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ABSTRACT proximations of the CRB on the azimuth, elevation and range

This paper is devoted to the Cramer Rao bound (CRB) oA'€ given, where the sixth-order approximation of the CRB
the azimuth, elevation and range of a narrow-band near-fiel@n the azimuth turns out to be very accurate.

source localized by means of a uniform circular array (UCA), ~ The paper is organized as follows. Section 2 formulates
using the exact expression of the time de|ay parameterr Af[éhe pI’Oblem and SpeCiﬁeS the data model. Section 3 is devoted
proving that the conditional and unconditional CRB are gent0 the CRB derivations. After proving that the so-calledcon
erally proportional for constant modulus steering vegtaes ~ ditional and unconditional CRB are generally proportidoal
specify conditions of isotropy w.r.t. the distance and then ~ cOnstant modulus steering vectors, we specify conditidns o
ber of sensors. Then we derive very simple, yet very accura#€otropy w.r.t. the range and the number of sensors. Weeleriv

non-matrix closed-form expressions of different appracadm Very simple non-matrix closed-form expressions of diffetre
tions of the CRBs. approximations of the CRB. Finally some numerical illustra

) tions are given in Section 4.
Index Terms— Cramer Rao bound, near field source lo-

calization, uniform circular array, isotropy.
2. DATA MODEL
1. INTRODUCTION A UCA is made of P identical and omni-directional sen-

A considerable literature has been dedicated to the CRB ofPrSC1: "+ ’C_P_ located in the(z,y) plane_, at a distance
from the originO and an angle, respectivel§y,--- ,0p

the direction of arrival (DOA) of narrow-band sources. How-"? -
ever, most of it is limited the far-field case, meaning that &rom [0, z) such tha#, = ¢ — 2X2-1 |t is radiated by a
p|anar wavefrontis |mp|ng|ng on the sensors array. Theneanarrow—band source located in the antenna near-field, whose
field assumption implies that the curvature of the wavesdas tP0sition is characterized by azimuthelevations and range
be taken into account, resulting into more complicated modr @s shown in Fig.1
els parameterized by the source DOAs and range. Hence, we
can identify only very few studies of this kind. Inspired by
the subspace-based DOA algorithms, early ones were based
on an approximate propagation model based on second-order
Taylor expansion of the time delay parameter [1, 2]. Only
lately has the exact time delay formula been used [3] for the
only uniform linear arrays (ULA).

The UCA has been popular with many applications [4, 5,
6] and dedicated estimation algorithms have been proposed
for far-field source localization [12, 13]. Isotropy is a com
pelling feature of UCA. Not only does it mean that the CRB
on the azimuth and elevation of a single source is uniform for
all azimuths [7], but also that the two estimates are uneorre

lated and that the CRB is not affected by the indeterminacZorrupted by an additive noise with complex envelagg),

about the wave speed of propagation [8]. We are interestetie complex envelope of the signals collected by the array of
in analyzing the behavior of UCA for near-field sources, andsensors is modelled as

in particular to what extend is isotropy maintained. Furthe
more, very simple non-matrix closed-form expressions ef ap x, = sga(a) + ng,k=1,..., K,

Fig.1 Uniform circular array and source DOAs.



wherea(a) is the so-called steering vector parameterized by3.2. Exact Fisher information matrix

=16 T Referenced to the origin, its is given b _
a=[0¢r] g g y The elements of the FIM (2) are, forj = 1,2, 3, given by

a(a) = [em(@) i) gite(e))T L , ,
FIMiJ (a) = Co [P(aaljaaj> - ( oila>( alja)*]a
wherer,(a) = 27r§—'5 with d, = SO — SC,, and ), is the
’ P ’

. . 'H. _ P ! "H, _
propagation wavelength. In faet, is given by wherea, a, =30 17, 0,70 8a,@= Dy Tpa,» and
! def 971y ()

o . 72 Tpai = Bo; Consequently, we get
1 —2—costO,sing+ — |.
T T

Tp(a) = 2’/T)\LO <1 —

P P 2
_ a2 2 _
The usual statistical properties abayt and s, are the FIM,,1(e) Co SIN" ¢ PZ“P (Z up)
following: (i) sy andny, are independent, (iijng)g=1,... &

are independent, zero-mean circular Gaussian distributed , P r ?
with covariances21p, (i) (si)i—1...x are assumed to be FIMa2(a) ¢, cos” ¢ szg <Z ”p)
either deterministic unknown parameters (the so-called co p=1 p=1
ditional or deterministic model), or independent zero-mea , sin(2¢) P P P
circular Gaussian distributed with varianeg (the so-called FIM; () = Co 5 Z Up Z v — P Z vpup]
unconditional or stochastic model). p=1  p=1 p=1

