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The ODE method for some self-interacting diffusions
on Rd
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Nancy Universite, Institut Elie Cartan Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France. ??

Abstract. The aim of this paper is to study the long-term behavior of a class of self-interacting diffusion processes
on Rd. These are solutions to SDEs with a drift term depending on the actual position of the process and its
normalized occupation measure µt. These processes have so far been studied on compact spaces by Benaïm, Ledoux
and Raimond, using stochastic approximation methods. We extend these methods to Rd, assuming a confinement
potential satisfying some conditions. These hypotheses on the confinement potential are required since in general the
process can be transient, and is thus very difficult to analyze. Finally, we illustrate our study with an example on
R2.

Résumé. Le but de cet article est d’étudier le comportement asymptotique d’une classe de processus en auto-
interaction sur Rd. Ces processus de diffusion s’écrivent comme solution d’E.D.S. dont le terme de dérive dépend
à la fois de la position actuelle du processus et de sa mesure empirique µt. Jusqu’à présent, Benaïm, Ledoux et
Raimond ont mené l’étude de ce type de diffusions sur des espaces compacts, via des méthodes d’approximation
stochastique. Nous étendons ces techniques à Rd, en supposant l’existence d’un potentiel de confinement (vérifiant
certaines conditions). Nous avons besoin de ces hypothèses sur le potentiel de confinement, car, en général, un tel
processus peut être transient. Nous concluons cet article par un exemple sur R2.

Keywords: self-interaction diffusion, reinforced processes, stochastic approximation.

1. Introduction

This paper addresses the long-term behavior of a class of ‘self-interacting diffusion’ processes (Xt, t ≥ 0)
living on Rd. These processes are time-continuous and non-Markov. They are solutions to a kind of diffusion
SDEs, whose drift term depends on the whole past of the path through the occupation measure of the
process. Due to their non-Markovianity, they often exhibit an interesting ergodic behavior.

1.1. Previous results on self-interacting diffusions

Time-continuous self-interacting processes, also named ‘reinforced processes’, have already been studied in
many contexts. Under the name of ‘Brownian polymers’, Durrett & Rogers [?] first introduced them as a
possible mathematical model for the evolution of a growing polymer. They are solutions of SDEs of the form

dXt = dBt + dt
∫ t

0

dsf(Xt −Xs)
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2 A. Kurtzmann

where (Bt; t ≥ 0) is a standard Brownian motion on Rd and f is a given function. As the process (Xt; t ≥ 0)
evolves in an environment changing with its past trajectory, this SDE defines a self-interacting diffusion,
either self-repelling or self-attracting, depending on f .

Another modelisation, with dependence on the normalized occupation measure (µt, t ≥ 0), has been
considered by Benaïm, Ledoux & Raimond [?]. They introduced a process living in a compact smooth
connected Riemannian manifold M without boundary:

dXt =
N∑
i=1

Fi(Xt) ◦ dBit −
∫
M

∇xW (Xt, y)µt(dy)dt, (1.1)

where W is a (smooth) interaction potential, (B1, · · · , BN ) is a standard Brownian motion on RN and the
symbol ◦ stands for the Stratonovich stochastic integration. The family of smooth vector fields (Fi)1≤i≤N

comes from the Hörmander ‘sum of squares’ decomposition of the Laplace-Beltrami operator ∆ =
∑N
i=1 F

2
i .

The normalized occupation (or empirical) measure µt is defined by

µt :=
r

r + t
µ+

1
r + t

∫ t

0

δXsds (1.2)

where µ is an initial probability measure and r is a positive weight. In the compact-space case, they showed
that the asymptotic behavior of µt can be related to the analysis of some deterministic dynamical flow
defined on the space of the Borel probability measures. They went further in this study in [?] and gave
sufficient conditions for the a.s. convergence of the empirical measure. When the interaction is symmetric,
then µt converges a.s. to a local minimum of a nonlinear free energy functional (each local minimum having
a positive probability to be chosen). All these results are summarized in a recent survey of Pemantle [?].

The present paper follows the same lead and extends the results of Benaïm, Ledoux & Raimond [?] in
the non-compact setting. We present all results in the Euclidean space Rd for the sake of simplicity, but
they can be extended to the case of a complete connected Riemannian manifold M without boundary with
no further difficulty than the use of notations and a bit of geometry. One needs in particular to involve
the Ricci curvature in the assumptions and work on the space M\cut(o), where cut(o) is the cut locus of o
(which has zero Lebesgue-measure).

1.2. Statement of the problem

Here we set the main definitions. Consider a confinement potential V : Rd → R+ and an interaction potential
W : Rd × Rd → R+. For any bounded Borel measure µ, we consider the ‘convoled’ function

W ∗ µ : Rd → R, W ∗ µ(x) :=
∫

Rd
W (x, y)µ(dy). (1.3)

Our main object of interest is the self-interacting diffusion solution to
dXt = dBt − (∇V (Xt) +∇W ∗ µt(Xt)) dt
dµt = (δXt − µt) dt

r+t

X0 = x, µ0 = µ
(1.4)

where (Bt) is a d-dimensional Brownian motion. Our goal is to study the long-term behavior of (µt, t ≥ 0).
Let us recall that the main difference with the work [?] is that the state space is Rd and hence is not compact
anymore. However, we are able to extend the results obtained in the compact case: the behavior of µt is
closely related to the behavior of a deterministic flow. We will also give some sufficient conditions on the
interaction potential in order to prove ergodic results for X.

Before stating the theorems proved in this paper, let us briefly describe the main results obtained so
far on self-interacting diffusions in non-compact spaces. They concern the model of Durrett & Rogers,
and can be classified in three categories. First, when f is real, non-negative and compactly supported,
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Some self-interacting diffusions on Rd 3

Cranston & Mountford [?] have solved a (partially proved) conjecture of Durrett & Rogers and shown
that Xt/t converges a.s. Second, the attracting interaction on R (i.e. xf(x) ≤ 0 for all x ∈ R) has been
studied in the constant case by Cranston & Le Jan [?] and its generalization by Raimond [?] for the case
f(x) = −ax/‖x‖, or by Herrmann & Roynette [?] for a local interaction. Under some conditions, it is proved
that Xt converges a.s., whereas for a non-local interaction, it does not in general (but the paths are a.s.
bounded for f(x) = −sign(x)1l|x|≥a). The third category concerns a non-integrable repulsive f on R (i.e.
xf(x) ≥ 0 for all x ∈ R) studied by Mountford & Tarrès [?] and solving a conjecture of Durrett & Rogers.
They have proved that for f(x) = x/(1 + |x|1+β), with 0 < β < 1, there exists a positive c such that with
probability 1/2, the symmetric process t−2/(1+β)Xt converges to c.

These previous works have in common that the drift may overcome the noise, so that the randomness of
the process is “controlled". To illustrate that, let us mention, for the same model of Durrett & Rogers, the
case of a compactly supported repulsive function, also conjectured in [?], which is still unsolved.

Conjecture 1. [?] Suppose that f : R → R is an odd function, of compact support. Then Xt/t converges
a.s. to 0.

Coming back to our process of interest, the role of the confinement potential is to similarly “control" the
drift term of the diffusion. Indeed, for the process (??) with V = 0, the interaction potential is in general
not strong enough for the process to be recurrent, and the behavior is then very difficult to analyze. In
particular, it is hard to predict the relative importance of the drift term in the evolution.

1.2.1. Technical assumptions on the potentials
First, we denote the Euclidian scalar product by (·, ·) and by (H) the following set of hypotheses:

i) (regularity and positivity) V ∈ C2(Rd), W ∈ C2(Rd × Rd) and V ≥ 1, W ≥ 0;
ii) (growth) there exists C > 0 such that for all x, y ∈ Rd

|∇V (x)−∇V (y)| ≤ C(|x− y| ∧ 1)(V (x) + V (y)); (1.5)

iii) (domination) there exists κ ≥ 1 such that for all x, y ∈ Rd,

W (x, y) ≤ κ (V (x) + V (y)) , and |∇2
xxW (x, y)|+ |∇xW (x, y)| ≤ κ (V (x) +W (x, y)) (1.6)

lim
|x|→∞

sup
y∈Rd

|∇V (x)|2 + 2(∇V (x),∇xW (x, y))
V (x) +W (x, y)

= +∞; (1.7)

iv) (curvature) there exist α, a > 0, δ > 1 and M ∈ R such that for all x, y, ξ ∈ Rd

(x,∇V (x) +∇xW (x, y)) ≥ a|x|2δ − α, and
(
(∇2V (x) +∇2

xxW (x, y))ξ, ξ
)
≥M |ξ|2. (1.8)

Remark 1.1. 1) The most important conditions are the domination and the curvature.
2) The growth condition (??) on V ensures that there exists a > 0 such that for all x ∈ Rd,

∆V (x) ≤ aV (x). (1.9)

3) The positivity and domination conditions on the interaction potential are not so hard to be satisfied,
since the self-interacting process will be invariant by the gauge transform W (x, y) 7→W (x, y) +φ(y) for any
function φ that does not grow faster than V .

1.2.2. Results
We can now describe the behavior of µt.
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4 A. Kurtzmann

Theorem 1.2. Suppose (H). For any probability measure µ on Rd, let Π(µ) := e−2(V+W∗µ)/Z(µ), where
Z(µ) is the normalization constant.
1) Px,r,µ-a.s., the ω-limit set (i.e., the accumulation points) of (µt, t ≥ 0) is weakly compact, invariant by
the flow generated by µ̇ = Π(µ)− µ and admits no other (sub-)attractor than itself.
2) If W is symmetric, then Px,r,µ-a.s., the ω-limit set of (µt, t ≥ 0) is a connected subset of the set of fixed
points of the application µ 7→ Π(µ).

Even if the model studied could at a first glance seem restrictive (because of V ), the drift term competes
with the Brownian motion. The evolution is non-trivial and strongly depends on the drift.

Theorem 1.3. Consider the diffusion (??) on R2, with V (x) = V (|x|) and W (x, y) = (x,Ry), where R is
the rotation matrix of angle θ. For ρ ≥ 0, define the probability measure γ(dρ) := e−2V (ρ)dρ/Z. Then one
of the following holds:

1. If V is such that
∫∞

0
ρ2γ(dρ) cos θ > −1, then a.s. µt → γ (weakly);

2. Else, we get two different cases:
a) if θ = π, then there exists a random measure µ∞ such that a.s. µt → µ∞ (weakly),
b) if θ 6= π, then µt circles around.

