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Introduction

The Dickman function plays an important role in analytic number theory; see [START_REF] Hildebrand | Integers without large prime factors[END_REF], [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF] for further information; see also the very recent paper [START_REF] Koninck | On the truncated kernel function[END_REF], where a new application is given.

Besides its importance in number theory, the Dickman function also appears in a large number of problems in several other fields: probability, informatics, algebra; we refer to the paper [START_REF] Hwang | Quickselect and Dickman function[END_REF] (where the new example of Hoare's quickselect algorithm is illustrated) and the references therein.

In the same paper [START_REF] Hwang | Quickselect and Dickman function[END_REF], a Local Limit Theorem concerning the Dickman function is stated without proof (the authors only refer to Corollary 2.8 in [START_REF] Arratia | Limits of logarithmic combinatorial structures[END_REF]; but the use of this result is not at all easy). Whenever a Local Limit Theorem exists, one can wonder whether it can be accompanied by an Almost Sure version: see for instance the papers [START_REF] Giuliano Antonini | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF], [START_REF] Giuliano Antonini | Almost Sure Local Limit Theorems with rate[END_REF] and [START_REF] Weber | A sharp correlation inequality with application to almost sure local limit theorem[END_REF] for examples concerning the Local Limit Theorem and the Almost Sure Local Limit Theorem for partial sums of i.i.d. random variables; see also [START_REF] Giuliano Antonini | An almost sure local limit theorem for Markov chains[END_REF] for examples of an Almost Sure Local Limit Theorem for Markov chains.

The purpose of the present paper is twofold: first, we give a detailed proof of the Local Limit Theorem announced in [START_REF] Hwang | Quickselect and Dickman function[END_REF]; second, we answer affirmatively the natural question whether some sort of Almost Sure Local Limit Theorem can be stated and proved.

It is worth noting that both our proof of the Local Theorem and the proof of the Almost Sure Local Theorem rely on a new result (Proposition 3.2) that links the behaviour of the distribution function of the involved partial sums with their local behaviour.

As it often happens in the theory of Almost Sure Theorems, the crucial point for the proof of our Almost Sure Local Theorem is a new correlation inequality that can have some interest on its own. The paper is organized as follows: in section 2 we introduce the notations and present the main results of the paper, i.e. the Local Limit Theorem (Theorem 2.1) and the Almost Sure Local Limit Theorem (Theorem 2.2). In section 3 Proposition 3.2 and the Local Limit Theorem are proved; we also discuss two important estimations (Propositions 3.5 and 3.6) that will be used in the proof of the correlation inequality of section 5; section 4 contains a convergence result (Proposition 4.1) for the characteristic functions of the partial sums under study, used in the proof of Proposition 3.2; section 5 contains the basic correlation inequality; in section 6 we prove a new general form of the Almost Sure Theorem, suitable for us since it takes into account the particular form of the correlation inequality; this result is also interesting in that, loosely speaking, it can be considered as a generalization of a previous one by T. M ori (see Theorem 1 in [START_REF] Mori | On the strong law of large numbers for logarithmically weighted sums[END_REF]). Section 7 contains the proof of the Almost Sure Local Limit Theorem. Finally, section 8 is a sort of appendix in which we have stated and proved a new form for the cumulants of the Bernoulli distribution.

Notation. By the symbol C we denote a positive constant, the value of which may change from one case to another. We shall not make any distinction between absolute constants and constants depending on some parameter of the problem.

The main results

Let ρ be the Dickman function, i.e. the function defined on [0, +∞) by the two conditions (i) ρ(x) = 1, 0 x 1;

(ii) xρ ′ (x) + ρ(x -1) = 0, x > 1.

It is known (see [START_REF] Hildebrand | Integers without large prime factors[END_REF], Lemma 2.6) that

∞ 0 ρ(x) dx = e γ ,
where γ is the Euler-Mascheroni constant; hence x → e -γ ρ(x), x 0, is a probability density, known as the Dickman density. The distribution function with this density is called the Dickman distribution and will be denoted with D. Thus its probability density is D ′ (x) = e -γ ρ(x). Some properties of the Dickman function and the Dickman distributions will be discussed in the next section.

We are interested in the probabilistic model introduced in [START_REF] Hwang | Quickselect and Dickman function[END_REF]: precisely, let (Z k ) k 1 be independent and such that, for each k, Z k = 1 with probability 1 k 0 with probability 1 -1 k . For every pair of integers (m, n) with 0 m < n denote

T n m = n k=m+1 kZ k .
For simplicity we also put T n = T n 0 .

Here are the main results of this paper. The proof of Theorem 2.1 is in Section 3.

Theorem 2.2 (Almost Sure Local Limit Theorem). Let x > 0 be fixed and let κ = (κ n ) n 1 be a strictly increasing sequence with lim n→∞ κn n = x > 0. Then

lim N →∞ 1 log N N n=1 1 {Tn=κn} = e -γ ρ(x), a.s.
The proof of Theorem 2.2 is in Section 7.

Corollary 2.3

We have

lim N →∞ 1 log N N n=1 1 {Tn=n} = e -γ , a.s.
As a consequence, for every x 1, lim 

N →∞ N n=1 1 {Tn=[xn]} N n=1 1 {Tn=n} = ρ(x), a.s.
that D(x) -D(x -1) = e -γ xρ(x) = xD ′ (x), x 1. (1) 
In fact, denoting provisorily f (x) = D(x) -D(x -1) and e -γ xρ(x) = g(x), x 1, we have, by (i) of section 2,

f (1) = 1 0 D ′ (t) dt = 1 0 e -γ ρ(t) dt = e -γ = e -γ ρ(1) = g(1);
and by (ii)

f ′ (x) = d dx x x-1 D ′ (t) dt = d dx x x-1 e -γ ρ(t) dt = e -γ ρ(x) -e -γ ρ(x -1) = e -γ ρ(x) + xρ ′ (x) = d dx e -γ xρ(x) = g ′ (x), x > 1.
We also recall that the characteristic function of the Dickman distribution is

φ(t) = exp 1 0 e itu -1 u du, (2) 
see [START_REF] Hildebrand | Integers without large prime factors[END_REF] again, or [START_REF] Hwang | Quickselect and Dickman function[END_REF].

Let (Z k ) k 1 and T n m = n k=m+1 kZ k (0 m < n) be as in Section 2. The characteristic function of Z k is φ Z k (t) = 1 + e it -1 k . The characteristic function of T n m is φ T n m (t) = n k=m+1 φ Z k (tk) = n k=m+1 1 + e itk -1 k .
The proof of the following result is identical to the one given in [START_REF] Hwang | Quickselect and Dickman function[END_REF] (Proposition 1) for the case m n ≡ 0.

Proposition 3.1 Let (m n ) n 1 be a sequence of integers such that lim n→∞ (n -m n ) = +∞. Then, as n → ∞, the sequence
T n mn n-mn converges in distribution to the Dickman law.

Now we present a result that will be crucial for the proof of the correlation inequality of section 5.

Its aim is to connect the local behaviour of T n m to the behaviour of its distribution function; it can be considered as a quantitative version of Theorem 2.6 in [START_REF] Arratia | Limits of logarithmic combinatorial structures[END_REF].

Proposition 3.2 Let (κ n ) n be any increasing sequence of integers. Then, for n > m ≥ 2, (κ n -κ m )P (T n m = κ n -κ m ) -P (κ n -κ m ) -n < T n m (κ n -κ m ) -(m + 1) C 1 + log n m √ n -m .
Proof. We need a preliminary easy result.

