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This paper is devoted to the Cramer Rao bound (CRB) on the azimuth, elevation and range of a narrow-band near-field source localized by means of a uniform circular array (UCA), using the exact expression of the time delay parameter. After proving that the conditional and unconditional CRB are generally proportional for constant modulus steering vectors, we specify conditions of isotropy w.r.t. the distance and the number of sensors. Then we derive very simple, yet very accurate non-matrix closed-form expressions of different approximations of the CRBs.

INTRODUCTION

A considerable literature has been dedicated to the CRB on the direction of arrival (DOA) of narrow-band sources. However, most of it is limited the far-field case, meaning that a planar wavefront is impinging on the sensors array. The nearfield assumption implies that the curvature of the waves has to be taken into account, resulting into more complicated models parameterized by the source DOAs and range. Hence, we can identify only very few studies of this kind. Inspired by the subspace-based DOA algorithms, early ones were based on an approximate propagation model based on second-order Taylor expansion of the time delay parameter [START_REF] Grosicki | A weighted linear prediction method for near field source localization[END_REF][START_REF] El Korso | Conditional and unconditional Cramer Rao bounds for near-field Source localization[END_REF]. Only lately has the exact time delay formula been used [START_REF] Begriche | Exact Cramer Rao bound for near field source localization[END_REF] for the only uniform linear arrays (ULA).

The UCA has been popular with many applications [START_REF] Wang | Signal processing algorithms for fire localization using temperature sensor arrays[END_REF][START_REF] Giridhara | Rapid Localization of damage using a circular sensor array and Lamb wave based triangulation[END_REF][START_REF] He | Near-field beamforming analysis for acoustic emission source localization[END_REF] and dedicated estimation algorithms have been proposed for far-field source localization [START_REF] Mathews | Eigenstructure techniques for 2-D angle estimation with uniform circular array[END_REF][START_REF] Chan | MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array[END_REF]. Isotropy is a compelling feature of UCA. Not only does it mean that the CRB on the azimuth and elevation of a single source is uniform for all azimuths [START_REF] Gazzah | Optimum ambiguity free directional and omnidirectional planar antenna arrays for DOA estimation[END_REF], but also that the two estimates are uncorrelated and that the CRB is not affected by the indeterminacy about the wave speed of propagation [START_REF] Oktel | Source localization with isotropic arrays[END_REF]. We are interested in analyzing the behavior of UCA for near-field sources, and in particular to what extend is isotropy maintained. Furthermore, very simple non-matrix closed-form expressions of ap-proximations of the CRB on the azimuth, elevation and range are given, where the sixth-order approximation of the CRB on the azimuth turns out to be very accurate.

The paper is organized as follows. Section 2 formulates the problem and specifies the data model. Section 3 is devoted to the CRB derivations. After proving that the so-called conditional and unconditional CRB are generally proportional for constant modulus steering vectors, we specify conditions of isotropy w.r.t. the range and the number of sensors. We derive very simple non-matrix closed-form expressions of different approximations of the CRB. Finally some numerical illustrations are given in Section 4. Corrupted by an additive noise with complex envelope n(k), the complex envelope of the signals collected by the array of sensors is modelled as

DATA MODEL

x k = s k a(α) + n k , k = 1, ..., K,
where a(α) is the so-called steering vector parameterized by α = [θ, φ, r] T . Referenced to the origin, its is given by a(α) = [e iτ1(α) , ..., e iτp(α) , ..., e iτP (α) ] T where τ p (α) = 2π dp λ0 with d p = SO -SC p and λ 0 is the propagation wavelength. In fact, τ p is given by

τ p (α) = 2π r λ 0 1 -1 -2 r 0 r cos θ p sin φ + r 2 0 r 2 .
The usual statistical properties about n k and s k are the following: (i) s k and n k are independent, (ii) (n k ) k=1,...,K are independent, zero-mean circular Gaussian distributed with covariance σ 2 n I P , (iii) (s k ) k=1,...,K are assumed to be either deterministic unknown parameters (the so-called conditional or deterministic model), or independent zero-mean circular Gaussian distributed with variance σ 2 s (the so-called unconditional or stochastic model).