1.3. Outline of contents

As mentioned earlier, the main difficulty here stems from the non-compactness of the state space. The
way to get around it is first, to introduce, in Section ??, the V -norm (also named ‘dual weighted norm’),
compatible with non-bounded functions, controlled by V . The family of measures (µt, t ≥ 0) will then prove
being (uniformly) bounded (for t large enough) for the dual V -norm in §??. Second, the dynamical system
involved induces only a local semiflow and not necessarily a global one. The last important property is
the following. Consider the Feller diffusion Xµ, corresponding to the SDE (??) where µt is fixed to µ. Its
fundamental kernel (i.e. the inverse of the infinitesimal generator) is denoted by Qµ. In order to study the
ergodicity (in the limit-quotient sense) of X, one has to find a (uniform in µ) upper bound for the operator
Qµ. More precisely, we will prove the ultracontractivity of the semigroup in §??.

The organization of this paper is as follows. In the next section, we introduce some notations and prove
the existence and uniqueness of X. Section ?? is devoted to the presentation of the main results and is
divided in three parts. First, we recall the former results and ideas of Benaïm and al [?]. Then, we state the
tightness of (µt)t and introduce the uniform estimates on the Feller semigroup. We finally end by describing
the behavior of µt. Section ?? prepares the proofs of the main results by computing some useful estimates.
First, we study in details the family of Markov semigroups, corresponding to Xµ, for which we prove the
uniform ultracontractivity property and the regularity of the operators Aµ and Qµ. After that, we analyze,
in §??, the deterministic semiflow associated to the self-interacting diffusion and show its local existence.
The proofs of the main results are given in Section ??, which heavily relies on the spectral analysis of §??.
We first show the tightness of (µt)t. Then, §?? deals with the approximation of the normalized occupation
measure (µt, t ≥ 0) by a deterministic semiflow. In §??, we prove Theorem ??. Finally, Section ?? is devoted
to the illustration in dimension d = 2 and the proof of Theorem ??.

2. Preliminaries and Tools

2.1. Some useful spaces and results

In all the following, (Ω,F , (Ft)t,P) will be a filtered probability space satisfying the usual conditions.

2.1.1. Spaces and topology
We begin to introduce the weighted supremum norm (or V -norm)

||f ||V := sup
x∈Rd

|f(x)|
V (x)

, (2.1)
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Some self-interacting diffusions on Rd 5

and the space of continuous V -bounded functions

C0(Rd;V ) := {f ∈ C0(Rd) : ||f ||V <∞} (2.2)

Similarly let Ck(Rd;V ) := Ck(Rd) ∩ C0(Rd;V ) for all k ≥ 1.
We denote byM(Rd) the space of signed (bounded) Borel measures on Rd and by P(Rd) its subspace of

probability measures. We will need the following measure space:

M(Rd;V ) := {µ ∈M(Rd);
∫

Rd
V (y)|µ|(dy) <∞}, (2.3)

where |µ| is the variation of µ: |µ| := µ+ +µ− with (µ+, µ−) the Hahn-Jordan decomposition of µ. This space
will enable us to always check the integrability of V (and of W and its derivatives thanks to the domination
condition (??)) with respect to the measures to be considered. For example, it contains the measure

γ(dx) := e−2V (x)dx. (2.4)

We endowM(Rd;V ) with the following dual weighted supremum norm (or dual V -norm) defined by

||µ||V := sup
ϕ∈C0(Rd;V );||ϕ||V ≤1

∣∣∣∣∫
Rd
ϕdµ

∣∣∣∣ , µ ∈M(Rd;V ). (2.5)

This norm naturally arises in the approach of ergodic results for time-continuous Markov processes by Meyn
& Tweedie [?]. It makes M(Rd;V ) a Banach space. Since we will mainly consider probability measures in
the following, we set P(Rd;V ) :=M(Rd;V )∩P(Rd). The strong topology on P(Rd;V ) is the trace topology
of the one defined onM(Rd;V ). It makes P(Rd;V ) a complete metric space.

In order to study the dynamical system in §??, we need to endow the space P(Rd;V ) with two different
topologies. When nothing else is stated, we will consider that it is equipped with the strong topology defined
by the dual weighted supremum norm || · ||V . But, as the reader will notice, we will frequently need to
switch from the strong topology to the weak topology of convergence of measures. We adopt here a non-
standard definition compatible with possibly unbounded functions (yet dominated by V ). For any sequence
of probability measures (µn, n ≥ 1) and any probability measure µ (all belonging to P(Rd;V )), we define
the weak convergence as:

µn
w−→ µ if and only if

∫
Rd
ϕdµn −→

n→∞

∫
Rd
ϕdµ, ∀ϕ ∈ C0(Rd;V ). (2.6)

We point out that our definition of the weak convergence is stronger than the usual one. We recall that
P(Rd;V ), equipped with the weak topology, is a metrizable space. Since C0(Rd;V ) is separable, we exhibit
a sequence (fk)k dense in {f ∈ C0(Rd;V ); ||f ||V ≤ 1}, and set for all µ, ν ∈ P(Rd;V ):

d(µ, ν) :=
∞∑
k=1

2−k|µ(fk)− ν(fk)|. (2.7)

Then the weak topology is the metric topology generated by d.
Finally, for any β > 1, we introduce the subspace

Pβ(Rd;V ) := {µ ∈ P(Rd;V );
∫

Rd
V (y)µ(dy) ≤ β}. (2.8)

Proposition 2.1. Let β > 1. The set Pβ(Rd;V ) is a weakly compact subset of P(Rd;V ).

Proof. Straightforward.
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6 A. Kurtzmann

2.1.2. Preliminary results
Through this paper, we will use (many times) some easy results. First, to illustrate the need of the space
M(Rd;V ), we state

Lemma 2.2. For any µ ∈M(Rd;V ), the function W ∗ µ belongs to C2(Rd;V ) and

|W ∗ µ(x)| ≤ 2κ||µ||V V (x).

There exists D > 0 such that for all µ ∈M(Rd;V ),

|∆ (V (x) +W ∗ µ(x)) | ≤ D(V (x) +W ∗ µ(x)). (2.9)

Proof. It results from the the growth (??) and domination (??) conditions.

Corollary 2.3. Let β > 1. For µ ∈ Pβ(Rd;V ), we get:

Z(µ) =
∫

Rd
e−2W∗µ(x)γ(dx) ≥ e−2κβ

∫
Rd
e−2κV (x)γ(dx) ≥

∫
Rd
e−4κβV (x)γ(dx). (2.10)

The following function will also prove being very useful, as a Lyapunov function:

Eµ(x) := V (x) +W ∗ µ(x). (2.11)

Lemma 2.4. Let β > 1. For any µ ∈ Pβ(Rd;V ), we have the following upper bound:

Eµ(x) ≤ 3κβV (x). (2.12)

Proof. It follows from the domination (??) condition.

For any probability measure µ ∈ P(Rd;V ), let (Xµ
t , t ≥ 0) be the Feller diffusion defined by the SDE

dXµ
t = dBt − (∇V (Xµ

t ) +∇W ∗ µ(Xµ
t )) dt, Xµ

0 = x. (2.13)

Suppose that Xµ a.s. never explodes. We denote by (Pµt ; t ≥ 0) the associated Markov semigroup. Its
infinitesimal generator is then the differential operator Aµ defined on C∞(Rd) by

Aµf :=
1
2

∆f − (∇V +∇W ∗ µ,∇f). (2.14)

We emphasize that Xµ is a positive-recurrent (reversible) diffusion. Denote by Π(µ) ∈ P(Rd;V ) its unique
invariant probability measure:

Π(µ)(dx) :=
e−2W∗µ(x)

Z(µ)
γ(dx) (2.15)

where Z(µ) :=
∫

Rd e
−2W∗µ(x)γ(dx) < +∞ is the normalization constant.

Proposition 2.5. The diffusion Xµ
t a.s. never explodes.

Proof. It is enough to check with Itô’s formula and (??) that Eµ, defined in (??), is a Lyapunov function:
AµEµ ≤ DEµ. As a by-product we get the naive estimate

EEµ(Xµ
t ) ≤ Eµ(x)eDt. (2.16)

imsart-aihp ver. 2009/05/21 file: IHP-compactification-final.tex date: June 19, 2009



Some self-interacting diffusions on Rd 7

The classical ergodic (limit-quotient) theorem is true for Xµ: a.s. we have, for all f ∈ C0(Rd;V )

lim
t→∞

1
t

∫ t

0

f(Xµ
s )ds = Π(µ)f =:

∫
Rd
fdΠ(µ). (2.17)

To end this part, for any µ ∈ P(Rd;V ), let L2(Π(µ)) be the Lebesgue space of Borel square-integrable
functions with respect to the measure Π(µ). We remark that this space depends on µ, but we will consider
mainly the subspace C0(Rd;V ) ⊂ L2(Π(µ)). We denote the inner product on this space by

(f, g)µ :=
∫

Rd
f(x)g(x)Π(µ)(dx)

and ||.||2,µ is the associated norm. We introduce two operators : Qµ (sometimes called the ‘fundamental
kernel’ as in Kontoyiannis & Meyn [?]) is the solution to Poisson’s equation, that is the “inverse" of Aµ,
defined for any function f ∈ C∞(Rd;V ) by

Qµf :=
∫ ∞

0

(Pµt f −Π(µ)f) dt (2.18)

and Kµ is the orthogonal projector defined by

Kµf := f −Π(µ)f. (2.19)

These operators are linked together by the Poisson equation: ∀f ∈ C∞(Rd;V ),

Aµ ◦Qµ(f) = Qµ ◦Aµ(f) = −Kµf.

Remark 2.6. The existence of Qµf comes from the uniform spectral gap obtained in Corollary ??.

2.2. The self-interacting diffusion

We recall the self-interacting diffusion considered here:{
dXt = dBt − (∇V (Xt) +∇W ∗ µt(Xt)) dt, X0 = x,
dµt = (δXt − µt) dt

r+t , µ0 = µ

Proposition 2.7. For any x ∈ Rd, µ ∈ P(Rd;V ) and r > 0, there exists a unique global strong solution
(Xt, µt, t ≥ 0).

Proof. Let us introduce the increasing sequence of stopping times

τn := inf
{
t ≥ τn−1; Eµt(Xt) +

∫ t

0

|∇Eµs(Xs)|2 ds > n

}
.

In order to show that the solution never explodes, we use again the Lyapunov functional (x, µ) 7→ Eµ(x)
defined in (??). As the process (t, x) 7→ Eµt(x) is of class C2 (in the space variable) and is a C1-semi-
martingale (in the time variable), the generalized Itô formula (or Itô-Ventzell formula, see [?]), applied to
(t, x) 7→ Eµt∧τn (x) implies

Eµt∧τn (Xt∧τn) = Eµ(x) +
∫ t∧τn

0

(∇Eµs(Xs),dBs)−
∫ t∧τn

0

|∇Eµs(Xs)|2 ds

+
1
2

∫ t∧τn

0

∆Eµs(Xs)ds+
∫ t∧τn

0

(W (Xs, Xs)−W ∗ µs(Xs))
ds
r + s

. (2.20)

We note that
∫ t∧τn

0
(∇Eµs(Xs),dBs) is a true martingale. Letting k = a+ 2κ/r +D, we then get, similarly

to (??)