Lemma 3.3 Let T be a random variable taking integer values and with characteristic function φ T . For every integers κ, a and b with a < b we have the formula

P (κ -b T κ -a) = 1 2π π -π e -itκ b j=a e itj φ T (t) dt.
Proof. By the inversion formula we can write

P (κ -b T κ -a) = κ-a j=κ-b P (T = j) = 1 2π π -π κ-a j=κ-b e -itj φ T (t) dt,
and now, for every t ∈ R,

κ-a j=κ-b e -itj = e -it(k-b) + e -it(k-b+1) + • • • + e -it(k-a) = e -itk b j=a e itj
We pass to the proof of Proposition 3.2. First, by Lemma 3.3

P (κ n -κ m ) -n < T n m (κ n -κ m ) -(m + 1) = 1 2π π -π e -iu(κn-κm) n k=m+1 e iuk φ T n m (u) du. (3) 
Moreover, integrating by parts,

1 2πi π -π e -iu(κn-κm) • φ ′ T n m (u) du = 1 2πi φ T n m (u)e -iu(κn-κm) π -π + i(κ n -κ m ) π -π φ T n m (u)e -iu(κn-κm) du = 1 2πi φ T n m (π)e -iπ(κn-κm) -φ T n m (-π)e iπ(κn-κm) + i(κ n -κ m ) π -π φ T n m (u)e -i(κn-κm)u du = 1 2πi φ T n m (π)e -iπ(κn-κm) -φ T n m (π)e -iπ(κn-κm) + 2πi(κ n -κ m )P (T n m = κ n -κ m ) = Im φ T n m (π)e -iπ(κn-κm) π + (κ n -κ m )P (T n m = κ n -κ m ) = (κ n -κ m )P (T n m = κ n -κ m ), (4) 
noticing that φ T n m (π) and e -iπ(κn-κm) are real (recall that κ n is an integer). Since

φ ′ T n m (u) = φ T n m (u) n k=m+1 kφ ′ Z k (ku) φ Z k (ku) , subtracting (3) 
from ( 4) we obtain

(κ n -κ m )P (T n m = κ n -κ m ) -P (κ n -κ m ) -n < T n m (κ n -κ m ) -(m + 1) = 1 2π π -π e -iu(κn-κm) • φ T n m (u) n k=m+1 k i φ ′ Z k (ku) φ Z k (ku) du - 1 2π π -π e -iu(κn-κm) n k=m+1 e iuk φ T n m (u) du = 1 2π π -π e -iu(κn-κm) • φ T n m (u) n k=m+1 k i φ ′ Z k (ku) φ Z k (ku) - n k=m+1 e iuk du = n -m 2π π -π e -iu(κn-κm) • φ T n m (u) n k=m+1 k i φ ′ Z k (ku) φ Z k (ku) -n k=m+1 e iuk n -m =γm,n(u) du = 1 2π π(n-m) -π(n-m) e -iu κn-κm n-m • φ T n m n-m (u) γ m,n u n -m du. Hence (κ n -κ m )P (T n m = κ n -κ m ) -P (κ n -κ m ) -n < T n m (κ n -κ m ) -(m + 1) 1 2π π(n-m) -π(n-m) e -iu κn-κm n-m • φ T n m n-m (u) γ m,n u n -m du 1 2π π(n-m) -π(n-m) e -iu κn-κm n-m • φ T n m n-m (u) 2 du 1 2 π(n-m) -π(n-m) γ m,n u n -m | 2 du 1 2 1 2π π(n-m) -π(n-m) φ T n m n-m (u) 2 du 1 2 • 2π(n -m) sup -π u π |γ m,n (u)| 2 1 2 (5)
At the end of this proof we shall show that sup

-π u π |γ m,n (u)| C 1 + log n m n -m . ( 6 
)
Using ( 6) in (5), we get

π(n-m) -π(n-m) φ T n m n-m (u) 2 du 1 2 • 2π(n -m) sup -π u π |γ m,n (u)| 2 1 2 C π(n-m) -π(n-m) φ T n m n-m (u) 2 du 1 2 • 1 + log n m √ n -m . Since T n m n -m = T n n • n n -m - m k=1 kZ k n -m , putting W = - m k=1 kZ k n-m
we can write, by independence,

φ T n m n-m (u) = φ Tn n u n n -m • φ W (u) which implies π(n-m) -π(n-m) φ T n m n-m (u) 2 du 1 2 • 1 + log n m √ n -m π(n-m) -π(n-m) φ Tn n u n n -m 2 du 1 2 • 1 + log n m √ n -m = n -m n πn -πn φ Tn n (u) 2 du 1 2 • 1 + log n m √ n -m πn -πn φ Tn n (u) 2 du 1 2 • 1 + log n m √ n -m .
In Proposition 4.1 of the next section we shall prove that πn -πn

φ Tn n (u) 2 du → ∞ -∞ |φ(u)| 2 du < ∞,
where φ is as in [START_REF] Giuliano Antonini | An almost sure local limit theorem for Markov chains[END_REF]; this concludes the proof.

It remains to prove [START_REF] Hwang | Quickselect and Dickman function[END_REF]. Write

(n -m)γ m,n (u) = n k=m+1 k i φ ′ Z k (ku) φ Z k (ku) -e iuk = n k=m+1 k i ie iuk k 1 + e iuk -1 k -e iuk = n k=m+1 e iuk k k -1 + e iuk -1 = n k=m+1 e iuk (1 -e iuk ) k -1 + e iuk = n k=m+1 e iuk (1 -e iuk )(k -1 + e -iuk ) |k -1 + e iuk | 2 . Hence (n -m)|γ n (u)| 2 n k=m+1 k |k -1 + e iuk | 2 2 n k=m+1 k (k -2) 2 C 1 + log n m , since k -1 + e iuk (k -1) -e iuk = k -2, k m + 1 3 k -1 + e -iuk (k -1) + e -iuk = k, k 1 and n k=m+1 k (k -2) 2 = n-2 k=m-1 1 k + n-2 k=m-1 2 k 2 n-2 k=m-1 1 k + C 1 m -1 + n-2 m-1 1 x dx + C C + log n -2 m -1 = C + log n m -2 m 1 -1 m C + log 2 n m = C + log n m C 1 + log n m .

Now we can give the

Proof of Theorem 2.1. Assume that we are able to prove that

lim n→∞ nP (T n 2 = κ n ) = e -γ ρ(x)
for every sequence of integers ( κ n ) n 1 with lim n→∞ κn n = x. Denote U = Z 1 + 2Z 2 and notice that U is independent on T n 2 and takes the values 0,1,2,3. Now for each h = 0, 1, 2, 3, take the sequence ( κ

(h) n ) n 1 defined by κ (h) n = κ n -h. Since κ (h) n n = κn-h n → x as n → ∞, we have nP (T n = κ n ) = 3 h=0 P (U = h) nP (T n 2 = κ n -h) = 3 h=0 P (U = h) nP (T n 2 = κ (h) n ) → 3 h=0 P (U = h) e -γ ρ(x) = e -γ ρ(x).
and the claim is proved. So, let ( κ n ) n be a sequence with lim n→∞ κn n = x . By Proposition 3.1 and the continuity of the Dickman distribution we have

n κ n • P ( κ n -n < T n 2 κ n -3) = n κ n • P ( κ n -n n -2 < T n 2 n -2 κ n -3 n -2 ) → n 1 x D(x) -D(x -1) = e -γ ρ(x),
by [START_REF] Arratia | Limits of logarithmic combinatorial structures[END_REF]. Consider the sequence (κ ′ n ) n defined as

κ ′ n = κ n n 3 0 n = 1, 2.
The estimation of Proposition 3.2 gives, for n 3

κ n P (T n 2 = κ n ) -P ( κ n -n < T n 2 κ n -3) = (κ ′ n -κ ′ 2 )P (T n 2 = κ ′ n -κ ′ 2 ) -P (κ ′ n -κ ′ 2 -n < T n 2 κ ′ n -κ ′ 2 -3) C 1 + log n 2 √ n -2 ,
and the result follows.

Remark 3.4 Concerning the proof of Proposition 3.2, notice that

φ ′ Z k (t) φ Z k (t) = ψ ′ Z k (t), (7) 
where

ψ Z k (t) = log φ Z k (t), i.e. the second characteristic function of Z k . Write ψ Z k (t) = ∞ j=1 c (k) j (it) j j! ,
where c

(k) j j is the sequence of the cumulants of the B 1, 1 k distribution. Hence

ψ ′ Z k (t) = ∞ j=1 ic (k) j (it) j-1 (j -1)! . ( 8 
)
Denote by ψ Π k (t) the second characteristic function of the Poisson law with parameter 1 k ., i.e.

ψ Π k (t) = e it -1 k , ψ ′ Π k (t) = i k e it = i k ∞ j=1 (it) j-1 (j -1)! . (9) 
Hence, by ( 7) and ( 9),

γ m,n (t) = n k=m+1 k i φ ′ Z k (tk) φ Z k (tk) -n k=m+1 e itk n -m = n k=m+1 k i φ ′ Z k (tk) φ Z k (tk) -i k e itk n -m = n k=m+1 k i ψ ′ Z k (tk) -ψ ′ Π k (tk) n -m .
Since, by ( 8) and ( 9),

ψ ′ Z k (t) -ψ ′ Π k (t) = ∞ j=1 ic (k) j - i k (it) j-1 (j -1)! , we get γ m,n (t) = n k=m+1 ∞ j=1 kc (k) j -1 (itk) j-1 (j-1)! n -m = ∞ j=1 (it) j-1 (j -1)! n k=m+1 k j-1 (kc (k) j -1) n -m . (10) 
Putting

α (m,n) j = n k=m+1 k j-1 (kc (k) j -1) n -m ,
we obtain the formula

γ m,n (t) = ∞ j=1 (it) j-1 (j -1)! α (m,n) j . ( 11 
)
Let B(1, p) be the Bernoullian law with parameter p ∈ (0, 1) an c j (p) the j-th cumulant of B(1, p). In Section 7 we give an explicit form for the quantity

c j (p) p -1; if p = 1 k , this quantity is precisely the expression kc (k)
j -1 in the previous calculations (see [START_REF] Philipp | Almost sure invariance principles for partial sums of weakly dependent random variables[END_REF]). We believe that the explicit formula of Section 7 can be used for getting good approximations of kc (k) j -1, and in turn of γ m,n (see [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]).

