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This paper deals with some self-interacting diffusions (Xt, t ≥ 0) living on R d . These diffusions are solutions to stochastic differential equations: dXt = dBt -g(t)∇V (Xt -µ t )dt, where µ t is the empirical mean of the process X, V is an asymptotically strictly convex potential and g is a given function. We study the ergodic behaviour of X and prove that it is strongly related to g. Actually, we show that X is ergodic (in the limit-quotient sense) if and only if µ t converges a.s. We also give some conditions (on g and V ) for the almost sure convergence of X.

Introduction

Processes with path-interaction have been an intensive research area since the seminal work of Norris, Rogers and Williams [START_REF] Norris | Self-avoiding random walk: a Brownian motion model with local time drift[END_REF]. More precisely, selfinteracting diffusions have been first introduced by Durrett and Rogers [START_REF] Durrett | Asymptotic behaviour of Brownian polymers[END_REF] under the name of Brownian polymers. They proposed a model for the shape of a growing polymer. Denoting by X t the location of the end of the polymer at time t, X satisfies a SDE with a drift term depending on its own occupation measure (in dimension 1, we define it through the local time of X). One is then interested in rescaling X (see [START_REF] Cranston | Self-attracting diffusions: two cases studies[END_REF][START_REF] Cranston | The strong law of large numbers for a Brownian polymer[END_REF][START_REF] Roynette | Boundedness and convergence of some selfinteracting diffusions[END_REF][START_REF] Mountford | An asymptotic result for Brownian polymers[END_REF][START_REF] Raimond | Self-attracting diffusions: case of constant interaction[END_REF]). Later, another model of polymers has been proposed by Benaïm, Ledoux and Raimond [START_REF] Benaïm | Self-interacting diffusions[END_REF]. They have studied a class of self-interacting diffusions depending on the empirical measure. When the process is living on a compact Riemannian manifold, they have proved that the asymptotic behaviour of the empirical measure can be related to the analysis of some deterministic dynamical flow defined on the space of the Borel probability measures. Benaïm and Raimond [START_REF] Benaïm | Self-interacting diffusions III: symmetric interactions[END_REF] went further in this study and in particular, they gave sufficient conditions for the a.s. convergence of the empirical measure. Very recently, Raimond [START_REF] Raimond | Self-interacting diffusions: a simulated annealing version[END_REF] has generalized the previous work: he has studied the asymptotic properties of a process X, living on a Riemannian compact manifold M , solution to the SDE dX t = dB t -g(t)∇V * µ t (X t )dt, (

with V * µ t (x) = 1 t t 0 V (x, X s )ds, µ t = 1 t t 0 δ Xs ds, |g(t)| ≤ a log(t) and g (t) = O(t -γ ) with 0 < γ ≤ 1. He has proved that, unless g is constant, the approximation of µ t by a deterministic flow is no longer valid. He has more particularly investigated the example M = S n and V (x, y) = -cos d(x, y) (where d is the geodesic distance on S n ) and proved that a.s. µ t converges weakly towards a Dirac measure. For an overview on reinforced processes, we refer the reader to Pemantle's survey [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF].

In the present paper, we are concerned with some self-interacting processes living on R d . Consider a smooth potential V : R d → R + and an application g : R + → R * + . Our goal is to study the ergodic behaviour of the self-interacting diffusion X solution to dX t = dB t -g(t)∇V (X t -µ t )dt, X 0 = x.

(1.2)

where B is a standard Brownian motion and µ t denotes the empirical mean of X:

µ t = 1 r + t r μ + t 0 X s ds , µ 0 = µ. (1.3)
Here µ is an initial (given) probability measure on R d , μ denotes the mean of µ and r > 0 is an initial weight (it permits to consider any initial probability measure). First, note that for a quadratic interaction potential V , the process satisfying (1.2) is exactly of the form of (1.1) and, in both cases, the occupation measure is penalized by g(t). Afterwards, a natural generalization of this process is the class of self-interacting diffusions discussed here. The interesting point is that we manage to study precisely the asymptotic behaviour of X and prove a convergence criterion. Moreover, this model could be used to represent the behaviour of social insects, as the ants trails. Indeed, ants mark their paths with the trails' pheromones. Certain ants lay down an initial trail of pheromones as they return to the nest with food. This trail attracts other ants and serves as a guide. As long as the food source remains, the pheromone trail will be continually renewed. Despite the quick evaporation, the path is reinforced and so, the ants manage to gradually find the best route. In this (simplified) model, the function g reflects the speed of evaporation and X denotes the trail.

In order to study the solution to (1.2), it is natural to introduce the process Y , defined by

Y t = X t -µ t . (1.4) It is easily seen that (Y t , t ≥ 0) is the solution to the SDE dY t = dB t -g(t)∇V (Y t )dt -Y t dt r + t , Y 0 = x -µ; (1.5) and dµ t = Y t dt r+t .
As Y is a (non-homogeneous) Markov process, it is easier to study Y than X. Indeed, we will prove that Y converges a.s. and satisfies the pointwise ergodic theorem. Due to that, the behaviour of X could seem a bit easy at first glance. But it really shows unexpected behaviours and, in particular, it does not satisfy the pointwise ergodic theorem in general (because µ t does not converge, except for functions g going fast to infinity). This explains how difficult is the study of more general self-interacting diffusions in non-compact spaces (see Kurtzmann [START_REF] Kurtzmann | The ODE method for some self-interacting diffusions on R d[END_REF]), driven by the generic equation dX t = dB t -R d ∇V (X t , x)dµ t (x)dt. The remainder of the paper is organized as follows. First, we enumerate the hypotheses and state the main results in Section 2. We motivate our study, in Section 3, by the basic case when V is quadratic, for which we have an explicit expression of X (in terms of Brownian martingale). Section 4 deals with the description of the behaviour of Y near the local extrema of V . Finally, Section 5 is devoted to the proof of the main results.

Technical assumptions and main results

In the sequel, (•, •) stands for the Euclidian scalar product. We also denote by P(R d ) the set of probability measures on R d .