EEµt∧τn (Xt∧τn) ≤ Eµ(x) + k log(1 + t)
∫ t

0

EEµs∧τn (Xs∧τn)ds.
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8 A. Kurtzmann

So, Gronwall’s lemma leads to the same kind of estimate as for Xµ:

EV (Xt∧τn) ≤ EEµt∧τn (Xt∧τn) ≤ Eµ(x)ekt log(1+t).

As lim
|x|→∞

V (x) =∞, the process (Xt, t ≥ 0) does not explode in a finite time and there exists a global strong

solution.

3. Main results

3.1. Former tools and general idea

We remind how Benaïm, Ledoux & Raimond [?] handled the asymptotic behavior of µt in a compact space.
Indeed, we sketch here the general idea and explain why the tools introduced in Section ?? arise quite
naturally.

First, suppose that the empirical measure appearing in the drift is ‘frozen’ to some fixed measure µ. We
obtain the Feller diffusion Xµ, for which there exists a spectral gap. The associated semigroup (Pµt ; t ≥ 0)
is exponentially V -uniformly ergodic:

||Pµt f −Π(µ)f ||V ≤ c(µ)||f ||V e−c(µ)t, f ∈ C0(Rd;V ). (3.1)

To get, as a by-product, the almost sure convergence of the empirical measure of Xµ (as defined in (??)), a
standard technique is to consider the operator Qµ defined by (??). Then, it is enough to apply Itô’s formula
to Qµf(Xµ

t ) and divide both members by t to get the desired result. Indeed, one has

Qµf(Xµ
t ) = Qµf(x) +

∫ t

0

(∇Qµf(Xµ
s ),dBs) +

∫ t

0

Aµ ◦Qµf(Xµ
s )ds.

Thanks to some easy bounds on the semigroup (Pµt ), one proves that the martingale term is negligible
compared to t and then, one recognizes the last term since Aµ ◦Qµf = Π(µ)f − f .

Now when µt changes in time, we still can write a convenient extended form of Itô’s formula, which let
appear the time derivative of Qµtf , but we need to improve the remainder of the argument. Intuitively, as
for stochastic approximation processes, one expects the trajectories of µt to approximate the trajectories
of a deterministic semiflow. This very last remark conveyed to Benaïm & al [?] the idea to compare the
asymptotic evolution of (µt; t ≥ 0) with a semiflow.

Definition 3.1. A continuous function ξ : R+ → P(Rd;V ) is an asymptotic pseudotrajectory (or asymptotic
pseudo-orbit) for the semiflow Φ if for all T > 0,

lim
t→+∞

sup
0≤s≤T

d(ξt+s,Φs(ξt)) = 0. (3.2)

The notion of asymptotic pseudotrajectory has been introduced by Benaïm & Hirsch [?]. It is particularly
useful to analyze the long-term behavior of stochastic processes, considered as approximations of solutions
of ordinary differential equation (the “ODE method"). In Section ??, we prove that the empirical measure
is an asymptotic pseudotrajectory for the semiflow Φ induced by Π(µ)− µ.

3.2. New tools: tightness and ultracontractivity

The paper of Benaïm & al [?] crucially relies on the compactness of the manifold where the diffusion lives.
It readily implies that the measure µt is close to Π(µt). On the contrary, if the state space is Rd and V ≡ 0,
then X will escape from any compact set. Indeed, the confinement potential V forces the process (µt, t ≥ 0)
to remain in a (weakly) compact space of measures, for t large, and X is then positive-recurrent.

Theorem 3.2. Px,r,µ-a.s., β := sup{
∫
V dµt; t ≥ 0} < +∞.
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Some self-interacting diffusions on Rd 9

The proof is postponed to Section ?? and we emphasize that β is a random variable.
We also need some precise bounds on the family of semigroups (Pµt , t ≥ 0) where µ ∈ P(Rd;V ). A priori,

it is not obvious that the semigroup (Pµt ) admits a (uniform) spectral gap. Indeed, we will prove a stronger
result: (Pµt ) is uniformly bounded as an operator from L2(Π(µ)) to L∞. Section ?? will be devoted to those
uniform properties. In the following, define ||Pµt f ||∞ := essupx∈Rd |P

µ
t f(x)|.

Proposition 3.3. The family of semigroups (Pµt , t ≥ 0, µ ∈ P(Rd;V )) is uniformly ultracontractive: there
exists c > 0 independent of µ such that for all 1 ≥ t > 0 and µ ∈ P(Rd;V ), we have

sup
f∈C∞(Rd;V )\{0}

||Pµt f ||∞
‖f‖2,µ

≤ exp
(
ct−δ/(δ−1)

)
. (3.3)

The proof is postponed to Section ??.

Corollary 3.4. The family of measures
(
Π(µ), µ ∈ P(Rd;V )

)
satisfies a uniform (in µ) logarithmic Sobolev

inequality and admits a uniform spectral gap. So, there exists C > 0, independent of µ, such that for all
f ∈ C∞(Rd;V ), for all t ≥ 0:

||Pµt (Kµf)||2,µ ≤ e−t/C ||Kµf ||2,µ.

Proof. When a semigroup is ultracontractive, then it is hypercontractive. As being hypercontractive is
equivalent to satisfy a logarithmic Sobolev inequality, we conclude (see for instance Bakry [?]). The given
inequality is a consequence of the logarithmic Sobolev one.

3.3. The ω-limit set

First, let us define an ω-limit set:

Definition 3.5. For every continuous function ξ : R+ → P(Rd;V ), the ω-limit set of ξ, denoted by ω(ξt, t ≥
0), is the set of limits of weak convergent sequences ξ(tk), tk ↑ ∞, that is

ω(ξt, t ≥ 0) :=
⋂
t≥0

ξ([t,∞)), (3.4)

where ξ([t,∞)) stands for the closure of ξ([t,∞)) according to the weak topology.

Let Φ : R+ × P(Rd;V )→ P(Rd;V ) be the semiflow generated by

Φt(µ) = e−tµ+ e−t
∫ t

0

esΠ(Φs(µ)) ds, Φ0(µ) = µ. (3.5)

We will prove the local existence of the semiflow in Section ??, and for W symmetric or bounded, we will
show it never explodes. In other cases, we will assume the global existence of the semiflow.
Section ?? is devoted to the study of µt. Indeed, the time-changed process µh(t) (and not µt) is an asymptotic
pseudotrajectory for Φ, where h : R+ → R+ is defined by

h(t) := r(et − 1). (3.6)

This deterministic time-change h comes from the normalization of the occupation measure µt. The factor
(r + t)−1 disappears while considering

d
dt
µh(t) = δXh(t) − µh(t).

Theorem 3.6. Under Px,r,µ, the function t 7→ µh(t) is almost surely an asymptotic pseudotrajectory for the
semiflow Φ.

The proof is given in Section ??. This result enables us to describe the ω-limit set of (µt, t ≥ 0):
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10 A. Kurtzmann

Corollary 3.7. Px,r,µ-a.s., ω(µt, t ≥ 0) is weakly compact, invariant by Φ and the flow restricted to ω(µt, t ≥
0) contains no attractor (other than itself). The convex hull of the image of Π contains ω(µt, t ≥ 0).

In some cases, we state and prove a more precise description of ω(µt, t ≥ 0) in Section ??.

Theorem 3.8. Assume that W is symmetric. Then, Px,r,µ-a.s., ω(µt, t ≥ 0) is a connected subset of the
fixed points of Π.

Corollary 3.9. Suppose that W is symmetric. If Π admits only finitely many fixed points, then Px,r,µ-a.s.,
(µt; t ≥ 0) converges to one of them.

4. Estimates on the semigroups and dynamical system

4.1. The family of semigroups

In this part, we exhibit the ultracontractivity (implying the existence of a spectral gap) for the family
of semigroups (Pµt , µ ∈ P(Rd;V )). Since we consider these semigroups altogether for all the measures
µ ∈ P(Rd;V ), we will prove that the constants involved are uniform in µ. The need for ultracontractivity
will impose some kind of boundedness on the convolution term in the SDE that cannot be easily removed.
Finally, we compute several estimates preparing Section ??.

4.1.1. Uniform ultracontractivity
The notion of ultracontractivity and its relation to the analysis of Markov semigroups were first studied by
Davies and Simon [?] and recently by Röckner & Wang [?] for more general diffusions. To prove that the
family of semigroups

(
Pµt , t ≥ 0, µ ∈ P(Rd;V )

)
is uniformly ultracontractive, we will rely on the following

result of Röckner & Wang:

Lemma 4.1. ([?] corollary 2.5) Let (Pt, t ≥ 0) be a Markov semigroup, with infinitesimal generator A :=
1
2∆ − (∇U,∇), and ∇2U ≥ −K with K > 0. Assume that there exists a continuous increasing map χ :
R+ 7→ R+ \ {0} such that

1. lim
r→∞

χ(r)
r =∞,

2. the mapping gχ(r) := rχ(m log r) is convex on [1,∞) for any m > 0,
3. A|x|2 ≤ b− χ(|x|2) for some b > 0.

Then Pt admits a unique invariant probability measure. If
∫∞

2
dr

rχ(m log r) < ∞, m > 0, then Pt is ultracon-
tractive.
If moreover χ(r) = χrδ, with χ > 0, δ > 1, then there exists c = c(b, χ) > 0 such that for all t ∈
(0, 1], supf∈C∞(Rd)\{0}

‖Ptf‖∞
‖f‖2 ≤ exp

(
ct−δ/(δ−1)

)
.

Proof of Proposition ??. First, we prove that there exist c1, c2 independent of µ such that |Pµt f(x)| ≤
e(c1+c2|x|2)/t for all t ∈ (0, 1). Let M be the constant involved in the curvature condition (??) and denote
mt := M

1−e−2Mt . By Wang [?] (Lemma 2.1), it appears that for all x, y ∈ Rd,

|Pµt f(x)|2 ≤ Pµt f2(y) exp
{
mt|x− y|2

}
.

As Π1(µ) := e−2(V+W∗µ)/Z1, where Z1 :=
∫
|y|≤1

e−2(V+W∗µ)(y)dy, is an invariant measure for the process

Xµ, we have that
∫
|y|≤1

e−mt|y|
2
Π1(µ)(dy) ≥ e−mt . So, we get∫

Rd
e−mt|x−y|

2
Π1(µ)(dy) ≥ e−2mt(|x|2+1).