The following result specifies Proposition 1 of [START_REF] Hwang | Quickselect and Dickman function[END_REF] quantitatively in terms of the characteristic functions.

Proposition 3.5 There exists an absolute constant C such that for all integers n > m 2 and all real numbers t,

φ T n m n-m (t) -exp 1 0 e itu -1 u du f m,n (t),
where

f m,n (t) = exp Ct 2 log n m (n -m) 2 + m + 2 n -m -1. Proof. First exp 1 0 e itu -1 u du -φ T n m n-m (t) = φ T n m n-m (t) • exp 1 0 e itu -1 u du - n k=m+1 log 1 + e it k n-m -1 k -1 exp n k=m+1 k-m n-m k-1-m n-m e itu -1 u du -log 1 + e it k n-m -1 k -1 exp n k=m+1 k-m n-m k-1-m n-m e itu -1 u du -log 1 + e it k n-m -1 k -1 exp n k=m+1 e it k n-m -1 k -log 1 + e it k n-m -1 k (a) + + n k=m+1 k-m n-m k-1-m n-m e itu -1 u du - e it k n-m -1 k (b) -1.
We shall prove that

n k=m+1 log 1 + e it k n-m -1 k - e it k n-m -1 k Ct 2 log n m (n -m) 2 + 1 n -m (a)
and

k-m n-m k-1-m n-m e itu -1 u du - e it k n-m -1 k (m + 1)t 2 2(n -m) 2 , ∀ k ∈ (m, n]. (b) 
These inequalities give exp

1 0 e itu -1 u du -φ T n m n-m (t) exp Ct 2 log n m (n -m) 2 + 1 n -m + n k=m+1 (m + 1) 2(n -m) 2 -1 exp Ct 2 log n m (n -m) 2 + m + 2 n -m -1 = f m,n (t).
(a) The inequality

e ix -1 = 2 sin x 2 2 ∧ |x| applied to x = tk n-m gives e it k n-m -1 k 2 k ∧ |t| n -m . (12) 
From

| log(1 + u) -u| ∞ j=2 |u| j j = |u| 2 ∞ j=0 |u| j j + 2 , |u| < 1, applied to u = e it k n-m -1 k (with k m + 1; notice that e it k n-m -1 k < 1 for k m + 1 3) we get n k=m+1 log 1 + e it k n-m -1 k - e it k n-m -1 k max m+1 k n e it k n-m -1 k 2 ∞ j=0 1 j + 2 n k=m+1 e it k n-m -1 k j by(12) t 2 (n -m) 2 1 2 (n -m) + 2 3 n k=m+1 1 k + ∞ j=2 1 j + 2 n k=m+1 2 k j C • t 2 (n -m) 2 (n -m) + log n m + ∞ j=2 2 j j + 2 ∞ 2 1 x j dx C • t 2 (n -m) 2 (n -m) + log n m + 1 Ct 2 log n m (n -m) 2 + 1 n -m . (b) Putting η t (x) = e itx -1 x , x > 0, -π t π, we can write k-m n-m k-1-m n-m e itu -1 u du - e it k n-m -1 k = k-m n-m k-1-m n-m e itu -1 u du - e it k n-m -1 (n -m) k n-m = k-m n-m k-1-m n-m η t (u) du - η t k n-m n -m = k-m n-m k-1-m n-m η t (u) -η t k n -m du 1 n -m sup u∈[ k-1-m n-m , k-m n-m ] η t (u) -η t k n -m 1 n -m • sup u∈[ k-1-m n-m , k-m n-m ] u - k n -m • sup x∈R η ′ t (x) = m + 1 (n -m) 2 • sup x∈R η ′ t (x) (m + 1)t 2 2(n -m) 2 , since sup x∈R η ′ t (x) t 2 2 ,
as we are going to prove. First

η ′ t (x) 2 = itxe itx -e itx + 1 x 2 2 = δ(tx) x 4 , where δ(u) = 2(1 -u sin u -cos u) + u 2 . Put now H(u) = u 4 4 -δ(u).
We have

H ′ (u) = u 3 -2u(1 -cos u) = 4u u 2 4 -sin 2 u 2 0, u 0;
hence H is non-decreasing for u 0, and from the fact that H(0) = 0, we deduce that H(u) 0 for every u 0, hence also for every u ∈ R since H(-u) = H(u). In other words δ(u) u 4 4 and as a consequence

η ′ t (x) 2 = δ(tx) x 4 t 4 4 .
The following result specifies Proposition 1 of [START_REF] Hwang | Quickselect and Dickman function[END_REF] quantitatively in terms of distribution functions.

Proposition 3.6 There exists an absolute positive constant C such that, for all positive integers n, m, with n > m 2,

sup x∈R P T n m n -m x -D(x) Cg m,n ,
where

g m,n = exp C log n m (n -m) 2 + m + 2 n -m log 2 n m -1 + 1 log n m .
Proof. In view of Theorem 2 p. 109 in [START_REF] Petrov | Sums of Independent Random variables[END_REF], if τ is an arbitrary positive number, then for b > 1 2π

sup x∈R P T n m n -m x -D(x) b τ -τ exp 1 0 e itu -1 u du -φ T n m n-m (t) |t| dt + r(b) τ sup x∈R |D ′ (x)|
where r(b) is a positive constant depending on b only. Hence

sup x∈R P T n m n -m x -D(x) C τ -τ exp 1 0 e itu -1 u du -φ T n m n-m (t) |t| dt + 1 τ sup x∈R |D ′ (x)| C τ -τ f m,n (t) |t| dt + 1 τ ,
by Proposition 3.5. Now, for every positive constant A we have sup

0 x τ e Ax 2 -1 x = e Aτ 2 -1 τ . Applying this with A = C log n m (n-m) 2 + m+2 n-m we obtain τ -τ f m,n (t) |t| dt 2τ e C log n m (n-m) 2 + m+2 n-m τ 2 -1 τ = 2 e C log n m (n-m) 2 + m+2 n-m τ 2 -1 .
Hence, for every τ ,

sup x∈R P T n m n -m x -D(x) C exp C log n m (n -m) 2 + m + 2 n -m τ 2 -1 + 1 τ . ( 13 
) Taking τ = log n m we get exp C log n m (n -m) 2 + m + 2 n -m τ 2 -1 + 1 τ = exp C log n m (n -m) 2 + m + 2 n -m log 2 n m -1 + 1 log n m = g m,n , so that, from (13) sup x∈R P T n m n -m x -D(x) Cg m,n ,
as claimed.

Preliminaries on the Dickman distribution II: a convergence result

This section is devoted to a convergence result for the characteristic functions of Tn n that has been used before in the proof of Proposition 3.2; it gives also a weak form of the Local Limit Theorem (see Remark 4.2).

Proposition 4.1 We have (a) +∞ -∞ φ(t) 2 dt < +∞; (b) πn -πn φ Tn n (u) 2 du → ∞ -∞ |φ(u)| 2 du, n → ∞.
Proof.

