 1 , l 2 , l 3 ).

Proposition 8.8. Let α ∈ C 3 . Then i) α belongs to Z 2,I if and only if, up to a cyclic permutation of {1, 2, 3},

there exists k 1 , k 2 , k 3 ∈ N such that α = 2k 1 , -(n -1) -2k 2 , -(n -1) -2k 3 , k 1 ≤ k 2 + k 3 (11) 
ii) α belongs to Z 2,II if and only if, up to a cyclic permutation of {1, 2, 3},

there exists k 1 , k 2 , k 3 ∈ N such that α = 2k 1 , 2k 2 , -2(n -1) -2k 3 , k 1 + k 2 ≤ k 3 (12) 
iii) α belongs to Z 3 if and only if

α = -(n -1) -2k 1 , -(n -1) -2k 2 , -(n -1) -2k 3 (13) for some k 1 , k 2 , k 3 ∈ N.
The set Z is contained in the set of poles of the meromorphic function K α . The precise nature of the pole requires some further refinement in the description of Z. Proposition 8.9. Let α satisfy

α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3
and assume that α ∈ Z 1,I . Then α belongs to exactly two planes of poles (namely

β 2 = -(n -1) -2k 2 and β 3 = -(n -1) -2k 3 ), except if α 1 = -2p
for some p ∈ {1, 2, . . . , }, in which case α belongs moreover to the plane of poles

β 1 + β 2 + β 3 = -2(n -1) -2(k 2 + k 3 + p) .
Proposition 8.10. Let α satisfy

α 1 + α 2 + α 3 = -2(n -1) -2k, α 1 = 2p
where k, p ∈ N and assume that α belongs to Z 1,II . Then α belongs to a exactly one plane of poles (namely

β 1 + β 2 + β 3 = -2(n -1) -2k)
, except if α is (up to a permutation of the indices 2 and 3) of the form

α 1 = 2p, α 2 = -(n -1) -2k 2 , α 3 = -(n -1) + 2q,
where p, k 2 , q ∈ N, q ≥ 1, k 2 -p -q ≥ 0, in which case α belongs moreover to the plane of poles

β 2 = -(n -1) -2k 2 .
Proposition 8.11. Let α ∈ Z 2,I , i.e. (up to a permutation of 1, 2, 3) satisfy

α 1 = 2k 1 , α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3
where

k 1 , k 2 , k 3 ∈ N, k 2 + k 3 -k 1 ≥ 0.
Then α belongs to three planes of poles, namely

β 1 = -(n -1) -2k 1 , β 2 = -(n -1) -2k 2 and β 1 + β 2 + β 3 = -2(n -1) -2(k 2 + k 3 -k 1 ).
Proposition 8.12. Let α ∈ Z 2,II , i.e. up to a permutation of 1, 2, 3 satisfy

α 1 = 2k 1 , α 2 = 2k 2 , α 3 = -2(n -1) -2k 3
where

k 1 , k 2 , k 3 ∈ N and k 1 + k 2 ≤ k 3 . i) if n -1
is odd, then α belongs to the unique plane of poles

α 1 + α 2 + α 3 = -2(n -1) -2(-k 1 -k 2 + k 3 ) .
ii) if n-1 is even, then α belongs to two planes of poles, given respectively by the equations

α 3 = -(n-1)-2(ρ+k 3 ) and α 1 +α 2 +α 3 = -2(n-1)-2(-k 1 -k 2 +k 3 ) . Proposition 8.13. Let α ∈ Z 3 , i.e. α 1 = -(n -1) -2k 1 , α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 where k 1 , k 2 , k 3 ∈ N.
i) if n -1 is odd, then α belongs to exactly three planes of poles.

ii) if n -1 is even, then α belongs to three planes of poles of type I and moreover to the plane of poles of type II given by the equation

α 1 + α 2 + α 3 = -2(n -1) -2(ρ + k 1 + k 2 + k 3 ) .
9 The holomorphic families T (j,k) . , .

The first holomorphic families to be introduced are related to the residues of the meromorphic distribution-valued function α -→ K α at poles of type I (see [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF] section 2). Let k ∈ N and consider the plane of poles of type (say) 3 I 3 given by the equation α 3 = -(n -1) -2k. Use α 1 , α 2 as coordinates in this plane.

Introduce the differential operator on S given by

∆ k = k j=1 ∆ -(ρ + j -1)(ρ -j) ,
where ∆ is the usual Laplacian on S. Recall that ∆ k is a conformally covariant differential operator on S, in the sense that, for any g ∈ G,

∆ k • π -k (g) = π k (g) • ∆ k . Let α 1 , α 2 ∈ C. For f 1 , f 2 , f 3 ∈ C ∞ (S)
, consider the expression defined by

T (3,k) α 1 ,α 2 (f 1 , f 2 , f 3 ) = S×S f 2 (y)f 3 (z)∆ k [f 1 ( . )|z -. | α 2 ](y)|y -z| α 1 dy dz (14)
or equivalently, for ϕ ∈ C ∞ (S × S × S)

T (3,k) α 1 ,α 2 (ϕ) = S×S ∆ (1) 
k ϕ(., y, z)|z -.| α 2 (y)|y -z| α 1 dydz , (15) 
where ∆

k is the covariant differential operator ∆ k acting on x.

Proposition 9.1. i) for ϕ ∈ C ∞ (S × S × S) with Supp(ϕ) ⊂ O c 4 , the integral (15) defines a λ-invariant distribution T (3,k) α 1 ,α 2 ,O c 4 on O c
4 . ii) for α 1 and α 2 large enough, the integral (14) converges and defines a continuous trilinear form on C ∞ (S).

iii) the trilinear form T (3,k) α 1 , α 2 can be continued meromorphically (in the parameters α 1 , α 2 ) to C 2 , with simple poles along the complex lines The convergence result ii) and the meromorphic extension iii) are established in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF] Theorem 2.2. The fact that the poles are simple (although not explicitly stated) is an easy consequence of the proof.

α 1 + α 2 = -(n -1) + 2k -2l, l = 0, 1, 2, . . . .
Remark. If α satisfies α 3 = -(n -1) -2k and α 1 + α 2 = -(n -1) + 2k -2l for some l ∈ N, then α 1 + α 2 + α 3 = -2(n -1) -2l, so that α is a pole of type I + II. Now renormalize T (3,k) α 1 , α 2 by setting T (3,k) α 1 , α 2 = 1 Γ( α 1 +α 2 2 + ρ -k) T (3,k) α 1 , α 2 , (16) 
and use Hartog's theorem to extend (α 1 , α 2 ) -→ T

(3,k) α 1 , α 2 holomorphically to all of C 2 .
Recall that a pole α is said to be generic if α belongs to a unique plane of poles. For α a generic pole (say) of type I 3 , the residue Res(K α ) is defined as

Res(K α ) = lim s→0 s K α 1 ,α 2 ,α 3 +2s ,
and was computed in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF].

Proposition 9.2. Let α satisfy α 3 = -(n -1) -2k and assume that α is a generic pole. The residue of K α at α is equal to

Res K α ) = π ρ 2 -2k Γ(ρ + k)k! T (3,k) α 1 ,α 2 . ( 17 
) Proposition 9.3. Let k ∈ N. Then K α 1 , α 2 , -(n-1)-2k = (-1) k 2 -2k π ρ Γ(ρ + k)Γ(ρ + α 1 2 )Γ(ρ + α 2 2 ) T (3,k) α 1 , α 2 . ( 18 
)
Proof. First assume that α is a generic pole. For s ∈ C, let

α(s) = (α 1 , α 2 , -(n -1 -2k + 2s) .
For s = 0, α(s) is not a pole, hence

K α(s) = 1 Γ( α 1 2 + ρ)Γ( α 2 2 + ρ)Γ(-k + s)Γ( α 1 +α 2 2 + ρ -k + s) K α(s) As s → 0, 1 Γ(-k + s) ∼ (-1) k k! s, so that K α 1 , α 2 , -(n-1)-2k = (-1) k k! Γ( α 1 2 + ρ) Γ( α 2 2 + ρ) Γ( α 1 +α 2 2 + ρ -k) Res K α
and (18) follows from ( 16) and ( 17).

As both sides of (18) depend holomorphically on (α 1 , α 2 ), the equality is valid on all of C 2 by analytic continuation.

The K-coefficients of T (3,k) α 1 , α 2 can be computed from ( 18) and the evaluation of the K-coefficients of K α (see (63) in Appendix).

Proposition 9.4. Let α 1 , α 2 ∈ C, and let k ∈ N. Then T (3,k) α 1 ,α 2 (p a 1 ,a 2 ,a 3 ) = 0 for a 3 > k and for a 3 ≤ k T (3,k) α 1 ,α 2 (p a 1 ,a 2 ,a 3 ) = 2 -5 2 (n-1)-1 π n-1 (-1) k Γ(ρ + k) 2 α 1 +α 2 2 2(a 1 +a 2 +a 3 ) × (-k) a 3 α 1 + α 2 2 + ρ -k a 1 +a 2 +a 3 × α 1 2 + ρ + a 1 -(k -a 3 ) k-a 3 α 2 2 + ρ + a 2 -(k -a 3 ) k-a 3 × 1 Γ( α 1 +α 2 2 + 2ρ + a 1 + a 2 ) . ( 19 
) Proposition 9.5. Let α = (α 1 , α 2 , -(n -1) -2k).
i) assume that α is not a pole of type II. Then

Supp( T (3,k) α 1 ,α 2 ) = O 3 .
ii) assume that α is moreover a pole of type II. Then

Supp( T (3,k) α 1 ,α 2 ) ⊂ O 4 .
Proof. In general, as α is a pole of type I 3 , Supp( K α ) ⊂ O 3 (see Proposition 3.3 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]), from which follows easily Supp( T

(3,k) α 1 ,α 2 ) ⊂ O 3 . As Supp( T (3,k) α 1 ,α 2 ) has to be invariant by G, either Supp( T (3,k) α 1 ,α 2 ) = O 3 or Supp( T (3,k) α 1 ,α 2 ) ⊂ O 4 .
For i), assume that α is not a pole of type II, which is equivalent to assuming that

α 1 +α 2 2 + ρ -k / ∈ -N. Hence the factor α 1 +α 2 2 + ρ -k a 1 +a 2 +a 3 in (19) never vanishes. Now let a 3 = k and choose a 1 , a 2 large enough. Then T (3,k) α 1 ,α 2 (p a 1 ,a 2 ,a 3 ) = 0. But the function p a 1 ,
a 2 ,a 3 vanishes on O 4 at an arbitrary large order for an appropriate choice of a 1 and a 2 . This is incompatible with the possibility that Supp( T

(3,k) α 1 ,α 2 ) ⊂ O 4 (
see similar argument in the proof of Lemma 6.5 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]).

For ii), assume that α is a pole of type II. By Proposition 3.

3 in [3] Supp( K α ) ⊂ O 4 . If α 1 , α 2 / ∈ -(n-1)-2N, then (18) shows that Supp( T (3,k) α 1 ,α 2 ) ⊂ O 4 .
The result follows by continuity.

10 The multiplicity 2 theorem for α ∈ Z 1,I Let α = (α 1 , α 2 , α 3 ) belongs to Z 1,I . Up to a permutation of {1, 2, 3}, α satisfies (see Proposition 8.4)

α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 , α 1 / ∈ {0, 2, . . . , 2(k 2 + k 3 )} ∪ -(n -1) -2N . (20) 
The next proposition is a preparation for the main results. The domain of α's to which it applies is larger than Z 1,I .

Proposition 10.1. Let α satisfy

α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 , α 1 / ∈ {0, 2, . . . , 2(k 2 + k 3 )} . Then T (2,k 2 ) α 1 ,-(n-1)-2k 3 and T (3,k 3 ) α 1 ,-(n-1)-2k 2 are two linearly independant λ-invariant distributions. Proof. For a 3 = k 3 , the value of the K-coefficient T (3,k 3 ) α 1 ,α 2 (p a 1 ,a 2 ,a 3 ) given by (19) takes the particular form 4 N V T × α 1 2 -k 2 -k 3 a 1 +a 2 +k 3 Γ( α 1 2 -k 2 + ρ + a 1 + a 2 ) -1 Assume first that α 1 / ∈ 2k 2 + 2k 3 -2N.
Then the first factor is always = 0. The second factor, for a given value of a 2 , does not vanish for a 1 large 4 Recall that the symbol NVT is used for a non vanishing term enough. Hence for a 3 = k 3 , a 2 = k 2 + 1 and a 1 large enough,

T (3,k 3 ) α 1 ,-(n-1)-2k 2 (p a 1 , k 2 +1, k 3 ) = 0 , whereas T (2,k 2 ) α 1 , -(n-1)-2k 3 (p a 1 , k 2 +1, k 3 ) = 0 , because a 2 = k 2 + 1 > k 2 ,
and the statement follows in this case.

Next, assume that α 1 = -2l 1 for some integer l 1 ≥ 1. Let

a 3 = k 3 , a 2 = k 2 + 1, a 1 = l 1 -1 . Then (-l 1 -k 2 -k 3 ) a 1 +a 2 +a 3 = (-l 1 -k 2 -k 3 ) l 1 +k 2 +k 3 = 0. Moreover, α 1 2 -k 2 + ρ + a 1 + a 2 = ρ. Hence T (3,k 3 ) α 1 ,-(n-1)-2k 2 (p a 1 ,a 2 ,a 3 ) = 0, whereas T (2,k 2 ) α 1 ,-(n-1)-2k 3 (p a 1 ,a 2 ,a 3 ) = 0 as a 2 > k 2 .
Permuting the indices 2 and 3, the independence of the two trilinear forms follows.

Remark. Let α ∈ C 3 such that α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 , α 1 ∈ {0, 2, . . . , 2k 2 + 2k 3 } .
Then the two trilinear forms T

(3, k 3 ) α 1 , -(n-1)-2k 2 and T (2, k 2 )
α 1 , -(n-1)-2k 3 are proportional, as will be proved later (see Proposition 14.1).

The main result of this section can now be formulated.

Theorem 10.1. Let α ∈ Z 1,I and let λ be its associated spectral parameter.

Then dim T ri(λ) = 2 . More precisely, assume that α satisfies (20). Then

T ri(λ) = C T (2,k 2 ) α 1 ,α 3 ⊕ C T (3,k 3 ) α 1 ,α 2 .
Because of Proposition 10.1, it suffices to prove that dim T ri(λ) ≤ 2. The proof of this inequality strongly depends on the nature of α as a pole (see Proposition 8.9), hence will be divided in two subsections : one for the general case (α is not a pole of type II) and one for the special case (α is moreover a pole of type II).

The general case

Let α satisfy conditions (20), and in this subsection, assume moreover that α is not a pole of type II. This amounts to

α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 α 1 / ∈ 2k 2 + 2k 3 -2N ∪ -(n -1) -2N (21) 
for some k 2 , k 3 ∈ N.

In this case, Supp( T

(2,k 2 ) α 1 ,α 3 ) = O 2 and Supp( T (3,k 3 ) α 1 ,α 2 ) = O 3 (Proposition 9.5
), which gives in this case another proof of the linear independence of the two distributions (Proposition 10.1).

As suggested in the introduction, T

(2,k 2 )

α 1 ,α 3 and T (3,k 3 ) α 1 ,α 2 are related to partial derivatives of β -→ K β at α. Lemma 10.1. d ds K α 1 ,α 2 +2s,α 3 s=0 = (-1) k 3 2 -2k 3 π ρ (-1) k 2 k 2 ! Γ(ρ + k 3 )Γ(ρ + α 1 2 ) T (3,k 3 ) α 1 ,α 2 Proof. For s ∈ C, let α(s) = (α 1 , α 2 + 2s, α 3 ) and use (18) to relate K α(s)
and

T (3,k 3 ) α 1 ,α 2 +2s . As s → 0, 1 Γ(ρ + α 2 2 + s) = 1 Γ(-k 2 + s) ∼ (-1) k 2 k 2 !s
and pass to the limit to obtain the lemma.

Proposition 10.2. Let α satisfy (21). Let λ be its associated spectral parameter. The distribution K α,O 0 cannot be extended to a λ-invariant distribution on S × S × S.