It remains to choose f ∈ C∞(Rd;V ) such that Π1(µ)f = 1 to conclude that

|Pµt f(x)|2e−2mt(|x|2+1) ≤ |Pµt f(x)|2
∫

Rd
e−mt|x−y|

2
Π1(µ)(dy) ≤ 1.
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Some self-interacting diffusions on Rd 11

Now, we apply Lemma ?? with U := V +W ∗ µ to show that each (Pµt )t≥0 is ultracontractive. Indeed, the
curvature condition (??) implies that there exist a, b > 0 such that for any µ ∈ P(Rd;V )

Aµ|x|2 = d− 2(x,∇V (x) +∇W ∗ µ(x)) ≤ b− a|x|2δ.

As χ(r) = rδ with δ > 1, the constant c is uniform in µ.

We are now able to derive some useful bounds on the operator Qµ. As we need these bounds being uniform
(in µ), and depending on x only through V (x), the ultracontractivity is essential.

Proposition 4.2. For all ε > 0, there exists a positive constant K(ε) such that for all µ ∈ Pβ(Rd;V ),
x ∈ Rd, f ∈ C0(Rd;V ):

|Qµf(x)| ≤ (εV (x) +K(ε))||f ||V . (4.1)

Proof. Let t0 ∈ (0, 1] (we will choose it precisely later). We have:

|Qµf(x)| ≤
∫ ∞

0

|Pµt (Kµf)(x)|dt =
∫ t0

0

|Pµt (Kµf)(x)|dt+
∫ ∞
t0

|Pµt (Kµf)(x)|dt.

We begin to work with the second right-hand term. Using the composition property of the semigroup, the
uniform ultracontractivity and uniform spectral gap, we have∫ ∞

t0

|Pµt (Kµf)(x)|dt ≤ exp
(
ct
−δ/(δ−1)
0

)∫ ∞
0

e−t/Cdt||Kµf ||2,µ.

As Kµ is an orthogonal projector, ‖Kµf‖2,µ ≤ ‖f‖2,µ ≤
(∫
V 2dΠ(µ)

)1/2 ‖f‖V , and we get∫ ∞
t0

|Pµt (Kµf)(x)|dt ≤ C||f ||V exp
(
ct
−δ/(δ−1)
0

)(∫
V 2dΠ(µ)

)1/2

.

We now have to work with the first right-hand term. We get:

|Pµt f(x)| ≤ ||f ||V Pµt V (x) ≤ ||f ||V EEµ(Xµ
t ) ≤ Eµ(x)eDt‖f‖V .

By Proposition ??, we get that
∫ t

0
EEµ(Xµ

s )ds = O(t) and so, we choose t0 small enough such that∫ t0
0

EEµ(Xµ
s )ds ≤ ε to conclude.

Proposition 4.3. For all ε > 0, there exists K1(ε) > 0 such that for all µ ∈ Pβ(Rd;V ), x ∈ Rd, f ∈
C∞(Rd;V ), we have Qµf ∈ C1(Rd) and:

|∇Qµf(x)| ≤ (εV (x) +K1(ε))||f ||V . (4.2)

Proof. We introduce the operator Γµ2 (f) := |∇2f |2 +(∇f,∇2(V +W ∗µ)∇f). Using the curvature condition
(??), the Γ2-criterion (Γµ2 (f) ≥ M |∇f |2), due to Bakry & Emery [?], is satisfied and implies (see Ledoux
[?] p.22)

|∇Pµt (Kµf)|2 ≤ M

e2Mt − 1
|Pµt (Kµf)2|, ∀f ∈ C∞(Rd;V ), ∀t > 0. (4.3)

Indeed, the previous inequality, together with the ultracontractivity, shows∫ ∞
t0

|∇Pµt (Kµf)(x)|dt ≤ 2C

√
M

e2Mt0 − 1
ect
−δ/(δ−1)
0 ||f ||V

(∫
V 4dΠ(µ)

)1/4

.

Finally, one concludes by using again Proposition ??.
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12 A. Kurtzmann

4.1.2. Regularity with respect to the measure µ
We endow the space P(Rd;V ) with a structure of infinite-dimensional differentiable manifold. This structure
is used only for differentiating functions defined on P(Rd;V ), which is also needed in the study of the semiflow
in §??.

For any µ ∈ P(Rd;V ) we consider the set Ck(µ) (k ≥ 1) of (germs of) curves defined on some neighborhood
of zero (−ε, ε) with values in P(Rd;V ), passing through µ at time zero and that are of class Ck when
they are considered as functions with values in the Banach space M(Rd;V ). Now we say that a function
φ : P(Rd;V ) → R is of class Ck if for any µ ∈ P(Rd;V ) and any curve f ∈ Ck(µ) the real function φ ◦ f is
of class Ck. This enables to define the differential of such a function φ. For any µ the tangent space at µ to
P(Rd;V ) can be identified with the spaceM0(Rd;V ) of zero-mass measures inM(Rd;V ), that is ν(Rd) = 0.
The differential is then the linear operator

Dφ(µ) · ν =
d
dt
φ(µ+ tν)|t=0, ν ∈M0(Rd;V ). (4.4)

The same definition applies to functions with values in a Banach space or even in P(Rd;V ). As an example,
the maps µ 7→W ∗ µ(x) (for any point x) and Π (applying Lebesgue’s theorem) are C∞.

First, consider the Banach space B of bounded linear operators from C∞(Rd;V ) ⊂ L2(γ), endowed with
the norm ‖f‖2,µ,1 := ‖f‖2,µ + ‖Aµf‖2,µ, to the same space equipped with the standard quadratic norm.
We endow B with the operator norm. Then, Aµ obviously belongs to the closed subset of B consisting in
operators A such that A1 = 0.

Proposition 4.4. The mappings µ 7→ Aµ and µ 7→ Kµ are C∞. For any function f ∈ C∞(Rd;V ), the
application µ 7→ Qµf is C∞ for the strong topology and the differentials are (for any µ ∈ P(Rd;V ), ν ∈
M0(Rd;V )):

D(Aµf) · ν = −(∇W ∗ ν,∇f);
D(Kµf) · ν = − (DΠ(µ) · ν) (f);
D(Qµf) · ν = (DΠ(µ) · ν) (Qµf) +Qµ(∇W ∗ ν,∇Qµf).

Proof. Consider measures µ ∈ P(Rd;V ). As µ 7→W ∗ µ and Π are C∞, there is nothing to prove in case of
Aµ or Kµ. To look at Qµ, we need to consider the resolvent operator of Pµt :

Rµλ :=
∫ ∞

0

e−λtPµt dt = (λ−Aµ)−1, ∀λ > 0. (4.5)

For λ > 0, we define the approximation of Qµ

Qµ(λ) :=
∫ ∞

0

e−λtPµt Kµdt = Kµ(λ−Aµ)−1. (4.6)

As µ 7→ Kµ and µ 7→ Aµ are C∞, the map µ 7→ Qµ(λ)f is C∞ by composition.
The uniform spectral gap shows the existence of C,C1 > 0 such that

||Qµf −Qµ(λ)f ||V ≤
∫ ∞

0

(1− e−λt)||Pµt Kµf ||V dt ≤ λC||f ||V
∫ ∞

0

te−tC1dt.

Hence the convergence of Qµ(λ) towards Qµ is uniform with respect to µ. As a by-product, µ 7→ Qµf is
continuous.

The differential of Qµ(λ) is:

DQµ(λ) · ν = (DKµ · ν)(λ−Aµ)−1 +Kµ(λ−Aµ)−1(DAµ · ν)(λ−Aµ)−1

Replacing DKµ and DAµ by their expressions, we will prove that each right side term of the equality
converges uniformly. For the first one, as (DΠ(µ) · ν)((λ − Aµ)−1f) = (DΠ(µ) · ν)

(
Kµ(λ−Aµ)−1f

)
, we
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have uniformly

lim
λ→0

(DΠ(µ) · ν)((λ−Aµ)−1f) = (DΠ(µ) · ν) (Qµf) .

To prove the convergence of the second term, remark that

Kµ(λ−Aµ)−1(∇W ∗ ν,∇)((λ−Aµ)−1f) = Qµ(λ)(∇W ∗ ν,∇Qµ(λ)f).

It remains now to show that ∇Qµ(λ)f converges (uniformly in µ) to ∇Qµf . By definition of Qµ(λ), we find:

|∇Qµf −∇Qµ(λ)f | ≤
∫ ∞

0

|∇(Pµt Kµf)|(1− e−λt)dt.

We use the inequality (??) to prove that this family of differentials converges uniformly with respect to µ;
so µ 7→ Qµf is actually C1 with the stated differential.

Remark 4.5. Looking at the differential D(Qµf), we see that it is itself a C1 function of µ, so by induction
one proves that µ 7→ Qµf is C∞ and also that µ 7→ Pµt f is C∞.

Corollary 4.6. For every f ∈ C∞(Rd;V ), we have the uniform inequality

|(DQµ · ν)(f)(x)| ≤ (εV 2(x) +K2(ε))‖f‖V ‖ν‖V .

Proof. We easily get the inequality

|(DQµ · ν)(f)(x)| ≤ |(DΠ(µ) · ν)(Qµf)(x)|+ |Qµ(∇W ∗ ν(x),∇Qµf(x))|.

If we consider the second right-hand term, we find (using Cauchy’s inequality)

|Qµ(∇W ∗ ν(x),∇Qµf(x))| ≤ (εV 2(x) +K(ε))||(∇W ∗ ν,∇Qµf)||V 2

≤ (εV 2(x) +K ′(ε))||f ||V ||ν||V .

We work now with the other member of the inequality:

|(DΠ(µ) · ν)(Qµf)| ≤ 2
∫
|Qµf(x)|

∣∣∣∣W ∗ ν(x)−
∫
W ∗ ν dΠ(µ)

∣∣∣∣Π(µ)(dx)

≤ C‖f‖V ||ν||V
∫
V 2(x)Π(µ)(dx) = C ′||f ||V ‖ν||V .

4.2. The dynamical system

Define the semiflow Φ : R+ × P(Rd;V )→ P(Rd;V ) by

Φt(µ) = e−tµ+ e−t
∫ t

0

esΠ(Φs(µ)) ds, Φ0(µ) = µ. (4.7)

4.2.1. Existence of the semiflow
We first prove the local existence of the semiflow and then give sufficient conditions on the potentials for
non-explosion. To show the local existence of a solution, since P(Rd;V ) is not a vector space, we will proceed
directly by approximation. The following lemma is helpful in order to find a good security cylinder.

