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. We also establish Ω-estimates for 2 6 and affirm a conjecture of Ivić [7, (7.23)].

Introduction

The set of primitive holomorphic forms of even integral weight k 2 for the full modular group SL(2, Z), denoted by H * k , consists of the common eigenfunctions f of all Hecke operators T n , whose Fourier series expansions at the cusp ∞ are of form

(1.1) f (z) = ∞ n=1 λ f (n)n (k-1)
/2 e 2πinz ( mz > 0), and the coefficients λ f (n) are (Hecke) eigenvalues of T n . As a function of n, λ f (n) is real-valued and multiplicative. Furthermore, it was shown by Deligne that for every prime p there is a (complex) number α f (p) such that

(1.2) |α f (p)| = 1 and λ f (p ν ) = α f (p) ν + α f (p) ν-2 + • • • + α f (p) -ν
for all integers ν 1. This follows the Deligne inequality

(1.3) |λ f (n)| d(n)
for all integers n 1, where d(n) is the divisor function.

In this paper we consider, for f ∈ H * k , the asymptotic comportment of the th power sum S (f ; x) of the Hecke eigenvalues, defined as

S (f ; x) := n x λ f (n)
where ∈ N and x 1.

1.1. O-results on S (f ; x). This problem received attention of many authors (see [START_REF] Wu | Power sums of Hecke eigenvalues and application[END_REF] for a detailed historical description). For = 1, the best result to date is (given by [START_REF] Wu | Power sums of Hecke eigenvalues and application[END_REF]Theorem 3]):

S 1 (f ; x) f x 1/3 (log x) ρ + 1/2
where ρ + 1/2 := 102+7 The case = 2 is the well known result obtained independently by Rankin [START_REF] Rankin | Contributions to the theory of Ramanujan's function τ (n) and similar arithmetical functions. I. The zeros of the function ∞ n=1 τ (n)/n s on the line es = 13/2. II. The order of the Fourier coefficients of integral modular forms[END_REF] and Selberg [START_REF] Selberg | Bemerkungen ber eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist (German)[END_REF]. Their powerful method, now entitled the Rankin-Selberg method, gives

S 2 (f ; x) = C f x + O f (x 3/5 ),
where C f is a positive constant depending on f . † A key point of their method is the analytic properties of the Rankin-Selberg L-function

L(s, f × f ) := ζ(2s) n 1 λ f (n) 2 n -s .
As usual, ζ(s) denotes the Riemann zeta-function.

The study of S (f ; x) for other requires akin auxiliary tools. Associated to each f ∈ H * k , we have the symmetric mth power L-function

(m ∈ N) defined by (1.4) L(s, sym m f ) := p 0 j m 1 -α f (p) m-2j p -s -1
for σ > 1, where and in the sequel we write s = σ + iτ . With (1.2), one has

(1.5) L(s, f × f ) = ζ(s)L(s, sym 2 f ) for es > 1. Using Moreno & Shahidi's work [19] on L(s, sym m f ) for m = 2, 3, 4,
Fomenko [1, Theorems 1 and 4] established the following estimates:

S 3 (f ; x) f,ε x 5/6+ε , S 4 (f ; x) = D f x log x + F f x + O f,ε (x 9/10+ε ),
where D f and F f are constants depending on f and ε is an arbitrarily small positive number. Recently Lü improved Fomenko's results and investigated the higher moments:

(1.6) S (f ; x) = xP (log x) + O f,ε x θ +ε (3 8),
where P (t) ≡ 0 for = 3, 5, 7, P 4 (t), P 6 (t), P 8 (t) are polynomials of degree 1, 4, 13 respectively and

(1.7) 

θ 3 = 3 4 = 0.
F (s) := n 1 λ f (n) n -s .
It is known that F (s) factorizes into (1.9) F (s) = G (s)H (s) † The exponent 3/5 in the error term remains the best since its birth.

where G (s) is product of the Riemann ζ-function and L(s, sym m f ) with m , and H (s) is a Dirichlet series absolutely convergent in e s > 1 2 (see [START_REF] Wu | Power sums of Hecke eigenvalues and application[END_REF]Lemma 2.4], for example). Since the automorphy of L(s, sym m f ) is available only when m 4, the cases 5 8 cannot be treated directly. The basic idea of Lü to overcome this difficulty is the use of the Rankin-Selberg L-functions attached to sym m f and sym n f ,

