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TWO LINNIK-TYPE PROBLEMS
FOR AUTOMORPHIC L-FUNCTIONS

Jianya Liu, Yan Qu & Jie Wu

Abstract

Let m > 2 be an integer, and π an irreducible unitary cuspidal representation for GLm(AQ),

whose attached automorphic L-function is denoted by L(s, π). Let {λπ(n)}∞n=1 be the sequence

of coefficients in the Dirichlet series expression of L(s, π) in the half-plane <s > 1. It is proved

in this paper that, if π is such that the sequence {λπ(n)}∞n=1 is real, then the first sign change

in the sequence {λπ(n)}∞n=1 occurs at some n � Q1+ε
π , where Qπ is the conductor of π, and

the implied constant depends only on m and ε. This improves the previous bound with the

above exponent 1 + ε replaced by m/2 + ε. A result of the same quality is also established for

{Λ(n)aπ(n)}∞n=1, the sequence of coefficients in the Dirichlet series expression of −L
′

L
(s, π) in

the half-plane <s > 1.
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Keywords: Automorphic representation, automorphic L-function, Linnik-type problem,

sign change.

1. Introduction

Let π be a cuspidal automorphic representations of GLm(AQ). We can attach to any such π

an automorphic L-function L(s, π), which is defined by an Euler product, and for σ = <s > 1,

it can be represented by an absolutely convergent Dirichlet series

L(s, π) =

∞∑
n=1

λπ(n)

ns
· (1.1)

The sequence {λπ(n)}∞n=1 consists of complex numbers, which we always normalize so that

λπ(1) = 1. It may happen that λπ(n) is real for all n > 1; for example, it is the case when π is

a self-contragredient representation for GLm(AQ) with trivial central character.

The purpose of this note is to continue the study in [4] of Linnik-type problems for automorphic

L-functions L(s, π). The reader is referred to [4] for general philosophy, history, and results in

this direction.
1
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The first Linnik-type problem we are going to study is, in the case λπ(n) is real for all n > 1,

to find the first n such that λπ(n) < 0. Our result is as follows.

Theorem 1.1. Let m > 2 be an inetger and let π be an irreducible unitary cuspidal represen-

tation for GLm(AQ). If λπ(n) is real for all n > 1, then there is some n satisfying

n�m,ε Q
1+ε
π (1.2)

such that λπ(n) < 0. The constant implied in (1.2) depends only on m and ε. In particular,

the result is true for any self-contragredient irreducible unitary cuspidal representation π for

GLm(AQ) with trivial central character.

The second Linnik-type problem considered in this note concerns sign changes in the sequence

{Λ(n)aπ(n)}∞n=1, which appears naturally in the Dirichlet series expression of the logarithmic

derivative of L(s, π) in the half-plane σ > 1:

d

ds
logL(s, π) = −

∞∑
n=1

Λ(n)aπ(n)

ns
· (1.3)

Here Λ(n) is the von Mangoldt function, and {Λ(n)aπ(n)}∞n=1 is a sequence of complex numbers.

The following is a Linnik-type theorem for this sequence.

Theorem 1.2. Let m > 2 be an integer and let π be an irreducible unitary cuspidal represen-

tation for GLm(AQ). If Λ(n)aπ(n) is real for all n > 1, then there is some n satisfying

n�m,ε Q
1+ε
π (1.4)

such that Λ(n)aπ(n) < 0. The constant implied in (1.4) depends only on m and ε. In particular,

the result is true for any self-contragredient irreducible unitary cuspidal representation π for

GLm(AQ) with trivial central character.

Theorems 1.1 and 1.2 improve significantly the corresponding results in [4], where the expo-

nents 1 + ε in (1.2) and (1.4) were replaced by the weaker exponents m/2 + ε. Note that our

present exponents in (1.2) and (1.4) are independent of the dimension m of GLm(AQ). New

ideas leading to these improvements will be explained before Lemma 3.1 and before Lemma 3.3.