(a) By symmetry (t → φ(t) 2 is an even function), it is sufficient to prove that

+∞ 0 φ(t) 2 dt < +∞.
Theorem 2 p. 11 of [START_REF] Petrov | Sums of Independent Random variables[END_REF] assures that there exist positive constants δ and C such that

|φ(t)| 1 -Ct 2 , |t| < δ.
This implies that

δ 0 |φ(t)| 2 dt δ 0 (1 -Ct 2 ) 2 dt = C.
Let's turn to

+∞ δ |φ(t)| 2 dt. First observe that φ(t) 2 = φ(t)φ(-t) = exp 1 0 e itu -1 u du • exp 1 0 e -itu -1 u du = exp -2 1 0 1 -cos tu u du . (14) 
Now, for every ǫ ∈ (0, t)

1 0 1 -cos tu u du = t 0 1 -cos z z dz t ǫ 1 -cos z z dz = z -sin z z t ǫ + t ǫ z -sin z z 2 dz = log t ǫ - sin t t + sin ǫ ǫ - t ǫ sin z z 2 dz log t ǫ + C
(the constant C might be negative here, but this is irrelevant as it appears clearly from the sequel). Hence, taking ǫ = δ,

+∞ δ |φ(t)| 2 dt +∞ δ exp -2 log t δ + C dt C +∞ δ 1 t 2 dt = C.
(b) By part (a), the Proposition will be proved if we show that πn

-πn φ Tn n (u) 2 -|φ(u)| 2 du → 0, n → ∞. ( 15 
)
Recall that, by Proposition 3.1, φ Tn n converges to |φ| pointwise and uniformly on every bounded interval. Hence, for any positive A,

A -A φ Tn n (u) 2 -|φ(u)| 2 du → 0, n → ∞.
Thus we are left with the proof of

{A |t| nπ} φ Tn n (u) 2 -|φ(u)| 2 du → 0, n → ∞. ( 16 
)
We split the first member of (16) as follows: for a fixed ǫ ∈ (0, 1), write

{A |t| nπ} = {A |t| ǫπ 5 √ n} + {ǫπ 5 √ n |t| nπ} = I 1 + I 2 .
We consider the two summands I 1 and I 2 separately.

(I 1 ) Notice that φ Tn (t)

2 = n k=1 1 + e ikt -1 k 2 = n k=1 1 - 1 k + 1 k cos kt 2 + 1 k sin kt 2 = n k=1 1 + 2(k -1) k 2 cos kt -1 = exp n k=1 log 1 + 2(k -1) k 2 cos kt -1 . (17) 
Hence

|I 1 | {A |t| ǫπ 5 √ n} φ Tn n (t) 2 -exp n k=1 2(k -1) k 2 cos kt n -1 dt+ + {A |t| ǫπ 5 √ n} exp n k=1 2(k -1) k 2 cos kt n -1 -exp n k=1 2 k cos kt n -1 dt+ + {A |t| ǫπ 5 √ n} exp n k=1 2 k cos kt n -1 -|φ(t)| 2 dt = I 11 + I 12 + I 13 .
We consider the three summand I 11 , I 12 and I 13 separately.

(I 11 ) First observe that, by relation (17),

I 11 = {A |t| ǫπ 5 √ n} φ Tn n (t) 2 -exp n k=1 2(k -1) k 2 cos kt n -1 dt = {A |t| ǫπ 5 √ n} exp n k=1 log 1 + 2(k -1) k 2 cos kt n -1 -exp n k=1 2(k -1) k 2 cos kt n -1 dt {A |t| ǫπ 5 √ n} exp n k=1 log 1 + 2(k -1) k 2 cos kt n -1 - 2(k -1) k 2 cos kt n -1 -1 dt, since 0 exp n k=1 2(k -1) k 2 cos kt n - 1 1. 
Now using the development

log(1 + z) -z = j 2 (-1) j j z j , |z| < 1 with z = 2(k-1)
k 2 cos kt n -1 (which, for sufficiently large n, is strictly less than 1 in modulus for every k 1 ) we get

log 1 + 2(k -1) k 2 cos kt n -1 - 2(k -1) k 2 cos kt n -1 = j 2 (-1) j 2 j (k -1) j j • k 2j cos kt n -1 j = j 2 2 j (k -1) j jk 2j 1 -cos kt n j 0.
It follows that

{A |t| ǫπ 5 √ n} exp n k=1 log 1 + 2(k -1) k 2 cos kt n -1 - 2(k -1) k 2 cos kt n -1 -1 dt = {A |t| ǫπ 5 √ n} exp n k=1 j 2 2 j (k -1) j jk 2j 1 -cos kt n j -1 dt.
Using the inequality 1cos z z 2 the above can be bounded by

{A |t| ǫπ 5 √ n} exp n k=1 j 2 2 j (k -1) j jk 2j kt n 2j -1 dt = {A |t| ǫπ 5 √ n} exp n k=1 j 2 2 j (k -1) j j t n 2j -1 dt = {A |t| ǫπ 5 √ n} exp j 2 1 j √ 2t n 2j n k=1 (k -1) j -1 dt {A |t| ǫπ 5 √ n} exp j 2 1 j √ 2t n 2j n 1 x j dx -1 dt {A |t| ǫπ 5 √ n} exp j 2 1 j √ 2t n 2j n j+1 j + 1 -1 dt = {A |t| ǫπ 5 √ n} exp j 2 1 j(j + 1) • ( √ 2t) 2j n j-1 -1 dt = {A |t| ǫπ 5 √ n} exp C t 4 n j 0 1 (j + 3)(j + 2) • ( √ 2t) 2j n j -1 dt.
Now, for |t| ǫπ 5 √ n we have also|t| π 5 √ n (recall that ǫ < 1); hence there exists n 0 not dependent on ǫ such that, for n > n 0

( √ 2t) 2 n C n 3 5 1 2 .
Hence, for n > n 0 ,

j 0 1 (j + 3)(j + 2) • ( √ 2t) 2j n j j 0 1 (j + 3)(j + 2) • 1 2 j = C,
and we get

{A |t| ǫπ 5 √ n} exp C t 4 n j 0 1 (j + 3)(j + 2)• • ( √ 2t) 2j n j -1 dt {A |t| ǫπ 5 √ n} exp C t 4 n -1 dt exp C (ǫπ 5 √ n) 4 n -1 ǫπ 5 √ n = C • e C 5 √ n -1 C 5 √ n ǫ 5 < Cǫ 5 .
(I 12 ) Here we observe that

0 exp n k=1 2 k cos kt n - 1 1, 
hence

I 12 = {A |t| ǫπ 5 √ n} exp n k=1 2(k -1) k 2 cos kt n -1 -exp n k=1 2 k cos kt n -1 dt {A |t| ǫπ 5 √ n} exp n k=1 2(k -1) k 2 - 2 k cos kt n -1 -1 dt = {A |t| ǫπ 5 √ n} exp n k=1 2 k 2 1 -cos kt n -1 dt {A |t| ǫπ 5 √ n} exp n k=1 2 k 2 kt n 2 -1 dt = {A |t| ǫπ 5 √ n} e 2t 2 n -1 dt e 2(ǫπ 5 √ n) 2 n -1 ǫπ 5 √ n = e 2(ǫπ) 2 n 3/5 -1 2(ǫπ) 2 n 3/5 • 2(ǫπ) 2 n 3/5 ǫπ 5 √ n → 0, n → ∞.
(I 13 ) Recalling the explicit form of |φ(t)| 2 given in equation ( 14), we have

I 13 = {A |t| ǫπ 5 √ n} exp n k=1 2 k cos kt n -1 -|φ(t)| 2 dt {A |t| ǫπ 5 √ n} exp n k=1 2 k cos kt n -1 -exp 2 1 0 cos tu -1 u du dt,
and, observing again that

0 exp n k=1 2 k cos kt n - 1 1, 
we get

I 13 {A |t| ǫπ 5 √ n} exp 2 1 0 cos tu -1 u du -2 n k=1 n k cos kt n -1 1 n -1 dt = {A |t| ǫπ 5 √ n} exp 2 n k=1 k n k-1 n γ t (u) -γ t k n du -1 dt {A |t| ǫπ 5 √ n} exp 2 n k=1 k n k-1 n γ t k n -γ t (u) du -1 dt,
where we have put

γ t (u) = cos tu -1 u
and have used the inequality |e x -1| e |x| -1. It is not difficult to see that sup

u∈R γ ′ t (u) = Ct 2 ; in fact γ ′ t (u) = η(tu)t 2 , with η(z) = 1 -z sin z -cos z z 2 ,
and proving that sup z∈R |η(z)| = C < +∞ is a simple exercise. Thus, by Lagrange's Theorem,

k n k-1 n γ t k n -γ t (u) du Ct 2 k n k-1 n k n -u du C t 2 n 2 . ( 18 
)
Using (18) in the last bound for I 13 we find

I 13 {A |t| ǫπ 5 √ n} exp 2 n k=1 k n k-1 n γ t k n -γ t (u) du -1 dt {A |t| ǫπ 5 √ n} exp C t 2 n -1 dt exp C (ǫπ 5 √ n) 2 n -1 ǫπ 5 √ n = C e C n 3/5 -1 C n 3/5 C n 2/5 → 0, n → ∞.
(I 2 ) We recall that