Lemma 4.7. For any β > 1, the application Π restricted to Pβ(Rd;V ) is bounded and Lipschitz.
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14 A. Kurtzmann

Proof. By equation (??), we have the following bound for Π(µ):

||Π(µ)||V ≤
(∫

Rd
e−4κβV (x)γ(dx)

)−1 ∫
Rd
V (x)γ(dx) =: Cβ . (4.8)

Remind, that Π is C∞ on P(Rd;V ) equipped with the strong topology. Its differential (at µ) is the continuous
linear operator DΠ(µ) :M0(Rd;V )→M0(Rd;V ) defined by

DΠ(µ) · ν(dx) := −2
(
W ∗ ν(x)−

∫
Rd
W ∗ ν(y)Π(µ)(dy)

)
Π(µ)(dx). (4.9)

Fix ν ∈M0(Rd;V ). Lemma ?? implies that

||DΠ(µ) · ν||V ≤ 4κ(1 + Cβ)||ν||V
∫

Rd
V 2(x)Π(µ)(dx).

For µ ∈ Pβ(Rd;V ), the computation used for the bound of Π(µ) enables to control the last integral, hence
we get a bound (call it C ′β) on the differential and Π is Lipschitz as stated.

Proposition 4.8. For all µ ∈ P(Rd;V ), the equation (??) admits a local solution. This defines a C∞

semiflow Φ for the strong topology.

Proof. Let µ belong to P(Rd;V ) and choose β > 2||µ||V (so that µ ∈ Pβ(Rd;V )). We introduce the classic
Picard approximation scheme:{

µ
(0)
t := µ,

µ
(n)
t := e−tµ+

∫ t
0
es−tΠ

(
µ

(n−1)
s

)
ds.

We set ε small enough such that ||µ||V + (1− e−ε)Cβ ≤ β and εC ′β < 1 where both constants were defined
in Lemma ??. Then, for all n, µ(n)

t is defined and belongs to Pβ(Rd;V ), which makes [0, ε) × Pβ(Rd;V ) a
good security cylinder. We have, for t < ε,

||µ(n+1)
t − µ(n)

t ||V ≤ (1− e−ε)C ′β sup
t<ε
||µ(n)

t − µ(n−1)
t ||V .

Now the series with general term supt<ε ||µ
(n+1)
t −µ(n)

t ||V converges and thus the sequence of functions µ(n)

is Cauchy for the topology of uniform convergence. Since P(Rd;V ) is complete, we have successfully built a
solution on [0, ε). As the map Π is C∞ for the strong topology, every Picard approximation µ 7→ µ

(n)
t is C∞

by induction, and it is enough to take the limit uniformly in µ on Pβ(Rd;V ) to conclude that the semiflow
is smooth.

Definition 4.9. A subset A of P(Rd;V ) is positively invariant (negatively invariant, invariant) for Φ
provided Φt(A) ⊂ A (A ⊂ Φt(A), Φt(A) = A) for all t ≥ 0.

For a symmetric W , we introduce the free energy (up to a multiplicative constant) for any µ ∈ P(Rd;V )
absolutely continuous with respect to Lebesgue’s measure:

F(µ) :=
∫

Rd
log
(

dµ
dγ

)
dµ+

∫
Rd×Rd

W (x, y)µ(dx)µ(dy), (4.10)

and F(µ) = +∞ if µ has a singular part with respect to Lebesgue. This functional is the sum of an entropy
and an interacting energy term. Under some convexity, the competition between them implies the existence
of a unique minimizer for F (see [?]).
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Proposition 4.10. Whenever that W is either symmetric or uniformly bounded in the second variable
(W (x, y) ≤ κV (x)), the semiflow Φ does not explode.

Proof. Suppose that W (x, y) is bounded in y: W (x, y) ≤ κV (x). Mimicking the proof of Lemma ??, we
show that Π is globally bounded (call C the upper bound). This means that Φt(µ) remains in the space
PC(Rd;V ), so it cannot explode.

Let us now assume that W is symmetric. We point out that the free energy F is not a Lyapunov function
for the semiflow Φ because, in general, the measure Φt(µ) is not absolutely continuous with respect to
Lebesgue’s measure and so, F(Φt(µ)) = ∞. Consider the Lyapunov function I(µ) := F(Π(µ)), which can
be viewed as F restricted to absolutely continuous probability measures, is a C∞ function for the strong
topology. We compute (thanks to the symmetry of W ) for ν ∈M0(Rd;V )

DF(µ) · ν =
∫

Rd

[
log
(

dµ
dγ

(x)
)

+ 2W ∗ µ(x)
]

dν(x). (4.11)

But Π is C∞ and its differential is given by (??). Computing the differential of I(µ) by composition, we
obtain

DI(µ) · ν = −4
∫

Rd
(W ∗Π(µ)−W ∗ µ)

(
W ∗ ν −

∫
Rd
W ∗ ν dΠ(µ)

)
dΠ(µ).

We choose ν = Π(µ)− µ and get

1
4

d
dt
I(Φt(µ)) = −

∫
Rd

(W ∗ ν)2dΠ(µ) +
(∫

Rd
W ∗ ν dΠ(µ)

)2

≤ 0.

So, for all c > 0, the sets {µ; I(µ) ≤ c} are positively invariant. As they are (weakly) compact, the semiflow
cannot explode.

We have defined the smooth dynamical system Φ, with respect to the strong topology. But, in order
to study the asymptotic behavior of (µt, t ≥ 0), it is technically easier to work with the weak topology.
Therefore, we will also consider the semiflow Φ with the weak topology:

Proposition 4.11. Φ induces a continuous semiflow with respect to the weak topology.

Proof. Since µ 7→W ∗ µ(x) is readily weakly continuous (by the domination condition again), Π is weakly
continuous. Now, going back to the Picard approximation scheme, it results that µ 7→ µ

(n)
t is weakly

continuous for every n and t. Passing to the limit, we conclude.

4.2.2. The free energy
We show how the free energy functional F helps to find the fixed points of Π. From now on, we restrict
ourselves to the set of absolutely continuous measures.

Lemma 4.12. Suppose that W is symmetric. Then the fixed points of Π are the minima of F .

Proof. Equation (??) readily implies that DF(µ) · ν = 0 for all ν ∈ M0(Rd;V ) if and only if µ = Π(µ).
So, the fixed points of Π are the critical points of F . Indeed, F is a C∞ functional, with second differential
D2F(µ). Let ν1, ν2 ∈M0(Rd;V ). We have:

D2F(µ) · (ν1, ν2) =
∫

Rd
ν1(x)ν2(x)µ(x)−1γ(x)dx+ 2

∫
Rd

∫
Rd
W (x, y)ν1(dx)ν2(dy) ≥ 0.

It then implies that µ = Π(µ) is a minimum for F .
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Corollary 4.13. Suppose thatW is symmetric and for all y ∈ Rd, the function x 7→ V (x)+W (x, y) is strictly
convex. Then, F admits a unique minimizer µ∞ and this probability measure µ∞ satisfies lim

t→∞
Φt(µ) = µ∞.

Proof. Under strict convexity, McCann [?] has proved that F admits a unique critical point µ∞, which is
a unique global minimum and also the unique fixed point of Π.

Proposition 4.14. Whenever that W is either symmetric or bounded in the second variable, then the set{
µ ∈ P(Rd;V ); Π(µ) = µ

}
is a nonempty compact (for the weak topology) subset of P(Rd;V ).

Proof. Suppose first that W is bounded in y: W (x, y) ≤ κV (x) and let β :=
∫

Rd
V (x)γ(dx)∫

Rd
e−2κV (x)γ(dx)

. By Lemma

??, Π maps (weakly) continuously the compact convex space Pβ(Rd;V ) into itself. The Leray-Schauder fixed
point theorem then ensures that the set

{
µ ∈ Pβ(Rd;V ); Π(µ) = µ

}
is nonempty.

Suppose now that W is symmetric. We use again the free energy I = F ◦ Π. Let m := inf{I(µ);µ ∈
P(Rd;V )}. There exists a sequence of probability measures (µn) absolutely continuous with respect to
Lebesgue’s measure such that m ≤ I(µn) ≤ m + 1/n. As for any c > 0, the set {µ; I(µ) ≤ c} is compact,
we extract a subsequence (µnk) converging (weakly) to µ∞. As µ 7→ W ∗ µ and µ 7→ Π(µ) are continuous,
µ 7→ I(µ) is also weakly continuous and so I(µ∞) = m. Lemma ?? permits to conclude.

5. Behavior of the occupation measure

5.1. Tightness of (µt, t ≥ 0)

Thanks to the potential V , we manage to obtain a weak form of compactness for the empirical measure, the
tightness.

Proof of Theorem ??. Set φ(t) :=
∫ t

0
V (Xs)ds. All we need to prove is that φ(t) = O(t) a.s. We use again

the Lyapunov functional Eµ(x) = V (x) + W ∗ µ(x) and remind Itô’s formula (??) for Eµt(Xt). Moreover,
eq. (??) implies that for all ε > 0, there exists η > 0 such that for any |x| ≥ η, we have that V (x) +
W (x, y) ≤ ε

(
|∇V (x)|2 + 2(∇V (x),∇xW (x, y))

)
. So, for all ε > 0, there exists kε such that Eµs(x) ≤

kε + ε|∇Eµs(x)|2. On one hand, if
∫∞

0
|∇Eµs(Xs)|2ds <∞ a.s., then the strong LLN for martingales asserts

that
∫∞

0
(∇Eµs(Xs),dBs) converges a.s. to M∞ and the proof is then similar to the following. (Indeed the

ergodic theorem implies that this case doesn’t happen). On the other, if
∫∞

0
|∇Eµs(Xs)|2ds = ∞ a.s., then

a.s. there exists T (ω) such that for all t ≥ T , we have
∫ t

0
(∇Eµs(Xs),dBs) ≤ 1

2

∫ t
0
|∇Eµs(Xs)|2 ds. So, we get

the a.s. inequality for t (random) large enough:∫ t

0

|∇Eµs(Xs)|2 ds ≤ 2Eµ(x) +
∫ t

0

∆Eµs(Xs)ds+
2
r

∫ t

0

W (Xs, Xs)ds.

The domination condition (??) leads to W (Xs, Xs) ≤ 2κV (Xs) ≤ 2κ(kε + ε|∇Eµs(Xs)|2). Moreover, it
also implies:

∆Eµs ≤ DEµs ≤ D(kε + ε|∇Eµs(Xs)|2).

So, putting all the pieces together, we get

(1− (D + 4κ/r)ε)
∫ t

0

|∇Eµs(Xs)|2 ds ≤ 2Eµ(x) + (D + 4κ/r)kεt.

It remains to choose ε = (D + 4κ/r)−1/2 and then we obtain the desired inequality: for some C > 0,

φ(t) ≤
∫ t

0

Eµs(Xs)ds ≤ C(1 + t).