CRB DERIVATION

General expression of the CRB

General compact expressions of the CRB, concentrated on the DOA parameter alone have been derived for these two models of sources (see e.g. [START_REF] Stoica | Performances study of conditional and unconditional direction of arrival estimation[END_REF] for one parameter per source and [10, Appendix D] for several parameters per source). Specialized to a single source with one or several parameters per source, these expressions CRB det (α) and CRB sto (α) have all been studied independently in the literature (see e.g. the recent papers [START_REF] Vu | A Cramer Rao bounds based analysis of 3D antenna array geometries made from ULA branches[END_REF] and [START_REF] Begriche | Exact Cramer Rao bound for near field source localization[END_REF] which even concludes by "extension of this work for stochastic sources is under consideration").

In fact, it can be proved (proof is not given here by lack of space) that the expressions CRB det (α) and CRB sto (α) for arbitrary parametrization α = [α 1 , ...., α L ] T of the steering vector a(α) related to array geometry or polarization such that a(α) 2 = P , are proportional1 , an issue previously overlooked. More precisely:

CRB sto (α) = 1 + σ 2 n P σ 2 s CRB det (α) = [FIM(α)] -1 (1)
where

σ 2 s def = 1 K K k=1 |s 2 k | for the deterministic model of sources, with FIM(α) = c σ P D H (α)D(α) -D H (α)a(α)a H (α)D(α) (2) where c σ def = 2Kσ 4 s σ 2 n (σ 2 n +P σ 2 s ) and D(α) def = ∂a(α) ∂α1 , ..., ∂a(α) ∂αL . In the addressed problem, D(α) = ∂a(α) ∂θ , ∂a(α) ∂φ , ∂a(α) ∂r = [a ′ θ , a ′ φ , a ′ r ].
Thanks to (1), we only consider the stochastic source model.

Exact Fisher information matrix

The elements of the FIM (2) are, for i, j = 1, 2, 3, given by

FIM i,j (α) = c σ [P (a ′ H αi a ′ αj ) -(a ′ H αi a)(a ′ H αj a) * ],
where a ∂αi . Consequently, we get Taylor series expansions of 1/β p and 1/ β p w.r.t. ǫ = r 0 /r, followed by elementary trigonometric relations, show that all elements of the FIM depend on the azimuth θ only through the sums P p=1 cos kθ p and P p=1 sin kθ p for k = 1, 2, ..., which can be easily simplified thanks to

FIM 1,1 (α) = c ′ σ sin 2 φ   P P p=1 u 2 p - P p=1 u p 2   FIM 2,2 (α) = c ′ σ cos 2 φ   P P p=1 v 2 p - P p=1 v p 2   FIM 1,2 (α) = c ′ σ sin(2φ) 2 P p=1 u p P p=1 v p -P P p=1 v p u p FIM 3,3 (α) = c ′′ σ   P P p=1 (1 + w p ) 2 - P p=1 [1 + w p ] 2   FIM 1,3 (α) = c
P p=1 e ikθp = P e ikθ if k/P ∈ N 0 otherwise (3) 
It turns to be that while the FIM is periodic in θ of period 2π/P , as one may expect, it is not constant anymore, i.e. the UCA is no longer strictly isotropic in the near-field.

Isotropy of the UCA

We analyze the way isotropy, guaranteed at the antenna farfield [START_REF] Gazzah | Optimum ambiguity free directional and omnidirectional planar antenna arrays for DOA estimation[END_REF], is deteriorated as a result of a decreasing source range r or a decreasing number of sensors P . Careful examination of the Taylor expansion of the elements of the FIM w.r.t. ǫ, where only the θ dependence is retained, yields to

FIM i,j (α) = ∞ k=0 P p=1 g (i,j) k (cos θ p , sin θ p ) ǫ k , (4) 
where g (i,j) k is a polynomial expression of cos θ p and sin θ p of degree k + 2, k + 1 or k for (i, j = 1, 2), (i = 1, 2, j = 3) or (i = j = 3) respectively. By linearizing this polynomial, we have for example for i, j = 1, 2:

g (i,j) k (cos θ p , sin θ p ) = k+2 ℓ=0 c (i,j) ℓ,k cos(ℓθ p )+ k+2 ℓ=1 s (i,j) ℓ,k sin(ℓθ p )
where c (i,j) 0,k = 0 for odd degrees of g (i,j) k . Then, using (3), focusing on θ and carefully studying the first terms of the Taylor expansion in ǫ (4), we obtain