. P P 2

3. CRB DERIVATION FIMss(@) = ¢, [P (1+uwp)’ —<Z [1+ w,,])
p=1 p=1

3.1. General expression of the CRB

P P P
General compact expressions of the CRB, concentrated on thaMrs(@) = ¢, sing doup) wp =Py u,,w,,]
DOA parameter alone have been derived for these two models

of sources (see e.g. [9] for one parameter per source and [10 - - -
Appendix D] for several parameters per source). Spec'mlizeFIMQv?'(a) = G, c080 | Y vy wp— P upwy
to a single source with one or several parameters per source, p=1  p=1 p=1
these expression8RB.t () andCRBg, () have all been d

studied independently in the literature (see e.g. the tqmen Where = sin Op/\/Bp: vp = cos Op/\/Bp: wp =
pers [11] and [3] which even concludes by "extension of thisev, sing — 8, /%, 8, < 1 — 2ecosf,sing + € and
work for stochastic sources is under consideration”). def 1,

In fact, it can be proved (proof is not given here by lack off T T ) )
space) that the expressioi®RBaec(c) and CRBio(cx) for 7 def (?\_w) andc. %' ¢, (2_vr) ro.
arbitrary parametrizatione = [a, ...,z ] of the steering 5

Ao
vectora(a) related to array geometry or polarization such

Taylor series expansions @f 5, and1/./5, W.I.t. € =
that |a(a)||> = P, are proportiondl an issue previously ro/r, followed by elementary trigonometric relations, show
overlooked. More precisely:

2
. def g
There, we also define constanjs= ¢, (—27;;”) :

that all elements of the FIM depend on the azim@tbnly
through the sumi;;1 cos k¢, and Zle sin k6, for k =
o2 1 1,2, ..., which can be easily simplified thanks to
CRBgo(@) = 1+P—02 CRByef() = [FIM ()] (1)

’ ieiwp [ Pt ifk/PeN
whereo? LS~ | |s3] for the deterministic model of — 10 otherwise
sources, with

®3)

It turns to be that while the FIM is periodic it of period

H H H

FIM(a) = ¢, (PD"(a)D(ar) — D¥ (a)a(a)a’ () D(cx)) 27/ P, as one may expect, it is not constant anymore, i.e. the
s ot (2)  ucaisno longer strictly isotropic in the near-field.

wherec, % W&’az) andD(a) = [8(;&?_),..., 851;?)}.

In the addressed problei,a) = {%,%;) ,%} —  3.3. Isotropy of the UCA

[ay,a,,a,]. Thanks to (1), we only consider the stochasticwe analyze the way isotropy, guaranteed at the antenna far-

source model. field [7], is deteriorated as a result of a decreasing source
INote that (1) is no longer valid for parametrizations for eihfla(er)]| ~ F@Ng€r Or & decreasing number of sensdts Careful ex-

depends orx. amination of the Taylor expansion of the elements of the FIM




w.r.t. ¢, where only the&d dependence is retained, yields to

e’} P

FIM; ;(a) = Z (Z g,(:’J)(cos 0, sin 9,;)) e 4)
k=0 \p=1

whereg"?) is a polynomial expression @bs 6, andsin 6,

ofdegreéi + 2,k +1orkfor(i,j =1,2),(i=1,2,j =3)

or (i = j = 3) respectively. By linearizing this polynomial,

we have for example far, j = 1, 2:

N k42 k42
g,(j’])(cos 0p,sinb,) ch}g cos(46),) +Z sg}g sin(¢

wherec”7) = 0 for odd degrees of\"”). Then, using (3), fo-

cusing ord and carefully studying the first terms of the Taylor FIM; ;(cx)

expansion ire (4), we obtain

L(P—3)/2]
FIM; (@) = Y byle+ Z bl (0)€" (5)
k=0 k=P—2
> ..
FIM, (@) = Y bl(0)e (6)
k=P—2
—1
FIMy3(a) = wak+z byl (6 7)
L(P—l)/zJ o
FIM33(a) = Z LIk +Z byl (0)eF,  (8)
k=2 k=P

forP>4andi=j=1o0ri=5=2(5),i=1,7=2,3
(6), where the termg,” andb; do not depend oé.

Note that zero-order terms of the blodKIM (a)](1;2,1.2)
derived from (5) and (6) give thBIM(0, ¢) of the far-field
case. Using the decoupling 6fand ¢ of the far-field case

that we uncover by (6), we hav@RBrr(0) = 1/by" and
CRBrr(¢) = 1/b3°.
To illustrate the behavior of the FIM w.r.P, %
70

is given by the following expressions fét = 3,4, 5, 6:

P
3 1 — €’ sin ¢ cos 30 + o(€%)
4 1 — e%(cos” ¢ — sin” ¢ sin 46) + o(€?)
5 1—¢?cos® ¢ — ¢ sin® ¢ cos 50 + o(c?)
6 1 —e?cos®p — €*(1 — 3sin” ¢ + 2sin? ¢
—sin® ¢ cos 60) 4 o(e?)
. def o \2 p2 .
with ¢, = 2’/T/\—?)) = and wherelim. g o(¢)/e = 0

Consequently, from (5)-(8), the following can be concluded
For a numberP of sensors, the FIM of the UCA does not

depend on the azimuth up to the order 3 in rq/r. More
precisely, we see from (6), that the parameteend (¢, r)
are decoupled up to the ord&r— 1 in ro/r. Consequently,

orderP — 1in ro/r, in contrast to the elevation and range
CRBs that require an order smaller or equaPte- 3. So, for

r or P fixed, isotropy increases when or r increases, re-
spectively, and the azimuth CRB is much less sensitive to the
azimuth than those of the elevation and range

3.4. Closed-form expression of the CRB

To further improve our understanding of the near-field CRBs,
we investigate different closed-form expressions of the ap
proximations of the CRB omx. Note that to obtain these
approximations, we have to elaborate a little bit the neces-
sary order of the Taylor expansions of each ternBfl ()
because the order inof these terms may be different.