We finally conclude that β(ω) := sup{µt(V ); t ≥ 0} < +∞ a.s.
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Some self-interacting diffusions on Rd 17

Proposition 5.1. For all n ∈ N, we have that
∫ t

0
Ex,r,µ(V n(Xs))ds = O(t).

Proof. We drop the subscripts x, r, µ in the following. We prove the result for the Lyapunov function Eµ(x)
instead of V . For n = 1, it suffices to adapt the previous proof to show that for all t > 0∫ t

0

E |∇Eµs(Xs)|2 ds ≤ Eµ(x) +
∫ t

0

E∆Eµs(Xs)ds+
2
r

∫ t

0

EW (Xs, Xs)ds.

The result follows.
We conclude the general case n ≥ 1 by induction. Indeed, we have for all ε > 0:

Enµ (x) ≤ kεEn−1
µ (x) + εEn−1

µ (x)|∇Eµ(x)|2.

Moreover, by Itô’s formula, we also find for all s < t that∫ t

s

EEn−1
µu (Xu)|∇Eµu(Xu)|2du ≤

∫ t

s

2κ
r + u

EEnµu(Xu)du+ (n− 1)
∫ t

s

EEn−2
µu (Xu)|∇Eµu(Xu)|2du

+ k

∫ t

s

EEnµu(Xu)du+
∫ t

s

κ

r + u
E
(
En−1
µu (Xu)

∫ u

0

Eµv (Xv)dv
)

du.

Young’s inequality: xn−1y ≤ n−1
n xn + 1

ny
n, with x = En−1

µu (Xu) and y = Eµv (Xv), yields to the existence of
α,A > 0 such that∫ t

s

EEn−1
µu (Xu)|∇Eµu(Xu)|2du ≤ α

∫ t

s

EEnµu(Xu)du+A

∫ t

s

du
r + u

∫ u

0

EEnµv (Xv)dv.

We thus obtain:∫ t

s

EEnµu(Xu)du ≤ kε

∫ t

s

EEn−1
µu (Xu)du+ ε

(
α

∫ t

s

EEnµu(Xu)du+A

∫ t

s

du
r + u

∫ u

0

EEnµv (Xv)dv
)

≤ k(t− s) +
∫ t

s

du
r + u

∫ u

0

EEnµv (Xv)dv.

Let x(t) :=
∫ t

0
EEnµs(Xs) ds. Solving the preceding inequality boil down to solve ẋ ≤ M + x/(r + t). The

solution satisfies x(t) = O(t) and we finally conclude.

Corollary 5.2. For all n ∈ N, we have that Ex,r,µ(V n(Xt)) = O(t).

5.2. Asymptotic behavior

Define the family of measures {εt,t+s; t ≥ 0, s ≥ 0} by

εt,t+s :=
∫ t+s

t

(δXh(u) −Π(µh(u)))du. (5.1)

This family will be essential for proving that t 7→ µh(t) is an asymptotic pseudotrajectory for Φ.

Proposition 5.3. For all T > 0 and all f ∈ C∞(Rd;V ), we have Px,r,µ−a.s.

lim
t→∞

sup
0≤s≤T

|εt,t+sf | = 0.
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18 A. Kurtzmann

Proof. First, we need the uniform estimates on the family of semigroups (Pµt ) proved in Section ??. Let
f ∈ C∞(Rd;V ). We begin to rewrite

εt,t+sf =
∫ h(t+s)

h(t)

Aµu ◦Qµuf
du
r + u

.

We consider the C2-valued process (t, x) 7→ Qµh(t)f(x), which is of class C2 and a C1-semimartingale. Indeed,
it is easy to see that t 7→ µh(t) is a.s. a bounded variation process with values inM(Rd;V ) (since Proposition
?? shows that µ 7→ Qµf is also C1, the claim follows by composition). So, we apply the generalized Itô formula
to (t, x) 7→ h(t)−1Qµh(t)f(x) and decompose εt,t+s in four parts:

εt,t+sf = ε
(1)
t,t+sf + ε

(2)
t,t+sf + ε

(3)
t,t+sf + ε

(4)
t,t+sf

with

ε
(1)
t,t+sf = − 1

h(t+ s)
Qµh(t+s)f(Xh(t+s)) +

1
h(t)

Qµh(t)f(Xh(t))

ε
(2)
t,t+sf = −

∫ h(t+s)

h(t)

Qµuf(Xu)
du

(r + u)2

ε
(3)
t,t+sf =

∫ h(t+s)

h(t)

∂

∂u
Qµuf(Xu)

du
r + u

ε
(4)
t,t+sf = Mf

h(t+s) −M
f
h(t)

where Mf
t is the local martingale Mf

t :=
∫ t

0
∇Qµuf(Xu)dBu

r+u .
Before controlling each term separately, we remind the estimates of Propositions ?? and ??: ∀ε > 0, f ∈

C∞(Rd;V ),

|Qµh(t)f(Xh(t))| ≤ ||f ||V (εV (Xh(t)) +K(ε))
|∇Qµh(t)f(Xh(t))| ≤ ||f ||V (εV (Xh(t)) +K1(ε)).

We also remind that
∫ t

0
V (Xs)ds = O(t) a.s. and

∫ t
0

EV (Xs)ds = O(t). Now, we are able to find for all ε > 0:

|ε(1)
t,t+sf | ≤ h(t)−1(|Qµh(t+s)f(Xh(t+s))|+ |Qµh(t)f(Xh(t))|)

≤ h(t)−1||f ||V (ε(V (Xh(t+s)) + V (Xh(t))) +Kε),

and so lim
t→∞

sup
0≤s≤T

|ε(1)
t,t+sf | ≤ ε‖f‖V a.s. As the latter is true for all ε > 0, we deduce that a.s. lim

t→∞
sup

0≤s≤T
|ε(1)
t,t+sf |

vanishes. Similarly, with ε = 1, there exists C2 such that

|ε(2)
t,t+sf | ≤

∫ h(t+s)

h(t)

(V (Xu) +K)
du

(r + u)2
‖f‖V ≤

C2‖f‖V
h(t)2

∫ h(t+s)

h(t)

V (Xu)du,

and so sup
0≤s≤T

|ε(2)
t,t+sf | ≤ C2h(t)−1‖f‖V a.s.

By Markov’s inequality and using the bound on the differential of Qµ given in Corollary ??, we get:

P
(

sup
0≤s≤T

|ε(3)
t,t+sf | ≥ δ

)
≤ δ−2

∫ h(t+T )

h(t)

E|(DQµu · µ̇u)(f)(Xu)|2 du
r + u

≤ C

δ2
||f ||2V

∫ h(t+T )

h(t)

E
(
V 6(Xu)

) du
(r + u)3

.
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As for all ε > 0 and n ∈ N we have
∫ t

0
EV n(Xs)ds = O(t), there exists C3 > 0 such that

P
(

sup
0≤s≤T

|ε(3)
t,t+sf | ≥ δ

)
≤ C3

δ2
h(t)−1‖f‖2V .

Since the quadratic variation of Mf
h(t+s) − Mf

h(t) is bounded by ||f ||2V
∫ h(t+T )

h(t)
(εV (Xu) + K1(ε))2 du

(r+u)2 ,
Burkholder-Davis-Gundy’s inequality (BDG) implies

Px,r,µ

(
sup

s∈[0,T ]

|ε(4)
t,t+sf | ≥ δ

)
≤ C4

δ2
h(t)−1||f ||2V . (5.2)

It only remains to prove that a.s.

lim
t→∞

sup
0≤s≤T

|ε(4)
t,t+sf | = lim

t→∞
sup

0≤s≤T
|ε(3)
t,t+sf | = 0.

First, for all ε > 0, we have by Doob’s inequality together with BDG’s inequality that

Px,r,µ

(
sup

n≤t<n+1
sup

s∈[0,T ]

|ε(4)
t,t+sf | ≥ δ

)
≤ C

δ2
||f ||2V sup

n≤t<n+1
h(t)−1 =

C

δ2
‖f‖2V h(n)−1.

Since the series
∑
n h(n)−1 converges, we conclude by Borel-Cantelli’s lemma that a.s.

lim
n→∞

sup
n≤t<n+1

sup
0≤s≤T

|ε(4)
t,t+sf | = 0.

The same argument for |ε(3)
t,t+sf | permits to conclude.

Lemma 5.4. If for all T > 0, all f ∈ C∞(Rd;V ), we have

lim
t→∞

sup
0≤s≤T

|εt,t+sf | = 0 a.s.,

then the time-changed process, given by R+ → P(Rd;V ), t 7→ µh(t) is a.s. an asymptotic pseudotrajectory
for Φ (for the weak topology of measures).

Proof. The family (µt, t ≥ 0) is a.s. tight and by Prokhorov’s theorem (because P(Rd;V ) is a Polish space),
it is equivalent to the relative compactness of (µt, t ≥ 0). Benaïm [?] (theorem 3.2) asserts that a continuous
map ν : R+ → P(Rd;V ) is an asymptotic pseudotrajectory for the semiflow Φ if and only if ν is (weakly)
uniformly continuous and every limit point of {ν(t + ·); t ≥ 0} is an orbit of Φ. We first show that µh(t) is
uniformly continuous. By definition of µt, we have

|µh(t+s)f − µh(t)f | ≤
∫ t+s

t

(
|µh(u)f |+ |f(Xh(u))|

)
du.

As asymptotically µt ∈ Pβ(Rd;V ) a.s., we get for all t large enough

|µh(t+s)f − µh(t)f | ≤ 2βs||f ||V . (5.3)

We put these estimates in (??) and the uniform continuity follows. As a.s. µh(t) belongs to a compact set
(for t large enough), Ascoli’s theorem implies that there exist an increasing sequence (tn)n and µ̃ ∈ P(Rd;V )
such that (µh(tn+s), s ≥ 0) converges weakly to (µ̃s, s ≥ 0). Then, we have µh(tn+s) = µh(tn) + εtn,tn+s +
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20 A. Kurtzmann∫ tn+s

tn

(
Π(µh(u))− µh(u)

)
du. As µh(tn+·) converges weakly to µ̃ and εtn,tn+· goes to 0, the limit µ̃ satisfies

(??).
Suppose that µh(t) is not an asymptotic pseudotrajectory for Φ. It means that:

∃T > 0,∃ε0 > 0,∃tn ↑ ∞,∃sn ∈ [0, T ] such that d(µh(tn+sn),Φsn(µh(tn)) ≥ ε0.

It implies, denoting by s the limit of sn and µ̃ the limit of µh(tn), that d(µ̃s,Φs(µ̃)) ≥ ε0, which contradicts
that µ̃ is an orbit of Φ.