L(s, sym m f × sym n f ) := p 0 j m 0 n 1 -α f (p) m-2j α f (p) n-2 p -s -1
for es > 1. See [15, (3.1)], [16, Lemmas 2.1 and 2.2], also [START_REF] Lau | Sums of Fourier coefficients of cusp forms[END_REF]Lemma 7.2]. When 8, the theory for general Rankin-Selberg L-functions guarantees that G (s) is a general L-function in the sense of Perelli [START_REF] Perelli | General L-functions[END_REF]. The values of θ in (1.7) is obtained with the (individual or averaged) convexity bounds for general L-functions.

The main idea for our improvement is an alternative expression of G (s) in Lemma 2.1 below, different from [START_REF] Lü | Average behavior of Fourier coefficients of cusp forms[END_REF][START_REF] Lü | The sixth and eighth moments of Fourier coefficients of cusp forms[END_REF][START_REF] Lü | On higher moments of Fourier coefficients of holomorphic cusp forms[END_REF][START_REF] Lau | Sums of Fourier coefficients of cusp forms[END_REF]; this expression decomposes G (s) into a product of L-functions, general and (more importantly) of lower degree ( 3). Hence we can take advantage of their (individual or averaged) subconvexity bounds (see Lemmas 2.3, 2.4 and 2.5 below). Our sharpening relies on these delicate results, and the method also leads to improve [15, Theorems 1.2 and 1.3] and [17, Theorems 1.3, 1.4 and 1.5].

Ω-results on S (f ; x).

To realize the quality of O-results on S (f ; x) one may evaluate Ω-estimates. The case of = 1 was considered by various authors. Currently the best result is due to Hafner & Ivić [4, Theorem 2]:

S 1 (f ; x) = Ω ± x 1/4 exp D(log log x) 1/4 (log log log x) 3/4 .
For even , we denote by ∆ (f ; x) the error term in (1.6). Ivić [7, (7.23)] conjectured

(1.10) ∆ 2 (f ; x) = Ω(x 3/8 ).
Our second aim is to establish some Ω-results, which in particular affirms (1.10).

Theorem 2. Under the previous notation, we have

S (f ; x) = Ω x (1-2 -)/2 ( = 3, 5), (1.11) ∆ (f ; x) = Ω x (1-2 -)/2 ( = 2, 4, 6). (1.12)
Our principal tool in the proof is Kühleitner & Nowak's general Omega theorem for a class of arithmetic functions [START_REF] Kühleitner | An omega theorem for a class of arithmetic functions[END_REF]Theorem 2]. To implement it, we need a more precise decomposition of the Dirichlet series H (s) in (1.9) (see Lemma 4.1). For the sake of unconditional results, we are restricted to 6 because the automorphy of L(s, sym m f ) is merely available for m = 1, 2, 3, 4.

Preliminary lemmas

This section is devoted to establish and recall some preliminary results for the proof of Theorem 1. 

Decomposition of F (s). As indicated in the introduction

G 3 (s) = L(s, f ) 2 L(s, sym 3 f ), G 4 (s) = ζ(s) 2 L(s, sym 2 f ) 3 L(s, sym 4 f ), G 5 (s) = L(s, f ) 5 L(s, sym 3 f ) 3 L(s, sym 4 f ×f ), G 6 (s) = ζ(s) 5 L(s, sym 2 f ) 8 L(s, sym 4 f ) 4 L(s, sym 4 f ×sym 2 f ), G 7 (s) = L(s, f ) 13 L(s, sym 3 f ) 8 L(s, sym 4 f ×f ) 5 L(s, sym 4 f ×sym 3 f ), G 8 (s) = ζ(s) 13 L(s, sym 2 f ) 21 L(s, sym 4 f ) 13 L(s, sym 4 f ×sym 2 f ) 6 × L(s, sym 4 f ×sym 4 f ),
and the function H (s) admits a Dirichlet series convergent absolutely in es > 1 2 and H (s) = 0 for es = 1.

Proof. Let T n (x) (resp. T m × T n (x)) be the polynomial which gives the trace of the nth symmetric power of an element (resp. the trace of the Rankin-Selberg convolution of the mth symmetric power and the nth symmetric power) of SL 2 (C) whose trace is x. 