I 2 = {ǫπ 5 √ n |t| nπ} φ Tn n (u) 2 -|φ(u)| 2 du {ǫπ 5 √ n |t| nπ} φ Tn n (u) 2 du + {ǫπ 5 √ n |t| nπ} |φ(u)| 2 du.
The second summand above goes to 0 as n → ∞ since |φ(u)| 2 is integrable on R (recall point (a) of this proposition); hence we have to prove that

{ǫπ 5 √ n |t| nπ} φ Tn n (u) 2 du → 0, n → ∞.
By relation (17), we have, for every k 0 ∈ N and n k 0 φ Tn (u)

2 = exp k 0 -1 k=1 log 1 + 2(k -1) k 2 cos kt -1 • exp n k=k 0 log 1 + 2(k -1) k 2 cos kt -1 exp n k=k 0 log 1 + 2(k -1) k 2 cos kt -1 . Now, using the relation log(1 -z) + z |z| 2 , |z| < 1 2 , z ∈ C with z = -2(k-1) k 2
cos kt -1 and choosing k 0 such that 2(k-1)

k 2 cos kt -1 < 1 2 for k > k 0 and every t, we find log 1 + 2(k -1) k 2 cos kt -1 - 2(k -1) k 2 1 -cos kt + 4(k -1) 2 k 4 1 -cos kt 2 .
Thus, by the obvious inequality 1cos x 2, exp

n k=k 0 log 1 + 2(k -1) k 2 cos kt -1 exp - n k=k 0 2(k -1) k 2 1 -cos kt + n k=k 0 4(k -1) 2 k 4 1 -cos kt 2 exp -2 n k=k 0 k -1 k 2 + 2 n k=k 0 k -1 k 2 cos kt + n k=k 0 16(k -1) 2 k 4 exp -2 n k=k 0 1 k + 2 n k=k 0 cos kt k + C exp -2 n k 0 1 x dx + 2 n k=k 0 cos kt k + C = C n 2 exp 2 n k=k 0 cos kt k .
By [START_REF] Zygmund | Trigonometric Series (volumes I & II Combined)[END_REF] 

T n = n k=1 k Z k ,
where ( Z n ) n 1 is an independent copy of (Z n ) n 1 . Denote by d s the symmetrized Dickman density, which has characteristic function φ 2 . Then, by the inversion formula, (15) and Proposition 4.1,

2π nP (T n -T n = κ n ) -d s (n -1 κ n ) = nπ -nπ e -itn -1 κn φ Tn n (t) 2 -|φ(t)| 2 dt + {|t|>nπ} e -itn -1 κn |φ(t)| 2 dt → 0, n → ∞.

The correlation inequality

In this section we present a correlation inequality for the sequence of random variables (Y n ) n 1 , where

Y n = n1 {Tn=κn} . (19) 
Theorem 5.1 (Basic correlation inequality). Let x > 0 be given and let κ = (κ n ) be any fixed sequence of integers with lim n→∞ κn n = x. Then, for every x > 0 and for n > m 2

|Cov(Y m , Y n )| C n n -m χ (κ,x) m,n + m n -m + χ (κ,x) 2,n + 1 n .
where C is a positive constant (depending on x) and

χ (κ,x) m,n = n -m κ n -κ m • log n m √ n -m + n -m κ n -κ m • g m,n + x n -m κ n -κ m - 1 x + m + 1 κ n -κ m .
Proof.

Cov(Y m , Y n ) = nm P (T m = κ m , T n = κ n ) -P (T m = κ m )P (T n = κ n ) = nm P (T m = κ m , T n m = κ n -κ m ) -P (T m = κ m )P (T n = κ n ) = mP (T m = κ m ) nP (T n m = κ n -κ m ) -nP (T n = κ n ) .
Hence, by the local Theorem (Corollary 2.1), we have

Cov(Y m , Y n ) C nP (T n m = κ n -κ m ) -nP (T n = κ n ) C n n -m (n -m)P (T n m = κ n -κ m ) -D ′ (x) + n n -m -1 D ′ (x) + nP (T n = κ n ) -D ′ (x) C n n -m (n -m)P (T n m = κ n -κ m ) -D ′ (x) + m n -m + nP (T n = κ n ) -D ′ (x) = C n n -m Γ + m n -m + ∆ , (20) 
where we have put for simplicity

Γ = |(n -m)P (T n m = κ n -κ m ) -D ′ (x)|, ∆ = |nP (T n = κ n ) -D ′ (x) .
The aim is to obtain bounds for Γ and ∆.

(a) Γ.

Set Φ = P (κ n -κ m ) -n T n m (κ n -κ m ) -(m + 1) ; Ψ = (κ n -κ m )P (T n = κ n -κ m ) -Φ . Γ n -m κ n -κ m Ψ + n -m κ n -κ m Φ -D ′ (x) = n -m κ n -κ m Ψ + n -m κ n -κ m Φ - D(x) -D(x -1) x ,
by [START_REF] Arratia | Limits of logarithmic combinatorial structures[END_REF]. From Proposition 3.2 we know that

Ψ C log n m √ n -m . ( 21 
)
Moreover, putting

Λ = P T n m n -m (κ n -κ m ) -(m + 1) n -m -D (κ n -κ m ) -(m + 1) n -m , Θ = P T n m n -m (κ n -κ m ) -(n + 1) n -m -D (κ n -κ m ) -(n + 1) n -m , Σ = n -m κ n -κ m D (κ n -κ m ) -(m + 1) n -m - D(x) x , Ω = n -m κ n -κ m D (κ n -κ m ) -(n + 1) n -m - D(x -1) x , it is easily checked that n -m κ n -κ m Φ - D(x) -D(x -1) x n -m κ n -κ m Λ + Θ + Σ + Ω.
We know from Proposition 3.6 that

sup x∈R P T n m n -m x -D(x) Cg m,n . Hence Λ + Θ Cg m,n . ( 22 
) Moreover Σ n -m κ n -κ m D (κ n -κ m ) -(m + 1) n -m -D(x) + n -m κ n -κ m - 1 x D(x) n -m κ n -κ m D (κ n -κ m ) -(m + 1) n -m -D(x) + n -m κ n -κ m - 1 x ,
and, by Lagrange Theorem, there exists ξ n such that

n -m κ n -κ m D (κ n -κ m ) -(m + 1) n -m -D(x) n -m κ n -κ m (κ n -κ m ) -(m + 1) n -m -x D ′ (ξ n ) n -m κ n -κ m (κ n -κ m ) -(m + 1) n -m -x x n -m κ n -κ m - 1 x + m + 1 κ n -κ m , (23) 
since sup x>0 D ′ (x) = 1. For Ω we get exactly the same bound as in (23).

In conclusion, from (21), ( 22) and ( 23) we have obtained

Γ = (n -m)P (T n m = κ n -κ m ) -D ′ (x) Cχ (κ,x) m,n . ( 24 
) (b) ∆. Recall that ∆ = nP (T n = κ n ) -D ′ (x) .
Notice that we cannot apply (24) directly since we have proved it for m 2 only. Nevertheless, with

U = Z 1 + 2Z 2 , ∆ = 3 j=0 P (U = j) nP (T n 2 = κ n -j) -D ′ (x) sup 0 j 3 nP (T n 2 = κ n -j) -D ′ (x) = sup 0 j 3 n n -2 (n -2)P (T n 2 = κ n -j) -D ′ (x) + 2 n -2 D ′ (x) n n -2 sup 0 j 3 |(n -2)P (T n 2 = κ n -j) -D ′ (x)| + 2 n -2 Cn n -2 sup 0 j 3 χ (κ (j) ,x) 2,n + 2 n -2 C χ (κ,x) 2,n + 1 n , (25) 
applying (24) (with m = 2) for the sequence κ (j) = (κ

(j) n ) n defined as κ (j) n = κ n -j and noticing that χ (κ (j) ,x) 2,n = χ (κ,x) 2,n .
The two relations (24) and ( 25), inserted into (20), conclude the proof.