Proof. At α, exactly two Γ-factors in the normalization of K β become singular, namely Γ( β 2 2 + ρ) and Γ(

β 3 2 + ρ). For s ∈ C, let α(s) = (α 1 , α 2 + 2s, α 3 + 2s), λ(s) = (λ 1 + 2s, λ 2 + s, λ 3 + s) .
Observe that α(0) = α, that for s = 0, |s| small, α(s) is not a pole. Moreover, α(s) is transverse to both planes of poles β 2 = -(n -1) -2k 2 and β 3 = -(n -1) -2k 3 . For s = 0 and |s| small, consider the distribution F(s) defined by

F(s) = (-1) k 2 k 2 ! (-1) k 3 k 3 ! Γ( α 1 2 + ρ) Γ( α 1 2 -k 2 -k 3 + 2s) 1 s K α(s) .
As α ∈ Z, the (distribution-valued) function s -→ F(s) can be extended analytically near 0 and its Taylor expansion of order 2 reads

F(s) = F 0 + s F 1 + O(s 2 ) ,
where F 0 , F 1 are distributions on S × S × S. Notice further that F(s) is λ(s)-invariant.

Lemma 10.2. The distributions F 0 and F 1 satisfy

i) F 0 is λ-invariant and Supp(F 0 ) = O 2 ∪ O 3 ii) the restriction of F 1 to O 0 is equal to K α, O 0 Proof. For i), F 0 = N V T d ds K α(s) s=0 = N V T d ds K α 1 ,α 2 +2s,α 3 s=0 + d ds K α 1 ,α 2 ,α 3 +2s s=0
and i) follows from Lemma 10.1 and Proposition 10.1.

For ii), let ϕ ∈ C ∞ c (O 0 ). Then, for s = 0, K α(s) (ϕ) is well defined and satisfies

K α(s) (ϕ) = (-1) k 2 k 2 ! Γ(-k 2 + s) (-1) k 3 k 3 ! Γ(-k 3 + s)s F(s)(ϕ) = 1 s F 0 (ϕ) + F 1 (ϕ) + O(s) .
As s -→ 0, the left hand side converges to K α,O 0 (ϕ). Hence,

F 0 (ϕ) = 0, F 1 (ϕ) = K α (ϕ), thus proving ii). Let O = O 0 ∪ O 2 .
The open subset O is G-invariant, contains O 2 as a (relatively) closed submanifold. Now restrict F(s) to O, and similarly for

F 0 and F 1 . Then, F(s) |O is λ(s)-invariant, F(s) |O = F 0|O + s F 1|O + O(s 2 ),
and Supp(F 0|O ) = O 2 . By Proposition A1, K α,O 0 cannnot be extended to a λ-invariant distribution on O, a fortiori to S × S × S, which finishes the proof of Proposition 10.2.

After this preparation, we are in condition to prove Theorem 10.1 in the general case. Let T be a λ-invariant distribution. The restriction of T to O 0 has to be proportional to K α,O 0 , hence has to be 0 by Proposition 10.2. Next, as

α 1 / ∈ -(n -1) -2N, the restriction of T to O 0 ∪ O 1 has to be 0 (use Lemma 4.1 in [3]). So, T is supported on O 2 ∪ O 3 ∪ O 4 . Now we first restrict T to the G-invariant open set O 0 ∪ O 1 ∪ O 2 . The restriction T |O 0 ∪O 1 ∪O 2 is λ-invariant and supported on O 2 . By Lemma 4.1 in [3], T |O 0 ∪O 1 ∪O 2 has to be proportional to (the restriction to O 0 ∪ O 1 ∪ O 2 of) T (2,k 2 ) α 1 ,α 3 . A similar argument applies for the restriction of T to O 0 ∪ O 1 ∪ O 3 . Hence, there exist two constants C 2 and C 3 such that T -C 2 T (2,k 2 ) α 1 ,α 3 -C 3 T (3,k 3 ) α 1 ,α 2
is supported on O 4 , and still λ-invariant. By Lemma 4.2 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], as

α 1 + α 2 + α 3 / ∈ -2(n -1) -2N, T -C 2 T (2,k 2 ) α 1 ,α 3 -C 3 T (3,k 3 ) α 1 ,α 2 = 0. Hence any λ-invariant distribution is a linear combination of T (2,k 2 ) α 1 ,α 3 and T (3,k 3 ) α 1 ,α 2 . Q.E.D.

The special case

In this subsection, assume α satisfies (20) and is moreover a pole of type II, i.e. α is assumed to satisfy the conditions

α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 , α 1 = -2p 1 k 2 , k 3 ∈ N, p 1 ∈ {1, 2, . . . }, p 1 / ∈ ρ + N . ( 22 
)
Notice in particular that α 1 +α 2 +α 3 = -2(n-1)-2k, where k = p 1 +k 2 +k 3 so that α is indeed a pole of type II.

Let λ be the associated spectral parameter. In this case, the two λ-

invariant distributions T (2,k 2 ) α 1 ,α 3 and T (3,k 3 )
α 1 ,α 2 are now supported on O 4 , but still linearly independent (see Proposition 9.5 and Proposition 10.1). Some preparatory results are needed.

Proposition 10.3. Let A 2 and A 3 be two complex numbers, (A 2 , A 3 ) = (0, 0). The distribution on O c 4 A 2 T (2,k 2 ) α 1 ,α 3 , O c 4 + A 3 T (3,k 3 ) α 1 ,α 2 , O c 4 cannot be extended to a λ-invariant distribution on S × S × S. Proof. For s ∈ C let α(s) = (α 1 + 2s, α 2 , α 3 ), λ(s) = (λ 1 , λ 2 + s, λ 3 + s)
and notice that α(s) is transverse to the plane

β 1 + β 2 + β 3 = -2(n -1) -2k at α = α(0). Let F(s) = (-1) k k! A 2 T (2,k 2 ) α 1 +2s,α 3 + A 3 T (3,k 3 ) α 1 +2s,α 2 .
Notice that the distribution

F(s) is λ(s)-invariant. Let F(s) = F 0 + sF 1 + O(|s| 2 )
be the Taylor expansion of F at 0.

Lemma 10.3. i) Supp(F 0 ) = O 4 ii) on O c 4 F 1|O c 4 = A 2 T (2,k 2 ) α 1 ,α 3 , O c 4 + A 3 T (3,k 3 ) α 1 ,α 2 , O c 4 Proof. For i), note that F 0 = (-1) k k! A 2 T (2,k 2 ) α 1 ,α 3 + A 3 T (3,k 3 ) α 1 ,α 2 , hence F 0 = 0 and Supp(F 0 ) = O 4 . For ii), Let ϕ ∈ C ∞ c (O c 4 
). Then, using ( 16)

F(s)(ϕ) = (-1) k k! 1 Γ(-k + s) (A 2 T (2,k 2 ) α 1 +2s,α 3 (ϕ) + A 3 T (3,k 3 ) α 1 +2s,α 2 (ϕ) (23) 
Let s -→ 0 to obtain

F 1 (ϕ) = A 2 T (2,k 2 ) α 1 +2s,α 3 ,O c 4 (ϕ) + A 3 T (3,k 3 ) α 1 +2s,α 2 ,O c 4 (ϕ)
proving ii).

Now apply Proposition A2 to conclude that

A 2 T (2,k 2 ) α 1 ,α 3 , O c 4 + A 3 T (3,k 3 ) α 1 ,α 2 , O c 4 cannot be extended to S × S × S as a λ-invariant distribution.
We are ready to start the proof of Theorem 10.1 for the special case. As in the general case, the following proposition holds. Proposition 10.4. Let α satisfy conditions (20). The distribution K α, O 0 cannot be extended to a λ-invariant distribution on S × S × S.

Proof. Three Γ factors used in the renormalization of K β are singular at α, namely Γ(

β 2 2 + ρ), Γ( β 3 2 + ρ) and Γ( β 1 +β 2 +β 3 2 + 2ρ). For s ∈ C, |s|, let α(s) = (α 1 , α 2 + 2s, α 3 + 2s), λ(s) = (λ 1 + 2s, λ 2 + s, λ 3 + s) .
Notice that α(s) is transverse to the three planes of poles

β 2 = -(n -1) - 2k 2 , β 3 = -(n -1) -2k 3 and β 1 + β 2 + β 3 = -2(n -1) -2k. For s = 0 let F(s) = 1 2 (-1) k k! (-1) k 2 k 2 ! (-1) k 3 k 3 ! Γ(-p 1 + ρ) 1 s K α(s) .
As α is in Z, F(s) can be extended as a distribution-valued holomorphic function near 0. Its Taylor expansion at 0 reads

F(s) = F 0 + sF 1 + s 2 F 2 + O(s 3 ) , (24) 
where F 0 , F 1 , F 2 are distributions on S × S × S.

Lemma 10.4. The distributions

F 0 , F 1 , F 2 satisfy i) F 0 is λ-invariant and Supp(F 0 ) = O 4 ii) Supp(F 1 ) = O 2 ∪ O 3 and the restriction of F 1 to O c 4 is λ-invariant. iii) the restriction of F 2 to O 0 coincides with K α,O 0 .
Proof. The proof of i) is similar to what was done in the general case (see Lemma 10.1 and Lemma 10.2), except that the distributions T

(2,k 2 ) α 2 ,α 3 and T (3,k 3 ) α 1 ,α 2 are now supported in O 4 but still linearly independent by Proposition 10.1. For iii), let ϕ ∈ C ∞ c (O 0 ). Then, for s = 0, F(s), ϕ = 1 2 (-1) k k! 1 Γ(-k + 2s) (-1) k 2 k 2 ! 1 Γ(-k 2 + s) (-1) k 3 k 3 ! 1 Γ(-k 3 + s) 1 s K α(s),O 0 (ϕ) = s 2 K α,O 0 (ϕ) + O(s 3 ) As s -→ 0, F 0 (ϕ) = F 1 (ϕ) = 0 and F 2 (ϕ) = K α,O 0 (ϕ), proving iii) and the fact that Supp(F 1 ) ⊂ O 1 ∪ O 2 ∪ O 3 . It remains to prove that Supp(F 1 ) = O 2 ∪ O 3 . As F 1 |O c 4 = lim s→0 1 s F(s) |O c 4 , F 1 |O c 4 is λ-invariant. In particular F 1 |O 0 ∪O 1 is λ-invariant and supported on O 1 . But α 1 / ∈ -(n -1) -2N , so that F 1 |O 0 ∪O 1 = 0 (use Lemma 4.1 in [3]). Hence Supp(F 1 |O c 4 ⊂ O 2 ∪ O 3 .
There are only three possibilities :

Supp(F 1 |O c 4 ) = O 2 , Supp(F 1 |O c 4 ) = O 3 or Supp(F 1 |O c 4 ) = O 2 ∪ O 3 . Assume Supp(F 1 |O c 4 ) = O 3 . Then Supp(F 1 ) = O 3 .
To see a contradiction, use again the evaluation of the K-coefficients of K α (p a 1 ,a 2 ,a 3 ) (see (63)) and choose a 1 , a 2 , a 3 such that a 2 = 0,

a 3 > k 2 + k 3 , a 1 + a 3 > k. For such a choice, K α(s) (p a 1 ,a 2 ,a 3 ) = N V T (s) × (-k + s) a 1 +a 2 +a 3 (-k 3 + s) a 3
where N V T (s) stands for a function which does not vanish at s = 0. Now both (-k + s) a 1 +a 2 +a 3 and (-k 3 + s) a 3 have a simple zero for s = 0, so that

K α(s) (p a 1 ,a 2 ,a 3 ) = Cs 2 + O(s 3 )
with C = 0. Hence F 1 (p a 1 ,a 2 ,a 3 ) = 0. But for an appropriate choice of a 3 , the function p a 1 ,a 2 ,a 3 vanishes on the submanifold O 3 at an arbitrary large order. Hence F 1 (p a 1 ,a 2 ,a 3 ) = 0 for a 3 arbitrary large is incompatible with Supp(F 1 ) ⊂ O 3 . Exchanging the role of 2 and 3, we also get that Supp(F 1 ) cannot be contained in O 2 . Hence ii) follows. 

1 s F(s) |O = F 1 |O + s F 2 |O + O(s 2 ) .
and Supp(F 1 |O ) = O 2 whereas F 2 |O 0 coincides with K α,O 0 . Now apply Proposition A1 to obtain that K α,O 0 cannot be extended to a λ-invariant distribution on O, a fortiori to a λ-invariant distribution on S × S × S.

We now proceed to the proof of Theorem 10.1 for the special case. Let T be a λ-invariant distribution. As in the general case, the restriction of T to O 0 has to be proportional to K α,O 0 , so must be 0 thanks to Proposition 10.4. Hence Supp(T 

) ⊂ O 1 ∪ O 2 ∪ O 3 ∪ O 4 . As α 1 / ∈ -(n -1) -2N, using Lemma 4.1 in [3], Supp(T ) ⊂ O 2 ∪ O 3 ∪ O 4 . Now let O = O 0 ∪ O 1 ∪ O 2 . The restriction T |O of T to O is supported in the closed submanifold O 2 and is λ-invariant. Now the restriction of T (2,k 2 ) α 1 ,α 3 ,O c 4 to O is a λ-invariant distribution on O which is supported in O 2 .
O 0 ∪ O 1 ∪ O 3 . The two distributions T (2,k 2 ) α 1 ,α 3 ,O c 4 and T (3,k 3 ) α 1 ,α 2 ,O c 4
have disjoint supports, so that there exists two constants A 2 and A 3 such that

T |O c 4 = A 2 T (2,k 2 ) α 1 ,α 3 ,O c 4 + A 3 T (3,k 3 ) α 1 ,α 2 ,O c 4 .
But this contradicts Proposition 10.3, unless

A 2 = A 3 = 0. Hence necessar- ily Supp(T ) ⊂ O 4 . In other words, a λ-invariant distribution is supported in the diagonal. Now dim T ri(λ, diag) = dim S(λ 1 , λ 2 ; k) (see Appendix).
Lemma 10.5. Let α satisfy conditions (22). Then dim S(λ 1 , λ 2 ; k) = 2 .

Proof. Conditions (22) imply

λ 1 = -ρ -k 2 -k 3 , λ 2 = -p 1 -k 3 Now λ 1 ∈ {-ρ, -ρ -1, . . . , -ρ -(k -1)} as k 2 + k 3 = k -p 1 and p 1 ≥ 1, but λ 1 / ∈ {-1, - 2 
, . . . , -k}. This is obvious in case n -1 is odd, and when n -1 is even, the condition p / ∈ ρ + N implies p < ρ, so that ρ

+ k 2 + k 3 > p + k 2 + k 3 = k and hence λ 1 < -k. Moreover k 2 + k 3 + p + k 3 = k + k 3 ≥ k 3 .
These conditions guarantee that dim S(λ 1 , λ 2 ; k) ≤ 2 (see Appendix 2). As dim T ri(λ, diag) = dim T ri(λ) ≥ 2 by Proposition 10.1, dim S(λ 1 , λ 2 ; k) ≥ 2 and the equality follows.

This achieves the proof of Theorem 10.1 in the exceptional case.

11 The holomorphic families

S (k) λ 1 ,λ 2
The next holomorphic family of distributions to be constructed is related to the residue of K λ at poles of type II. The determination of the residue (at least for a Zariski open set in each plane of poles of type II) was done in in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF] in the non compact picture. The present exposition is its counterpart in the compact picture, which is more suited to the present purposes.

The family E λ 1 ,λ 2

Recall the definition of the normalized Knapp-Stein intertwining operator J λ , where λ ∈ C

J λ f (x) = 1 Γ(λ) S f (y)|x -y| -(n-1)+2λ f (y)dy .
For (λ) > 0, the expression makes sense for any f ∈ C ∞ (S) and defines a continuous operator on C ∞ (S). It is then extended by analytic continuation to a holomorphic family of operators on C ∞ (S). The main property of this family of operators is

J λ • π λ (g) = π -λ (g) • J λ for any g ∈ G.
The operator J λ is generically invertible. However, there are exceptions, precisely when π λ is reducible.

When

λ = ρ + k, k ∈ N, then Im( J ρ+k ) = P k , Ker( J ρ+k ) = P ⊥ k ( 25 
)
where P k is the space of restrictions to S of polynomials on E of degree ≤ k.