Then T m × T n (x) = T m (x)T n (x).
a ,j := ( -j)/2 -( -j)/2-1 if j ≡ (mod 2), 0 otherwise,
where n i is the binomial coefficient with the convention that n i = 0 if i < 0. Then

(2.2) x = m-1 j=0 (a ,j -a ,2m-j )T j (x) + m j=0 (a ,m+j -a ,m+j+2 )T m (x)T j (x)
for = 0, 1, . . . , 2m.

Proof. Let U n (x) be the nth Chebyshev polynomial of the second kind. Then

(2.3) U n (cos θ) = sin((n + 1)θ) sin θ , T n (x) = U n (x/2).
It is well known that the U n are orthogonal with respect to the inner product:

(2.4) U m , U n := 2 π π 0 U m (cos θ)U n (cos θ)(sin θ) 2 dθ = δ m,n ,
where δ m,n is the Kronecker symbol.

Firstly we establish the following formulas: for 0 i, j m,

U m U i , U j -U 2m-j = 0, (2.5) U m U i , U m+j -U m+j+2 = δ i,j . (2.6)
We begin with a simple trigonometric identity (for 0 i m)

(2.7) U m (cos θ)U i (cos θ) = i d=0 U m+i-2d (cos θ),
which can be verified as follows,

i d=0 sin((m + i -2d + 1)θ) sin θ = cos((m -i)θ) -cos((m + i + 2)θ) 2
= sin((m + 1)θ) sin((i + 1)θ).

Combining this identity with the orthogonality relation (2.4), we deduce that (2.8)

U m U i , U j -U 2m-j = i d=0 U m+i-2d , U j -U 2m-j = i d=0 U m+i-2d , U j - i d=0 U m+i-2d , U 2m-j =: A -B.
Since m + i -2d = j ⇔ m + i -2(i -d) = 2m -j, A and B takes the same value (which equals 0 or 1) and (2.5) follows from (2.8) immediately.

Similarly, for 0 i, j m, we have

U m U i , U m+j -U m+j+2 = i d=0 U m+i-2d , U m+j - i d=0 U m+i-2d , U m+j+2 .
Then it is trivial to verify (2.6). Now we are ready to prove (2.2). Denote by V 2m (x) the vector space of all real polynomials of degree 2m over R. It is well known that T 0 (x), T 1 (x), . . . , T 2m (x) constitite a base of V 2m (x). In view of the identity

T m (x)T j (x) = T m+j (x) + T m+j-2 (x) + • • • + T m-j (x) (0 j m)
which is equivalent to (2.7), we easily see that T 0 (x), . . . , T m-1 (x), T m (x)T 0 (x), . . . , T m (x)T m (x) constitite a base of V 2m (x). Thus for 0 2m, we can write (2.9)

x = m-1 j=0 a m, (j)T j (x) + m j=0 b m, (j)T m (x)T j (x).
Therefore it remains to show a m, (j) = a ,j -a ,2m-j (0 j m -1), (2.10) b m, (j) = a ,m+j -a ,m+j+2 (0 j m).

(2.11) Clearly (2.9) is equivalent to

(2.12) (2x) = m-1 j=0 a m, (j)U j (x) + m j=0 b m, (j)U m (x)U j (x).
For 0 2m and 0 j 2m + 2, we have

(2x) , U j = 2 π π 0 (2 cos θ) sin((j + 1)θ) sin θ (sin θ) 2 dθ = 2 π π 0 (cos θ) cos(jθ)dθ - 2 π π 0 (cos θ) cos((j + 2)θ)dθ.
In view of the following formula

2 π π 0 (cos θ) cos(jθ)dθ = 2 2πi |z|=1 z + z -1 2 z j-1 dz = d=0 -d 1 2πi |z|=1 z -+j+2d-1 dz = ( -j)/2 if j ≡ (mod 2), 0 otherwise, we obtain 
(2.13) (2x) , U j = a ,j (0 2m, 0 j 2m + 2).