Consider the potential V : R d → R + . Let M ax = {M 1 , . . . , M p } be the (finite) set of saddle points and local maxima of V and denote by M in = {m 1 , . . . , m n } the (finite) set of the local minima of V . So M in ∪ M ax is the set of critical points of V . We assume that V is either quadratic (Section 3) or:

1) (regularity and positivity) V ∈ C 2 (R d ) and V > 0;

2) (convexity) V = W + χ where χ is a compactly supported function such that ∇χ is C-Lipschitz (with C > 0) and there exists c > 0 such that ∇ 2 W ≥ cId; 3) (growth) there exists a > 0 such that for all x ∈ R d , we have ∆V (x) ≤ aV (x) and lim

|x|→∞ |∇V (x)| 2 V (x) = ∞; (2.1) 4) (critical points) ∀m i , ∀ξ ∈ R d , (∇ 2 V (m i )ξ, ξ) > 0 and for all M i , ∇ 2 V (M i ) admits a negative eigenvalue. Remark 2.1. By the growth condition (2.1), |∇V | 2 -∆V is bounded by below.
Suppose also that g : R + → R + is nondecreasing and g ∈ C 1 (R + ). We denote by g(∞) the limit of g(t) and we exclude the trivial case where g is identically zero, so that g(∞) > 0. Let G(t) := t 0 g(s)ds and G -1 be its generalized inverse:

G -1 (t) := inf{u ≥ 0; G(u) ≥ t}. Remark 2.2. If g(∞) = ∞, then for all T > 0, we have that G -1 (t + T ) - G -1 (t) -→ t→∞ 0.
The following easy result will be very useful in the sequel.

Lemma 2.3. Suppose that g (t)/g 2 (t) converges to 0. Then the following hold: i) for any c > 0, t 0 s 2 e 2cG(s) ds = O(t 2 e 2cG(t) /g(t)); ii) if g(∞) = ∞, then we have

t 0 g (s) g(s) 2 G(s)ds = O(t); iii) for H(t) := t 0 e -cG(u)
(r+u) 2 du, the following expansion holds:

H(t) = H(∞) - 1 cg(t)(r + t) 2 e -cG(t) + o e -cG(t) t 2 g(t)
.

Proof. We deduce all these estimates from an integration by parts:

t 0 s 2 e 2cG(s) ds = t 2 e 2cG(t) 2cg(t) - t 0 s g(s) - s 2 g (s) 2g(s) 2 e 2cG(s) c ds = O(t 2 e 2cG(t) /g(t)),
and we obtain H(t)-H(s) = e -cG(s) r+s -e -cG(t) r+t -c t s g(u)e -cG(u) du r+u . Similarly for t large enough and u such that g(u) > 0, we find

t u g (s) g(s) 2 G(s)ds = -G(t) g(t) + G(u) g(u) + t -u = O(t).
2.1. Existence. We begin by proving that the SDE studied admits a unique global strong solution.

Proposition 2.4. For any x ∈ R d , µ ∈ P(R d ) and r > 0, there exists a unique global strong solution (X t , t ≥ 0) of (1.2).

Proof. The local existence and uniqueness of the solution to (1.2) is standard. We only need to prove here that Y , hence X (since X t := Y t + t 0 Y s ds r+s ), does not explode in a finite time. To this aim, apply Itô's formula to the function x → V (x):

dV (Y t ) = (∇V (Y t ), dB t ) + 1 2 ∆V (Y t ) -g(t)|∇V (Y t )| 2 - 1 r + t (∇V (Y t ), Y t ) dt,
and introduce the sequence of stopping times τ 0 = 0 and

τ n = inf{t ≥ 0; V (Y t ) + t 0 g(s)|∇V (Y s )| 2 ds > n}.
By --→ f dµ ∞ . Theorem 2.6.

(1) The process Y satisfies the pointwise ergodic theorem: almost surely, the empirical measure of Y converges weakly to a measure, which is a convex combination of Dirac measures taken in the local minima of V .

(2) The process X satisfies the pointwise ergodic theorem if and only if the mean-process µ t converges almost surely.

A necessary condition for the convergence of µ t is that 0 is the unique minimum of V . We will prove this result in §5. 

A motivating example

We consider V (x) = 1 2 (x, cx), where c is a symmetric positive definite matrix. Let X be the solution of the SDE

dX t = dB t -g(t) cX t - r r + t cµ - 1 r + t t 0 cX s ds dt, X 0 = x. (3.1)
Without any loss of generality, we suppose that d = 1. When d ≥ 1, it suffices to diagonalize the matrix c and to remark that, for an orthogonal matrix U , the process (U • B s , s ≥ 0) is also a Brownian motion.

Explicit expression of X.

Lemma 3.1. If X is the solution to (3.1), then we have

Y t := X t -μt = e -cG(t) r + t t 0 (r + s)e cG(s) dB s + r(x -µ) .
Proof. The process Y satisfies

dY t = dB t -cg(t) + 1 r + t Y t dt, Y 0 = x -µ. (3.2)
To express Y in terms of a Brownian martingale, we consider the function of Y defined by U t := (r + t)e cG(t) Y t . Then Itô's formula implies

dU t = (r + t)e cG(t) dB t , U 0 = r(x -µ). Corollary 3.2. Let F (t) = t 0 e -cG(s) g(s)
r+s ds. The solution to the SDE (3.1) is given by

X t = x + rc(µ -x)F (t) + t 0 1 -(r + s)ce cG(s) (F (t) -F (s)) dB s .
Proof. Remark that d dt µ t = Yt r+t . So, by Fubini's theorem for stochastic integrals (see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p.175), we have

µ t = t 0 (r + s)e cG(s) (H(t) -H(s))dB s + r(x -μ)H(t) + μ with H(t) = t 0 e -cG(u) (r+u) 2 du = 1 r -cF (t) -e -cG(t)
r+t . As X t = Y t + µ t , the latter result implies the desired expression.