Dually, when λ = -ρ -k Ker( J -ρ-k) ) = P k , Im( J -ρ-k ) = P ⊥ k . (26) 
Let M : C ∞ (S × S) -→ C ∞ (S × S) be the operator given by

f -→ M f, (M f )(x, y) = |x -y| 2 f (x, y) .
For any λ 1 , λ 2 ∈ C, the opertator M intertwines the representations π λ 1 ⊗π λ 2 and π λ 1 -1 ⊗ π λ 2 -1 . This is a consequence of the covariance property under the conformal group of the Euclidean distance |x -y| on S (equation ( 2) in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]).

Consider the following diagram

C ∞ (S) ⊗ C ∞ (S) E λ 1 ,λ 2 -------→ C ∞ (S) ⊗ C ∞ (S) ↓ J λ 1 ⊗ J λ 2 ↑ J -λ 1 -1 ⊗ J -λ 2 -1 C ∞ (S) ⊗ C ∞ (S) M ----→ C ∞ (S) ⊗ C ∞ (S)
and let

E λ 1 ,λ 2 = ( J -λ 1 -1 ⊗ J -λ 2 -1 ) • M • ( J λ 1 ⊗ J λ 2 ). Proposition 11.1. i) E λ 1 ,λ 2 intertwines the representations π λ 1 ⊗ π λ 2 and π λ 1 +1 ⊗ π λ 2 +1
ii) E λ 1 ,λ 2 is a differential operator on S × S iii) Γ(λ 1 + ρ + 1)Γ(-λ 1 + ρ)Γ(λ 2 + ρ + 1)Γ(-λ 2 + ρ) E λ 1 ,λ 2 can be analytically extended to C 2 , yielding a homomorphic family of differential operators on S × S.

Proof. i) is true by construction. ii) and iii) are obtained by passing to the non compact picture. The analogous result on R n-1 is Proposition 3.7 in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF] (notice that the unnormalized Knapp-Stein operators were used in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF]).

However, a more direct (and enlightening) proof of iii) is available in the compact picture, based on the following lemma.

Lemma 11.1. i) let λ 1 ∈ ρ + N . Then E λ 1 ,λ 2 = 0 ii) let λ 1 ∈ -ρ -1 -N . Then E λ 1 ,λ 2 = 0.
Proof. Let λ 1 = ρ + k for some k ∈ N. Then, by ( 25)

Im( J λ 1 ⊗ J λ 2 ) ⊂ P k ⊗ C ∞ (S)
and as |x -

y| 2 = 2(1 -x, y ) on S × S, Im M • ( J λ 1 ⊗ J λ 2 ) ⊂ P k+1 ⊗ C ∞ (S) . As -λ 1 -1 = -ρ-k -1, Ker( J -λ 1 -1 ) = P k+1 by (26) and hence E λ 1 ,λ 2 = 0. For ii), let λ 1 = -ρ -k -1, Im( J λ 1 ) = P ⊥ k+1 by (26) so that Im M • ( J λ 1 ⊗ J λ 2 ) ⊂ P 1 P ⊥ k+1 ⊗ C ∞ (S) ⊂ P ⊥ k ⊗ C ∞ (S) . As -λ 1 -1 = ρ + k, Ker( J -λ 1 -1 ) = P ⊥ k by (25), E λ 1 ,λ 2 = 0.
The analog statement is valid for λ 2 ∈ ρ + N or λ 2 ∈ -ρ -N. From the knowledge of these zeroes of the operator-valued holomorphic function (λ 1 , λ 2 -→ E λ 1 ,λ 2 ), iii) follows from Lemma 11.1 by routine arguments, ending with the use of Hartog's theorem in C 2 .

In the sequel, let 5 E λ 1 ,λ 2 be defined by

E λ 1 ,λ 2 = 16 π 2(n-1) Γ(λ 1 +ρ+1)Γ(-λ 1 +ρ)Γ(λ 2 +ρ+1)Γ(-λ 2 +ρ) E λ 1 ,λ 2 . (27)
Remark. In [1] Proposition 3.7, an explicit expression was given for (the analog of) the operator E λ 1 ,λ 2 in the non compact picture. It would be of some interest to find such an expression on S × S.

A Bernstein-Sato identity for the kernel k α

Let α ∈ C 3 , and let λ be its associated spectral parameter. Then the geometric parameter associated to (λ

1 + 1, λ 2 + 1, λ 3 ) is (α 1 , α 2 , α 3 + 2).
Proposition 11.2. Assume α is not a pole. Let λ be its associated spectral parameter. Then there exists a scalar b(α 1 , α 2 , α 3 ) such that, for all 5 The factor 16 π 2(n-1) is introduced to have a simple expression for the Bernstein-Sato polynomial , see (39).

f 1 , f 2 , f 3 ∈ C ∞ (S) K α 1 ,α 2 ,α 3 +2 ( E λ 1 ,λ 2 (f 1 ⊗ f 2 ), f 3 ) = b(α 1 , α 2 , α 3 )K α 1 ,α 2 ,α 3 (f 1 , f 2 , f 3 ) (28)
Proof. The left hand side of (28) is λ-invariant by the covariance property of the operator E λ 1 ,λ 2 . The proposition follows from the generic uniqueness theorem for invariant trilinear forms (see [START_REF] Clerc | Conformally invariant trilinear forms on the sphere[END_REF] Theorem 3.1). Equation ( 28) is a disguised form of a Bernstein-Sato identity for the kernel k α (x, y, z) = |x -y| α 3 |y -z| α 1 |z -x| α 2 . More precisely, equation (28) implies for the distribution kernels of both sides

E t λ 1 ,λ 2 k α 1 ,α 2 ,α 3 +2 = b(α 1 , α 2 , α 3 ) k α 1 ,α 2 ,α 3 , (29) 
where E t λ 1 ,λ 2 is the transpose of the differential operator E λ 1 ,λ 2 , acting on the variables x, y.

The explicit computation of the function b was done in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF] by brute force computation (with the help of a computer, thanks Ralf !), starting from (29) and the explicit expression (in the non compact picture) of (the analog of) the operator E λ 1 ,λ 2 . We propose here a different computation of the function b, based on the identity

K α 1 ,α 2 ,α 3 +2 ( E λ 1 ,λ 2 (1 ⊗ 1), 1) = b(α 1 , α 2 , α 3 ) K α 1 ,α 2 ,α 3 (1, 1, 1) (30) 
First recall some formulae which are needed for the computation of the left hand side of (30).

S |1 -x| s dx = (2 √ π) n-1 2 s Γ( s 2 + ρ) Γ( s 2 + 2ρ) , (31) 
which implies

J λ (1) = π ρ 2 2λ Γ(λ + ρ) 1 . (32) 
Needless to say, these formulae (and more to come) have to be interpreted as equality of meromorphic functions of s (or λ). They are usually proved via analytic continuation.

Lemma 11.2. The following identities hold i)

S |1 -x| s x 1 dx = -(2 √ π) n-1 2 s s 2 Γ( s 2 + ρ) Γ( s 2 + n) (33) 
ii) for any y, u ∈ S,

S |x -y| s u, x dx = -(2 √ π) n-1 2 s s 2 Γ( s 2 + ρ) Γ( s 2 + n) u, y . (34) 
Proof. For i), as

x 1 = 1 -1 2 |1 -x| 2 S |1 -x| s x 1 dx = S |1 -x| s dx - 1 2 S |1 -x| s+2 dx = (2 √ π) n-1 2 s Γ( s 2 + ρ) Γ( s 2 + 2ρ) - 1 2 2 s+2 Γ( s 2 + ρ + 1) Γ( s 2 + 2ρ + 1) = (2 √ π) n-1 2 s Γ( s 2 + ρ) Γ( s 2 + 2ρ + 1) - s 2 .
For ii), let ϕ(u, y) be the value of the left hand side. A basic result in harmonic analysis on S is that an operator K on C ∞ (S) given by Kf (y) = S k(|x-y|)f (x)dx is scalar on any space of homogeneous harmonic polynomials, in particular on H 1 , the space of homogeneous polynomial of degree 1. Hence ϕ(y) = c u, y for some c independent of u and y. Let u = y = 1 and compute c, using i).

Lemma 11.3. i) for y ∈ S, S |x -y| s |1 -x| 2 dx = (2 √ π) n-1 Γ( s 2 + ρ) Γ( s 2 + n) 2 s sy 1 + s + 2(n -1) . ii) for y, z ∈ S, S |x -y| s |z -x| 2 dx = (2 √ π) n-1 Γ( s 2 + ρ) Γ( s 2 + n) 2 s s z, y + s + 2(n -1) (35)
Proof. For i) use the fact that |1 -x| 2 = 2(1 -x 1 ) and combine (31) and (33). For ii), let Ψ(y, z) be the value of the left hand side. Then, by a change of variables, for any k ∈ SO(n), Ψ(ky, kz) = Ψ(y, z). Hence Ψ(y, z) = ψ( y, z ). Now let z = 1 and compute ψ using i).

Lemma 11.4. For u, t ∈ S and r, s in

C 2 S S |u -x| s |t -y| r |x -y| 2 dxdy = (4π) n-1 Γ( s 2 + ρ)Γ( r 2 + ρ) Γ( s 2 + n)Γ( r 2 + n) 2 s+r rs 4 |u -t| 2 + (n -1)(r + s) + 2(n -1) 2 . ( 36 
)
Proof. Slightly rewrite (35) as

S |x -y| s |z -x| 2 dx = (2 √ π) n-1 Γ( s 2 + ρ) Γ( s 2 + n) 2 s - s 2 |z -y| 2 + 2s + 2(n -1) . Now, by Fubini's theorem S S |u -x| s |t -y| r |x -y| 2 dxdy = S |t -y| r S |u -x| s |x -y| 2 dx dy = (2 √ π) n-1 Γ( s 2 + ρ) Γ( s 2 + n) 2 s (- s 2 ) S |t-y| r |u-y| 2 dy+ 2s+2(n-1) S |t-y| r dy = (4π) n-1 Γ( s 2 + ρ)Γ( r 2 + ρ) Γ( s 2 + n)Γ( r 2 + n) 2 s+r rs 4 |u-t| 2 -rs-(n-1)+(2s+2(n-1))( r 2 +(n-1))
Lemma 11.5.

E λ 1 ,λ 2 (1 ⊗ 1)(u, t) = (λ 1 + ρ)(λ 2 + ρ) (λ 1 + ρ + 1)(λ 2 + ρ + 1)|u -t| 2 -2(n -1)(λ 1 + λ 2 + 2) . (37) 
Proof. First using (32)

J λ 1 ⊗ J λ 2 (1 ⊗ 1) = π n-1 2 2λ 1 +2λ 2 Γ(λ 1 + ρ)Γ(λ 2 + ρ) 1 ⊗ 1 . Now J -λ 1 -1 ⊗ J -λ 2 -1 (|x -y| 2 ) = 1 Γ(-λ 1 -1)Γ(-λ 2 -1) × . . . S×S |u -x| -(n-1)-2λ 1 -2 |t -y| -(n-1)-2λ 2 -2 |x -y| 2 dxdy
and, using (36), S×S . . . is equal to

(4π) n-1 Γ(-λ 1 -1)Γ(-λ 2 -1) Γ(-λ 1 + ρ)Γ(-λ 2 + ρ) 2 -2(n-1)-2λ 1 -2λ 2 -4 × (λ 1 + ρ + 1)(λ 2 + ρ + 1)|u -t| 2 -2(n -1)(λ 1 + λ 2 + 2)
Now put all things together and take into account the normalization factor for the definition of E λ 1 ,λ 2 to get the result.

The rest of the computation will be done using the geometric parameter, so first convert (37) to get

E λ 1 ,λ 2 (1 ⊗ 1) = α 2 + α 3 2 + (n -1) α 1 + α 3 2 + (n -1) α 2 + α 3 2 + n α 1 + α 3 2 + n |u -t| 2 -(n -1)(α 1 + α 2 + 2α 3 + 2n + 2) (38) Proposition 11.3. b(α 1 , α 2 , α 3 ) = (39) (α 1 + α 2 + α 3 + 2(n -1))(α 1 + α 2 + α 3 + n + 1)(α 3 + n -1)(α 3 + 2)
Proof. Recall that

K α 1 ,α 2 ,α 3 +2 ( E λ 1 ,λ 2 (1 ⊗ 1), 1) = b(α 1 , α 2 , α 3 )K α 1 ,α 2 ,α 3 (1, 1, 1) .
Now, using (38) and the evaluation of the Bernstein-Reznikov integral (see [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] Proposition 2.1)

K α 1 ,α 2 ,α 3 +2 ( E λ 1 ,λ 2 (1 ⊗ 1), 1) = α 2 + α 3 2 + (n -1) α 1 + α 3 2 + (n -1) α 2 + α 3 2 + n α 1 + α 3 2 + n K α 1 ,α 2 ,α 3 +4 (1, 1, 1) -(n -1)(α 1 + α 2 + 2α 3 + 2n + 2)K α 1 ,α 2 ,α 3 +2 (1, 1, 1) = π 2 3 2 (n-1) 2 α 1 +α 2 +α 3 4 Γ( α 1 +α 2 +α 3 2 + 2ρ + 1)Γ( α 1 2 + ρ)Γ( α 2 2 + ρ)Γ( α 3 2 + ρ + 1) Γ( α 1 +α 2 2 + 2ρ)Γ( α 2 +α 3 2 + 2ρ)Γ( α 3 +α 1 2 + 2ρ) × α 1 + α 2 + α 3 + 2n α 3 + n + 1) -(n -1) α 1 + α 2 + 2α 3 + 2n + 2 . Now π 2 3 2 (n-1) 2 α 1 +α 2 +α 3 4 Γ( α 1 +α 2 +α 3 2 + 2ρ + 1)Γ( α 1 2 + ρ)Γ( α 2 2 + ρ)Γ( α 3 2 + ρ + 1) Γ( α 1 +α 2 2 + 2ρ)Γ( α 2 +α 3 2 + 2ρ)Γ( α 3 +α 1 2 + 2ρ) = 4 α 1 + α 2 + α 3 2 + (n -1) α 3 2 + ρ K α 1 ,α 2 ,α 3 (1, 1, 1) , and 
α 1 + α 2 + α 3 + 2n α 3 + n + 1) -(n -1) α 1 + α 2 + 2α 3 + 2n + 2 = (α 1 + α 2 + α 3 + n + 1)(α 3 + 2) .
A variant of (28) is

K α 1 , α 2 , α 3 +2 E λ 1 ,λ 2 (f 1 ⊗ f 2 ), f 3 = 4(α 1 + α 2 +α 3 + n + 1)(α 3 + n -1) K α 1 , α 2 , α 3 (f 1 , f 2 , f 3 ) (40) 11.3 The family S (k) λ 1 ,λ 2
From Proposition 11.1, it is easy to construct covariant bi-differential operators.

Denote by res :

C ∞ (S × S) -→ C ∞ (S) the restriction map from S × S to S, defined for f ∈ C ∞ (S × S) by f -→ res(f ), res (f )(x) = f (x, x) .
Lemma 11.6. The map res intertwines π µ 1 ⊗ π µ 2 with π µ 1 +µ 2 +ρ .

For λ 1 , λ 2 ∈ C define by induction on k the differential operators

E (k) λ 1 ,λ 2 on S × S by E (0) λ 1 ,λ 2 = Id, E (k) 
λ 1 ,λ 2 = E λ 1 +k-1,λ 2 +k-1 • • • • • E λ 1 ,λ 2
and introduce the bi-differential operators

D (k) λ 1 ,λ 2 : C ∞ (S × S) -→ C ∞ (S) given by D (0) λ 1 ,λ 2 = res, D (k) λ 1 ,λ 2 = res • E (k) λ 1 ,λ 2 Proposition 11.4. Let λ 1 , λ 2 ∈ C and k ∈ N. Then D (k) λ 1 ,λ 2 • (π λ 1 ⊗ π λ 2 )(g) = π λ 1 +λ 2 +ρ+2k (g) • D (k) λ 1 ,λ 2 .
This is a consequence of the covariance property of E µ 1 ,µ 2 (Proposition 11.1 i) and Lemma 11.6.