For 0 j m -1, from (2.13), (2.12), (2.4) and (2.5), we infer that

a ,j -a ,2m-j = (2x) , U j -U 2m-j = m-1 i=0 a m, (i) U i , U j -U 2m-j + m i=0 b m, (i) U m U i , U j -U 2m-j = a m, (j).
Similarly for 0 j m, we deduce uniformly for T 1, and

a ,m+j -a ,m+j+2 = m-1 i=0 a m, (i) U i , U m+j -U m+j+2 + m i=0 b m, (i) U m U i , U m+j -U m+j+2 = b m, (
(2.17)

L(σ + iτ, f ) f,ε (|τ | + 1) max{(2/3)(1-σ), 0}+ε
uniformly for 

L(σ + iτ, sym 2 f ) f,ε (|τ | + 1) max{(11/8)(1-σ), 0}+ε
uniformly for 1 2 σ 2 and |τ | 1.

2.3.

Mean values and convexity bound for higher rank L-functions. For our purpose we need an immediate consequence of Perelli's mean value theorem and convexity bound for the general L-function in [START_REF] Perelli | General L-functions[END_REF].

For d := {d 1 , . . . , d J }, m := {m 1 , . . . , m J }, n := {n 1 , . . . , n J } with d j ∈ N, 1 m j 4 and 0 n j m j , define

(2.19) L d m,n (s) := J j=1 L(s, sym m j f × sym n j f ) d j ,
where we take the convention that

       L(s, sym 0 f ) = ζ(s), L(s, sym 1 f ) = L(s, f ), L(s, sym m f × sym 0 f ) = L(s, sym m f ).
The works of Hecke (see [START_REF] Iwaniec | Topics in Classical Automorphic Forms[END_REF]), Gelbart & Jacquet [START_REF] Gelbart | A relation between automorphic representations of GL(2) and GL(3)[END_REF], Kim [START_REF] Kim ; Dinakar Ramakrishnan | Functoriality for the exterior square of GL 4 and symmetric fourth of GL 2 , Appendix 1[END_REF] and Kim & Shahidi [START_REF] Kim | Functorial products for GL 2 ×GL 3 and the symmetric cube for GL 2 . With an appendix by Colin J. Bushnell and Guy Henniart[END_REF][START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF] show that L(s, sym m f ) (1 m 4) is a general L-function, and so are L(s, sym m f × sym n f ) for m, n 4 by [START_REF] Rudnick | Zeros of principal L-functions and random matrix theory[END_REF]. Plainly L d m,n (s) is also a general Lfunction whose parameters α j = 1 2 , β j 0 for all j and

M = N = d 1 (m 1 + 1)(n 1 + 1) + • • • + d J (m J + 1)(n J + 1)
with the notation as in [START_REF] Perelli | General L-functions[END_REF]. Thus Lemma 2.6. Let f ∈ H * k , d j ∈ N, 1 m j 4 and 0 n j m j for 1 j J. Let L d m,n (s) be defined as in (2.19). Then for any ε > 0, we have

A := 1 2 {d 1 (m 1 + 1)(n 1 + 1) + • • • + d J (m J + 1)(n J + 1)}, B 0 
(2.20) 2T T L d m,n (σ + iτ ) 2 dτ f,ε,d,m,n T 2A(d,m,n)(1-σ)+ε
uniformly for 1 2 σ 1 and T 1; and

(2.21)

L d m,n (σ + iτ ) f,ε,d,m,n (|τ | + 1) max{A(d,m,n)(1-σ), 0}+ε
uniformly for 1 2 σ 1 + ε and |τ | 1.

Proof of Theorem 1

By the Perron formula [25, Corollary II.2.1] with (1.3), we can write

n x λ f (n) = 1 2πi 1+ε+iT 1+ε-iT F (s) x s s ds + O f,ε x 1+ε T uniformly for 2 T
x, where the implied constant depends only on f and ε. In view of Lemma 2.1, the point s = 1 is the only possible pole of the integrand in the rectangle κ σ 1 + ε and |τ | T for any κ ∈ [ 1 2 + ε, 1). The residue at s = 1 is equal to xP (log x) for = 4, 6, 8 and P ≡ 0 if = 3, 5, 7. Thus,

n x λ f (n) = xP (log x) - 1 2πi L F (s) x s s ds + O f,ε x 1+ε T ,
where L is the contour joining 1 + ε + iT , κ + iT , κ -iT , 1 + ε -iT with straight lines. The absolute convergence of H j (s) for es 1 2 + ε yields H (s) f,ε 1 in the same half plane. Hence the preceding formula can be written as

(3.1) n x λ f (n) = xP (log x) + O f,ε x 1+ε T + R h + R v ,
where

R h := 1 T 1+ε κ |G (σ + iT )|x σ dσ, R v := x κ T 1 |G (κ + iτ )| dτ τ f,ε x κ+ε sup 1 T 1 T 1 T 1 2T 1 T 1 G (κ + iτ ) dτ.
Next we shall treat only the case = 3, since the other cases are similar.