2. Automorphic L-functions

Let π be an irreducible unitary cuspidal representation π = ⊗πp of GLm(AQ). To every prime

p at which πp is unramified, there is an associated set of m nonzero complex Satake parameters
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{απ(p, j)}mj=1, out of which one may define local L-functions

L(s, πp) =
m∏
j=1

(
1− απ(p, j)

ps

)−1
. (2.1)

At p where πp is ramified, the local L-function is defined in terms of the Langlands parameters

of πp. It is possible to write the local factors at ramified primes in the form of (2.1) with the

convention that some of the π(p, j)’s may be zero. Here it is appropriate to point out that the

coefficients {λπ(n)}∞n=1 and {aπ(pk)}∞k=1 in (1.1) and (1.3) are actually defined, respectively, by

λπ(n) =
∏
pν‖n

{ ∑
ν1+···+νm=ν

απ(p, 1)ν1 · · ·απ(p,m)νm
}
, (2.2)

and

aπ(pk) =
m∑
j=1

απ(p, j)k. (2.3)

At the archimedean place∞, a set of m complex Langlands parameters {µπ(j)}mj=1 is associated

to π∞. The local factor at ∞ is defined to be

L(s, π∞) = π−
ms
2

m∏
j=1

Γ

(
s+ µπ(j)

2

)
. (2.4)

For the parameters {απ(p, j)}mj=1 and {µπ(j)}mj=1, trivial bounds state that

|απ(p, j)| 6 √p, |<µπ(j)| 6 1

2
·

The finite-part L-function L(s, π) is defined by products of local factors

L(s, π) =
∏
p<∞

L(s, πp), (2.5)

and the complete L-function Φ(s, π) is defined by

Φ(s, π) = L(s, π∞)L(s, π). (2.6)

This complete L-function extends to an entire function on the whole complex plane via its

functional equation

Φ(s, π) = επN
1
2
−s

π Φ(1− s, π̃) (2.7)
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where π̃ is the contragredient of π, επ a complex number of modulus 1, and Nπ a positive integer

called the arithmetic conductor of π. Finally Φ(s, π) is of order one and bounded in the vertical

strips. The reader is referred to e.g. Cogdell [1] for proofs of these properties.

The functional equation (2.7) can be re-written as

L(s, π) = επN
1
2
−s

π G(s)L(1− s, π̃), (2.8)

where

G(s) =
L(1− s, π̃∞)

L(s, π∞)
· (2.9)

The following lemma gives an estimate for G(s) on the vertical line σ = −H, avoiding the poles

of the nominator of G(s). Its proof is a simple application of Stirling’s for the Γ-function, so we

omit the details.

Lemma 2.1. For each positive integer N , there is an H ∈ [N,N + 1], such that on the line

σ = −H we have

G(−H + it)�H,m (1 + |t|)m( 1
2
+H)

m∏
j=1

(1 + |µπ(j)|)
1
2
+H . (2.10)

Following Iwaniec-Sarnak [3], we define the analytic conductor of L(s, π) as

Qπ(t) = Nπ

m∏
j=1

(1 + |it+ µπ(j)|). (2.11)

Setting t = 0 in the above definitions, we write

Qπ = Qπ(0) (2.12)

which is called the conductor of π.

3. Preparations for Theorem 1.1

The purpose of this section is to establish the preliminaries required by Theorems 1.1. Suppose

that

λπ(n) > 0 for all n 6 x. (3.1)

We start with the sum

Sπ(x) =
∑
n

λπ(n)w

(
n

x

)
, (3.2)
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where w(x) is a non-negative real valued function of C∞c with compact support in [0, 1]. In this

note we specify

w(x) :=

{
exp

(
− x−

1
4m

)
exp

{
− (1− x)−

1
4m

}
if x ∈ (0, 1),

0 otherwise.
(3.3)

We have good reasons to choose this specific weight function; the reader will see, in the discussion

after the proof of Theorem 1.1 in §4, that the better-looking function{
exp(−x−1) exp{−(1− x)−1} if x ∈ (0, 1)

0 otherwise
(3.4)

does not do the job.