For

f 1 , f 2 , f 3 ∈ C ∞ (S), let S (k) λ 1 ,λ 2 (f 1 , f 2 , f 3 ) = S D (k) λ 1 ,λ 2 (f 1 ⊗ f 2 )(x)f 3 (x)dx .
This defines a distribution on C ∞ (S × S × S), supported on the diagonal O 4 .6 

Proposition 11.5. Let k ∈ N and let λ = (λ 1 , λ 2 , λ 3 ) satisfy

λ 1 + λ 2 + λ 3 = -ρ -2k .
The trilinear form S (k) λ 1 ,λ 2 belongs to T ri(λ, diag).

Proof. As λ 3 = -(λ 1 + λ 2 + ρ + 2k), the λ-invariance is a consequence of the covariance property of D (k) λ 1 ,λ 2 and the duality between π λ and π -λ .

The next statement is easily obtained from (40) by induction on k.

Proposition 11.6. Let α ∈ C 3 . Then

K α 1 ,α 2 ,α 3 +2k ( E (k) λ 1 ,λ 2 (f 1 ⊗ f 2 ), f 3 = 4 k k l=1 α 1 + α 2 + α 3 + n -1 + 2l α 3 + 2l) K α 1 ,α 2 ,α 3 (f 1 , f 2 , f 3 ) .
As said in the introduction, the family S (k) λ 1 ,λ 2 was introduced in [1] because of its relation with the residues of the meromorphic family K λ at poles of type II. The presentation follows closely [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF], with changes due to the choice of the compact picture instead of the non compact picture. Lemma 11.7. Let α satisfy α 1 + α 2 + α 3 = -2(n -1). Then, for any f ∈ C ∞ (S × S × S)

K α (f ) = π 16 n-1 (n -2)! Γ(ρ) 1 Γ(-α 1 2 )Γ(-α 2 2 )Γ(-α 3 2 ) S f (x, x, x) dx . ( 41 
)
Proof. Let λ be the associated spectral parameter. As easily verified by a change of variable, the trilinear form

(f 1 , f 2 , f 3 ) -→ S f 1 (x)f 2 (x)f 3 (x) dx
defines a (non trivial) λ-invariant distribution on S × S × S. For α / ∈ Z (i.e. α in a dense open subset of the plane β 1 +β 2 +β 3 = -2(n-1)) the uniqueness theorem (see [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]) for λ-invariant trilinear forms applies and hence K α has to be a multiple of this distribution. To determine the value of the scalar, evaluate both sides of (41) on the function f = 1. By analytic continuation, the equality extends to all α's in the plane

α 1 + α 2 + α 3 = -2(n -1). Proposition 11.7. Let α ∈ C 3 such that α 1 + α 2 + α 3 = -2(n -1) -2k for k ∈ N. Then K α = π 16 n-1 (n -2)! Γ(ρ + k) 16 -k 1 Γ(-α 1 2 )Γ(-α 2 2 )Γ(-α 3 2 ) S (k) λ 1 ,λ 2 (42) 
Proof. Observe that (α 1 , α 2 , α 3 + 2k) satisfies the assumption of Lemma 11.7, so that

K α 1 ,α 2 ,α 3 +2k ( E (k) λ 1 ,λ 2 (f 1 ⊗ f 2 ), f 3 ) = π 16 n-1 (n -2)! Γ(ρ) 1 Γ(-α 1 2 )Γ(-α 2 2 )Γ(-α 3 2 -k) S D (k) λ 1 ,λ 2 (f 1 ⊗ f 2 )(x)f 3 (x) dx = π 16 n-1 (n -2)! Γ(ρ) 1 Γ(-α 1 2 )Γ(-α 2 2 )Γ(-α 3 2 -k) S (k) λ 1 ,λ 2 (f 1 , f 2 , f 3 ) .
Now, by Proposition 11.6, the same quantity is equal to

4 k k l=1 α 1 + α 2 + α 3 + n -1 + 2l α 3 + 2l) K α 1 ,α 2 ,α 3 (f 1 , f 2 , f 3 ) . Observe that k l=1 α 1 +α 2 +α 3 +n-1+2l = k-1 j=0 (-(n-1)-2j) = (-1) k 2 k k-1 j=0 (ρ+j) = (-1) k 2 k (ρ) k , k l=1 (α 3 +2l) Γ(- α 2 -k) = (-1) k 2 k k l=1 (- α 3 2 -l)Γ(- α 3 2 -k) = (-1) k 2 k Γ(- α 3 2 ),
and the result follows.

Proposition 11.8. Let k ∈ N and let λ satisfying

λ 1 + λ 2 + λ 3 = -ρ -2k. Then if a 1 + a 2 + a 3 > k, S (k) 
λ 1 ,λ 2 (p a 1 , a 2 , a 3 ) = 0, , if a 1 + a 2 + a 3 ≤ k, S (k) λ 1 ,λ 2 (p a 1 , a 2 , a 3 ) = (2 √ 2π) n-1 4 k Γ(ρ + k) Γ(2ρ) 2 2(a 1 +a 2 +a 3 ) (-k) a 1 +a 2 +a 3 (-k -λ 1 ) a 1 (-k -λ 2 ) a 2 (-k -λ 3 ) a 3 (ρ + λ 1 + a 2 + a 3 ) k-a 2 -a 3 (ρ + λ 2 + a 3 + a 1 ) k-a 3 -a 1 (ρ + λ 3 + a 1 + a 2 ) k-a 1 -a 2 (43) .
Proof. Assume first that λ is a generic pole of type II. Then combine (42) and the evaluation of K λ (p a 1 ,a 2 ,a 3 ) (see (64)). Observe then that the two hand sides of (43) are holomorphic and conclude by the analytic continuation property.

12 The holomorphic families R (j,m) . , .

In this section, define for α ∈ C the operator I α by

I α f (x) = 1 Γ( α 2 + ρ) S |x -y| α f (y)dy .
where f ∈ C ∞ (S). Of course, they are nothing but the Knapp-Stein intertwining operators, but with a different parametrization.

For α 1 , α 2 ∈ C, the formula 

R (3) α 1 ,α 2 (f 1 , f 2 , f 3 ) = S I α 2 f 1 (z) I α 1 f 2 (z) f 3 (z) dz .
R (3,l) α 1 ,α 2 (f ) = S×S×S R (3)
α 1 ,α 2 (x, y, z) |x -y| 2l f (x, y, z) dx dy dz .

Proposition 12.1. Let l ∈ N. For α 1 , α 2 ∈ C, let λ be the spectral parameter associated to (α 1 , α 2 , 2l).

i) R (3,l) α 1 ,α 2 is λ-invariant ii) R (3,l) α 1 ,α 2 depends holomorphically on (α 1 , α 2 ) iii) K α 1 ,α 2 ,2l = 1 Γ(l + ρ) 1 Γ( α 1 +α 2 2 + l + 2ρ) R (3,l) α 1 ,α 2 . ( 44 
)
Proof. For α 1 , α 2 large enough,

R (3,l) α 1 ,α 2 (f ) = 1 Γ( α 1 2 + ρ) 1 Γ( α 2 2 + ρ) S×S×S |y-z| α 1 |z-x| α 2 |x-y| 2l f (x, y, z) dx dy dz = 1 Γ( α 1 2 + ρ) 1 Γ( α 2 2 + ρ) K α 1 ,α 2 ,2l (f ) .
Hence the distribution R

(3,l) α 1 ,α 2 is λ-invariant and satisfies (44). The rest follows by analytic continuation.

Proposition 12.2. Let a 1 , a 2 , a 3 ∈ N. Then R (3,l) α 1 ,α 2 (p a 1 ,a 2 ,a 3 ) = ( π 2 ) 3 2 (n-1) 2 α 1 +α 2 +2l 2 2(a 1 +a 2 +a 3 ) × ( α 1 2 + ρ) a 1 ( α 2 2 + ρ) a 2 α 1 +α 2 2 + 2ρ + a 1 + a 2 l+a 3 Γ( α 1 2 + 2ρ + l + a 1 + a 3 ) Γ( α 2 2 + 2ρ + l + a 2 + a 3 ) . ( 45 
)
Use the evaluation of the K-coefficients for K α 1 ,α 2 ,2l (see (63) in Appendix) and the relation (44).

By a cyclic permutation of the indices {1, 2, 3}, a similar construction holds for the families for R

(1,l) α 2 ,α 3 and R (2,l) α 1 ,α 3 .
13 The multiplicity 2 theorem for λ in Z 1,II In this section, λ = (λ 1 , λ 2 , λ 3 ) is assumed to be in Z 1,II . So, first λ belongs to some line of type II, which, up to a permutation of {1, 2, 3} can be chosen to be D +,1 l,m given by the equations

λ 1 = -ρ -l, λ 2 + λ 3 = m where l ∈ N, m ∈ Z, m ≡ l mod 2, |m| ≤ l ,.
For convenience, introduce k = l-m 2 (k ∈ N, k ≤ l) so that the equations become

λ 1 = -ρ -l, λ 1 + λ 2 + λ 3 = -ρ -2k . ( 46 
) Next the condition for λ ∈ Z 1,II (that is λ / ∈ Z 2 ∪ Z 3 ) reads λ 2 / ∈ {-k, -k + 1, . . . , l -k} ∪ -ρ -k -N ∪ ρ + (l -k) + N . ( 47 
)
as a consequence of Proposition 8.5.

Proposition 13.1. Let λ satisfy (46) and (47). Then S (k) λ 2 ,λ 3 = 0. Proof. Formula (43), applied for a 1 = a 2 = a 3 = 0 shows that

S (k) λ 2 ,λ 3 (1) = N V T (-l) k (ρ + λ 2 ) k (ρ + λ 3 ) k . Now l ≥ k implies (-l) k = 0 and (47) implies λ 2 + ρ /
∈ -k -N, so that (ρ + λ 2 ) k = 0, and similarly for (

λ 3 + ρ) k . Hence S (k) λ 2 ,λ 3 (1) = 0.
Let α be the associated geometric parameter, so that

α 1 + α 2 + α 3 = -2(n -1) -2k, α 1 = 2(l -k) α 2 / ∈ -(n -1), -(n -1) -2, . . . , -(n -1) -2l ∪ 2N ∪ -2(n -1) -2l -2N (48) 
It will be convenient to let p = l -k. Notice that p ∈ N.

The general case

In this subsection, we assume that α is a generic pole of type II, i.e. we assume moreover that α 2 , α 3 / ∈ -(n -1) -2N.

Lemma 13.1. Let a 1 , a 2 , a 3 satisfy a 2 + a 3 > k + p, a 1 + a 2 > k, a 1 + a 3 > k. Then R (1,p) α 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = 0.
Proof. (45) yields

R (1,p) α 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = C ( α 2 2 + ρ) a 2 ( α 3 2 + ρ) a 3 (-k -p + a 2 + a 3 ) p+a 1 × 1 Γ( α 2 2 + (n -1) + p + a 1 + a 3 ) 1 Γ( α 3 2 + (n -1) + p + a 1 + a 2 ) First observe that ( α 2 2 + ρ) a 2 ( α 3 2 + ρ) a 3 = 0 as α 2 , α 3 / ∈ -(n -1) -2N.
The assumption a 2 + a 3 > k + p implies that (-k -p + a 2 + a 3 ) p+a 1 = 0. Then

α 2 2 + 2ρ + p / ∈ -k -N, hence a 1 + a 3 > k implies 1 Γ( α 2 2 +(n-1)+p+a 1 +a 3 ) = 0. Similarly, a 1 + a 2 > k implies 1 Γ( α 3
2 +(n-1)+p+a 1 +a 2 ) = 0. The statement follows.

Proposition 13.2. Let α be a generic pole of type II which satisfies (48) and let λ be its associated spectral parameter. Then S 

λ 2 ,λ 3 ) = O 4 . Next Supp (R (1,p) α 2 ,α 3 ) = S × S × S. In fact, assume that Supp (R (1,p) α 2 ,α 3 ) ⊂ O 1 ∪ O 2 ∪ O 3 ∪ O 4 .
Given an arbitrary large number L, by choosing a 1 , a 2 , a 3 large enough, the function p a 1 ,a 2 ,a 3 vanishes together with its partial derivatives up to order

L on O 1 ∪ O 2 ∪ O 3 ∪ O 4 . But by Lemma 13.1 R (1,p) α 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = 0 for arbitrary large a 1 , a 2 , a 3 . Hence Supp (R (1,p) α 2 ,α 3 ) ⊂ O 1 ∪ O 2 ∪ O 3 ∪ O 4 is impossible. So Supp (R (1,p) α 2 ,α 3 ) = S × S × S.
Having two different supports, the two distributions are linearly independent.

Theorem 13.1. Let α be a generic pole of type II and assume that α ∈ Z 1,II . Then dim T ri(λ) = 2. More precisely, if α satisfies (48), then

T ri(λ) = C R (1,p) α 2 ,α 3 ⊕ C S (k) λ 2 ,λ 3 .
Proof. Let T be a λ-invariant distribution. Consider its restriction to O 0 . As Supp(R

(1,p) α 2 ,α 3 ) = S × S × S, it follows that R (1,p)
α 2 ,α 3 |O 0 is = 0, and hence

T |O 0 = C R (1,p) α 2 ,α 3 |O 0 for some constant C. Let U = T -C R (1,p) α 2 ,α 3 .
Then U is a λ-invariant distribution, which vanishes on O 0 . Now, as none of the α j 's belong to -(n -1) -2N, Lemma 4.1 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] shows that U is supported on O 4 . Hence U and S 1,k λ 2 ,λ 3 both belong to T ri(λ, diag). In turn, the dimension of this space is equal to dim Sol (λ 1 , λ 2 ; k). In the present situation, notice that -ρ-(k-1)} and by Lemma A1, the dimension of the space of solutions is ≤ 1. Hence, dim Sol (λ 1 , λ 2 ; k) = 1 and U is a multiple of S (k) λ 1 ,λ 2 , and the conclusion follows.

λ 1 = 2p / ∈ {-1, -2, • • •-k}∪{-ρ-ρ-1, . . . ,

The special case

Let α be a pole of type I+II in Z 1,II . Up to a permutation of the indices 1, 2, 3, this amounts to the following assumptions

α 1 = 2p, α 2 = -(n -1) -2k 2 , α 3 = -(n -1) + 2q p, k 2 , q ∈ N, q ≥ 1, k 2 -p -q ≥ 0 . ( 49 
) Notice that α 1 + α 2 + α 3 = -2(n -1) -2k where k = k 2 -p -q.
Lemma 13.2. Let α satisfy (49). Then Supp(R

1,p α 2 ,α 3 ) = O 2 . Proof. Let f 1 , f 2 , f 3 ∈ C ∞ (S) and assume that Supp(f 1 ) ∩ Supp(f 3 ) = ∅.
Then, using notation of section 13, as α 2 ∈ -(n-1)-2N, I α 2 is a differential operator, and hence Supp( I α 2 f 1 ) ⊂ Supp(f 1 ). Hence R

(1)

α 2 ,α 3 (f 1 , f 2 , f 3 ) = 0. This implies Supp (R (1) α 2 ,α 3 ) ⊂ O 2 , and a fortiori Supp (R (1,p) α 2 ,α 3 ) ⊂ O 2 .
Next, a careful examination of (45), for a 1 ≤ k 1 and a 2 , a 3 large yields R

(1,p) α 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = 0. Hence Supp(R (1,p) α 2 ,α 3 ) ⊂ O 4 . As R (1,p) α 2 ,α 3 ) is λ-invariant, its support is invariant under G, and hence Supp (R (1,p) α 2 ,α 3 ) = O 2 .
Proposition 13.3. Let α satisfy (49). Then S 

λ 2 ,λ 3 ) = O 4 . By Propo- sition 13.2, Supp(R 1,p α 2 ,α 3 ) = O 2 .
Hence the two distributions are linearly independent.

Theorem 13.2. Let α be a pole of type I+II which belongs to Z 1,II . Then dim T ri(λ) = 2. More precisely, assume α satisfies (49). Then

T ri(λ) = CS (k) λ 2 ,λ 3 ⊕ CR (1,p) α 2 ,α 3 .
To prepare for the proof, the following result,is needed.

Proposition 13.4. The distribution K α,O 0 cannot be extended as a λinvariant distribution on S × S × S.