FIM i,j (α) = ⌊(P -3)/2⌋ k=0 b i,j 2k ǫ 2k + ∞ k=P -2 b i,j k (θ)ǫ k (5) FIM i,j (α) = ∞ k=P -2 b i,j k (θ)ǫ k (6) FIM 2,3 (α) = P -1 k=3 b i,j k ǫ k + ∞ k=P b i,j k (θ)ǫ k (7) FIM 3,3 (α) = ⌊(P -1)/2⌋ k=2 b i,j 2k ǫ 2k + ∞ k=P b i,j k (θ)ǫ k , (8) 
for P ≥ 4 and i = j = 1 or i = j = 2 (5), i = 1, j = 2, 3

, where the terms b i,j k and b i,j 2k do not depend on θ. Note that zero-order terms of the block [FIM(α)] (1;2,1:2) derived from ( 5) and [START_REF] He | Near-field beamforming analysis for acoustic emission source localization[END_REF] give the FIM(θ, φ) of the far-field case. Using the decoupling of θ and φ of the far-field case that we uncover by ( 6), we have CRB FF (θ) = 1/b 1,1 0 and CRB FF (φ) = 1/b2,2 0 . To illustrate the behavior of the FIM w.r.t. P , FIM1,1(α) cσcr 0 sin 2 φ is given by the following expressions for P = 3, 4, 5, 6:

P 3 1 -ǫ 2 sin φ cos 3θ + o(ǫ 2 ) 4 1 -ǫ 2 (cos 2 φ -sin 2 φ sin 4θ) + o(ǫ 2 ) 5 1 -ǫ 2 cos 2 φ -ǫ 3 sin 3 φ cos 5θ + o(ǫ 3 ) 6 1 -ǫ 2 cos 2 φ -ǫ 4 (1 -3 sin 2 φ + 2 sin 4 φ -sin 4 φ cos 6θ) + o(ǫ 4 ) with c r0 def = 2π r0 λ0 2 P 2
2 and where lim ǫ→0 o(ǫ)/ǫ = 0. Consequently, from ( 5)-( 8), the following can be concluded: For a number P of sensors, the FIM of the UCA does not depend on the azimuth up to the order P -3 in r 0 /r. More precisely, we see from [START_REF] He | Near-field beamforming analysis for acoustic emission source localization[END_REF], that the parameters θ and (φ, r) are decoupled up to the order P -1 in r 0 /r. Consequently, the azimuth CRB does not depend on the azimuth up to the order P -1 in r 0 /r, in contrast to the elevation and range CRBs that require an order smaller or equal to P -3. So, for r or P fixed, isotropy increases when P or r increases, respectively, and the azimuth CRB is much less sensitive to the azimuth than those of the elevation and range.

Closed-form expression of the CRB

To further improve our understanding of the near-field CRBs, we investigate different closed-form expressions of the approximations of the CRB on α. Note that to obtain these approximations, we have to elaborate a little bit the necessary order of the Taylor expansions of each term of FIM(α) because the order in ǫ of these terms may be different.

For P > 8, we have proved that 2 This expression of FIM(α) allows us to derive after some manipulations of FIM -1 (α) the following closed-form expressions of the CRBs:

FIM 1,1 (α) c σ c r0 = sin 2 φ 1 -ǫ 2 cos 2 φ + ǫ 4 g 1 (sin 2 φ) +ǫ 6 g 2 (sin 2 φ) + o(ǫ 7 ) FIM 1,2 (α) = o(ǫ 7 ) FIM 1,3 (α) = o(ǫ 7 ) FIM 2,2 (α) c σ c r0 = cos 2 φ 1 -ǫ 2 1 - 5 2 sin 2 φ + o(ǫ 3 ) FIM 3,3 (α) c σ c r0 = sin 2 φ 16r 2 0 sin 2 φ + ǫ 2 g 3 (sin 2 φ) ǫ 4 + o(ǫ 7 ) FIM 2,3 (α) c σ c r0 = - sin φ cos φ r 0 1- 7 8 sin 2 φ ǫ 3 + o(ǫ 3 ),
CRB(θ) = CRB FF (θ) 1 + cos 2 φ r 2 0 r 2 + sin 2 φ cos 2 φ r 4 0 r 4 + h 1 (sin 2 φ) r 6 0 r 6 + o r 7 0 r 7 (9) 
CRB(φ) = CRB FF (φ) 1+h 2 (sin 2 φ) r 2 0 r 2 + o r 2 0 r 2 (10) 
CRB(r)= 16 c σ c r0 sin 4 φ r 4 r 2 0 1+h 3 (sin 2 φ) r 2 0 r 2 +o r 2 0 r 2 , (11) 
where