According to (2.17) and (2.21), we have

(3.2) R h 3 f,ε 1 T 1+ε κ T {2(2/3)+(4/2)}(1-σ)+ε x σ dσ f,ε T 7/3+ε 1+ε κ x T 10/3 σ dσ f,ε T 7/3+ε log x x T 10/3 1+ε f,ε x 1+ε T provided T x 3/10 .
In order to estimate R v 3 , we take κ = 5 8 and apply the Cauchy-Schwarz inequality. Consequently,

(3.3) R v 3 f x 5/8+ε sup 1 T 1 T I 3,1 (T 1 ) 1/2 I 3,2 (T 1 ) 1/2 T -1 1 ,
where

I 3,1 (T 1 ) := 2T 1 T 1 L( 5 8 + iτ, f ) 4 dτ, I 3,2 (T 1 ) := 2T 1 T 1 L( 5 8 + iτ, sym 3 f ) 2 dτ.
By (2.16) and (2.20), we get

I 3,1 (T 1 ) f,ε T 1+ε 1 and I 3,2 (T 1 ) f,ε T 4(1-5/8)+ε 1
.

Inserting into (3.3), it follows that (3.4) R v 3 f,ε x 5/8+ε T 1/4+ε Combining (3.2) and (3.4) with (3.1) and T = x 3/10 , we obtain the required result.

Proof of Theorem 2

To facilitate our proof, we give a finer decomposition of F (s) in (1.8). Lemma 4.1. For = 2, 3, 4, 5, 6, the Dirichlet series F (s) admits the factorization

(4.1) F (s) = G (s)Ψ (2s)Υ (s)
where G (s) is defined as in Lemma 2.1,

(4.2) Ψ (s) = 1 j [ /2] G 2( -2j) (s) -C( ,2j) × 1 j [( -1)/2] G 2( -1-2j) (s) C( ,2j+1) with (G 0 (s) = ζ(s), G 1 (s) = L(s, f ) and G 2 (s) = ζ(s)L(s, sym 2 f )) C( , d) := d 2 d-1 -1
and Υ (s) is defined by a Dirichlet series that is absolutely convergent in es > 1 3 . Besides, the meromorphic function Ψ (s) has no pole on the line es = 1.

Remarks (i) In view of (1.5), we have Ψ 2 (s) = ζ(s) -1 and Υ 2 (s) ≡ 1.

(ii) The factorization (4.1) holds for all ∈ N (with G (s) being defined as F (s) in [START_REF] Lau | Sums of Fourier coefficients of cusp forms[END_REF]Lemma 7.1]). We confine 6 for unconditional results.

Proof. It suffices to compare the local factors on both sides of (4.1), and check that log F (s) and log(G (s)Ψ (2s)) coincide up to p -2s for suitable exponents C( , d).

Write λ f (p) = 2 cos θ, then λ f (p ν ) = T ν (2 cos θ) = U ν (cos θ). The p-local factors of F (s) and its logarithm log F (s) are respectively

1 + ν 1 U ν (cos θ) p νs and U 1 (cos θ) p s + U 2 (cos θ) -1 2 U 1 (cos θ) 2 p 2s + O 1 p 3s .
Recalling that (2.1) follows from (2.2) and the fact that U 1 (x) = (2x) , the local factor of log G (s) is Hence the order of Ψ (s) at s = 1 (which is negative for a pole) is given by (4.5) with log G 2r (2s) replaced by -g 2r , and is equal to 1, 0, 7, 10, 61 for = 2, 3, 4, 5, 6 respectively. This completes the proof.