Theorem 1.1 will follow from upper and lower bound estimates for Sπ(x). Our present strategy

of establishing upper and lower bound estimates for Sπ(x) is different from that in [4]. In

getting our new upper bound, we apply Landau’s method instead of the the direct application

of convexity bound of L(s, π) as in [4], and this results in extra savings. Our new upper bound

for Sπ(x) is as follows.

Lemma 3.1. For each positive integer N , there is an H ∈ [N,N + 1], such that

Sπ(x)�H,m x−HQ
1
2
+H

π , (3.5)

where the implied constant depends on H and m.

Proof. We note that, for any positive integer k, the derivative w(k)(x) has exponential decay as

x→ 0+ or 1−. Consequently, the Mellin transform

W (s) =

∫ ∞
0

w(x)xs−1dx

is an analytic function of s. By repeated partial integration, we have

|W (σ + it)| �A,σ,m
1

(1 + |t|)A
(3.6)

for arbitrary positive constant A, and in particular for σ 6 2. Now we apply Mellin inversion,

to get

w(x) =
1

2πi

∫
(2)
W (s)x−sds,



6

where (c) means the vertical line σ = c. Inserting this back to (3.2), and then using Dirichlet

series expansion (1.1), we have

Sπ(x) =
1

2πi

∑
n

λπ(n)

∫
(2)
W (s)

(n
x

)−s
ds

=
1

2πi

∫
(2)
xsW (s)L(s, π)ds,

where the interchange of summation and integral is guaranteed by the absolute convergence of

(1.1) on the line σ = 2. A pre-convexity bound like

L(1/2 + it, π)� Qπ(t)B, (3.7)

where B > 0 is some constant, can be obtained by standard analytic method via the functional

equation (2.7). Actually it has been proved by Harcos [2] that any constant B > 1
4 is acceptable

in (3.7). It follows that

L(σ + it, π)�ε Qπ(t)µ(σ)+ε (3.8)

with

µ(σ) =

{
(1− σ)/2 if 0 6 σ 6 1,

1− σ/2 if σ 6 0.

Since both W (s) and L(s, π) are entire, we may apply (3.6) and (3.8) to shift the contour above

to the vertical line σ = −H, getting

Sπ(x) =
1

2πi

∫
(−H)

xsW (s)L(s, π)ds, (3.9)

where H ∈ [N,N + 1] is a real number decided by Lemma 2.1.

Now we apply a classical idea of Landau to insert the functional equation (2.8) into (3.9),

getting

Sπ(x) =
1

2πi

∫
(−H)

xsW (s)επN
1
2
−s

π G(s)L(1− s, π̃)ds

=
1

2πi

∫
(−H)

xsW (s)επN
1
2
−s

π G(s)

( ∞∑
n=1

λπ̃(n)

n1−s

)
ds

=
1

2πi

∞∑
n=1

λπ(n)

n1+H

∫
(−H)

xsW (s)επN
1
2
−s

π G(s)ns+Hds.

Here the interchange of summation and integral is guaranteed by the absolute convergence of

the Dirichlet series as well as the rapid decay of W (s) in (3.6). Using these facts again, and
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inserting (2.10) into the last integral, we get

Sπ(x) �H,m

∫
(−H)

∣∣∣∣xsW (s)επN
1
2
−s

π G(s)ds

∣∣∣∣
�H,m x−HN

1
2
+H

π

m∏
j=1

(1 + |µπ(j)|)
1
2
+H

= x−HQ
1
2
+H

π .

This proved Lemma 3.1. �

To get a suitable lower bound for Sπ(x), we will need the following result, which is Lemma 5.3

in [4].