3.2. Ergodic result. We begin to prove the pointwise ergodic theorem for the following non-homogeneous (Gauss-)Markov process.

Proposition 3.3. Let a : R + → R + be a continuous function, A(t) := t 0 a(s)ds and K(t) := e -2A(t) t 0 e 2A(s) ds. Suppose that a(∞) = lim t→∞ a(t)
exists and is nonzero, so that

K(∞) = 1 2a(∞) < ∞. Consider the process dZ t = -a(t)Z t dt + dB t , Z 0 = z.
Then, denoting by γ the centered Gaussian measure with variance K(∞) (with the convention γ = δ 0 for K(∞) = 0), we have for all continuous bounded function ϕ

1 t t 0 ϕ(Z s )ds a.s.
--→ t→∞ ϕ(z)γ(dz).

Proof. We prove the result for the Fourier transform. First, note that

Z t = e -A(t) t 0 e A(s) dB s + z . Let F s := σ(B u , 0 ≤ u ≤ s). Knowing F s , Z t has the Gaussian dis- tribution with mean m(s, t) := e -(A(t)-A(s)) Z s and variance K(s, t) := e -2A(t) t s e 2A(u) du. Fix t ∈ R + , u ∈ R and define the martingale M t,u s := E e iuZt |F s = exp ium(s, t) -u 2 2 K(s, t) . Applying Itô's formula to s → M t,u
s , we find that dM t,u s = iue -(A(t)-A(s)) M t,u s dB s , and so

e iuZt = Ee iuZt + t 0 iue -(A(t)-A(s)) M t,u s dB s .
Then, by Fubini's theorem for stochastic integrals, we easily obtain

t 0 e iuZs ds = t 0 Ee iuZs ds + t 0 dB s t s iue -(A(r)-A(s)) M r,u s dr. (3.3)
As Z t is Gaussian with variance K(0, t), it converges in distribution to a Gaussian variable of law γ = N (0, K(∞)). Because of Cesàro's result, we have

lim t→∞ 1 t t 0 Ee iuZs ds = e -u 2 2 K(∞) .
We wish to find an asymptotic equivalent to the stochastic factor of (3.3).

To this aim, consider

N u s,t (v) := t s iue A(v)-A(r) M r,u v dr. First, on the set { ∞ 0 < N u •,t (s) > s ds < ∞}, the local martingale t 0 N u s,t ( 
s)dB s converges a.s. to a finite variable and so, is of the order of o(t). Actually, we decompose it as

t 0 N u s,∞ (s)dB s - t 0 N u t,∞ (s)dB s . (3.4) On the set { ∞ 0 < N u •,t ( 
s) > s ds = ∞}, the LLN for martingales implies a.s.

t 0 dB s ∞ s iue -(A(r)-A(s)) M r,u s dr = o t 0 ∞ s iue -(A(r)-A(s)) M r,u s dr 2 ds .
Indeed, we obtain the following upper bound by using the initial definition of M r,u s :

|N u s,t (s)| ≤ |u| t s e A(s)-A(r) dr = |u|e A(s) (I t -I s )
where

I t := t 0 e -A(r) dr = I ∞ -e -A(t) a(t) + o e -A(t) a(t)
, we find by the triangle inequality that t 0 e 2A(s) (I t -I s ) 2 ds = O(t). So we have

E t 0 N u t,∞ (s)dB s 2 = t 0 E(N u t,∞ (s) 2 )ds ≤ |u| 2 t 0 e 2A(s) ds(I ∞ -I t ) 2 = O(1).
Borel-Cantelli's lemma permits to conclude that 1 t t 0 N u t,∞ (s)dB s converges a.s. to 0. Theorem 3.4. Suppose that g (t)/g 2 (t) converges to 0. Then, with probability 1, the empirical measure µ t = r r+t µ + 1 r+t t 0 δ Xs ds converges weakly to µ ∞ . Moreover, the mean µ t = 1 r+t t 0 X s ds + r r+t µ also converges almost surely.

Proof. We remind that reader that g (t)/g 2 (t) converges to 0. We start by proving that μt converges a.s. Decompose the process

µ t = µ 1 t + µ 2 t + µ 3 t
where

µ 1 t = µ + r(x -µ)H(t), µ 2 t = (H(t) -H(∞)) t 0 (r + s)e cG(s) dB s , µ 3 t = t 0 (r + s)e cG(s) (H(∞) -H(s)) dB s .
The convergence of H(t) obviously implies the convergence of µ 1 t . The deterministic factor of µ 2 t is equivalent to 1 cg(t)t 2 e -cG(t) and, due to Lemma 2.3, the quadratic variation of the stochastic factor in µ 2 t is of the order of

t 2 e 2cG(t) g(t)
. By Lemma 2.3 and the law of the iterated logarithm ( [START_REF] Lépingle | Sur le comportement aymptotique des martingales locales[END_REF] Theorem 3), we finally have µ 2 t a.s.

--→ t→∞ 0. Finally, µ 3 t is a L 2 -bounded martingale and thus converges a.s. Putting all the pieces together, we conclude that µ t a.s.

--→ t→∞ µ + H(∞)r(x -µ) + ∞ 0 (r + s)e cG(s) (H(∞) -H(s)) dB s .
To show that µ t converges, we first point out that the deterministic factor of X t converges. Decompose the process X into three parts:

X t = µ ∞ + φ(t)U t + o(1)
where

µ ∞ := x + cr(µ -x)F (∞) + ∞ 0 1 -(r + s)ce cG(s) (F (∞) -F (s)) dB s , U t := e -cG(t) r + t t 0 (r + s)e cG(s) dB s , φ(t) := c(r + t) (F (∞) -F (t)) e cG(t) .
Again, we prove the result for the Fourier transform. We have the following:

1 t t 0 e iuXs ds = e iu(µ ∞ +o(1)) t t 0 e iuφ(s)Us ds.
By Proposition 3.3, φ(t)U t is ergodic. So 1 t t 0 e iuφ(s)Us ds converges a.s. Corollary 3.5. Suppose that g (t)/g 2 (t) converges to 0 and g(∞) < ∞.