We are ready to prove Theorem 2. In light of Lemma 4.1, we write

F (s) = f 1 (s)
1 j /2 g j (2s) h(s)

  35 = -0.118 . . . . When the Sato-Tate conjecture holds, ρ + 1/2 can be replaced by θ 1/2 := 8 3π -1 = -0.151 . . . .

  and H := 1 + e(B/A) -(N -1)/(2A) 1/N > 0. The next lemma follows plainly from [21, Theorem 4] and [18, Proposition 1].

ν 1 U 1 4

 114 (cos(νθ)) ν p -νs . (4.[START_REF] Good | The square mean of Dirichlet series associated with cusp forms[END_REF] Hence, the difference between the local factors of log F (s) and log G (s) equalsU 2 (cos θ) -1 2 U 1 (cos θ) 2 -1 2 U 1 (cos(2θ)) p -2s + O p -3s . (4.4) Observing that U 2 = U 2 1 -1 and U 1 (cos(2θ)) = U 1 (cos θ) 2 -2, the coefficient of p -2s in (4.4) equals d=2 (-1) d (1 -2 d-1 ) d U 1 (cos θ) 2( -d) 2j + 1)U 1 (cos θ) 2( -1-2j) -[ /2] j=1 C( , 2j)U 1 (cos θ) 2( -2j) .In view of (4.3), we can replace the first term in (4.4) by the local factors of(2j + 1) log G 2( -1-2j) (2s) -[ /2] j=1 C( , 2j) log G 2( -2j) (2s) up to O(p -3s). This verifies the factorization of F (s). It remains to evaluate the order of Ψ (s) at s = 1. G 2j (s) has a pole of order g 2j = (2j)!/(j!(j + 1)!) at s = 1, i.e. g 0 = 1, g 2 = 1, g 4 = 2, g 6 = 5, g 8 = 14, and the values of C( , d) (2 d 6) are given in the table:

  , our starting point is a new decomposition of F (s).

	Lemma 2.1. Let f ∈ H * k . Then we have
	(2.1)	F (s) = G (s)H (s)
	for = 3, . . . , 8, where	

Acknowledgement. The authors wish to thank the referee for comments. Lau is supported by GRF (HKU 702308P) from the Research Grants Council of the Hong Kong Special Administrative Region. Lü's work is supported in part by key project of the National Natural Science Foundation of China (Grant No. 11031004), Shandong Province Natural Science Foundation (Grant No. ZR2009AM007), and IIFSDU.

where f 1 (s) = G (s), g j (2s) = G 2( -2j) (2s) C( ,2j) and

The conditions (A)-(E) required in [START_REF] Kühleitner | An omega theorem for a class of arithmetic functions[END_REF]Theorem 2] are verified with the following choice of parameters (in the notation of [START_REF] Kühleitner | An omega theorem for a class of arithmetic functions[END_REF]):

Apparently f 1 (s), g j (s) and h(s) are absolutely convergent Dirichlet series for es > 1:

for any ε > 0 and all n 1, thanking to the Deligne inequality (1.3). Note that b * j (n) is the inverse arithmetic function of b j (n) with respect to Dirichlet convolution. Conditions (A), (B) and (D) in [START_REF] Kühleitner | An omega theorem for a class of arithmetic functions[END_REF] are quite obviously valid, for instance,

for σ = α and |τ | 1, as the degree of G (s) is 2 . The crucial condition (C) concerns the zero density of g j (s). Denote by N L (σ 0 , T ) the number of zeros of a generic L-function L(s) in σ σ 0 and 0 τ T . Condition (C) will hold if N g j (σ, T )

T 1-1/10 when σ = σ (j) * = 2α -10 -. To this end, we invoke [20, Theorem 1]: if L(s) is in the Selberg class and of degree d, then

Each factor L(s) in G 2( -2j) (s) is belonged to Selberg class and has degree d ( -2j + 1) 2 . If 3 d ( -2j + 1) 2 ( -1) 2 , then 2α -10 - 2/3 2/d and so N L (σ, T )

T A+ε for σ = 2α -10 -, where

T 0.9 for σ = 2α-10 -. (This estimate is crude but sufficient.) Condition (C) is hence satisfied. Condition (E) is also valid under our choice of parameters in (4.6).

As Theorems 1 and 2 in [START_REF] Kühleitner | An omega theorem for a class of arithmetic functions[END_REF] are applicable, our proof of Theorem 2 is complete.