For P > 8, we have proved that

= sin? ¢ [1 — €2 cos? ¢ + e*g1(sin? ¢)

CoCry
+€%go(sin? o)] + o(€")
FIMLQ((X) = O(€7>
FIMl’d(a) = O(€7>
FIM 5
72’2@‘) = cos’o [1 — 2 (1 — = sin? ¢)] + o(e%)
CoCrq 2
FIMj; in?
C:C’jo(a) = Sizrg [sin® ¢ + €%g3(sin” ¢)] €' + o(€")
FIM i . .
2,3() _ _singcos ¢ (1—Zsin2 ¢) & + o(e%),
CoCry 70 8
with
g1(sin? @) df 1 _ 3sin? ¢+ 2sint ¢
go(sin? @) df 1+ 6sin? ¢ — 10sin* ¢ + 5sin® ¢
e 35
g3(sin? @) 4 16 — 33sin? o+ — s1n4 0.

This expression oFIM(«) allows us to derive after some
manipulations offFTIM ! () the following closed-form ex-
pressions of the CRBs:

CRB(9)

- 2
= CRBrr(f) |1+ cos? qb:—g

.92 2 Té 02 TS Tg
+ sin” ¢ cos ¢T—4+h1(sm ¢)>r_6+0 e 9)

2
CRB(¢) = CRBre() L+ha(ein’) S +0 (2] 10
16 4 re
CRB(T) mro 1+h5(S11’1 d)) (7"_2>:|(’11)
where

CRBFrr (9) = 1/(0007'0 sin® ¢)
CRBrr(¢) = 1/(cocr, cos? )

2ForP > 6, FIM; 1(a)=cocrg sin? ¢[1762 cos? p+etgr (sin2 o)+
o(€®) andFIM1 2 () =FIM; 3(cx) = o(€®) and the other FIM expressions

the azimuth CRB does not depend on the azimuth up to themain valid.



denote the CRB on the azimuth and elevation in the far field
case [7], and where we have introduced

Ry (sin% ) ef gin2 ¢ + 3sin ¢ — 2sin® ¢
. 16 39 .
ho (51n2¢) déf m + Z SlIl2 gf) - 27
21
hs(sin?¢) LG vy sin? .

Using the decoupling betweeh and (¢, r), note that the
second-order (resp. fourth-order) expansionrifyr of
CRB(0) in (9) is still valid for only P > 4 (resp.P > 6).

Interestingly, when the source is known to be in they)
plane, we deduce from tH&IM(«) for ¢ = /2 that

CRBrr(0) {1 +o0 (;—éﬂ

16 4 7“(2) 7“(2)
CoCro T8 [1 2r2 to (7‘2)} '
where hereCRBgp(0) = 1/¢,c,. Note that the first or-
der termry /r vanishes in all the expressions of the CRB for
P > 6. Furthermore, for a source located in the pléngy),
the CRB on the azimuth is very insensitive to the range. This
contrasts with the near field expression of the CRB for the
ULA [3] for which, CRB(#) includes a first order term in
ro/r and thus is much more sensitive to the range than for
the UCA. Finally, note the simplicity of our closed-form ex-
pressions w.r.t. the complicated non interpretable cldeet
expressions obtained for the ULA [2, 3].

CRB(9)

CRB(r)

4. ILLUSTRATIONS

In order to characterize tHevel of isotropy, we introduce a
non-isotropy criterion

— sup |CRB(®) — CRBF)|

0 CRB(9)

(whereCRB(#) denotes the mean &fRB(#) w.r.t. 6) that
we illustrate in Fig.2 for a UCA with half-wavelength inter-
sensors spacing, and a source emittingMHz3. This figure
shows that the isotropy is much more sensitivétthan tor.
The validity of some approximate closed-form expres-
sions of the CRB is illustrated for a source located with
an azimuthd = 70° and elevationp = 70°. Fig.3 and 4
compare the approximate ratidSRB(0)/CRBrr(f) and
CRB(¢)/CRBrr(¢) given by (9) and (10) to the exact ones
and Fig.5 compares the approxim&atBB(r) (11) to the ex-
act one. We see from these three figures that the proposed
approximations are very accurate from the ratio, = 2 for
P =10and fromr/ro =4for P = 1.

3Note that these characteristics impact onjybut not the different ratios
of CRB.

Fig.2 Non-isotropy criterionp w.r.t. » and P.
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Fig.3 Approximate and exact ratidS8RB(0)/CRBgg (6).
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Fig.4 Approximate and exact ratidS8RB(¢)/CRBpg (¢).
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Fig.5 Ratio of the approximat€RB(r) to the exact one.
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