Lemma 3.2. Let m > 2 be an integer and let π be an irreducible unitary cuspidal representation

of GLm(AQ). For any prime p such that πp is unramified, we have

|λπ(pm)|+ |λπ(pm−1)|+ · · ·+ |λπ(p)| > 1

m
·

In [4], the above lemma was applied to establish the lower bound∑
n6x

λπ(n) >
∑
n6x

(n,Nπ)=1

λπ(n)

>
∑

p6x1/m

p-Nπ

{λπ(pm) + · · ·+ λπ(p)}

�m

∑
p6x1/m

p-Nπ

1�m
x1/m

log x
− logNπ, (3.10)

which is enough to derive the main theorem there. However, (3.10) does not imply a useful

lower for Sπ(x), since the sum Sπ(x) actually counts the the contribution essentially from n ∈
[ρx, (1−ρ)x] for some small ρ > 0, which follows from the fact that our weight function w(x) has

exponential decay when x→ 0+ or 1−. To get around this difficulty, we must find at least one

integer n0, which is close to neither 0 or 1, such that λπ(n0) relatively large. This is achieved in

the following lemma.

Lemma 3.3. (i) There is an integer n0 with canonical decomposition

n0 = pν00 p
ν1
1 · · · p

νr
r , (3.11)
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where pj’s are distinct primes not dividing Nπ and νj’s are positive integers not exceeding m

such that

λπ(p
νj
j ) >

1

m2
for all j = 0, 1, . . . , r. (3.12)

In addition p0 is the smallest prime not dividing Nπ.

(ii) The above n0 falls in the interval [ρx, (1− ρ)x], where

ρ =
1

pm0 + 1
· (3.13)

Proof. Our proof is of combinatorial nature. We begin by applying the pigeonhole principle to

Lemma 3.2 to see that, for every prime p - Nπ, there exists a positive integer ν 6 m depending

on both p and π, such that

λπ(pν) >
1

m2
· (3.14)

A prime power pν is called good with respect to p, if p - Nπ and ν is the smallest positive integer

such that (3.14) holds. An immediate consequence of the definition is that two good prime

powers pν11 and pν22 are different if any only if p1 6= p2.

Let 0 < ρ < 1 be a parameter, not yet specified. Take the largest good prime power < ρx,

say pν11 , and form the interval [
ρx

pν11
,
(1− ρ)x

pν11

]
.

Then take the largest good prime power < ρx/pν11 , say pν22 , and form the second interval[
ρx

pν11 p
ν2
2

,
(1− ρ)x

pν11 p
ν2
2

]
.

We repeat the process until there is an interval[
ρx

pν11 p
ν2
2 · · · p

νr
r
,

(1− ρ)x

pν11 p
ν2
2 · · · p

νr
r

]
(3.15)

with all these good prime powers satisfying

p
νj
j <

ρx

pν11 p
ν2
2 · · · p

νj−1

j−1
for all j = 1, . . . , r, (3.16)
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such that there is no good prime power smaller than ρx/(pν11 p
ν2
2 · · · pνrr ). In particular, for the

good prime power pν00 where p0 is the smallest prime not dividing Nπ, we must have

pν00 >
ρx

pν11 p
ν2
2 · · · p

νr
r
· (3.17)

We want to show that pν00 lies in the interval (3.15) for some suitably chosen ρ. To this end,

specify ρ as in (3.13), so that pν00 ρ 6 1− ρ. Also, (3.16) with j = r states that

1 <
ρx

pν11 p
ν2
2 · · · p

νr
r
·

and hence

pν00 < pν00
ρx

pν11 p
ν2
2 · · · p

νr
r
6

(1− ρ)x

pν11 p
ν2
2 · · · p

νr
r
· (3.18)

It follows from (3.17) and (3.18) that pν00 indeed lies in the interval (3.15) with ρ specified as in

(3.13).

Finally we write n0 = pν00 p
ν1
1 p

ν2
2 · · · pνrr , and recall that all the components pν00 , . . . , p

νr
r above

are good prime powers which are mutually different. It follows by construction that all the

primes p0, . . . , pr are different and satisfy pj - Nπ. Thus we have (3.11) and (3.12). Since pν00
lies in the interval (3.15), we have n0 ∈ [ρx, (1− ρ)x]. This proves the lemma. �

Lemma 3.4. We have the lower bound

Sπ(x)�m x−(2/ log 2) logm exp(−c0
√

logNπ), (3.19)

where c0 > 0 is an absolute constant and the implied constant depends on m.