Proof. For s ∈ C, let α(s) = (α 1 , α 2 + 2s, α 3 ). For |s| small, let

F(s) = (-1) k k! (-1) k 2 k 2 ! Γ( α 1 2 + ρ) Γ( α 3 2 + ρ) 1 s K α(s) .
This defines a holomorphic function in a neighborhood of 0, and the Taylor expansion at 0 reads

F(s) = F 0 + sF 1 + O(s 2 )
where F 0 and F 1 are distributions on S × S × S.

Lemma 13.3. The distributions F 0 and

F 1 satisfy i) Supp(F 0 ) = O 2 ii) the restriction of F 1 to O 0 coincides with K α,O 0 Proof. i) As α 1 (s) = α 1 = 2p, α ( 
s) belongs to the plane β 1 = 2p, and hence, by (44)

K 2p,α 2 +2s,α 3 = 1 Γ(p + ρ) 1 Γ(-k + s) R (1,p) α 2 +2s,α 3 .
Differentiate at s = 0 to get

d ds K 2p,α 2 +s,α 3 s=0 = 1 Γ(p + ρ) (-1) k k! R (1,p) α 2 ,α 3 . Hence Supp(F 0 ) = Supp(R (1,p) α 2 ,α 3 = O 2 . For ii), assume that ϕ ∈ C ∞ (S × S × S) has its support contained in O 0 . Then F(s), ϕ = (-1) k k! 1 Γ(-k + s) (-1) k 2 k 2 ! 1 Γ(-k 2 + s) K α(s),O 0 , ϕ As s → 0, F(s), ϕ ∼ s K α,O 0 , ϕ
and hence (F 0 , ϕ) = K α,O 0 , ϕ , thus proving ii).

To prove Proposition 13.4, restrict the previous situation to O 0 ∪ O 2 , and apply Proposition A1. Hence K α,O 0 cannot be extended to O 0 ∪ O 2 (a fortiori to S × S × S) as a λ-invariant distribution.

We now are in position to prove Theorem 13.2. Let T be a λ-invariant distribution. Then T |O 0 has to be 0 by Proposition 13.4. Hence T is sup- 

ported in O 1 ∪ O 2 ∪ O 3 ∪ O 4 .
α 2 ,α 3 |O . Otherwise stated, there exists a constant c 1 such that T -c 1 R (1,p) α 2 ,α 3 is sup- ported on O 4 .
Observe that

λ 2 = ρ + α 1 +α 3 2 = p + q / ∈ {-1, -2, . . . , -k} ∪ {-ρ, -ρ - 1, . . . , -ρ -(k -1)}, and hence by Lemma A1, dim T ri(λ, diag) ≤ 1. But S (k) λ 2 ,λ 3 is a no trivial element of T ri(λ, diag) and generates T ri(λ, diag). Hence there exists a constant c 2 such that T -c 1 R (1,p) α 2 ,α 3 = c 2 S (k) λ 2 ,λ 3 , thus finishing the proof of Theorem 13.2.
14 The multiplicity 2 result for α ∈ Z 2,I Let α be in Z 2,I . Up to a permutation of the indices, this amounts to

α 1 = 2k 1 , α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 (50) 
where

k 1 , k 2 , k 3 ∈ N, with k = k 2 + k 3 -k 1 ≥ 0.
The conditions imply that

α 1 + α 2 + α 3 = -2(n -1) -2k .
The point α belongs to two lines contained in Z, namely

D - α 2 = -(n -1) -2k 2 α 3 = -(n -1) -2k 3 , D + α 1 + α 2 + α 3 = -2(n -1) -2k α 1 = 2k 1 .
The associated spectral parameter λ is given by

λ 1 = -ρ -k 2 -k 3 , λ 2 = k 1 -k 3 , λ 3 = k 1 -k 2 , or λ 1 = -ρ -k 2 -k 3 , λ 2 = -k + k 2 , λ 3 = -k + k 3
where k ≤ k 2 + k 3 . Change notation and set

λ 1 = -ρ -l 1 , λ 2 = m 2 , λ 3 = m 3 ,
where

l 1 ∈ N, m 2 , m 3 ∈ Z, l 1 + m 2 + m 3 ≡ 0 mod 2, |m 2 ± m 3 | ≤ l 1 .
The correspondence between notations is given by

l 1 = k 2 + k 3 , m 2 = -k 3 + k 1 , m 3 = -k 2 + k 1 . Proposition 14.1. The differential d K α of β -→ K β at α is of rank 1. The distributions R (1,k 1 ) α 2 ,α 3 , T (2,k 2 ) α 1 ,α 3 , T (3,k 3 ) α 1 ,α 2 and S (k) 
λ 2 ,λ 3 are proportional to d K α .
Proof. Consider the differential of β -→ K β . As K β vanishes on D + and D -, the rank of its differential at α = D + ∩ D -is at most 1. Consider the plane β 1 = 2k 1 . For arbitrary β 2 , β 3 , by (44)

K 2k 1 ,β 2 ,β 3 = 1 Γ(k 1 + ρ) 1 Γ( β 2 +β 3 2 + k 1 + 2ρ) R (1,k 1 ) β 2 ,β 3 .
By differentiation this implies

d ds K 2k 1 ,α 2 +s,α 3 +s s=0 = (-1) k k! Γ(k 1 + ρ) R (1,k 1 ) α 2 ,α 3 . (51) 
To see that R

(1,k 1 ) α 2 ,α 3 = 0, use (45) to get R (1,k 1 ) α 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = N V T × (-k 2 ) a 2 (-k 3 ) a 3 (-k 2 -k 3 + a 2 + a 3 ) k 1 +a 1 × 1 Γ(-k 2 + ρ + k 1 + a 2 + a 1 )Γ(-k 3 + ρ + k 1 + a 1 + a 3 )
.

Choose a 2 = a 3 = 0 and

a 1 = k 2 + k 3 -k 1 to get R (1,k 1 )
α 2 ,α 3 (p a 1 ,0,0 ) = 0, and hence R 1,k 1 α 2 ,α 3 = 0. It follows that the rank of dK α is 1, and the fact that

R (1,k 1 ) α 2 ,α 3 is proportional to d K α .
As a consequence, any partial derivative in a direction that does not lie in the plane containing D + and D -of K β at α does not vanish, and is a multiple of d K α . So similar results can be obtained for the other invariant distributions, namely

d ds K α 1 ,α 2 ,α 3 +2s s=0 = π ρ (-1) k 3 +k 2 4 -k 3 k 2 ! Γ(ρ + k 3 )Γ(ρ + k 1 ) T (3,k 3 ) α 1 ,α 2 , (52) 
and a similar formula after exchanging the role of 2 and 3, and

d ds K λ 1 +2s,λ 2 -s,λ 3 -s s=0 = (-1) l 1 -k (l 1 -k)! Γ(ρ + k + λ 2 )Γ(ρ + k + λ 3 ) S (k) λ 2 ,λ 3 . (53) 
The plane containing D + and D -admits the equation λ 1 = -ρ -l 1 and use (λ 2 , λ 3 ) as coordinates in this plane. At µ = λ, K µ and it partial derivatives

∂ K µ ∂µ 2 and ∂ K µ ∂µ 3 vanish, so let for s ∈ C λ(s) = (λ 1 , λ 2 + 2s, λ 3 ) = (-ρ -l 1 , m 2 + 2s, m 3 ) , (54) α(s) 
= (2k 1 + 2s, -(n -1) -2k 2 -2s, -(n -1) -2k 3 + 2s) . (55) 
Then the distribution

Q = Q l 1 ,m 2 ,m 3 = lim s→0 1 s 2 K λ(s)
is λ-invariant and corresponds to a mixed second order partial derivative of K λ as explained in the introduction.

Lemma 14.1. The K-coefficients of the distribution Q are equal to 0 unless

a 2 + a 3 > k 2 + k 3 and either a 2 ≤ k 2 or a 3 ≤ k 3 . Assume a 2 ≤ k 2 and a 2 + a 3 > k 2 + k 3 . Then Q(p a 1 ,a 2 ,a 3 ) = √ π 2 3(n-1) 2 -ρ-2k+a 1 +a 2 +a 3 (-1) k k! (-k + a 1 + a 2 + a 3 -1)! (ρ + k 1 ) a 1 (-k 2 ) a 2 (-1) k 3 k 3 ! (-k 3 + a 3 -1)! 1 Γ(-k 2 -k 3 + a 2 + a 3 ) 1 Γ(m 2 + ρ + a 3 + a 1 ) Γ(m 3 + ρ + a 2 + a 1 ) . (56) 
A similar formula holds for the symmetric situation, where a 3 ≤ k 3 and

a 2 + a 3 > k 2 + k 3 .
Proof. Use (64) in the Appendix. K λ(s) (p a 1 ,a 2 ,a 3 ) is (essentially) a product of seven factors, which we now analyze. There is an inverse Γ factor which in the present situation does not depend on s an is equal to 1 Γ(-l 1 +a 2 +a 3 ) . Hence, unless a 2 + a 3 > l 1 = k 2 + k 3 , this factor is 0 for all s and hence Q(p a 1 ,a 2 ,a 3 ) = 0. Now assume that a 2 + a 3 > l 1 = k 2 + k 3 . Another factor is equal to (-k + s) a 1 +a 2 +a 3 . In this Pochahammer's symbol the last factor is equal to

(-k + s + a 1 + a 2 + a 3 -1). As a 2 + a 3 > k 2 + k 3 ≥ k, -k + a 1 + a 2 + a 3 -1 ≥ 0,
hence this factor has a simple zero at s = 0. More explicitly

(-k + s) a 1 +a 2 +a 3 = [(-1) k k! (-k + a 1 + a 2 + a 3 -1)!] s + O(s 2 ) .
Two other factors are equal to (-k 2 -s) a 2 and. (-k 3 + s) a 3 . If a 2 > k 2 and a 3 > k 3 each factor vanishes for s = 0, so that K λ(s) (p a 1 ,a 2 ,a 3 ) has a zero of order 3 at s = 0 and hence Q(p a 1 ,a 2 ,a 3 ) = 0. Now assume a 2 ≤ k 2 and still a 2 + a 3 > k 2 + k 3 , which forces k 3 > a 3 . The factor (-k 2 -s) a 2 does not vanish for s = 0 and its value is (-k 2 ) a 2 . The factor (-k 3 + s) a 3 has a simple zero at s = 0 and more precisely, (-

k 3 + s) a 3 = (-1) k 3 k 3 ! (-k 3 + a 3 -1)! s + O(s 2
). The remaining factors offer no difficulty. Collect all facts to get the statement.

Corollary 14.1. The distribution Q is = 0. More precisely, for a 1 large enough, a 2 + a 3 > k 2 + k 3 and either a 2 ≤ k 2 or a 3 ≤ k 3 , Q(p a 1 ,a 2 ,a 3 ) = 0. Moreover, Supp(Q) = O 2 ∪ O 3 .
Proof. For a 1 large enough, the two inverse Γ factors on the last line of (56) do not vanish, so that the whole expression does not vanish, and hence

Q = 0. Let ϕ ∈ C ∞ (S × S × S) and assume Supp (ϕ) ⊂ O 0 ∪ O 1 . Then inf |x -y|, (x, y, z) ∈ Supp(ϕ) > 0, inf |x -z|, (x, y, z) ∈ Supp(ϕ) > 0 .
The exponent of |y -z| is α 1 (s) = 2k 1 + 2s, so that, for s in a small neighborhood of 0, the integral K α(s) (ϕ) converges, and lim s→0 K α(s) (ϕ) = K α (ϕ). In turn,

K α(s) (ϕ) = Γ(k 1 + ρ + s)Γ(-k 2 + s)Γ(-k 3 + s)Γ(-k + s) K α(s) (ϕ) = C 1 s Q(ϕ) + O(1) with C = 0, which forces Q(ϕ) = 0. As a consequence Supp(Q) ⊂ O 2 ∪ O 3 . As Supp(Q) is invariant un- der the action of G, if Supp(Q) = O 2 ∪ O 3 , then Supp(Q) has to be con- tained in either O 2 or O 3 . Assume Supp(Q) ⊂ O 2 .
Then Q(f ) = 0 if the smooth function f vanishes at a sufficiently large order on O 2 . In particular, Q(p a 1 ,a 2 ,a 3 ) = 0 if a 2 is large enough. But this contradicts Corollary 14.1 (choose a 3 ≤ k 3 , a 2 such that a 2 + a 3 > k 2 + k 3 and a 1 large). Hence the only possibility is

Supp(Q) = O 2 ∪ O 3 .
Proposition 14.2. The two distributions d K α and Q are linearly independent.

Proof. The statement follows from the study of the supports of the two distributions.

Theorem 14.1. Let λ be in Z 2,I . Then

dim T ri(λ) = 2 . More precisely, T ri(λ) = CR (1,k 1 ) α 2 ,α 3 ⊕ CQ l 1 ,m 2 ,m 3 .
Some preparation is needed for the proof of the theorem.

Proposition 14.3. Let α satisfy conditions (50). The distribution K α,O 0 cannot be extended to S × S × S as a λ-invariant distribution.

Proof. Recall that three of the Γ factors involved in the normalization of K α become singular at α. For s a complex number, let α(s) as in (55) and let

G(s) = - (-1) k k! (-1) k 2 k 2 ! (-1) k 3 k 3 ! Γ(k 1 + ρ + s) 1 s 2 K α(s) .
As K α (s) vanishes together with its first derivative at s = 0, G(s) is well defined for s in a neighborhood of 0 and its Taylor expansion at s = 0 reads

G(s) = G 0 + sG 1 + O(s 2 ) .
where G 0 and G 1 are distributions on S × S × S. Lemma 14.2.

i) Supp(G 0 ) = O 2 ∪ O 3 ii) G 1 coincides on O 0 with K α,O 0 . Proof. For i), observe that G 0 = -(-1) k k! (-1) k 2 k 2 ! (-1) k 3 k 3 ! Γ(k 1 + ρ) Q. Hence i) follows from Corollary 14.1.
In order to prove ii), let ϕ ∈ C ∞ c (O 0 ). Then for s = 0,

F(s), ϕ = (-1) k k! 1 Γ(-k + s) (-1) k 2 k 2 ! -1 Γ(-k 2 -s) (-1) k 3 k 3 ! 1 Γ(-k 3 + s) 1 s 2 K α(s),O 0 , ϕ .
As s → 0, this identity implies and let

G(s), ϕ ∼ s K α,O 0 , ϕ .
F(s) = (-1) k k! T (3,k 3 ) 2k 1 ,α 2 +2s .
The Taylor expansion of F(s) at s = 0 reads

F(s) = F 0 + sF 1 + O(s 2 ) ,
where F 0 , F 1 are distributions on S × S × S.

Lemma 14.3. i) Supp(F 0 ) = O 4 ii) the restriction of F 1 to O c 4 coincides with T (3,k 3 ) α 1 ,α 2 ,O c 4 .
where

k 1 , k 2 , k 3 ∈ N and k 1 + k 2 ≤ k 3 . Observe that α 1 + α 2 + α 3 = -2(n -1) -2(k 3 -k 1 -k 2 ) = -2(n -1) -2k where k = k 3 -k 1 -k 2 ,
so that α is a pole of type II. If n -1 is odd, α is not a pole of type I, but if n -1 is even, then α 3 = -(n -1) -2(ρ + k 3 ) so that α is a pole of type I+II.

The alternative description of Z 2,II in terms of the spectral parameter is

λ 1 = -ρ -l 1 , λ 2 = -ρ -l 2 , λ 3 = ρ + m 3 l 1 , l 2 , m 3 ∈ N, l 1 + l 2 + m 3 ≡ 0 mod 2, |l 1 -l 2 | ≤ m 3 ≤ l 1 + l 2 . ( 58 
) Also let l 1 + l 2 -m 3 = 2k. Then, l 1 , l 2 satisfy k ≤ l 1 , k ≤ l 2 .
The point λ belongs to two lines contained in Z, namely

D 1 = D 1,+ -l 2 +m 3 D 2 = D 2,+ -l 1 +m 3 . Proposition 15.1. i) the differential d K α of β -→ K β at α is of rank 1 ii) the distributions R (1,k 1 ) α 2 ,α 3 and R (2,k 2 ) α 1 ,α 3 are = 0 and proportional to d K α . Moreover, • If n -1 is odd, Supp(R (1,k 1 ) α 2 ,α 3 ) = S × S × S. • If n -1 is even, then Supp(R (1,k 1 ) α 2 ,α 3 ) = O 3 .
Proof. As K β vanishes on D 1 and D 2 , the rank of d K α is at most 1.