Then the limit lim µ t = µ ∞ is the Gaussian measure µ ∞ = N µ ∞ , 1 2g(∞)c . 3.3.
Asymptotic behaviour of X. We prove here that, depending on g, X exhibits three different behaviours: X converges either almost surely, or in probability (and not a.s.), or it diverges. First, we describe roughly the asymptotic behaviour of X. Proposition 3.6. Suppose that g(∞) < ∞. Then we have

P lim sup t→∞ X t = +∞ = P lim inf t→∞ X t = -∞ = 1.
Proof. Let A be a non negligible subset of R. We have the asymptotic equivalence We conclude that P(lim sup t→∞ X t = +∞) = 1. The proof is the same for lim inf t→∞ X t . Proposition 3.7. Suppose that g (t)/g 2 (t) converges to 0 and g(∞) = ∞. Then X t converges in probability to a random variable X ∞ and a.s. µ t converges weakly to δ X∞ .

Proof. As Y is Gaussian and E(Y 2 t ) = O(g(t) -1 ), it converges in L 2 and so in probability to 0. Decomposing X as X t = Y t + t 0 Y s ds r+s , it remains to show that the previous integral converges in probability. Using the explicit form of Y , Fubini's theorem for stochastic integrals ensures

t 0 Y s ds r + s = r(x-μ) t 0 e -cG(s) ds (r + s) 2 + t 0 (r+u)e cG(u) t u e -cG(s) ds (r + s) 2 dB u .
The quadratic variation of the Brownian integral converges by Lemma 2.3 and thus X converges to X ∞ in L 2 . Remark that the law of the iterated logarithm does not imply here that X converges a.s. since we do not know whether log G(t)/g(t) converges to 0 or not. We then easily have that µ t converges toward δ X∞ in probability. By Theorem 3.4, a.s. µ t converges (weakly) and so we conclude.

Proposition 3.8. Suppose that g (t)/g 2 (t) converges to 0 and g(t) -1 log G(t) is bounded for t large enough. Then there exists C > 0 such that

P(lim sup t→∞ |Y t | ≤ C) = 1.
Proof. We write Y as a Brownian (local) martingale: Y t = e -cG(t) r+t Y 0 + t 0 (r + s)e cG(s) dB s . To estimate the quadratic variation of Y , we use Lemma 2.3 and thus, by the law of the iterated logarithm, there exists C such that a.s. lim sup

t→∞ |Y t | ≤ C.
Corollary 3.9. Suppose that g(t) -1 log G(t) is lower bounded away from 0 and upper bounded for t large enough. Then X t is bounded a.s., converges in probability (but not a.s.) to X ∞ = µ ∞ and a.s. µ t converges weakly to δ X∞ .

Proof. Y is a.s. bounded and µ t converges a.s., so X t = Y t + µ t is also a.s. bounded. As Y t is Gaussian, it converges (in law) to a centered Gaussian variable. The latter being bounded, Y t converges in probability to 0. By the law of the iterated logarithm, Y t does not converge a.s. to 0 (since log G(t)/g(t) > 0 for large t). So, X t converges in probability to µ ∞ . We conclude by uniqueness of the limit that a.s. µ t converges weakly to δ µ ∞ . Proposition 3.10. Suppose that g (t)/g 2 (t) converges to 0 and lim t→∞ g(t) -1 log G(t) = 0. Then the process Y t := X t -µ t converges to 0 a.s. Moreover, both X t and µ t converge to µ ∞ a.s. and a.s. µ t converges weakly to δ µ ∞ .

Proof. We only need to prove that Y t := X t -µ t converges a.s. to 0. We have already seen that Y t = e -cG(t) r+t t 0 (r + s)e cG(s) dB s + r(x -µ) e -cG(t) r+t =: U t + v t . The deterministic term v t converges obviously to 0 and the law of the iterated logarithm implies that U t converges a.s. to 0. By uniqueness of the limit of µ t , we conclude that µ ∞ = δ µ ∞ .

Study of Y with respect to the critical points of V

From now on, we assume that g (t)/g 2 (t) converges to 0 (this hypothesis is only needed to study the behaviour of Y near a local minimum of V ). We study the process Y t = X t -μt , which is the solution to

dY t = dB t -g(t)∇V (Y t ) + Y t r + t dt; Y 0 = x -µ. (4.1)
More precisely, we study the behaviour of Y near the critical points of V . We show in particular, for each local minimum of V , that Y stays close to it with positive probability; whereas this probability is zero for any unstable critical point.

4.1.

Behaviour near the critical points of V .

Proposition 4.1. Almost surely, ∀ε > 0, ∀t > 0,

T ε t := inf{s ≥ t; d(Y s , M in ∪ M ax) < ε} < ∞. Proof. Let ε > 0. Applying Itô's formula to x → V (x), we obtain dV (Y t ) = (∇V (Y t ), dB t ) -g(t)|∇V (Y t )| 2 + 1 r + t (Y t , ∇V (Y t )) - 1 2 ∆V (Y t ) dt.
It then follows from the growth condition (2.1) that on the set {z; d(z, M in∪ M ax) > ε} and for t ≥ 0, the function y → Thus Y s∧T ε t gets close to M in ∪ M ax and there is a contradiction. Finally, P(T ε t < +∞) = 1 for all t > t 0 . For t ≤ t 0 , we conclude since t → T ε t is increasing. 

, V (Y s∧T ε t ) + C(s ∧ T ε t ), s ≥ t and V (Y s∧T ε t ) + C(s ∧ T ε t ) + s∧T ε t 0 g(u) - 1 2 g(∞) |∇V (Y u∧T ε t )| 2 du

4.2.

Case of a stable critical point: local minimum. We will prove that if Y 0 is near a local minimum m, then the set {Y s ; s ≥ 0} stays near m with a positive probability. Indeed, a second-order Taylor expansion permits to compare (y -m, ∇V (y)) with |y -m| 2 and we use a comparison theorem. Let m be a local minimum of V such that ∇ 2 V (m) > 0. By Taylor's formula, there exist a > 0 and ε 0 > 0 such that for all |y -m| ≤ ε 0 we have (y -m, ∇V (y)) ≥ a|y -m| 2 . Without any loss of generality, we suppose m = 0 in the proofs.