Remark 5.5. Combine Proposition ?? with Lemma ?? to deduce Theorem ??: Px,r,µ-a.s., the function
t 7→ µh(t) is an asymptotic pseudotrajectory for Φ.

5.3. Back to the dynamical system: a global attractor for the semiflow

As explained in Section ??, we will consider for now on the semiflow Φ with the weak topology. A good
candidate to be an attractor of the semiflow is the ω-limit set of (µt)

ω(µt, t ≥ 0) :=
⋂
t≥0

{µs; s ≥ t} (5.4)

which is (a.s.) weakly compact, since it is contained in Pβ(Rd;V ) a.s.
We introduce here a crucial set to analyse the dynamical system Φ. Let

Im(Π) :=
{

Π(µ);µ ∈ P(Rd;V )
}
, (5.5)

and denote its convex hull by Îm(Π).

Proposition 5.6. Îm(Π) is a positively invariant set for the semiflow Φ and contains every negatively
invariant bounded subset of P(Rd;V ).

Proof. By Jensen’s inequality applied to the convex combination Φt(µ) = e−tµ+ e−t
∫ t

0
esΠ(Φs(µ)) ds and

to the convex map µ 7→ dV (µ, Îm(Π)), we show, for every µ ∈ P(Rd;V ) and every t ≥ 0, that

dV
(

Φt(µ), Îm(Π)
)
≤ e−tdV

(
µ, Îm(Π)

)
, (5.6)

where dV (µ,X) := inf{‖µ − ν‖V ; ν ∈ X}. So, for any negatively invariant bounded subset A of P(Rd;V ),
we get for all t ≥ 0: dV

(
A, Îm(Π)

)
≤ dV

(
Φt(A), Îm(Π)

)
≤ e−tdV

(
A, Îm(Π)

)
.

Now, we need to recall a short list of important definitions coming from the theory of Dynamical Systems.

Definition 5.7. a) A subset A of P(Rd;V ) is an attracting set (respectively attractor) for Φ provided:

1. A is nonempty, weakly compact and positively invariant, (respectively invariant) and
2. A has a neighborhood N ⊂ P(Rd;V ) such that d(Φt(µ), A)→ 0 as t→ +∞ uniformly in µ ∈ N .

b) The basin of attraction of an attractor K ⊂ A for Φ|A = (Φt|A)t is the positively invariant open set
(in A) comprising all points whose orbits are asymptotically in K:

B(K,Φ|A) := {µ ∈ A; lim
t→∞

d(Φt(µ),K) = 0}.

c) A global attracting set (respectively global attractor) is an attracting set (respectively attractor) whose
basin is the whole space P(Rd;V ).

d) An attractor-free set is a nonempty compact invariant set A such that Φ|A has no attractor except A
itself.
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Our aim is now to describe the limit set of µt and find a global attracting set for Φ. The natural candidate
is the set ω(µt, t ≥ 0). First, we describe it dynamically.

Theorem 5.8. The ω-limit set of {µt, t ≥ 0} is Px,r,µ-almost surely an attractor-free set of Φ.

Proof. It results from Theorem ?? and [?].

Corollary 5.9. Px,r,µ
(

lim
t→+∞

|Xt| = +∞
)

= 1.

Proof. Let A be a open subset of Rd such that γ(A) > 0. Since the measure γ is diffusive, for all ν ∈
Îm(Π) ∩ ω(µt, t ≥ 0), there exist m,M > 0 such that mγ ≤ ν ≤Mγ. If we consider a sequence (νtn , n ≥ 0)
in P(P(Rd;V )), the limits of its convergent subsequences will belong to Îm(Π) ∩ ω(µt, t ≥ 0), because
ω(µt, t ≥ 0) is a.s. an attractor-free set of Φ. Thus, there exists a subsequence (νtnk ) such that a.s. νtnk
converges (weakly) to ν: for any smooth function ϕ of compact support, we have that νtn(ϕ) converges to
ν(ϕ). If we consider a function ϕ such that ϕ(x) = 1 for x ∈ A and ϕ(x) = 0 for x /∈ B, A ⊂ B, we find that
ν(ϕ) ≥ ν(A) > 0. Thus

ν(B) ≥ lim sup νt(ϕ) ≥ lim inf νt(ϕ) ≥ ν(A) ≥ mγ(A).

So,
∫ tn

0
δXs(A)ds is asymptotically equivalent to tnmγ(A), which in turn gives

∫∞
0
δXs(A)ds =∞ a.s. Then,

for all K > 0,
∫∞

0
δXs(Rd \BK)ds =∞ a.s., where BK is the closed ball of radius K. Finally,

Px,r,µ

(⋂
K

{∫ ∞
0

1l{|Xs|≥K}ds =∞
})

= 1.

Second, we consider the (nonempty) set Îm(Π) ∩ ω(µt, t ≥ 0).

Theorem 5.10. The set Îm(Π) ∩ ω(µt, t ≥ 0) is a.s. a global attracting set for Φ.

Proof. We begin to notice that Îm(Π) ∩ ω(µt, t ≥ 0) is weakly compact a.s. and by definition, it is also
positively invariant. Let µ ∈ ω(µt, t ≥ 0). Since ω(µt, t ≥ 0) is an attractor-free set for Φ, for all s ≥ 0, we
have Φs(µ) ∈ ω(µt, t ≥ 0). By Proposition ??, we know that lim

s→∞
d(Φs(µ), Îm(Π)) = 0 (uniformly in µ). So,

d(Φs(µ), ω(µt, t ≥ 0) ∩ Îm(Π)) converges to 0 uniformly in µ. Using again Jensen’s inequality, we show that
the basin of attraction of Φ is the whole space.

Corollary 5.11. ω(µt, t ≥ 0) is a.s. a subset of Îm(Π).

Proof. As ω(µt, t ≥ 0) is attractor-free, Theorem ?? implies that ω(µt, t ≥ 0) is the only attractor of Φ
restricted to this set. So, Îm(Π) ∩ ω(µt, t ≥ 0) = ω(µt, t ≥ 0).

When W is symmetric, we can give a better description of ω(µt, t ≥ 0). Let begin with the following:

Theorem 5.12. (Tromba [?]) Let B be a C∞ Banach manifold, F a C∞ vector field on B and I : B → R a
C∞ function. Assume that:

1. DI(µ) = 0 if and only if F (µ) = 0;
2. F−1(0) is compact;
3. for each µ ∈ F−1(0), DI(µ) is a Fredholm operator.

Then I(F−1(0)) has an empty interior.
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Proposition 5.13. ([?], proposition 6.4) Let Λ be a compact invariant set for a semiflow Φ on a metric
space E. Assume that there exists a continuous function V : E → R such that:

1. V(Φt(x)) < V(x) for x ∈ E\Λ and t > 0;
2. V(Φt(x)) = V(x) for x ∈ Λ and t > 0.

If V has an empty interior, then every attractor-free set A for Φ is contained in Λ. Furthermore, V restricted
to A is constant.

Proof of Theorem ??. The fixed points of Π form a nonempty compact subset of P(Rd;V ) thanks to
Proposition ??. Let F (µ) := Π(µ) − µ. We already know that F−1(0) is compact for the weak topology.
If we show that I(F−1(0)) has an empty interior, then the result is a consequence of Proposition ?? with
the Lyapunov function I = F ◦ Π. Let µ ∈ F−1(0) and prove that DF (µ) is a Fredholm operator. Let
ν ∈ Pβ(Rd;V ). By Lemma ??, there exists a constant C(β) such that ‖DF (µ) · ν‖V ≤ C(β)‖ν‖V . So, the
set {DF (µ) · ν; ‖ν‖V ≤ 1} is a.s. bounded. For x, y ∈ Rd, we get

|DF (µ) · ν(x)−DF (µ) · ν(y)| ≤ 2|W ∗ ν(x)Π(µ)(x)−W ∗ ν(y)Π(µ)(y)|

+ 2
∫
W ∗ νdΠ(ν)|(Π(µ)(x)−Π(µ)(y))|

≤ M [|V (x)− V (y)|+ |µ(x)− µ(y)|
+ ‖µ‖V (|x− y|+ ‖W (y, ·)−W (x, ·)‖V )]

So, the map DF (µ) ·ν (‖ν‖V ≤ 1) is equicontinuous and by Ascoli’s theorem, we conclude that the preceding
set is relatively compact in C0(Rd;V ) and thus the operator DF (µ) is compact. Moreover, it is self-adjoint.
It follows from the spectral theory of compact self-adjoint operators that DF has at most countably many
real eigenvalues and the set of nonzero eigenvalues is either finite or can be ordered as |λ1| > |λ2| > . . . > 0
with lim

n→∞
λn = 0. So, by Tromba, I(F−1(0)) has an empty interior.

6. Illustration in dimension d = 2

When W is not symmetric, it can happen that no Lyapunov function exists and that the ω-limit set is a
non trivial orbit. Suppose for instance that (for d = 2) W (x, y) = (x,Ry) where R is a rotation matrix and
V (x) = V (|x|) ≥ a|x|4 + b|x|2 + 1 (with a, b ≥ 1). Note, that the measure γ(dx) = e−2V (x)dx/Z is invariant
by rotation. Then, one expects, depending on R and V , that either the unique invariant set for the semiflow
is {γ} and so a.s. µt converges to γ ; or a.s. µt converges to a random measure, related to the critical points
of the free energy ; or ω(µt, t ≥ 0) is a periodic orbit related to γ. Remark that, equivalently considering

W (x, y) + 1
2 (b|x|2 + |y|2/b) or W , the set of conditions (H) is satisfied. Denote p :=

(
1
0

)
.

Lemma 6.1. ([?], lemma 4.6) For all continuous ϕ : R→ R, for all y ∈ S1 we have∫
R2

[ϕ((x, y))− ϕ((x, p))] γ(dx) =
∫

R2
ϕ((x, y))(x− (x, y)y)γ(dx) = 0.

Proof. For all y ∈ S1, there exists g ∈ O(2) such that y = gp. We show the first equality by a change of
variable in the integral (because V (x) = V (|x|)). Define φ(y) :=

∫
R2 ϕ((x, y))(x − (x, y)y)γ(dx). We have

(φ(y), y) = 0 and the rotation-invariance of γ implies for the antisymmetry matrix j, that φ(p) = jφ(p). So,
φ(p) = 0 and thus φ(y) = 0.