From (49) follows for generic

β 3 K 2k 1 ,2k 2 ,β 3 = 1 Γ(ρ + k 1 ) 1 Γ( k 1 +k 2 2 + β 3 2 + 2ρ) R (1,k 1 ) 2k 2 ,β 3
Let β 3 tend to α 3 = -2(n -1) -2k 3 to obtain

∂ ∂β 3 K 2k 1 ,2k 2 ,β 3 β 3 =α 3 = 1 Γ(ρ + k 1 ) (-1) k k! R (1,k 1 ) 2k 2 ,α 3 (59) 
and a similar formula for R 2,k 2 2k 1 ,α 3 . Next, use (50) (after permuting the indices) for a 3 = k 3 . Then

R (1,k 1 ) 2k 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = C (k 2 + ρ) a 2 (-ρ -k 3 ) k 3 (k 2 + a 2 ) k 1 +k 3 1 Γ(k 2 + 2ρ + k 1 + a 2 + k 3 ) 1 Γ(k 1 + a 1 ) which is clearly different of 0. Hence R (1,k 1 ) 2k 2 ,α 3 is = 0, d K α is of rank 1 and proportional to R (1,k 1 )
2k 2 ,α 3 . Hence i) holds true, and after permuting the indices 1 and 2, the first part of ii) follows.

For the second statement in ii), assume first that n-1 is odd. Then (50) implies that for a 3 > k 3 and a 1 , a 2 arbitrary, the K-coefficient R (1,k 1 ) 2k 2 ,α 3 (p a 1 ,a 2 ,a 3 ) does not vanish. This implies Supp(R

(1,k 1 ) α 2 ,α 3 ) = S × S × S. Now assume that n -1 is even. Let ϕ ∈ C ∞ (S × S × S) and assume that Supp(ϕ) ⊂ O 0 ∪ O 1 ∪ O 2 . This implies inf{|x -y|, (x, y, z) ∈ Supp(ϕ)} > 0 .
Hence the integral which defines K 2k 1 ,2k 2 ,β 3 (ϕ) is convergent. For generic

β 3 , K 2k 1 ,2k 2 ,β 3 (ϕ) = Γ(k 2 + ρ) Γ( β 2 + ρ) R (1,k 1 ) 2k 2 ,β 3 (ϕ) .
Now as β 3 tends to α 3 ∈ -(n-1)-2N, the factor Γ( β 3 2 +ρ) becomes singular, so that necessarily, R

(1,k 1 ) 2k 2 ,β 3 (ϕ) = 0. Hence Supp(R (1,k 1 ) 2k 2 ,α 3 ⊂ O 3 .
As for a 3 = k 3 and a 1 , a 2 arbitrary, R

(1,k 1 ) 2k 2 ,α 3 (p a 1 ,a 2 ,a 3 ) = 0, this rules out the possibility that Supp(R

(1,k 1 ) 2k 2 ,α 3 ) = O 4 . Hence ii) follows. Proposition 15.2. The distribution S (k) λ 1 ,λ 2 is = 0 and Supp(S (k) λ 1 ,λ 2 ) = O 4 .
Proof. It suffices to show that some K-coefficient of S (k) λ does not vanish. Choose a 1 = a 2 = 0 and a 3 = k. Then, from (48) follows

S (k) λ 1 ,λ 2 (p 0,0,k ) = C (-k) k (-k -ρ -m 3 ) k (2ρ + m 3 ) k = 0 . ( 60 
)
The relation of S (k) λ 1 ,λ 2 to derivatives of K µ at λ (as suggested in the introduction) is given by the following lemma.

Lemma 15.1.

d 2 ds 2 K λ 1 -s,λ 2 +s,λ 3 s=0 = γ S (k) λ 1 ,λ 2 . with γ = 2 π 16 n-1 (n -2)! Γ(ρ + k) 16 -k (-1) k 1 k 1 !(-1) k 2 k 2 ! 1 Γ(n -1 + k 3 )) Proof. Let λ(s) = (λ 1 -s, λ 2 + s, λ 3 ), α(s) = (α 1 + 2s, α 2 -2s, α 3 ) .
Observe that α(s) belongs to the plane

{β 1 + β 2 + β 3 = -2(n -1) -2k}.
In particular, by (42)

K α(s) = π 16 n-1 (n -2)! Γ(ρ + k) 16 -k 1 Γ(-k 1 + s)Γ(-k 2 -s)Γ(-α 3 2 ) S (k) λ 1 -s,λ 2 +s . (61) As d 2 ds 2 K λ 1 -s,λ 2 +s,λ 3 s=0 = 2 lim s→0 K α(s)
s 2 the result follows by letting s tend to 0. Theorem 15.1. Let α be in Z 2,II . Then dim T ri(λ) = 2. More precisely, assume that α satisfies (57). Then

T ri(λ) = C R (1,k 1 ) k 2 ,α 3 ⊕ C S (k) λ 1 ,λ 2 .
From Proposition 15.3 follows that dim T ri(λ) ≥ 2. Hence it will be sufficient to prove that dim(T ri(λ) ≤ 2, and this is the content of the next subsections.

The odd case

Assume that α satisfy (57), and assume that n -1 is odd. In this case, α is a generic pole of type II.

Proposition 15.4. Let T be a λ-invariant distribution on S × S × S. Then there exist two constants c, d such that

T = c R (1,k 1 ) k 2 ,α 3 + d S (k) λ 1 ,λ 2 .
Proof. The restriction to O 0 of any λ-invariant distribution has to be proportional to K α,O 0 . Hence there exists a constant c such that

S = T -cR 1,k 1 k 2 ,α 3 is supported in O 1 ∪ O 2 ∪ O 3 ∪ O 4 . Now α 1 , α 2 , α 3 / ∈ (-(n -1) -2N).
As already seen, this implies that S is supported in O 4 , or otherwise said S belongs to T ri(λ, diag). The dimension of this space is equal to dim Sol (λ 1 , λ 2 ; k).

Notice that λ 3 = ρ+m 3 / ∈ {-ρ, -ρ-1, . . . , -ρ-(k-1)}∪{-1, -2, . . . , -k} and hence, by Appendix 3 dim T ri(λ, diag) = 1. So there exists a constant

d such that S = d S (k) λ . Summarizing, T = c R 1,k 1 k 2 ,α 3 + d S (k) λ . Q.E.D.

Invariant trilinear form for three finite dimensional representations

The case where λ is in Z 2,II allows to draw conclusions for finite-dimensional representations.

The following lemma is valid in full generality and in fact could be used for other situations (cf [START_REF] Kobayashi | Symmetry breaking for representations of rank one orthogonal groups[END_REF] for a related idea).

Lemma 15.3. Let λ = (λ 1 , λ 2 , λ 3 ) ∈ C 3 . Then, for any f 1 , f 2 , f 3 ∈ C ∞ (S) K -λ 1 ,λ 2 ,λ 3 ( J λ 1 f 1 , f 2 , f 3 ) = π ρ Γ(-λ 1 + ρ) K λ 1 ,λ 2 ,λ 3 (f 1 , f 2 , f 3 )
Proof. Because of the intertwining relation satisfied by J λ 1 , the left hand side is a λ-invariant trilinear form. Assume that λ is not a pole. By the generic uniqueness theorem, there exists a constant c such that, for all

f 1 , f 2 , f 3 ∈ C ∞ (S), K -λ 1 ,λ 2 ,λ 3 ( J λ 1 f 1 , f 2 , f 3 ) = c K λ 1 ,λ 2 ,λ 3 (f 1 , f 2 , f 3 ) . Now recall that K λ (1, 1, 1) = √ π 2 3(n-1) 2 λ 1 +λ 2 +λ 3 Γ(ρ + λ 1 )Γ(ρ + λ 2 )Γ(ρ + λ 3 ) (62) 
(see [START_REF] Oshima | Annihilators of generalized Verma modules of the scalar type for classical Lie algebras Harmonic Analysis, Group representations, Automotphic forms and Invariant Theory[END_REF] in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF]). Assume moreover that for j = 1, 2, 3, λ j / ∈ -ρ -N, so that K λ (1, 1, 1) = 0. Hence the constant c can be computed from (62), using (32). The general case follows by analytic continuation.

Lemma 15.4. Assume λ satisfy (58). For all

f 1 , f 2 , f 3 ∈ C ∞ (S), S (k) λ 1 ,λ 2 ( J ρ+l 1 f 1 , J ρ+l 2 f 2 , J -ρ-m 3 f 3 ) = 0 .
Proof. For s ∈ C, using three times (15.3)

K λ 1 -s,λ 2 +s,λ 3 ( J ρ+l 1 +s f 1 , J ρ+l 2 -s f 1 , J -ρ-m 3 f 1 ) = π 3ρ Γ(-l 1 + s)Γ(-l 2 -s)Γ(ρ + m 3 ) K -λ 1 +s,-λ 2 -s,-λ 3 (f 1 , f 2 , f 3 ) .
For s = 0, multiply both sides by 1 s 2 and let s → 0. Then, by using Lemma 15.1

S (k) λ 1 ,λ 2 ( J ρ+l 1 f 1 , J ρ+l 2 f 2 , J -ρ-m 3 f 3 ) = γ K -λ 1 ,-λ 2 ,-λ 3 (f 1 , f 2 , f 3 )
where γ = 0. Observe that λ = (-λ 1 , -λ 2 , -λ 3 ) belongs to Z. In fact,

λ 1 = ρ + l 1 , λ 2 = ρ + l 2 , λ 3 = -ρ -m 3 ,
and λ 1 -λ 2 = l 1 -l 2 , where l 1 -l 2 ≡ m 3 mod 2 and |l 1 -l 2 | ≤ m 3 . Hence K -λ 1 ,-λ 2 ,-λ 3 ≡ 0 and the conclusion follows. Now recall (cf (25) and ( 26)) that for m ∈ N, Im( J ρ+m ) = P m is an invariant subspace for the representation π -ρ-m , and the restriction of π ρ-m to P m yields a finite dimensional irreducible representation ρ m of G. Dually, Im( J -ρ-m ) = P ⊥ m and π ρ+m descends to a representation ρ m of G on P m = C ∞ (S)/P ⊥ m . Moreover, Ker( J ρ+m ) = P ⊥ m , and J ρ+m passes to the quotient and gives raise to an intertwining operator for the representations ρ m and ρ m . Moreover, the duality between π λ and π -λ realizes ρ m as the contragredient representation of ρ m .

Corollary 15.1. Let f 1 ∈ P l 1 , f 2 ∈ P l 2 , f 3 ∈ P ⊥ m 3 . Then S (k) λ 1 ,λ 2 (f 1 , f 2 , f 3 ) = 0 . Proof. Use Im( J ρ+l ) = P l and Im( J -ρ-m ) = P ⊥ m .
Next, first restrict the trilinear form S

λ 1 ,λ 2 to P l 1 × P l 2 in the first two variables. Then pass to the quotient mod P ⊥ m 3 on the third variable to obtain a trilinear form on P l 1 × P l 2 × P m 3 . This trilinear form is not trivial. In fact, observe that |x -y| 2k ∈ P l 1 ⊗ P l 2 as l 1 , l 2 ≤ k, and S (k) λ 1 ,λ 2 (|x -y| 2k ⊗ 1) = 0 by (60). This leads to the following statement, which realizes ρ m 3 as a component of ρ l 1 ⊗ ρ l 2 .

Proposition 15.6. Let l 1 , l 2 , m 3 ∈ N satisfy (58), and set

λ 1 = -ρ -l 1 , λ 2 = -ρ -l 2 , l 1 + l 2 -m 3 = 2k Then i) the trilinear form S (k) λ 1 ,λ 2 yields a non trivial continuous trilinear form on P l 1 × P l 2 × P m 3 which is invariant w.r.t. (ρ l 1 , ρ l 2 , ρ m 3 ). ii) the bi-differential operator D (k) λ 1 ,λ 2 maps P l 1 ⊗ P l 2 into P m 3 and is covariant w.r.t. (ρ l 1 ⊗ ρ l 2 , ρ m 3 ).
16 Multiplicity 3 theorem for α ∈ Z 3 Let α be in Z 3 . Then

α 1 = -(n -1) -2k 1 , α 2 = -(n -1) -2k 2 , α 3 = -(n -1) -2k 3 where k 1 , k 2 , k 3 ∈ N. Correspondingly, λ 1 = -ρ -l 1 , λ 2 = -ρ -l 2 , λ 3 = -ρ -l 3 where l 1 , l 2 , l 3 ∈ N satisfy l 1 + l 2 + l 3 ≡ 0 mod 2, |l 1 -l 2 | ≤ l 3 ≤ l 1 + l 2 . If n -1 is odd, then α is not a pole of type II. If n -1 is even (hence ρ ∈ N), then α 1 + α 2 + α 3 = -2(n -1) -2(ρ + k 1 + k 2 + k 3 ) ∈ -2(n -1) -2N and
α is a pole of type II.

The odd case

Assume in this subsection that n -1 is odd.

Proposition 16.1. The three distributions T

(1,k 1 ) α 2 ,α 3 , T (2,k 2 ) α 1 ,α 3 , T (3,k 3 ) 
α 1 ,α 2 are three linearly λ-invariant distributions.

Proof. By Proposition 9.5 Supp( T 1,k 1 α 2 ,α 3 ) = O 1 and a similar result by permuting the indices for the two other distributions. The statement follows.

Theorem 16.1. The space T ri(λ) is of dimension 3. More precisely,

T ri(λ) = C T (1,k 1 ) α 2 ,α 3 ⊕ C T (2,k 2 ) α 1 ,α 3 ⊕ C T (3,k 3 ) α 1 ,α 2 .
Proof. Because of Proposition 16.1, it suffices to prove that any λ-invariant distribution T is a linear combination of T

(1,k 1 ) α 2 ,α 3 , T (2,k 2 ) α 1 ,α 3 , T (3,k 3 ) α 1 ,α 2 .
The next proposition is a first step in this direction.

Proposition 16.2. The distribution K α,O 0 cannot be extended to a λinvariant distribution on S × S × S.

Among the four Γ factors in the normalization of β -→ K β , three become singular at α, namely Γ(

β 1 2 + ρ), Γ( β 2 2 + ρ), Γ( β 3 2 + ρ). For s in C let α(s) = (α 1 + 2s, α 2 + 2s, α 3 + 2s), λ(s) = (λ 1 + 2s, λ 2 + 2s, λ 3 + 2s) .
The distribution-valued function defined for s ∈ C, s = 0 and |s| small, by

F(s) = (-1) k 1 k 1 ! (-1) k 2 k 2 ! (-1) k 3 k 3 ! Γ(-ρ -k 1 -k 2 -k 3 + 3s) 1 s 2 K α(s) .
can be extended holomorphically at s = 0, because β -→ K β vanishes at α as well as its first derivatives. The Taylor expansion of F(s) at 0 reads

F(s) = F 0 + sF 1 + O(s 2 ) ,
where F 0 and F 1 are distributions on S × S × S.