A general form of the Almost Sure Limit Theorem

As we pointed out in the Introduction, the Almost Sure Limit Theorem that we are going to prove in the present section (i.e. Theorem 6.8) is in the spirit of Theorem 1 of T. Mori's paper [START_REF] Mori | On the strong law of large numbers for logarithmically weighted sums[END_REF]; in section 6 it will be applied to the sequence (Y n ) defined in (19): notice that Mori's result is not applicable in the context of ( 19), due to the fact that it requires that Cov(Y m , Y n )

h n m for all 1 m n (for a suitable function h); for m = n this inequality becomes V arY m h(1) = C, i.e. the sequence (V arY m ) m 1 must be bounded; unfortunately this is not true in our setting (see Lemma 7.2). Theorem 6.1 Let (U n ) n 1 a sequence of centered random variables. Assume that there exist two numbers α 0 and σ > 1, a non-negative function f (u, z) defined on the set {u 1, z σ}, a non-negative double-indexed sequence g defined on the set {(m, n) ∈ N 2 : σm n} such that

(i ) sup n σm g(m, n) = C < +∞;
(ii) uniformly in u > 0 the functions v → f u, v u are ultimately non-increasing (i.e. there exists m 0 such that v → f u, v u is non-increasing on (m 0 , +∞) and for every u > 0); (iii) the functions

z → φ(z) = sup u 1 f (u, z) z , u → F (u) = u σ φ(z) dz are defined on [σ, +∞); (iv ) |Cov(U m , U n )| C m for m = n 1 for m < n σm; (v) there exists m 1 such that, for n > m m 1 |Cov(U m , U n )| g(m, n) 1 m α f m, n m . Denote V n = σ n k=σ n-1 +1 U k k .
Then, for every n and every sufficiently large m E (

m+n i=m+1 V i ) 2 C n + 1 σ α(m+n) σ n σ F (u)u α-1 du . Proof. Since E m+n i=m+1 V i 2 = m+n i=m+1 E[V 2 i ] + 2 m+1≤i<j≤m+n E[V i V j ], (26) 
we bound separately these two summands. We have first

E[V 2 i ] = E σ i h=σ i-1 +1 U h h σ i k=σ i-1 +1 U k k = σ i h,k=σ i-1 +1 1 hk E[U h U k ] = σ i h=σ i-1 +1 1 h 2 E[U 2 h ] + 2 σ i-1 +1≤h<k≤σ i 1 hk E[U h U k ]. ( 27 
)
By the first inequality in (iv)

σ i h=σ i-1 +1 1 h 2 E[U 2 h ] C σ i h=σ i-1 +1 1 h C log σ i σ i-1 = C. ( 28 
)
For the second summand in (27), i.e.

σ i-1 +1≤h<k≤σ i 1 hk E[U h U k ],
we notice that k σ σ i-1 < h so that, by the second inequality in (iv), we have

σ i-1 +1≤h<k≤σ i 1 hk E[U h U k ] C σ i-1 +1≤h<k≤σ i 1 hk C σ i k=σ i-1 +1 1 k σ i h=σ i-1 +1 1 h C. ( 29 
)
The above relations (28) and (29), used in (27), give

m+n i=m+1 E[V 2 i ] C m+n i=m+1 1 = Cn. ( 30 
)
Now we consider the second sum in (26), i.e.

m+1≤i<j≤m+n

E[V i V j ].
We start with a bound for the summand E[V i V j ] when j ≥ i + 2. First, notice that here

E[V i V j ] = E σ i h=σ i-1 +1 U h h σ j k=σ j-1 +1 U k k (31) and h ≤ σ i ≤ σ j-2 ≤ k σ , (32) 
hence, by assumption (i), g(h, k) C; thus the inequality in (v) can be simplified into

|Cov(U h , U k )| 1 h α f h, k h
(we incorporate the constant C into f for simplicity). Hence, for m sufficiently large in order that σ j-1 + 1 > m 0 , by assumption (ii) we have

E[V i V j ] = σ i h=σ i-1 +1 σ j k=σ j-1 +1 1 hk E[U h U k ]
By inserting (34) and ( 35) into (33), we get

m+1≤i<j≤m+n j≥i+2 E[V i V j ] 1 σ α(m+n) σ n σ F (u)u α-1 du - σ 2 σ F (u)u α-1 du - m+n-2 i=m+1 1 σ α(i+1) σ 2 σ F (u)u α-1 du = 1 σ α(m+n) σ n σ F (u)u α-1 du - m+n i=m+2 1 σ αi σ 2 σ F (u)u α-1 du =C = 1 σ α(m+n) σ n σ F (u)u α-1 du -C m+n i=m+2 1 σ αi . ( 36 
)
And now, by ( 27), ( 28) and (29),

m+1≤i<j≤m+n E[V i V j ] = m+1≤i<j≤m+n j≥i+2 E[V i V j ] + m+n-1 i=m+1 E[V i V i+1 ] = m+1≤i<j≤m+n j≥i+2 E[V i V j ] + m+n-1 i=m+1 E[V 2 i ] 1/2 E[V 2 i+1 ] 1/2 1 σ α(m+n) σ n σ F (u)u α-1 du -C m+n i=m+2 1 σ αi + C m+n-1 i=m+1 1 C n + 1 σ α(m+n) σ n σ F (u)u α-1 du . (37) 
From ( 26), (30) and (37) we obtain

E m+n i=m+1 V i 2 C n + 1 σ α(m+n) σ n σ F (u)u α-1 du , i.e. the claim.
Similar techniques prove the following more general result: Theorem 6.2 Let (U n ) n 1 be a sequence of centered random variables. Let N be an integer and assume that there exist a number σ > 1 and for each j = 1, 2, . . . , N numbers α j 0 a non-negative function f j (u, z) defined on the set {u 1, z σ}, a non-negative double-indexed sequence g j defined on the set {(m, n) ∈ N 2 : σm n} such that

(i ) sup n σm g j (m, n) = C < +∞;
(ii) uniformly in u > 0 the functions u → f j u, v u are ultimately non-increasing (i.e. there exists m 0 such that v → f j u, v u are non-increasing on (m 0 , +∞), for each j = 1, . . . , N and for every u > 0); (iii) for each j = 1, 2, . . . , N the functions

z → φ j (z) = sup u 1 f j (u, z) z , u → F j (u) = u σ φ j (z) dz are defined on [σ, +∞); (iv ) |Cov(U m , U n )| C m for m = n 1 for m < n σm; (v) there exists m 1 such that, for n > m m 1 |Cov(U m , U n )| N j=1 g j (m, n) 1 m α j f j m, n m . Denote V n = σ n k=σ n-1 +1 U k k .
Then, for every n and every sufficiently large m

E ( m+n i=m+1 V i ) 2 C   n + N j=1 1 σ α j (m+n) σ n σ F j (u)u α j -1 du   .
Corollary 6.3 In the setting of Theorem 6.1, assume in addition that α = 0 and there exists β > 1 such that F (x) C(log x) β-1 for every x > σ. Then, for every sufficiently large m,

E m+n i=m+1 V i 2 C (m + n) β -m β . (38) 
Proof. Putting α = 0 in the claim of Theorem 6.1 we obtain

E m+n i=m+1 V i 2 C n + σ n σ F (u) u du C n + σ n σ (log u) β-1 u du = C n + (log u) β σ n σ C n + n β Cn β .
On the other hand, the function z → (z + n) βz β being increasing (its derivative is β(z + n) β-1βz β-1 0), we have

n β (1 + n) β -1 (m + n) β -m β .
Corollary 6.4 In the setting of Theorem 6.1, assume in addition that α > 0 and there exists β > 1 such that F (x) C(log x) β for every x > σ. Then, for every sufficiently large m,

E m+n i=m+1 V i 2 C (m + n) β -m β . (39) 
Proof. In this case Theorem 6.1 gives

E m+n i=m+1 V i 2 C n + 1 σ α(m+n) σ n σ F (u)u α-1 du C n + 1 σ αn σ n σ (log u) β u α-1 du C n + 1 σ αn log(σ n ) β σ n σ u α-1 du = C n + log(σ n ) β (σ αn -σ α ) ασ αn C n + n β Cn β .
The rest of the proof is identical to Corollary 6.3.

Corollary 6.5 In the setting of Theorem 6.2, assume that there exists β > 1 such that N j=1 F j (x) C(log x) β for every x > σ. Then (i) for every sufficiently large m and for every n,

E m+n i=m+1 V i 2 C (m + n) β -m β .
(ii) for every δ > 0,

n i=1 V i = O(n β/2 (log n) 2+δ ), P -a.s.
Proof. Point (i) follows from Corollaries 6.3 and 6.4. Point (ii) is a consequence of the well known Gaal-Koksma Strong Law of Large Numbers (see [START_REF] Philipp | Almost sure invariance principles for partial sums of weakly dependent random variables[END_REF], p. 134); here is the precise statement: Theorem 6.6 Let (V n ) n 1 be a sequence of centered random variables with finite variance. Suppose that there exists a constant β > 0 such that, for all integers m ≥ 0, n 1,

E m+n i=m+1 V i 2 ≤ C (m + n) β -m β , (40) 
for a suitable constant C independent of m and n. Then, for every δ > 0,

n i=1 V i = O(n β/2 (log n) 2+δ
), Pa.s. Remark 6.7 It is not difficult to see that Theorem 6.6 is in force even if the bound (40) holds only for all integers m ≥ h 0 , n > 0, where h 0 is an integer strictly greater than 0. A rigorous proof of this statement can be found in the appendix of [START_REF] Giuliano Antonini | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF]. From now on, this slight generalization will be tacitly used.