Proposition 4.3. Suppose that g(t) -1 log G(t) is bounded on R + . Let ε 0 > ε > 0.
Then, there exists a positive stopping time T 0 such that for all T > T 0 , we have, on the event {|Y T -m| < ε}, that P (∀s ≥ 0; |Y s+T -m| < ε) > 0. Moreover, for any T > T 0 , we have on the event {∀s ≥ T ; |Y s -m| < ε}:

|Y t+T -m| = O g(t + T ) -1 log G(t + T ) a.s.
Proof. Consider the time-shifted process Y t := Y t+T . Let ε > 0. We will construct a one-dimensional process U such that for all t ≥ 0, we have a.s.

| Y t | ≤ U t .
1) Suppose that d = 1. As V (m) > 0, there exists a > 0 such that for all |y| ≤ ε, yV (y) ≥ ay 2 . Introduce the nonnegative process U , unique solution to the SDE

dU t = sign ( Y t ) dB T t -ag(t + T )U t dt + dL t , U 0 = | Y 0 |, (4.3) 
where L is the local time of U in 0. Let α(t) be the function such that α(t) 0 e 2aG(s+T ) ds = t and α(0) = 0. Then, the process

A t := α(t) 0 e aG(s+T ) dL s is the local time in zero of W t = α(t) 0
e aG(s+T ) sign ( Y s ) dB T s . Denote by W + the reflected Brownian motion associated to W . Skorokhod's lemma (see [START_REF] Harrison | On the skew Brownian motion[END_REF]) then entails that e aG(α(t)+T ) U α(t) = W + t . So, the (strong) solution to (4.3) is

U t = U 0 + e -aG(t+T ) W + α -1 (t) . (4.4)
By a martingale comparison theorem, we prove that | Y t | ≤ U t a.s. (Indeed, let l be a function of class C 2 such that ∀x > 0 : l(x) > 0 and l (x) > 0, and ∀x ≤ 0 : l(x) = 0. We apply Itô's formula to l(| Y t | -U t ) to show that, on the event {| Y s | > U s }, we have l(| Y t | -U t ) ≤ 0 a.s.). Finally, as α -1 (t) = t 0 e 2aG(s+T ) ds, we conclude by the law of the iterated logarithm (LIL), that a.s. 

U t = O g(t + T ) -1 log G(t + T ) . 2) Suppose that d ≥ 2. Define τ := inf{t > 0; Y t = 0}. Itô's formula implies d| Y t∧τ | = dW t∧τ -g(t ∧ τ + T ) Y t∧τ | Y t∧τ | , ∇V ( Y t∧τ ) dt - | Y t∧τ | r + t ∧ τ + T dt + d -1 2| Y t∧τ | dt where W t = t 0 Ys | Ys| , dB T s is a standard Brownian motion. The condition ∇ 2 V (0) > 0 implies
U t = O g(t + T ) -1 log G(t + T
) . Now, we prove that P (∀s ≥ T ; |Y s -m| < ε) > 0. Let τ T := inf{s > T ; |Y s -m| > ε}. For all T < t < τ T , we have a.s. |Y t -m| ≤ U t . By the LIL applied to U , we conclude that, for T large enough, P sup s≥T U s < ε > 0 and finally P(τ T = ∞) > 0.

Corollary 4.4. Suppose that g(t) -1 log G(t) converges to 0 when t tends to infinity. Then, there exists T 0 > 0 such that for all T > T 0 , the process Y t converges almost surely to m on the event {∀s ≥ T ; |Y s -m| < ε} .

4.3.

Case of an unstable critical point: local maximum or saddle point. If M is a local maximum of V, then as ∆V (M ) < 0, ε 1 := sup{ε; ∀|y| < ε, ∆V (M + y) < 0} exists and is finite. If M is a saddle point of V , then as ∇ 2 V admits a negative eigenvalue in M , there exists an unstable direction e associated to M . Let P e : R d → Re be the projection on Re. The amount ε 2 := sup{ε; ∀|y| < ε, ∂ 2 ee V (M + y) < 0 and (∂ e V (P e (y)), ∂ e V (y)) > 0} exists and is finite.

Proposition 4.5. Let M be an unstable critical point of V . If M is a local maximum, suppose that 0 < ε < ε 1 . If M is a saddle point, suppose that 0 < ε < ε 2 .
Let T be a positive stopping time such that |Y T -M | < ε. Then

P (∀s ≥ T ; |Y s -M | < ε) = 0.
Proof. Note that T < ∞ a.s. by Proposition 4.1. Suppose that M is a local maximum and M = 0, because the method of the proof is the same for M = 0 (in that case, we have an additional term M log(t + T )). Let D(t, Y t ) be the drift term of V (Y t ). On the event A := {∀s ≥ T ; |Y s | < ε}, we obtain

D(t + T, Y t+T ) = g(t + T )|∇V (Y t+T )| 2 + (Y t+T , ∇V (Y t+T )) r + t + T - 1 2 ∆V (Y t+T ) ≥ C 1 t + T + C 2
where C 1 = 1 2 inf{(y, ∇V (y)); |y| < ε} and C 2 = -1 2 sup{∆V (y); |y| < ε} > 0. We thus find for t large enough that D(t + T, Y t+T ) ≥ C > 0 and so

E (V (Y t+T )1l A ) ≤ E (V (Y T )1l A ) -CtP(A) + o(t). (4.7) 
Finally, this last inequality is impossible (since V is positive) unless P(A) = 0.

Suppose now that M is a saddle point. We apply Itô's formula to x → V (P e (x)) and follow the previous computation with C 1 = 1 2 inf{(P e (y), ∂ e V (P e (y))); |y| < ε} and C 2 = -1 2 sup{∂ 2 ee V (P e (y)); |y| < ε} > 0.