Lemma 16.1.

i) Supp(F 0 ) = O 1 ∪ O 2 ∪ O 3 ii) F 1 coincides on O 0 with K α,O 0 Proof. Let ϕ ∈ C ∞ (S × S × S)
and assume that its support is contained in O 0 . For s = 0, α(s) is not a pole and

F(s)(ϕ) = (-1) k 1 k 1 ! Γ(-k 1 + s) (-1) k 2 k 2 ! Γ(-k 2 + s) (-1) k 3 k 3 ! Γ(-k 3 + s) 1 s 2 K α(s),O 0 (ϕ)
As s tends to 0, the right hand side is equal to s

K α,O 0 (ϕ) + O(s 2 ) so that F 0 , ϕ) = 0 and F 1 (ϕ) = K α,O 0 (ϕ), from which ii) follows. Next, lim s→0 1 s 2 K α(s) = 2 ∂ 2 K β ∂β 1 ∂β 2 (α) + ∂ 2 K β ∂β 2 ∂β 3 (α) + ∂ 2 K β ∂β 3 ∂β 1 (α)
On the other hand, use (18) to obtain, for s 1 , s 2 ∈ C,

K α 1 + 1 ,α 2 +s 2 ,α 3 = (-1) k 3 2 -2k 3 Γ(ρ + k 3 )Γ(-k 1 + s 1 )Γ(-k 2 + s 2 ) T (3,k 3 ) α 1 +s 1 ,α 2 +s 2 hence ∂ 2 K β ∂β 1 ∂β 2 (α) = (-1) k 3 2 -2k 3 (-1) k 1 k 1 !(-1) k 2 k 2 ! Γ(ρ + k 3 ) T (3,k 3 ) α 1 ,α 2 ,
and similar formulae by permuting the indices 1, 2, 3. So, F 0 is a linear combination (with coefficients all = 0) of three distributions with support respectively O 1 , O 2 and O 3 , so that Supp(F

0 ) = O 1 ∪ O 2 ∪ O 3 .
Theorem 16.2. The space T ri(λ) is of dimension 3. More precisely,

T ri(λ) = C T (1,k 1 ) α 2 ,α 3 ⊕ C T (2,k 2 ) α 1 ,α 3 ⊕ C T (3,k 3 ) α 1 ,α 2 .
Proof. Three facts need to be established before giving the proof, namely

• the distribution K α,O 0 cannnot be extended to a λ-invariant distribution on S × S × S.

• the distribution T

(3,k 3 ) α 1 ,α 2 ,O c 4 cannot be extended to a λ-invariant distri- bution on S × S × S. • dim T ri(λ) = 3.
Proposition 16.4. The distribution K α,O 0 cannot be extended to a λinvariant distribution on S × S × S.

For s ∈ C define α(s) = (α 1 + s, α 2 + s, α 3 + s), λ(s) = (λ 1 + s, λ 2 + s, λ 3 + s) .
Observe that for s = 0 and |s| small, α(s) is not a pole. Next, the four Gamma factor in the normalization of K α are singular at α.

By the same argument used in the odd case, the distribution-valued function defined for s ∈ C, s = 0 by

F(s) = 8 3 (-1) k 1 k 1 ! (-1) k 2 k 2 ! (-1) k 3 k 3 ! (-1) k k! 1 s 2 K α(s)
can be continued to a holomorphic function in a neighborhood of s = 0. The Taylor expansion of F at 0 reads

F(s) = F 0 + sF 1 + s 2 F 2 + O(s 3 )
where F 0 , F 1 and F 2 are distributions on S × S × S.

Proposition 16.5.

i) F 0 is λ-invariant and Supp(F 0 ) = O 4 . ii) Supp(F 1 ) = O 1 ∪ O 2 ∪ O 3 iii) the restriction of F 2 to O 0 coincides with K α,O 0 .
Proof. The proof of i) is the same as in the odd case, except that now the three distributions T

(1,k 1 ) α 2 ,α 3 , T (2,k 2 ) α 1 ,α 3 , T (3,k 3 ) α 1 ,α 2 are supported in O 4 . 56 
Next, let ϕ ∈ C ∞ (S × S × S) and assume that Supp(ϕ) ⊂ O 0 . Then for s = 0 and |s| small,

F(s), ϕ = 8 3 (-1) k 1 k 1 ! (-1) k 2 k 2 ! (-1) k 3 k 3 ! (-1) k k! 1 Γ(-k 1 + s 2 ) Γ(-k 2 + s 2 ) Γ(-k 3 + s 2 ) Γ(-k + 3s 2 ) 1 s 2 K α(s) (ϕ) .
As s → 0, the right hand side is equal to s 2 K α,O 0 (ϕ) + O(s 3 ), so that F 0 (ϕ) = 0, F 1 (ϕ) = 0 and F 2 (ϕ) = K α,O 0 (ϕ). Hence iii) follows, and also

Supp(F 1 ) ⊂ O 1 ∪ O 2 ∪ O 3 .
It remains to determine the supports of F 1 . Let a 1 , a 2 , a 3 ∈ N. Then, using [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF] in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], the K-coefficient F(s)(p a 1 ,a 2 ,a 3 ) (up to a factor which does not vanish for s = 0) is equal to

1 s 2 (-k + 3 2 s) a 1 +a 2 +a 3 (-k 1 + s 2 ) a 1 (-k 2 + s 2 ) a 2 (-k 3 + s 2 ) a 3 • • • 1 Γ(-k 1 -k 2 + a 1 + a 2 + s) 1 Γ(-k 2 -k 3 + a 2 + a 3 + s) 1 Γ(-k 3 -k 1 + a 3 + a 1 + s) .
Lemma 16.3. Let a 1 , a 2 , a 3 ∈ N and assum that a 1 ≤ k 1 , a 2 > k 1 + k 2 , a 3 > k 1 + k 3 , a 1 + a 2 + a 3 > k .

Then F 1 (p a 1 ,a 2 ,a 3 ) = 0.

Proof. Under the assumptions, the three Γ factors are regular at s = 0, the factor (-k 1 + s) a 1 does not vanish at s = 0 and the three remaining factors (-k + 3 2 s) a 1 +a 1 +a 3 , (-k 2 + s) a 2 , (-k 3 + s) a 3 have a simple zero at s = 0. Hence the conclusion holds true.

From the definition of F 1 and part i) of Proposition 16.5 follows that F 1|O c 4 is λ-invariant. Hence Supp(F 1 ) is invariant under G. Now Lemma 16.3 shows that Supp(F 1 ) is not included in O 2 ∪ O 3 . In fact, given an arbitrary integer L, choosing a 2 , a 3 large enough, all partial derivatives of the function p a 1 ,a 2 ,a 3 of order ≤ L vanish on O 2 ∪ O 3 . Hence if T is a distribution on S × S × S supported on O 2 ∪ O 3 , then T (p a 1 ,a 2 ,a 3 ) ) = 0 for a 2 , a 3 large enough (take for L the order of the distribution T ). By permuting the indices 1, 2, 3, the only remaining possibility for Supp(F 1 ) is

Supp(F 1 ) = O 1 ∪ O 2 ∪ O 3 .
for s in a neighborhood of 0, such that α(0) = α and transverse to the plane β 1 + β 2 + β 3 = -2(n -1) -2k at α. Let λ(s) (resp. λ) be the associated spectral parameter.

Let F(s) be a family of distributions on S × S × S, depending holomorphically on s near 0, and such that i) F(s) is λ(s)-invariant ii) F(s) = F 0 +sF 1 +O(s 2 ) as s -→ 0, where F 0 and F 1 are distributions on S × S × S iii) Supp(F 0 ) = O 4

Then the restriction F 1,O of F 1 to O = S × S × S \ O 4 is λ-invariant, but cannot be extended to S × S × S as a λ-invariant distribution.

Proof. (sketch) The statement here is formulated in terms of holomorphic curves (in all applications only complex lines occur), to be closer to the spirit of Oshima's results (see [START_REF] Oshima | Annihilators of generalized Verma modules of the scalar type for classical Lie algebras Harmonic Analysis, Group representations, Automotphic forms and Invariant Theory[END_REF] section 7).

Let µ = (µ 1 , µ 2 , µ 3 ) = d ds |s=0 λ(s). The Taylor expansion at s = 0 of the identity F(s) • π λ(s) = F(s) yields the functional relation, valid for any

g ∈ G F 1 • π λ (g) -F 1 = C g F 0 ,
where C g (x, y, z) = -(µ 1 ln κ(g -1 , x) + µ 2 ln κ(g -1 , y) + µ 3 ln κ(g -1 , z).

The subgroup A (a split one-parameter Cartan subgroup of G) has a fixed point in O 1 (resp. O 4 ), say o. The transversality assumption guarantees that, at o the character

χ o : A a -→ C a (o)
is not trivial. The rest of the proof is as in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], Proposition 6.1 and 6.2.

A3. Discussion of the system S (λ 1 , λ 2 ; k)

Recall that, for λ ∈ C 3 , T ri(λ, diag) is the space of λ-invariant distributions on S × S × S which are supported on the diagonal O 4 = {(x, x, x), x ∈ S}.

For (λ 1 , λ 2 ) ∈ C 2 and k ∈ N, BD G (λ 1 , λ 2 ; k) is the space of bi-differential operators D : C ∞ (S × S) -→ C ∞ (S) which are covariant w.r.t. (π λ 1 ⊗ π λ 2 , π λ 1 +λ 2 +ρ+2k ) (see [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] section 7).

Let k ∈ N and let (λ 1 , λ 2 ) ∈ C 2 . Consider the system S (λ 1 , λ 2 ; k) of homogeneous linear equations in the unknowns (c r,t ), 0 ≤ r, t, r + t ≤ k given by 4(r + 1)(r + 1 + λ)c r+1, t +2(k -r -t)(k -r + t -1 + ρ + µ)c r, t -(k -r -t + 1)(k -r -t)c r, t-1 = 0 E (1) r,t 4(t + 1)(t + 1 + µ)c r, t+1 +2(k -r -t)(k + r -t -1 + ρ + λ)c r, t -(k -r -t + 1)(k -r -t)c r-1, t = 0 E (2) r,t for r + t ≤ k -1.

The system was introduced by Ovsienko and Redou (see [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF]). Denote by Sol (λ 1 , λ 2 ; k) the space of solutions of the system S (λ 1 , λ 2 ; k). Proposition A3. Let λ 1 , λ 2 , λ 3 ∈ C 3 satisfy λ 1 + λ 2 + λ 3 = -ρ -2k for some k ∈ N. Then T ri(λ 1 , λ 2 , λ 3 , diag) ∼ BD G (λ 1 , λ 2 ; k) ∼ Sol (λ 1 , λ 2 ; k) .

Proof. The first isomorphism is proved in [START_REF] Beckmann | Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group[END_REF], the second is due to Ovsienko and Redou ( [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF]). As a consequence, the dimensions of the three spaces are equal.

The system S(λ 1 , λ 2 ; k) was studied by Ovsienko and Redou who proved that generically dim Sol (λ 1 , λ 2 ; k) = 1, but for our purpose, a full discussion of the system (depending on the parameters λ 1 , λ 2 and k) is needed.

The next result will help lower the number of situations to be considered.

Proposition A4 (Symmetry principle).

i) dim Sol (λ 1 , λ 2 ; k) = dim Sol (λ 2 , λ 1 ; k)

ii) let λ 3 = -ρ -2k -λ 1 -λ 2 . Then dim Sol (λ 1 , λ 2 ; k) = dim Sol (λ 2 , λ 3 ; k) = dim Sol (λ 3 , λ 1 ; k) .

Proof.

For i) , observe (cf [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF]) that if (c r,t ) is a solution of the system S (λ 1 , λ 2 ; k), then (c t,r ) is a solution of S (λ 2 , λ 1 ; k).

For ii), observe that dim T ri(λ 1 , λ 2 , λ 3 ; diag) is invariant by any permutation of {λ 1 , λ 2 , λ 3 }. Hence Proposition 3 implies the statement. c r,0 = 0 for r ≤ k 1 -1. Choose c k 1 ,0 as first principal unknown, then the unknowns c r,0 for r ≥ k 1 can be expressed in terms of c k 1 ,0 . Now as long as t ≤ k 2 -1, it is possible to use E (2 r,t-1 to compute c r,t in terms of c r,t-1 and c r-1,t-1 . It follows that, for t ≤ k 2 -1, c r,t = 0 for r ≤ k 1 -1 and c r , t can be expressed in terms of c k 1 ,0 for r ≥ k 1 . By symmetry, choosing c k 2 ,0 as second principal unknown, it is possible for r ≤ k 1 to express all c r,t in terms of c 0,k 2 . But r + t ≤ k and k > k 1 + k 2 implies that either r ≤ k 1 -1 or t ≤ k 2 -1, hence all unknowns can be expressed in terms of the two principal unknowns c k 1 ,0 and c 0,k 2 and the statement follows.

It remains to consider the case where λ 1 ∈ {-ρ, -ρ-1, . . . , -ρ-(k -1)}. This assumption forces n -1 to be even, ρ ≤ k and hence λ 1 = -k 1 , where ρ ≤ k 1 ≤ k. Moreover, 0 ≤ k 2 ≤ ρ -1. Then λ 3 = -ρ -(2k -k 1 -k 2 ) = -ρ-l 3 with with 0 ≤ l 3 = 2k-k 1 -k 2 < k so that λ 3 ∈ {-ρ, -ρ-1, . . . , -(ρk -1)}, but writing the same equality as λ 3 = -k -((k -k 1 ) + (ρ -k 2 )) shows that λ 3 / ∈ {-1, -2, . . . , -k}. Moreover, l 3 + k 1 = 2k -k 1 -k 2 + k 1 = 2k -k 2 ≥ k. So (λ 1 , λ 3 ) satisfy the assumptions of Lemma 2 ii). By the symmetry principle, the conclusion follows also in this case.

Lemma A4. Let λ 1 = -ρ -l 1 , λ 2 = -ρ -l 2 where 0 ≤ l 1 , l 2 ≤ k -1, and λ 1 , λ 2 / ∈ {-1, -2, . . . , -k}. Then dim Sol (λ 1 , λ 2 ; k) ≤ 1.

Proof. Choose c 0,0 as principal unknown. Then, by using E

r-1,0 it is possible for r ≤ k -l 2 -1 to express c r,0 in terms of c 0,0 . Then necessarily c k-l 2 ,0 = 0 and for r ≥ k -l 2 + 1 c r,0 = 0. As λ 2 / ∈ {-1, -2, . . . , -k}, it is possible, using E

(2) r,t to express c r,t in terms of c 0,0 . Lemma A5. Let n -1 be even (so that ρ ∈ N), and let

λ 1 = -k 1 , λ 2 = -k 2 , where ρ ≤ k 1 , k 2 ≤ k. i) if k 1 + k 2 ≤ k, then dim Sol (λ 1 , λ 2 ; k) = 1. ii) if k < k 1 + k 2 < k + ρ, then dim Sol (λ 1 , λ 2 ; k) = 2.
iii) if k 1 + k 2 ≥ k + ρ, then dim Sol (λ 1 , λ 2 ; k) = 3.

Proof. If k 1 + k 2 ≤ k, then λ = -ρ -2k + k 1 + k 2 = -ρ -k -(k -k 1 + k 2 )
, so that λ 3 / ∈ { -ρ, -ρ -1, . . . , -ρ -(k -1)} ∪ {-1, -2, . . . , -k}. Use Lemma A1 and the symmetry principle to get i).

Assume now that k < k 1 + k 2 < k + ρ. Then

λ 3 = -ρ -2k + k 1 + k 2 = -ρ -k + (k 1 + k 2 -k) = -k -(k + ρ -k 1 -k 2 ) .
Table for dim Sol (λ 1 , λ 2 ; k)

λ 1 = -k 1 λ 1 / ∈ E ρ k λ 1 = -ρ -l 1 λ 1 / ∈ E k λ 1 = -k 1 λ 1 ∈ E k ∩ E ρ k λ 2 = -k 2 λ 2 / ∈ E ρ k k 1 + k 2 ≤ k 1 k 1 + k 2 > k 2 l 1 + k 2 < k 1 l 1 + k 2 ≥ k 2 k 1 + k 2 ≤ k 1 k < k 1 + k 2 < k + ρ 2 k 1 + k 2 ≥ k + ρ 3 λ 2 = -ρ -l 2 λ 2 / ∈ E ρ k k 1 + l 2 < k 1 k 1 + l 2 ≥ k 2 1 k 1 + l 2 < k 1 k 1 + l 2 ≥ k 2 λ 2 = -k 2 λ 2 ∈ E k ∩ E ρ k k 1 + k 2 ≤ k 1 k < k 1 + k 2 < k + ρ 2 k 1 + k 2 ≥ k + ρ 3 k 2 + l 1 < k 1 k 2 + l 1 ≥ k 2 k 1 + k 2 ≤ k 1 k < k 1 + k 2 < k + ρ 2 k 1 + k 2 ≥ k + ρ 3 
where 

E k = {-
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 4 2 of [3] can be rewritten as Z = ( , j, l, m) admissible D , j l, m .

3 . 1 . 8 . 2 .