Theorem 6.8 (General ASLT) Let (Y n ) n 1 be a sequence of non-negative (resp. non-positive) random variables with

lim n→∞ E[Y n ] = ℓ > 0 (resp. ℓ < 0)
and such that the sequence

(U n ) n 1 defined by U n = Y n -E[Y n ]
verifies the assumptions of Theorem 6.2. Assume that there exists β > 1 such that N j=1 F j (x) C(log x) β for every x > σ. Then

lim n→∞ 1 log n n k=1 Y k k = ℓ, a.s.
Proof. By point (ii) of Corollary 6.5, for every δ > 0 we have

n i=1 V i n = O(n β/2 (log n) 2+δ ) n -→ n→∞ 0. (41) 
Since

n i=1 V i = n i=1 σ i k=σ i-1 +1 U k k = σ n k=2 U k k = σ n k=2 Y k k - σ n k=2 E[Y k ] k and 1 n log σ σ n k=2 E[Y k ] k -→ n→∞ ℓ,
the relation ( 41) is equivalent to

1 n log σ σ n k=2 Y k k -→ n→∞ ℓ;
By the same argument as in [START_REF] Giuliano Antonini | A general correlation inequality and the Almost Sure Local Limit Theorem for random sequences in the domain of attraction of a stable law[END_REF], pp. 789-790, this in turn implies that

1 log n n k=1 Y k k -→ n→∞ ℓ,
i.e. the claim.

The Almost Sure Local Limit Theorem

Let x > 0 be given; let κ = (κ n ) n 1 be a strictly increasing sequence of integers with κ n ∼ xn, fixed throughout the sequel. Let (Y n ) n 1 be the sequence defined in (19); the main result of this section and of the paper (Theorem 2.2) is an ASLLT for the sequence (Y n ) n 1 . Before proving it, we need some Lemmas.

For every ǫ ∈ (0, 1 2x ) we set

σ = σ ǫ = 1 + x(1 -ǫ) x(1 + ǫ) = 1 + 2 1 + ǫ 1 2x -ǫ > 1. ( 42 
)
Lemma 7.1 Let ǫ ∈ (0, 1 2x ) be fixed. Then there exists m 0 = m 0 (ǫ) such that, for σm > n > m > m 0 ,

P T n m = κ n -κ m = 0 Proof. Let A = n k=m+1 {Z k = 0}. Then P T n m = κ n -κ m = P {T n m = κ n -κ m } ∩ A + P {T n m = κ n -κ m } ∩ A c .
(i) Let m 0 be such that, for every m > m 0 ,

xm(1 -ǫ) < κ m < xm(1 + ǫ).
Then, for σm > n > m > m 0 ,

κ n -κ m < xn(1 + ǫ) -xm(1 -ǫ) = m x n m (1 + ǫ) -x(1 -ǫ) m xσ(1 + ǫ) -x(1 -ǫ) = m. (43) 
Hence

{T n m = κ n -κ m } ∩ A c = {T n m = κ n -κ m } ∩ n k=m+1 {Z k = 1} = n k=m+1 {T n m = κ n -κ m , Z k = 1} ⊆ n k=m+1 {T n m = κ n -κ m , T n m m + 1} = {T n m = κ n -κ m , T n m m + 1} = ∅, by (43). 
(ii) A ⊆ {T n m = 0}, hence

{T n m = κ n -κ m } ∩ A ⊆ {T n m = κ n -κ m , T n m = 0} = ∅, since κ n -κ m > 0.
Lemma 7.2 Let ǫ ∈ (0, 1 2x ) be fixed. Then there exists m 0 = m 0 (ǫ) such that, for n m > m 0 ,

|Cov(Y m , Y n )| C m for m = n 1 for m < n σm,
where C is a positive constant.

Proof.

(a) For m = n:

Cov(Y m , Y m ) = m 2 P (T m = κ m ) -P 2 (T m = κ m ) = mP (T m = κ m ) m -P (T n = κ m ) Cm,
by the Local Theorem (Corollary 2.1).

(b) For m < n σm: let m 0 be as in Lemma 7.1. Then, for σm > n > m > m 0 , where t → ψ(t) is a continuous ultimately non-increasing function, i.e. there exists t 0 such that t → ψ(t) is non-increasing for t t 0 . Then

|Cov(Y m , Y n )| = mn P (T m = κ m , T n = κ n ) -P (T m = κ m )P (T n = κ n ) = mP (T m = κ m ) nP T n m = κ n -κ m -nP (T n = κ n ) = mP (T m = κ m ) nP (T n = κ n ) C,
F (u) C 1 for u t 0 1 + u t 0 ψ(z) z dz for u > t 0 . (44) Proof. It is easy to see that sup x 1 f (x, z) = sup x 1 ψ(xz) = sup u z ψ(u)    max u∈[1,t 0 ] ψ(u) =: M for z t 0 = ψ(z)
for z > t 0 .

Hence

φ(z) M z for z t 0 ψ(z) z
for z > t 0 .

and

F (u) = u σ φ(z) dz = t 0 σ φ(z) dz =C + u t 0 φ(z) dz C 1 for u t 0 1 + u t 0 ψ(z)
z dz for u > t 0 . Remark 7.5 Of course, the preceding lemma has an obvious generalization in the setting of Theorem 6.2.

We are ready to give the Proof of Theorem 2.2. Though with tedious and cumbersome calculations, it is easy to see that the correlation inequality of Theorem 5.1 takes a slightly more tractable form for sufficiently large m: precisely (we neglect the multiplicative constant C for easy writing):

|Cov(Y m , Y n )| n κ n -κ m 1 + log n m √ n -m + exp C log 3 n m (n -m) 2 + m log 2 n m n -m -1 + 1 log n m + (xn -κ n ) -(xm -κ m ) n -m + m n -m + m n -m + log n √ n + exp C log 3 n n 2 + log 2 n n -1 + 1 log n + (xn -κ n ) -(2x -κ 2 ) n -2 + 1 n . (45) 
(In fact (look at the formula in the statement of Theorem 5.1)

n n -m χ κ,x m,n = n κ n -κ m log n m √ n -m + g m,n (a) 
+ x n -m κ n -κ m - 1 x • n n -m (b) + n n -m • m + 1 κ n -κ m (c) 
, and (a)

n κ n -κ m 1 + log n m √ n -m + g m,n = n κ n -κ m 1 + log n m √ n -m + exp C log n m (n -m) 2 + m + 2 n -m log 2 n m -1 + 1 log n m n κ n -κ m 1 + log n m √ n -m + exp C log 3 n m (n -m) 2 + m • log 2 n m n -m -1 + 1 log n m ; (b) x n -m κ n -κ m - 1 x • n n -m = n κ n -κ m • (nx -κ n ) -(mx -κ m ) n -m ; (c) n n -m • m + 1 κ n -κ m n κ n -κ m • m n -m .
Further, by (a), (b) and (c) above

χ κ,x 2,n n κ n -κ 2 1 + log n 2 √ n -2 + exp C log 3 n 2 (n -2) 2 + 2 • log 2 n 2 n -2 -1 + 1 log n 2 + + n n -2 • (nx -κ n ) -(2x -κ 2 ) n -2 + 1 n -2 log n √ n + exp C log 3 n n 2 + log 2 n n -1 + 1 log n + (xn -κ n ) -(2x -κ 2 ) n -2 + 1 n ,
for sufficiently large n; recall that we are neglecting multiplicative constants).