Asymptotics

Through this section, we always suppose that g(∞) = +∞ and g (t)/g 2 (t) converges to 0, even if we do not remind the reader in the statements of the results. In particular, it implies that for all T > 0, G -1 (t + T ) -G -1 (t) goes to 0 when t tends to infinity. Proof. We show a stronger result: EV (Y t ) is bounded. For all n ∈ N, define the stopping time τ n = inf{t ≥ 0; |Y t | > n}. Then, there exists C > 0 such that we have by localization:

EV (Y t∧τn ) ≤ EV (Y 0 ) + e Ct < ∞.
Let n go to infinity and use Fatou's lemma to find, for all t ≥ 0, that V (Y t ) ∈ L 1 . For t large enough, we have that -g(t)V (x) + aV (x) ≤ -1 2 g(t)V (x). So, as W is c-strictly convex and by the growth hypothesis (2.1), the following holds for t large enough

d dt EV (Y t ) ≤ - 1 2 g(t)EV (Y t ). Now, solving u = -1 2 g(t)u leads to EV (Y t ) = O(1)
. In order to obtain the ergodic result for Y , we introduce a dynamical system φ, whose asymptotics are close to Y (see [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] for more details): Definition 5.2. The process Y is an asymptotic pseudotrajectory for the flow φ if 

∀T > 0, ∀α > 0, lim t→+∞ P sup 0≤h≤T |Y t+h -φ h (Y t )| ≥ α = 0. ( 5 
d dt φ t (x) = -∇V (φ t (x)); φ 0 (x) = x. (5.2) 
Then (Y G -1 (t) , t ≥ 0) is an asymptotic pseudotrajectory for φ.

Proof.

Let Y t = Y G -1 (t) and B t = B G -1 (t)
. We will use Markov's inequality and then prove that

lim t→∞ E sup 0≤h≤T | Y t+h -φ h ( Y t )| = 0. Define κ(t) := (r + G -1 (t))g(G -1 (t)). A simple computation yields to Y t+h -φ h ( Y t ) = B t+h -B t + h 0 ∇V (φ s ( Y t )) -∇V ( Y t+s ) ds - h 0 Y t+s ds κ(t + s)
.

Applying Itô's formula to h → e -2 Ch | Y t+h -φ h ( Y t )| 2 , we have: 1 2 e 2 Ch d(e -2 Ch | Y t+h -φ h ( Y t )| 2 ) = Y t+h -φ h ( Y t ), d B t+h + Y t+h -φ h ( Y t ), Y t+h κ(t + h) dh- -C| Y t+h -φ h ( Y t )| 2 dh+ Y t+h -φ h ( Y t ), ∇V (φ h ( Y t )) -∇V ( Y t+h ) dh+ e 2 Ch 2g(G -1 (t + h))
dh.

First, we notice that G -1 (t) = 1/g(G -1 (t)). By the convexity assumption on V , we also remark that

-C| Y t+h -φ h ( Y t )| 2 + Y t+h -φ h ( Y t ), ∇V (φ h ( Y t )) -∇V ( Y t+h ) ≤ 0,
and so we deduce the following upper bound for all 0 ≤ h ≤ T :

1 2 | Y t+h -φ h ( Y t )| 2 ≤ e 2 Ch h 0 e -2 Cs ( Y t+s -φ s ( Y t ), d B t+s ) + e 2 CT 2 G -1 (t + T ) -G -1 (t) +e 2 Ch h 0 Y t+s -φ s ( Y t ), Y t+s ds κ(t + s) . (5.3) 
To conclude, we will now find an upper bound for each right-hand term of (5.3). By BDG's inequality for the local martingale h 0 e -2 Cs ( Y t+sφ s ( Y t ), d B t+s ) and a rough upper bound for its quadratic variation, there exists α > 0 such that:

E sup 0≤h≤T h 0 e -2 Cs ( Y t+s -φ s ( Y t ), d B t+s ) ≤ α(G -1 (t+T )-G -1 (t))E sup 0≤h≤T | Y t+h -φ h ( Y t )| 2 1 2
.

We now estimate the remaining term of (5.3) by the triangle inequality. As κ is nondecreasing, we have the following bound by Lemma 5.1:

E T 0 | Y t+s | 2 κ(t + s) + | Y t+s -φ s ( Y t )| 2 κ(t + s) ds ≤ M T κ(t) + T κ(t) E sup 0≤h≤T | Y t+h -φ h ( Y t )| 2 .
So, we obtain for t large enough:

E sup 0≤h≤T | Y t+h -φ h ( Y t )| 2 ≤ 4e 4 CT (G -1 (t + T ) -G -1 (t)) + 4M e 2 CT T κ(t) ,
and the result follows since G -1 (t + T ) -G -1 (t) and 1/κ(t) converge to 0.

Lemma 5.4. Suppose that for all T > 0, G -1 (t+T )-G -1 (t) vanishes when t tends to infinity. Then, µ G -1

t := 1 t t 0 δ Y G -1 (s) ds, t ≥ 0 is a tight family of measures. Proof. It is enough to show that a.s. ϕ(t) := t 0 V (Y G -1 (s) )ds = O(t). Let A > 0 and K be a compact set such that ∀x ∈ K c , V (x) ≥ A. Then µ G -1 t (V ) ≥ Aµ G -1 t (1l K c ).
From the growth assumption (2.1), there exists a > 0 and for all ε > 0, there exists k ε such that ∆V ≤ aV and

V ≤ k ε + ε|∇V | 2 . It then yields ϕ(t) ≤ k ε t + ε t 0 |∇V (Y G -1 (s) )| 2 ds and t 0 ∆V (Y G -1 (s) )ds ≤ aϕ(t). (5.4) Applying Itô's formula to V (Y G -1 (t) ), we obtain V (Y G -1 (t) ) -V (Y 0 ) = G -1 (t) 0 (∇V (Y s ), dB s ) - t 0 (Y G -1 (s) , ∇V (Y G -1 (s) )) (r + G -1 (s))g(G -1 (s)) ds - t 0 |∇V (Y G -1 (s) )| 2 ds + 1 2 t 0 ∆V (Y G -1 (s) ) ds g(G -1 (s)) . (5.5)
Consider the (local-)martingale term of (5.5). On the set { ∞ 0 |∇V (Y s )| 2 ds < ∞}, it is bounded in L 2 and thus converges. Whereas on the set { ∞ 0 |∇V (Y s )| 2 ds = ∞}, the strong LLN implies that, for t large enough, a.s.