CRB FF (θ) = 1/(c σ c r0 sin 2 φ) CRB FF (φ) = 1/(c σ c r0 cos 2 φ)
denote the CRB on the azimuth and elevation in the far field case [START_REF] Gazzah | Optimum ambiguity free directional and omnidirectional planar antenna arrays for DOA estimation[END_REF], and where we have introduced Using the decoupling between θ and (φ, r), note that the second-order (resp. fourth-order) expansion in r 0 /r of CRB(θ) in ( 9) is still valid for only P > 4 (resp. P > 6).

Interestingly, when the source is known to be in the (x, y) plane, we deduce from the FIM(α) for φ = π/2 that

CRB(θ) = CRB FF (θ) 1 + o r 7 0 r 7 CRB(r) = 16 c σ c r0 r 4 r 2 0 1 - r 2 0 2r 2 + o r 2 0 r 2 ,
where here CRB FF (θ) = 1/c σ c r0 . Note that the first order term r 0 /r vanishes in all the expressions of the CRB for P > 6. Furthermore, for a source located in the plane (x, y), the CRB on the azimuth is very insensitive to the range. This contrasts with the near field expression of the CRB for the ULA [START_REF] Begriche | Exact Cramer Rao bound for near field source localization[END_REF] for which, CRB(θ) includes a first order term in r 0 /r and thus is much more sensitive to the range than for the UCA. Finally, note the simplicity of our closed-form expressions w.r.t. the complicated non interpretable closed-form expressions obtained for the ULA [START_REF] El Korso | Conditional and unconditional Cramer Rao bounds for near-field Source localization[END_REF][START_REF] Begriche | Exact Cramer Rao bound for near field source localization[END_REF].

ILLUSTRATIONS

In order to characterize the level of isotropy, we introduce a non-isotropy criterion

ρ = sup θ |CRB(θ) -CRB(θ)| CRB(θ)
(where CRB(θ) denotes the mean of CRB(θ) w.r.t. θ) that we illustrate in Fig. 2 for a UCA with half-wavelength intersensors spacing, and a source emitting at 1 MHz 3 . This figure shows that the isotropy is much more sensitive to P than to r. The validity of some approximate closed-form expressions of the CRB is illustrated for a source located with an azimuth θ = 70 • and elevation φ = 70 • . Fig. 3 and4 compare the approximate ratios CRB(θ)/CRB FF (θ) and CRB(φ)/CRB FF (φ) given by ( 9) and [START_REF] Abeida | Efficiency of subspace-based DOA estimators[END_REF] to the exact ones and Fig. 5 compares the approximate CRB(r) [START_REF] Vu | A Cramer Rao bounds based analysis of 3D antenna array geometries made from ULA branches[END_REF] to the exact one. We see from these three figures that the proposed approximations are very accurate from the ratio r/r 0 = 2 for P = 10 and from r/r 0 = 4 for P = 7.

3 Note that these characteristics impact only r 0 , but not the different ratios of CRB. 
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 2 Fig.2Non-isotropy criterion ρ w.r.t. r and P .
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 3 Fig.3 Approximate and exact ratios CRB(θ)/CRB FF (θ).
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 4 Fig.4Approximate and exact ratios CRB(φ)/CRB FF (φ).

Fig. 5

 5 Fig.5Ratio of the approximate CRB(r) to the exact one.

Note that (1) is no longer valid for parametrizations for which a(α) depends on α.

For P > 6, FIM 1,1 (α) = cσcr 0 sin 2 φ[1-ǫ 2 cos 2 φ+ǫ 4 g 1 (sin 2 φ)+ o(ǫ 5 ) and FIM 1,2 (α) = FIM 1,3 (α) = o(ǫ 5) and the other FIM expressions remain valid.