For any µ ∈ P(R2;V ), define its mean by µ̄ :=
∫

R2 xµ(dx). Let the probability measure

Π̄(µ̄)(dx) :=
e−2(x,Rµ̄)

Z(µ̄)
γ(dx). (6.1)
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Here, Π̄(µ̄) = Π(µ). If we let Π(µ) :=
∫

R2 xΠ̄(µ)(dx), then Φ̄t(µ) is readily the semiflow

Φ̄t(µ) = e−tµ̄+ e−t
∫ t

0

esΠ(Φ̄s(µ))ds, Φ̄0(µ) = µ̄. (6.2)

Lemma 6.2. Let m = ρv with ρ ≥ 0 and v ∈ S1. Then, we get

Π(m) =
∫

R2
xΠ̄(m)(dx) = −1

2
d
dρ

log
(∫

R2
e−2ρ(x,v)γ(dx)

)
Rv.

Proof. It follows from differentiating the function α 7→ log
(∫

R2 e
−2α(x,v)γ(dx)

)
and Lemma ??.

Let m = ρv be the solution to ṁ = Π(m) −m, with ρ = |m| and v ∈ S1. Then, Lemma ?? implies that
v̇ = 0. If we let α = 2ρ, then α satisfies the one-dimensional ODE

α̇ = J(α) = −α+ 2∂α log
(∫

R2
e−α(x,Rp)γ(dx)

)
. (6.3)

The problem expressed in polar coordinates becomes J(α) = −α
(

1− 2 H̃(α)
H(α)

)
, where

H(α) :=
∫ ∞

0

dργ(ρ)
∫ 2π

0

dve−αρ cos v,

H̃(α) :=
∫ ∞

0

dργ(ρ)ρ2

∫ 2π

0

dv sin2 ve−αρ cos v.

Remark 6.3. The function t 7→
∫ 2π

0
e−t cos vdv is the Bessel function I0(t).

6.1. The case R = −Id

Here, W is a symmetric function.

Proposition 6.4. If
∫∞

0
ρ2γ(ρ)dρ ≤ 1, then 0 is the unique equilibrium of (??) and 0 is stable. Its basin

of attraction is R+.
If
∫∞

0
ρ2γ(ρ)dρ > 1, then 0 is linearly unstable and there is another stable equilibrium α1, whose basin of

attraction is R∗+.

Proof. Remark, that J is C∞. A computation yields to

J (3)(α) = 2
H(4)(α)
H(α)

− 8
H(3)H ′(α)
H2(α)

+ 24
H ′′(α)
H(α)

(
H ′(α)
H(α)

)2

− 12
(
H ′(α)
H(α)

)4

.

The point is to determine the sign of J (3). This function corresponds to (twice) the kurtosis of the projection
on the first coordinate of a random variable X (expressed in polar coordinates) having the law γ. As the
graph of the symmetric part of the density function cuts exactly twice the graph of the corresponding
Gaussian variable (with same mean and variance), the kurtosis of X is negative: J (3)(α) < 0 for α > 0 and
J (3)(0) = 0. So, for all α ≥ 0, we have J ′′(α) ≤ J ′′(0) = 0. Similarly, we find

J ′(α) ≤ J ′(0) = −1 +
∫ ∞

0

ρ2γ(ρ)dρ.

So, if J ′(0) ≤ 0, then J decreases and, as J(0) = 0, the first result follows. Else J ′(0) > 0. As J ′ is
monotonic and lim

α→∞
J ′(α) = −1, by continuity of J ′, there exists α0 > 0 such that J ′(α0) = 0. Moreover, we

have lim
α→∞

J(α) = −∞. Finally, there exists a positive solution to J(α) = 0 if and only if
∫∞

0
ρ2γ(ρ)dρ > 1.

In that case, 0 is unstable and there exists a stable equilibrium.
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The next result shows that we can reduce the problem in studying the semiflow generated by (??) and
then deduce the same (asymptotic) statements for µ.

Lemma 6.5. ([?] proposition 3.9-corollary 3.10) 1) Let L ⊂ Pβ(Rd;V ) be an attractor-free set for Φ and
A ⊂ Pβ(Rd;V ) an attractor for Φ, with basin of attraction B(A). If L ∩B(A) 6= ∅, then L ⊂ A.
2) Let (E, d) be a metric space, Φ̄ : E × R → E a semiflow on E and G : Pβ(Rd;V ) → E a continuous
function. Assume that G ◦ Φt = Φ̄t ◦G. Then, almost surely G(ω(µt, t ≥ 0)) is attractor-free for Φ̄.

We can now state and prove the following

Theorem 6.6. Consider the self-interacting diffusion on R2, where W (x, y) = −(x, y). Then, we have two
different cases:

1. If
∫∞

0
dργ(ρ)ρ2 ≤ 1, then a.s. µt

w−→ γ;
2. If

∫∞
0

dργ(ρ)ρ2 > 1, then there exists a random variable v ∈ S1 such that a.s. µt
w−→ µv∞ with

µv∞(dx) =
eα1(x,v)

Z1
γ(dx),

where α1 is the unique positive solution to J(α) = −α+ 2H
′(α)

H(α) = 0.

Proof. Let G : Pβ(R2;V )→ R2 be the mapping defined by G(µ) = µ̄. By Lemma ??, the limit set of µ̄t is
a.s. attractor-free for Φ̄. If

∫∞
0

dργ(ρ)ρ2 ≤ 1, then 0 is a global attractor for the semiflow generated by Φ̄.
So, each attractor-free set of Φ̄ reduces to 0, and a.s. µ̄t → 0 and ω(µt, t ≥ 0) ⊂ G−1(0). The definitions of
Π̄(µ̄) and J imply that G−1(0) is invariant for Φ and, as Π(Φt

∣∣
G−1(0)

(µ)) = γ, we have

Φ
∣∣
G−1(0)

(µ) = e−t(µ− γ) + γ.

So, γ is a global attractor for Φ
∣∣
G−1(0)

and each attractor-free set reduces to γ. By Theorem ??, we conclude
that ω(µt, t ≥ 0) = {γ}.

Suppose now that 0 is unstable for Π− Id. For all f ∈ C∞(R2;V ), it holds

d
dt
µh(t)f = −µh(t)f + Π(µh(t))f +

d
ds
εt,t+s

∣∣
s=0

f.

If we consider the projection map Pi(x) = xi, then ∂tµ̄h(t) = Π(µ̄h(t))− µ̄h(t)) + ηt where ηt is the random
vector ηt = d

dsεt,t+s
∣∣
s=0

(P1, P2)T . As 0 is an unstable linear equilibrium for Π−Id, by Tarrès [?] we get that
P
(
limt→∞ µ̄h(t) = 0

)
= 0. Using Theorem ??, we obtain that lim

t→∞
sup

0≤s≤T
|µ̄h(t+s) − Φ̄s(µ̄h(t))| = 0. Denote

by α1 the unique positive solution to −α+ 2H
′(α)

H(α) = 0 and consider the Φ̄-invariant set A := {m = ρv; ρ =
α1
2 , v ∈ S1}. By Lemma ??, the limit set of µ̄h(t) is attractor-free, so ω(µ̄h(t), t ≥ 0) either reduces to {0},
or is included in A. But, as P

(
lim
t→∞

µ̄h(t) = 0
)

= 0, it is a.s. a subset of A. Finally, as v̇ = 0, we have

Φ̄t
∣∣
A

= Id
∣∣
A
and so, µ̄h(t) is a Cauchy sequence in A. Then, there exists v ∈ S1 such that

lim
t→∞
|µ̄h(t) − α1v| = 0.

To conclude, on one side, ω(µt, t ≥ 0) is an attractor-free set for Φ
∣∣
G−1(α1v)

and on the other side, the
semiflow Φ

∣∣
G−1(α1v)

admits µv∞ as a global attractor. This leads to ω(µt, t ≥ 0) = µv∞.

6.2. When R is a rotation

We assume that R is the rotation matrix R =
(

cos θ sin θ
− sin θ cos θ

)
, with 0 ≤ θ < 2π. We emphasize that

(unless θ = 0, π) W is not a symmetric function. We state and prove a more precise version of Theorem ??.
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Theorem 6.7. Consider the self-interacting diffusion on R2 associated with W (x, y) = (x,Ry). Then one
of the following holds:

1. If V is such that
∫∞

0
ρ2γ(ρ)dρ(cos θ) > −1, then a.s. µt

w−→ γ;
2. If V is such that

∫∞
0
ρ2γ(ρ)dρ(cos θ) ≤ −1, then:

a) if θ = π, then there exists a random variable v ∈ S1 such that a.s. µt
w−→ µv∞ with µv∞(dx) =

eα1(x,v)

Z1
γ(dx), where α1 is the unique positive solution to −α+ 2H

′(α)
H(α) = 0,

b) if θ 6= π, then ω(µt, t ≥ 0) = {ν(δ), 0 ≤ δ < 2π} a.s., where ν(δ) = 1
eTθ−1

∫ Tθ
0
esµv,θ∞ ds, with

Tθ = 2π(tan θ)−1 and µv,θ∞ is the unique positive solution to −α+ 2 cos θH
′(α)

H(α) = 0.

Proof. Let v = gp with g ∈ O(2) and m = αv/2. We remind the equations

α̇ = −α− 2
H ′(α)
H(α)

(Rv, v); v̇ = − 2
α

H ′(α)
H(α)

((Rv, v)v −Rv) .

By definition of R and v =
(
− sinσ
cosσ

)
, a simple computation yields to

α̇ = −α− 2H ′(α)
H(α)

cos θ; σ̇ = −2H ′(α)
αH(α)

sin θ. (6.4)

We recall that H′(α)
H(α) > 0 for α > 0. By Proposition ??, we have a bifurcation: if cos θ

∫∞
0
γ(dρ)ρ2 ≥ 1, then

the set {(σ, α); α̇ = 0} is a global attracting set for the semiflow generated by (??) and so a.s. µt → γ. Let
αθ be such that α̇θ = 0. If cos θ

∫∞
0
γ(dρ)ρ2 < 1, then Ã := {(σ, α);α = αθ} is a global attracting set. On

Ã, the dynamics is given by

σ̇ = − 2H ′(αθ)
αθH(αθ)

sin θ = tan θ.

By Theorem ??, there exists a random variable σ0 such that a.s.

lim
t→∞

∣∣∣µ̄h(t) −
αθ
2
v(t tan θ + σ0)

∣∣∣ = 0. (6.5)

At that point, we know the dynamics on the set Ã. But, we need to study the system defined onM(R2;V )×R2

by

ṁ = −m+ Π̄(m); ν̇ = −ν + Π̄(m).

By Lemma ??, ω(µt, t ≥ 0)× Ã is attractor-free for the preceding semiflow restricted to P(R2;V )×R2. The
dynamics on ω(µt, t ≥ 0)× Ã is given by

σ̇ = tan θ; ν̇ = −ν + f(σ) = −ν + µv,θ∞ . (6.6)

As the set ω(µt, t ≥ 0) × Ã is (weakly) compact and invariant in P(R2;V ) × R2, we conclude similarly to
[?] (theorem 4.11).
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