G -1 (t) 0 (∇V (Y s ), dB s ) ≤ 1 2 t 0 |∇V (Y G -1 (s) )| 2 ds.
By (5.5), we then find for t large enough

t 0 |∇V (Y G -1 (s) )| 2 ds ≤ t 0 ∆V (Y G -1 (s) )ds -2V (Y G -1 (t) ) + 2V (Y 0 ) -2 t 0 (Y G -1 (s) , ∇V (Y G -1 (s) )) (r + G -1 (s))g(G -1 (s)) ds ≤ aϕ(t) g(G -1 (t)) + 2V (Y 0 ) + O t 0 ds G -1 (s)g(G -1 (s))
.

So, we have a.s.

t 0 |∇V (Y G -1 (s) )| 2 ds = O(t) + aϕ(t).
Putting this result in (5.4) and choosing ε small enough, we conclude that ϕ(t) = O(t) a.s.

Theorem 5.5. The process Y satisfies the pointwise ergodic theorem. More precisely, there exist some (deterministic) constants a i ≥ 0, such that a i = 1 and µ Y t = 1 t t 0 δ Ys ds converges (for the weak convergence of measures) toward 1≤i≤n a i δ m i .

Proof. By Benaïm & Schreiber [START_REF] Benaïm | Weak asymptotic pseudotrajectories for semiflows: ergodic properties[END_REF], Proposition 5.3 implies that the limit points of the empirical measure of Y G -1 (t) are included in the set of all the "invariant measures" for d dt φ t (x) = -∇V (φ t (x)) with the initial condition φ 0 (x) = x. All these invariant measures are included in Span{δ

m 1 , • • • , δ mn , δ M 1 , • • • , δ Mp }. Let µ G -1 t = 1 t t 0 δ Y G -1 ( 
s) ds. By Lemma 5.4, the empirical measure µ G -1 t converges. One also shows that µ t is a Cauchy sequence in L 1 : there exists C > 0 such that for any s > 0,

|Eµ t+s -Eµ t | ≤ s t(t + s) t 0 E|X u |du + 1 t + s t+s t E|X u |du ≤ C s t + s . So, the limit-measure of µ G -1 t writes n i=1 a i δ m i + p i=1 b i δ M i (where a i , b i are nonnegative constants such that (a i + b i ) = 1)
. And the same result holds for µ t . Indeed, for all continuous bounded function ψ and t > s, we have (by an integration by parts)

t s ψ(Y u )du = G(t) g(t) µ G -1 G(t) ψ - G(s) g(s) µ G -1 G(s) ψ + t s g (u)G(u) g 2 (u) µ G -1 G(u) ψdu = (t -s)µ G -1 G(t) ψ + G(s) g(s) µ G -1 G(t) ψ -µ G -1 G(s) ψ + t s g (u)G(u) g 2 (u) (µ G -1 G(u) ψ -µ G -1 G(t) ψ)du.
As µ G -1 G(t) ψ converges a.s., we deduce that

µ t ψ = o(1) + µ G -1 G(t) ψ + 1 t t s g (u)G(u) g 2 (u) (µ G -1 G(u) ψ -µ G -1 G(t) ψ)du.
So, by Lemma 2.3, µ t converges. We also wish to show that b i = 0 for all i. Proposition 4.5 implies that, for an unstable critical point M , there exists a direction j such that for all ε > 0, P(∀s ≥ T, |Y

s -M (j) | ≤ ε) = 0. Consider a continuous function f , supported by a small ball (of radius α > 0) around M : f vanishes in all critical points except M and f (M ) = 1. Then, we have a.s. At this stage, we have proved that Y satisfies the pointwise ergodic theorem. The main question is whether X also satisfies the pointwise ergodic theorem or not. e i(u,Ys) e i(u,µ s ) -e i(u,µ ∞ ) ds.

The first right member converges a.s. to e i(u,µ ∞ ) 1≤p≤n e i(u,mp) . For the second right member, Cesàro asserts that it converges a.s. to 0 if and only if µ t converges a.s. 5.2. Almost sure convergence toward the local minima of V . Let 0 < ε < ε 0 and T > T 0 be as in Section 4. Let m be a local minimum of V such that |Y T -m| < ε. Lemma 5.7. If lim t→∞ g(t) -1 log G(t) = 0, then for all α > 0, we have ∞ 0 e -αg(t) dt < +∞. Proof. For all ε > 0, there exists t such that, for all s ≥ t, we have g(s) ≥ ε -1 log G(s). Moreover, there exists a > 0 such that for t large enough g(t) ≥ a and then G(t) ≥ at. So, we conclude that ∞ 1 e -ε -1 α log(at) dt < ∞ (choose for instance ε = α/2). Proposition 5.8. If g(t) -1 log G(t) converges to 0, then Y t converges a.s. and for all i, we have P lim t→∞ Y t = m i > 0 and P lim t→∞ Y t = M i = 0.

Proof. Benaïm ([1] Proposition 4.6) asserts that if -∇V (x) is a continuous globally integrable vector field, and if for all α > 0, we have ∞ 0 e -αg•G -1 (t) dt < +∞ and P(sup t |Y t | < ∞) = 1, then Y is a.s. an asymptotic pseudotrajectory for the flow induced by -∇V . Actually, the first and last conditions are fulfilled here. Moreover, as G -1 is nondecreasing, the (finite) integral ∞ 0 e -αg(t) dt is a upper bound for the preceding one. Thus, Y is a.s. an asymptotic pseudotrajectory for the flow φ defined by (5.2) and φ restricted to the limit points of Y does not admit any other attractor than the set of limit points. Finally, Y converges a.s. and its limit points are included into the set {x; ∇V (x) = 0}.