The statement of the Theorem is a consequence of the general ASLT (Theorem 6.8): we check assumption (v) of Theorem 6.2 for each summand in the basic correlation inequality (in the form (45)) and use Corollary 6.3 or Corollary 6.4, as needed (it is easy to see that assumptions (i)-(iv) of Theorem 6.2 are in force for each summand in the basic correlation inequality, hence we omit the details). Precisely (with the notations of Theorem 6.2 and with σ defined in (42)):

(1) First summand:

n κ n -κ m • 1 + log n m √ n -m .
Fix δ ∈ 0, σ-1 σ+1 , and let m 1 be such that

1 -δ < κ n n < 1 + δ, n > m 1 .
Then, for n > σm and m > m 1 ,

κ n -κ m n = κ n n - κ m m • m n (1 -δ) - 1 + δ σ > 0, ( 46 
) hence sup n>σm n κ n -κ m 1 (1 -δ) -1+δ σ . ( 47 
)
Moreover we have

1+log y x √ y-x = 1 √ x • 1+log y x √ y x -1 , hence g 1 (m, n) = n κ n -κ m , α 1 = 1 2 , f 1 (u, z) = 1 + log z √ z -1 , φ 1 (z) = 1 + log z z √ z -1 ; last F 1 (u) = u σ φ 1 (z) dz = u σ 1 + log z z √ z -1 dz C C(log u) β , ∀β > 1.
(2) Second summand:

n κ n -κ m • exp C log 3 n m (n -m) 2 + m log 2 n m n -m -1 .
We have again g

2 (m, n) = n κn-κm ; moreover exp C log 3 y x (y -x) 2 + x log 2 y x y -x -1 = exp C log 3 y x x 2 ( y x -1) 2 + x log 2 y x x( y x -1) -1, so that f 2 (u, z) = exp C log 3 z u 2 (z -1) 2 + x log 2 z u(z -1) -1, 
and α 2 = 0; further

φ 2 (z) = sup u 1 f 2 (u, z) z = 1 z exp C log 3 z (z -1) 2 + log 2 z z -1 -1 . Put M = sup z σ exp C log 3 z (z-1) 2 + log 2 z z-1 -1 log 3 z (z-1) 2 + log 2 z z-1 Then φ 2 (z) M log 3 z (z -1) 2 + log 2 z z -1 1 z and F 2 (u) = u σ φ(z) dz M u σ log 3 z (z -1) 2 + log 2 z z -1 1 z dz C C(log u) β , ∀β > 1.
(3) Third summand:

n κ n -κ m • 1 log n m we have g 3 (m, n) = n κn-κm , α 3 = 0 and f 3 (u, z) = 1 log z ; φ 3 (z) = 1 z log z , hence F 3 (u) = u σ φ 3 (z) dz = u σ 1 z log z dz = log log z u σ log log u (log u) β , ∀β > 1.
(4) Fourth summand:

n κ n -κ m • (xn -κ n ) -(xm -κ m ) n -m
Once more, g 4 (m, n) = n κn-κm , α 4 = 0. Let δ > 0 be fixed and m 0 such that |κ n -nx| < δxn, n > m 0 .

Then, for n > m > m 0 , (5) Fifth summand:

(xn -κ n ) -(xm -κ m ) n -m < δx n + m n -m = δx n m + 1
n κ n -κ m • m n -m = n κ n -κ m • 1 n m -1 .
Once more, g(m, n) = n κn-κm , α = 0 and Here g 6 (m, n) = 1, α 6 = 0 and

f (u, z) = 1 z -1 ; φ(z) = 1 z(z -
f 6 (u, z) = 1 z -1 .
The argument is identical to the previous one.

( for some suitable t 0 > σ.

(9) Ninth summand: 1 n The argument is the same as in [START_REF] Kalbfleisch | Probability and Statistical Inference: Probability[END_REF] and [START_REF] Mori | On the strong law of large numbers for logarithmically weighted sums[END_REF].

Explicit form of the cumulants of the Bernoulli distribution

In this section we prove the explicit formula announced in Remark 3.4. For every integer n and every integer k with 0 k n put (ii) We also recall that S(n, n) = 1, which implies that a n,n = (-1) n+1 n! by the above relation. This completes the proof. 

Theorem 2 . 1 (

 21 Local Limit Theorem). Let (κ n ) n 1 be any sequence of integers with lim n→∞ κn n = x > 0. Then lim n→∞ nP (T n = κ n ) = e -γ ρ(x).

Remark 2 . 4

 24 This corollary suggests two simulation procedures for estimating (i) Euler's constant γ and (ii) the values of Dickman's function ρ. Anyway, we have not investigated the goodness of these methods, nor compared them with the existing ones. For the values of the Dickman function see for instance[START_REF] Hildebrand | Integers without large prime factors[END_REF], Corollary 2.3.3 Preliminaries for the Dickman distribution I: some known facts and a new resultLet ρ and D be the Dickman function and the Dickman distribution respectively. It is easy to see
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 173174 by the Local Theorem again and observing that P T n m = κ nκ m = 0, by Lemma 7.Remark Notice that(i) κ n = [xn] is strictly increasing if x ≥ 1;(ii) If κ n = xn we can take ǫ = 0 and m 0 = Lemma In the setting of Theorem 6.1, assume that f has the form f (u, z) = ψ(uz)

  log u C log β u, ∀ β > 1.

  -1) dz C (log u) β , ∀β > 1.

Remark 8 . 1 (- 1 )

 811 (i) Notice that a 1,n = 1 for every n. (ii) The Stirling number of second kind S(n, k) has the explicit expression j+1 k j j n = (-1) k+1 k j=0 (-1) j-k k j j n = (-1) k+1 k j=0 (-1) k-j k j j n = (-1) k+1 k!S(n, k).

1 =- 1 k=3x 1 = 1 + 1 = 1 + n- 1 k=2 x k- 1 1 = a 1 ,n + n- 1 k=2 x k- 1 (- 1 ) 1 = k- 1 j=0(- 1 )(- 1 )

 11111111111111111 n-1 x k-1 + (xx 2 ) 1)a k,n-1 x k-1 -n k=3 (k -2)a k-1,n-1 x k-a 1,n-1 + a 2,n-1 -2a 1,n-1 + a 2,n-1 x+ + nk-1 a k,n-1 -2a k-1,n-1 + (k -1)a k,n-1 -(k -2)a k-1,n-1 + + -2a n-1,n-1 -(n -2)a n-1,n-1 x n-2a 2,n-1 -2a 1,n-1 x + n-1 k=3 x k-1 ka k,n-1ka k-1,n-1 +na n-1,n-1 x n-1 1 ka k,n-1ka k-1,n-1 +n(-1) n (n -1)! x n-ka k,n-1ka k-1,n-1 + (-1) n+1 n!x n-ka k,n-1ka k-1,n-1 + a n,n x n-1 = n k=1 a k,n x k-1 , since ka k,n-1ka k-1,n-1 = k j+1 j n (k -1)! j!(kj)! + (-1) k+1 k n-j+1 j n k j + (-1) k+1 k n = k j=0 j+1 j n k j = a k,n .

Corollary 8 . 4 a 2 k=1a 1 .

 8421 The following formula holdsc n (x) x -k+1,n-1a k,n-1 x ka n-1,n-1 x n-1 = 1 + n-k+1,n k + 1 x k + (-1) n-1 + (n -1)!x n-1 ,since, from the last calculation abovea k+1,n-1a k,n-1 = a k+1,n k +Using now Remark 8.1 (ii), we get c n

  Here g 8 ≡ 1, α 8 = 0 andf 8 (u, z) = C = ψ 8 (uz),with ψ 8 (t) = C. We can apply Lemma 7.4, and we findF 8 (u) = C +

	with			ψ 7 (t) =	log t √ t	+ exp C	log 2 t t	-1 +	1 log t	.
	We can apply Lemma 7.4, and we find
	F 7 (u) = C+	u t 0	log t t √ t	+	1 t	exp C		log 2 t t	-1 +	1 t log t	dt C log log u (log u) β ,	∀β > 1,
	for some suitable t 0 > σ.						
	(8) Eighth summand:									
								(xn -κ n ) -(2x -κ 2 ) n -2	C.
								u t 0	1 t	dt C log u (log u) β ,	∀β > 1,
	) Seventh summand:								
				log n √ n	+ exp C	log 3 n n 2 +	log 2 n n	-1 +	1 log n
						C	log n √ n	+ exp C	log 2 n n	-1 +	1 log n	.
	Here g 7 ≡ 1, α 7 = 0 and							
		f 7 (u, z) =	log uz √ uz	+ exp C	log 2 uz uz	-1 +	1 log uz	= ψ(uz),

By means of the change of variable v = uz in the inner integral, the above becomes

By the change of variable σ m+n u = v we get

In a similar way, by the change of variable σ i+1 u = v we get

Let B(1, x) be the Bernoullian law with parameter x ∈ (0, 1). Denote by c n (x) the n-th cumulant of B(1, x), i.e. the n-th coefficient in the development of the logarithm of its characteristic function φ(t):

(ii) It is well known (see [START_REF] Kalbfleisch | Probability and Statistical Inference: Probability[END_REF] ex. 6 p. 312 for instance) that the sequence of functions c n (x) n verifies the recurrence relation

Proposition 8.3 For every n 2 we have

P roof. By (48), we must prove that, for every n 1,

The proof is by induction.

For n = 1 the statement follows from Remarks 8.1 (i) and 8.2 (i).

Assume that (50) holds for the integer n -1; hence, by (48), we have