 3182 Hence i) follows. Now ii) is a consequence of i) and Proposition 8.Definition For d = 1, 2, 3 let Z d = {λ ∈ C 3 , λ belongs to exactly d lines contained in Z} . For d = 1, let Z 1,I = {λ ∈ Z 1 , λ belongs to a line of type I} Z 1,II = {λ ∈ Z 1 , λ belongs to a line of type II} For d = 2, let Z 2,I = {λ ∈ Z 2 , λ belongs to a line of type I and to a line of type II } Z 2,II = {λ ∈ Z 2 , λ belongs to two lines of type II }

Proposition 8 . 3 .

 83 Let D = D -,1 l,m be a line of type I. Let λ ∈ D. Then λ belongs to Z 1 if and only if

3

  Needless to say, a similar construction can be made when α is a pole of type I1 or I2 Proof. For i), let Supp(ϕ) ⊂ O c 4 . The function Φ(y, z) = ∆ (1) k ϕ(., y, z)|z -.| β 2 (y) is in C ∞ (S × S) and Supp(Φ) ∩ {y = z} = ∅. Hence the integral (15) converges and defines a distribution on O c 4 . The open set O c 4 is invariant by G and the distribution T 3,k 3 β 1 ,β 2 , O c 4 is verified to be λ-invariant as in [1] Proposition 2.1.

  Proposition 10.4 can now be proved. Restrict the situation to the Ginvariant open subset O = O 0 ∪ O 2 , in which O 2 is a (relatively) closed submanifold. The distribution 1 s F(s) |O can be extended analytically in a neighborhood of s = 0 and has Taylor expansion

  By the uniqueness result (see Lemma 4.1 in [3]), T |O has to be proportional to T (2,k 2 ) α 1 ,α 3 |O . Permuting the indices 2 and 3, a similar result holds on the open set

  defines a continuous trilinear form on C ∞ (S) × C ∞ (S) × C ∞ (S), which as usual is regarded as a distribution on S × S × S.Let l ∈ N. Then the function (x, y, z) -→ |x-y| 2l is smooth on S ×S ×S. So, define the distribution R (3,l) α 1 ,α 2 on S × S × S as the product of R (3) α 1 ,α 2 with |x -y| 2l , or more explicitly,

λ 2

 2 ,λ 3 and R (1,p) α 2 ,α 3 are two linearly independent λ-invariant trilinear forms. Proof. By Proposition 13.1 S (k) λ 2 ,λ 3 = 0, and hence Supp (S (k)

α 2

 2 ,α 3 are two linearly independent λ-invariant trilinear forms. Proof. By Proposition 13.1, S (k) λ 2 ,λ 3 = 0 and Supp(S (k)

  But by using twice Lemma 4.1 in [3], Supp(T ) has to be contained in O 2 ∪ O 4 . Next, consider the restriction T |O c 4 of T to the open G-invariant subset O c 4 , which contains O 2 as a closed submanifold. Then, again by Lemma 4.1 in [3], T |O c 4 has to be a multiple of R (1,p)

  so that ii) follows. Now we are ready to prove Proposition 14.3. Let O = O 0 ∪ O 2 . This is an open G-invariant subset which contains O 2 as a closed submanifold. Restrict G(s), G 0 and G 1 to O. Now apply Proposition A1 to conclude that G 1 cannot be extended to O (a fortiori to S × S × S) as a λ-invariant distribution. We still need another result before starting the proof of Theorem 14.1. Proposition 14.4. The distribution T 3,k 3 α 1 ,α 2 ,O c 4 cannot be extended to S × S × S as a λ-invariant distribution. Proof. As seen in section 9, for arbitrary β 1 , β 2 ∈ C, the distribution T (3,k 3 ) β 1 ,β 2 ,O c 4 is a λ-invariant distribution on O c 4 . For s ∈ C, let α(s) = (α 1 , α 2 + 2s, α 3 ), λ(s) = (λ 1 + s, λ 2 , λ 3 + s)

Proposition 15. 3 .

 3 The distributions R (1,k 1 ) k 2 ,α 3 and S (k) λ 1 ,λ 2 are two linearly independant λ-invariant distributions. Proof. The two distributions R (1,k 1 ) k 2 ,α 3 and S (k) λ 1 ,λ 2 are = 0 and have unequal supports. Hence they are linearly independant.

  1, -2, . . . , -k}, E ρ k = {-ρ, -ρ -1, . . . , -ρ -(k -1)} .

Recall that K SO(n) is a maximal compact subgroup of G

for the correspondance between the spectral parameter λ and the geometric parameter α, see[START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] 2.1

To give an explicit expression of a distribution supported on O4, a choice of a transverse submanifold (and associated transverse differential operators) at each point of O4 is needed. Our choice leads to use transverse differential operators acting on the variables (x, y).

Proof. For i), F 0 = F(0) = (-1) k k! T 3,k 3 2k 1 ,α 2 and hence by (52), Supp(F 0 ) = O 4 . For ii), let ϕ ∈ C ∞ (S × S × S) and assume that Supp(ϕ) ⊂ O c 4 .Then, using (16)

and ii) follows by letting s → 0.

Proposition A2 implies that T To finish the proof it is enough to prove that the space T ri(λ, diag) has dimension 1 (hence generated by the distribution R (1,k 1 ) α 2 ,α 3 ), because this will imply that T = cQ + dR

α 2 ,α 3 for some constant d, which is the content of Theorem 14.1. Observe that

15 The multiplicity 2 result for α ∈ Z 2,II Let α ∈ Z 2,II . Up to a permutation of the indices, it amounts to

The even case

Assume α satisfies (57), and assume that n -1 is even. In this case, α is a pole of type I+II.

Proposition 15.5. The distribution K α,O 0 cannot be extended to a λinvariant distribution on S × S × S.

Two of the normalizing Γ factors become singular at α, namely Γ( α 3 2 +ρ) and Γ( α

and notice that α(s) is transverse at α to both planes of poles. Let

This defines a distribution-valued holomorphic function on C, which admits the following Taylor expansion at 0

Proof. For i), notice that F 0 is a multiple ( = 0) of R 1,k 1 α 2 ,α 3 (cf (59)), hence Supp(F 0 ) = O 3 by Proposition 15.1.

Let s = 0, and let ϕ ∈ C ∞ c (O 0 ). Then

Let s tend to 0. The right hand side is equivalent to s K α,O 0 (ϕ). Hence F 0 (ϕ) = 0 and F 1 (ϕ) = K α,O 0 (ϕ), from which ii) follows.

Proposition 15.5 now follows from Proposition A1 in Appendix.

To finish the proof of Theorem 15.1, assume T is a λ-invariant distribution. By Proposition 15.5, T must be 0 on

∈ -(n -1) -2N, it even follows that Supp(T ) ⊂ O 3 . By Lemma 4.1 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], the restriction of T to O c 4 has to be proportional to (the restriction to O c 4 of) R

(1,k 1 ) 2k 2 ,α 3 . In other words, there exists a constant c such that T -c R (1,k 1 ) 2k 2 ,α 3 is λ-invariant and supported in O 4 . The final conclusion is obtained as in the proof for the odd case. Now the proof of Proposition 16.2 is obtained by using once more Proposition A1, after restricting the situation to (say

To finish the proof of Theorem 16.1, let T be a λ-invariant distribution. Then, Proposition 16.2 shows that the restriction T O 0 has to be 0, and so

and hence by Lemma 4.1 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], there exists a constant

By arguing in a similar way, there exists c 2 and c 3 such that

But as λ is not a pole of type II, and by Lemma 4.2 in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF], there exists no such non trivial distribution, so that

The even case

Assume in this subsection that n -1 is even, so that ρ is an integer. Then, as

Proposition 16.3. The three distributions T

α 1 ,α 2 are three linearly linearly independant λ-invariant distributions.

Proof. Although the statement is the same as in the previous case, the proof is quite different. In fact, recall that the three distributions are supported in O 4 . Use once again the evaluation of (some) K-coefficients of the three distributions to prove their linear independence. The following result was obtained during the proof of Proposition 10.1.

Up to permutation of the indices, a similar result holds true for the two other distributions. As n ≥ 4 and n -1 even, ρ ≥ 2 so that a 1 > k 1 . Moreover, a 2 > k 2 . As a consequence of part i) of the lemma,

The linear independance of the three distributions follows from this result and its variants under permutation of the indices 1, 2, 3.

Let us now come to the proof of Proposition 16.4. Restrict the previous situation to O = O 0 ∪ O 1 . The distribution-valued function G(s) defined for s = 0 by

can be extended to a holomorphic function in a neighborhood of 0 in C. Then, as s → 0,

and

An application of Proposition A1 implies that F 2,O 0 cannot be extended to a λ-invariant distribution on O. Hence, a fortiori the distribution K α,O 0 cannot be extended to a λ-invariant distribution on S × S × S.

Proposition 16.6. The distribution

The proof is very similar to the proof of Proposition 14.4 so that we omit it.

Proposition 16.7.

dim T ri(λ, diag) = 3 .

As seen earlier, it suffices to prove that dim Sol(λ 1 , λ 2 ; k) ≤ 3 (see Appendix 3). In the present case, λ 1 = -ρ -k 2 -k 3 , and as -(k -1)} and similarly for λ 2 . Moreover, -λ 1 -λ 2 = (n -1) + k 2 + k 3 + 2k 1 ≥ k. The conclusion follows by Lemma A9 iii).

We now come to the proof of the main theorem in this section. Let T be a λ-invariant distribution. By Proposition 16.4, the restriction of T to O 0 has to be 0. Hence Supp(T

This is an open set of S × S × S which contains O 1 as a (relative) closed submanifold. The restriction T |O 01 of T to O 01 is supported on O 1 and λinvariant. Hence T |O 01 must be a multiple of

. By Proposition 16.6, this forces T |O 01 = 0. By permuting the indices 1, 2, 3, T has to be supported in O 4 , hence belongs to T ri(λ, diag). Hence T ri(λ) = T ri(λ, diag). But dim T ri(λ, diag) = dim Sol (λ 1 , λ 2 ; k) ≤ 3, which finishes the proof of Theorem 16.2.

Appendix A1. Evaluation of the K-coefficients of K α

For the convenience of the reader, the formalae giving the evaluation of the K-coefficients of K α (sometimes called Bernstein-Reznikov integrals), which were obtained in [START_REF] Clerc | Singular conformally invariant trilinear forms I, The multiplicity one theorem, to appear in Transformation Groups[END_REF] Proposition 3.2 are recalled. For α ∈ C 3 , and

and its counterpart in terms of the spectral parameter λ

A2. Non extension results

Proposition A1. Let O be a G-invariant open subset of S × S × S, and assume that O 1 is a (relatively) closed submanifold of O. Let α be a pole of type I 1 , i.e. α 1 = -(n-1)-2k 1 for some k 1 ∈ N. Let α(s) be a holomorphic curve defined for s in a neighborhood of 0, such that α(0) = α and transverse to the plane β 1 = -(n -1) -2k 1 at α. Let λ(s) be the associated spectral parameter and let λ = λ(0). Let F(s) be a family of distributions on O, depending holomorphically on s in a neighborhood of 0, and such that i) for any s,

Then the restriction

Proposition A 2. Let α ∈ C 3 be a pole of type II, i.e. α 1 + α 2 + α 3 = -2(n -1) -2k for some k ∈ N. Let α(s) be a holomorphic curve defined

The strategy to estimate dim Sol (λ 1 , λ 2 ; k) is twofold. An algebraic study of the system will produce upper bounds for the dimension. In counterpart, the analytic study done in sections 10, 13, 14,15 and 16 has produced linearly independent distributions inside T ri(λ, diag), giving a lower bound for the dimension. A careful inspection shows that the lower and upper estimates coincide. Of course, it could be possible to write explicitly potential solutions produced by the algebraic study and verify that they are indeed solutions of the system (as claimed in [START_REF] Ovsienko | Generalized transvectants Rankin-Cohen brackets[END_REF] for the generic case).

As λ 2 / ∈ {-1, -2, . . . , -k}, the coefficient of the unknown c r,t+1 is never 0, and hence the coefficient c r,t+1 can be computed from c r,t and c r-1,t . Hence all unknowns can be computed from c k,0 , so that dim Sol (λ 1 , λ 2 ; k) ≤ 1.

We may now assume that λ 1 , λ 2 ∈ {-ρ, -ρ -1, . . . , -ρ -(k -1)} ∪ {-1, -2, . . . , -k}. Notice that if n -1 is odd (hence ρ / ∈ N), the two sets {-ρ, -ρ -1, . . . , -ρ -(k -1)} and {-1, -2, . . . , -k} are disjoint, making in this case the study somewhat easier. When n -1 is even, then ρ is an integer and

The general strategy to study the system was already used in the proof of Lemma A1. First study equations E

(1) r,0 which involve only the unknowns c r,0 , then pass to the determination of the unknowns c r,1 , and so on. 62 Lemma A2. Let λ 1 = -k 1 for some k 1 ∈ {1, 2, . . . , k -1} and λ 2 = -ρ -l 2 for some l 2 ∈ {0, 1, . . . , k -1}, but λ 2 / ∈ {-1, -2, . . . , -k}.

Proof. Equation E

(1)

Assume that k 1 + l 2 < k. (65) implies c k 1 -1,0 = 0 and (66) implies c k-l 2 = 0. Repeated use of E

(1) r,0 for r = k 1 -1, k -l 2 -1 leads to the following results

0 can be chosen as principal unknown and the remaining unknowns c r,0 , k 1 < r < k -l 2 can be expressed in terms of c k 1 ,0 . Next use the same method as in Lemma 1 to prove that all c r,t can be expressed in terms of c k 1 ,0 . This gives dim Sol(λ 1 , λ 2 , k ≤ 1 and i) follows.

Assume now that k 1 + l 2 ≥ k. In this case, k -l 2 -1 < k 1 , and choose c k-l 2 -1,0 and c k 1 ,0 as principal unknowns. For k -l 2 ≤ r ≤ k 1 -1 (this interval is empty in case k 1 + l 2 = k) c r,0 = 0. For 0 ≤ r ≤ k -l 2 -1, c r,0 can be expressed in terms of c k-l 2 -1 , whereas for k 1 < k ≤ r, c r,0 can be expressed in terms of c k 1 ,0 . Hence all c r,t can be expressed in terms of the two chosen principal unknowns, and so dim Sol (λ 1 , λ 2 ; k) ≤ 2.

Proof.

In case i), the assumptions imply that λ

, . . . , -k}. Use the symmetry principle and Lemma 1 to conclude.

In case of ii), assume first that λ 1 / ∈ {-ρ, -ρ -1, . . . , -ρ -(k -1)}. The same considerations as in the beginning of the proof of Lemma 2 show that Hence

Consider first the equation E

r,0 , which reads

The first coefficient vanishes for r = k 1 -1 and the second vanishes for

Choose c 0,0 as first principal unknown. Then use E

r-1,0 to compute c r,0 in terms of c 0,0 up to r = k + ρ -1 -k 2 . The unknowns c r,0 have to be 0 for k + ρ -k 2 ≤ r ≤ k 1 -1 (if any). Now choose c k,0 (second principal unknown). All c r,0 for r > k 1 are determined by the equations E (1) r,0 and can be expressed in terms of c k,0 .

Next consider the equations E

(2) 0,t . For t ≤ k + ρ -1 -k 1 , the unknowns c 0,t can be expressed in terms of c 0,0 , for k + ρ -k 1 ≤ t ≤ k 2 (if any) c 0,t has to be 0. For t > k 2 , c t,0 can be expressed in terms of c 0,r .

Let now 1 ≤ t ≤ k 2 -1, let r + t ≤ k, and consider the equation E

r,t-1 . Then the coefficient of the unknown c r,t is equal to 2(k-r-t+1)(t-k 2 ) = 0. Hence, if c r,t-1 and c r-1,t-1 are already computed, c r,t can be computed. As all c r,0 , 0 ≤ r ≤ k have been expressed in terms of c r,0 and c 0,0 , c r,t can be also expressed in terms of c k,0 and c 0,0 . The statement follows.

Lemmas A1 up to A5 give an upper estimate of the dimension of the space of solutions. It remains to check that in each case, this estimate matches the number of independant λ-invariant distributions supported on the diagonal which were constructed in the previous sections. Eventually, the dimension of Sol (λ 1 , λ 2 ; k) is given by the following table.