Proof. We start from the trivial observation that

Sπ(x) > λπ(n0)w

(
n0
x

)
, (3.20)

where n0 is decided by Lemma 3.3. The assertion of the current lemma will follow from lower

bounds for λπ(n0) and for w(n0/x).

To get a lower bounds for λπ(n0), we recall that

λπ(n1n2) = λπ(n1)λπ(n2) for (n1, n2) = 1, (n1n2, Nπ) = 1.

This together with (3.11) and (3.12) implies that

λπ(n0) = λπ(pν00 p
ν1
1 · · · p

νr
r ) = λπ(pν00 )λπ(pν11 ) · · ·λπ(pνrr ) > m−2(r+1).

An elementary argument gives

r + 1 6
log n0
log 2

6
log x

log 2
,
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and consequently

λπ(n0) > m
− 2 log x

log 2 > x−3 logm. (3.21)

This is the desired lower bound for λπ(n0).

To get a useful lower bound for w(n0/x), we must analyze the weight function w(x) carefully.

It is easy to check that, for x ∈ (0, 1),

w′(x) =
1

4m
w(x)

{
x−

1
4m
−1 − (1− x)−

1
4m
−1},

and consequently w(x) is increasing and decreasing, respectively, in the intervals [0, 12 ] and [12 , 1].

Lemma 3.3 asserts that n0/x ∈ [ρ, 1− ρ], and hence

w

(
n0
x

)
> w(ρ) = exp

(
− ρ−

1
4m
)

exp
{
− (1− ρ)−

1
4m
}
. (3.22)

From (3.13) we infer ρ 6 1
5 , and hence

exp
{
− (1− ρ)

1
4m
}
> exp

{
− (4/5)

1
4m
}
.

To evaluate the other exponential factor in (3.22), we apply (3.13) again to deduce that

ρ > (2p0)
−m, and consequently

exp
(
− ρ−

1
4m
)
> exp

{
− (2p0)

1
4
}
.

Now we need to know the largest possible value of p0, which is by definition the smallest prime

not dividing Nπ. The largest possible value of p0 occurs when Nπ = q1 · · · qs is the product of

the first s primes, and in this case p0 = qs+1, the (s+ 1)-th prime number. Since

logNπ =
∑
p6qs

log p ∼ qs
log qs

,

we must have qs 6 c1(logNπ) log logNπ 6 c1(logNπ)2 with an absolute constant c1 > 0. It

follows that

p0 = qs+1 6 2qs 6 2c1(logNπ)2,

which is the largest possible value of p0. It follows that

exp
(
− ρ−

1
4m
)
> exp

{
− (2p0)

1
4
}
> exp

{
− (4c1)

1
4

√
logNπ

}
,

which is the desired lower bound for the first exponential factor in (3.22).

Inserting everything back to (3.22), we get

w

(
n0
x

)
�m exp

{
− (4c1)

1
4

√
logNπ

}
,
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which in combination with (3.20) and (3.21) gives the assertion of the lemma with c0 = (4c1)
1
4 .

�

4. Solutions to Linnik-type problems

With the preparations in §3, we can now establish Theorem 1.1.

Proof of Theorem 1.1. It follows from Lemmas 3.1 and 3.4 that

x−3 logm exp(−c0
√

logNπ)�m Sπ(x)�H,m x−HQ
1
2
+H

π .

One therefore has

x < c2 ·QEπ exp(c0
√

logNπ) with E =
H + 1/2

H − 3 logm
,

where c2 is a constant depending on H and m. Taking H sufficiently large, this becomes

x < c3 · Q1+ε
π , and now the constant c3 depends on ε and m. The assertion of Theorem 1.1 is

proved. �

Remark. Had we chosen the better-looking weight function in (3.4), we would have the same

Lemma 3.1, but have Lemma 3.4 replaced by

Sπ(x)�m x−3 logm exp{−c4(logNπ log logNπ)m}

for some constant c4 > 0. This lower bound is too weak for the above proof of Theorem 1.1 to

work.

Proof of Thereom 1.2. Theorem 1.2 follows from Theorem 1.1 in the same way as done in [4],

and details are therefore omitted. �
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