If Y converges to Y ∞ , then due to Proposition 4.5, the limit Y ∞ is not a local maximum. On the event {∀s ≥ T ; |Y s -m i | < ε}, occuring with a positive probability by Proposition 4. log G(t) = 1 a.s., we conclude that U t a.s.

--→ t→∞ 0.

Corollary 5.9. Suppose that lim g(t) -1 log G(t) = 0.

1) If V is a strictly uniformly convex function (m its unique minimum), then Y t a.s.

--→ t→∞ m.

2) A necessary condition for the almost sure convergence of Y to 0 is that the potential V admits a unique minimum at 0 (e.g. V is symmetric and strictly convex). (2) If V admits 0 as a (non-unique) local minimum, then X t converges on the event {Y t a.s.

--→ 0} and diverges elsewhere. More precisely, one has Proof. Denote m = (m (1) , • • • , m (d) ). First, suppose that m = 0. By Proposition 5.8, Y t converges toward 0 with a positive probability. On this event, Proposition 4.3 implies that the integral t 0 Ys r+s ds converges. So, µ t converges toward this (limit) integral and the result follows for X. On the other hand, if m = 0, then P(Y t → m) > 0 and so the j th -coordinate of µ t converges to sgn(m (j) )∞. So, the direction j is unstable and X t does not converge a.s. Moreover, on the set {Y ∞ = 0}, we have

µ t log t -Y ∞ ≤ 1 log t t 0 |Y s -Y ∞ | ds r + s ≤ 1 log t t 0 log G(s)
g(s) ds r + s .

The latter upper bound tends to 0 by the law of the iterated logarithm (Proposition 4.3). As Xt log t = µ t log t + Yt log t , the result follows. Remark 5.11. Any polynomial h satisfies the required condition. In particular, one can choose g(t) = t α (log(1 + t)) β with α > 0, or α = 0 and β > 2.

t 0 δ

 0 Xs (A)ds ∼ t→∞ tl where l is a positive constant depending on A. So, ∞ 0 δ Xs (A)ds = ∞ a.s. and µ ∞ is diffusive. It then implies that for all K > 0, ∞ 0 δ Xs ([K, ∞[)ds = ∞ a.s. and so P

Corollary 4 . 2 .

 42 Almost surely, the sequence of stopping times T n := inf{s > n; d(Y s , M in ∪ M ax) < ε} satisfies: T n → ∞, and ∀n ≥ 1, P(T n < +∞) = 1 and d(Y Tn , M in ∪ M ax) < ε.

5. 1 .

 1 Ergodicity. Lemma 5.1. The process Y is bounded in L 2 .

. 1 ) 5 . 3 .

 153 Proposition Let φ : R + × R d → R d be the flow generated by

t0

  1l {|Y (j) s -M (j) |≤α} ds = o(t) and 1 t t 0 f (Y s )ds converges almost surely to b. So, we conclude that b = 0.

  3, we have a.s. |Y t+T -m i | ≤ U t . As lim t→∞

5. 3 . 1 )

 31 Back to X. Theorem 5.10. Assume that g(t) -1 log G(t) = O(h(t) -2 ), with h : R + → R + such that ∞ 0 ds (1+s)h(s) < +∞. Then, on the set {Y ∞ = 0}, Xt log t converges to Y ∞ . Moreover:(If 0 is the unique local minimum of V , then

( 3 )

 3 If 0 is not a local minimum of V , thenP lim t→∞ |X t | = ∞ = P lim t→∞ |µ t | = ∞ = 1.

  1. Indeed, what we need here is not only the convergence of Y t to zero, but the convergence of the integral The process Y converges almost surely to Y ∞ , where Y ∞ belongs to the set of the local minima of V . For each local minimum m of V , one has P(Y ∞ = m) > 0. (2) On the set {Y ∞ = 0}, both X t and µ t converge almost surely to µ ∞ := µ +

	t 0 Y s	ds r+s , which depends on the speed of convergence of Y t . The main result
	of this paper is the following description of the asymptotic behaviour of X,
	shown in §5.3:
	Theorem 2.7. Suppose that g(t) -1 log G(t) = O(h(t) -1 ), where G is a
	primitive of g and	∞ 0	ds (1+s) h(s) < ∞.
	(1) ∞ 0 Y s	ds r+s , whereas on the set {Y ∞ = 0}, we have that
		lim t→∞	Xt log t = Y ∞ .

  that there exists a > 0 such that ∀|y| ≤ ε, (y, ∇V (y)) ≥ a|y| 2 .

				(4.5)
	Let us introduce the (d -1)-dimensional Bessel process R. Consider the
	time-shifted process U t := e -aG(t+T ) R t 0 e 2aG(s+T ) ds , which is the nonnegative
	(strong) solution to			
	dU t = dβ T t -ag(t + T )U t dt +	d -1 2U t	dt,	(4.6)

where β is a Brownian motion. On the event {∀s ≥ T ; |Y s | < ε}, we apply the previous comparison theorem to obtain a.s. | Y t | ≤ U t . On the other hand, R is the radial part of a d-dimensional Brownian motion. So, the LIL implies a.s. R t = O( (t + T ) log log(t + T )) and

  To answer it, we remind that µ t converges a.s. if and only if Proposition 5.6. The measure µ t converges weakly if and only if µ t converges a.s.Proof. We have shown in Theorem 5.5 that Y is pointwise ergodic. Consider the Fourier transform of µ t and recall that X t = Y t + µ t . We have for all u ∈ R d :

	1 t	0	t	e i(u,Xs) ds =	e i(u,µ ∞ ) t	0	t	e i(u,Ys) ds +	1 t	0	t
	t 0 Y s a.s.	ds r+s converges, and if Y t	a.s. --→ t→∞	0 polynomially fast then µ t converges
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