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We study the local limit theorem for weighted sums of Bernoulli variables. We show on examples that this is an important question in the general theory of the local limit theorem, and which turns up to be not well explored. The examples we consider arise from standard random models used in arithmetical number theory. We next use the characteristic function method to prove new local limit theorems for weighted sums of Bernoulli variables. Further, we give an application of the almost sure local limit theorem to a representation problem in additive number theory due to Burr, using an appropriate random model. We also give a simple example showing that the local limit theorem, in its standard form, fails to be sharp enough for estimating the probability P{Sn ∈ E} for infinite sets of integers E, already in the simple case where Sn is a sum of n independent standard Bernoulli random variables and E an arithmetic progression.

Introduction.

This work is devoted to the study of the local limit theorem and of its recent developments, in the context of some standard random models used in arithmetical number theory. It is also somehow completing the recent paper [START_REF] Giuliano | Approximate Local Limit Theorems with Effective Rate and Application to Random Walks in Random Scenery[END_REF]. We will be mainly interested in studying the local limit theorem for weighted sums of Bernoulli variables. As it will be clarified soon, this turns up to be a fundamental question in the local limit theorem theory. We first recall some basic results and the used methods. The local limit theorem was established already three centuries ago in the binomial case by De Moivre and Laplace around 1730. Based on Stirling approximation formula of n!, it is a very precise result for moderate deviations.

Lemma 1.1. Let 0 < p < 1, q = 1 -p. Let X be such that P{X = 1} = p = 1 -P{X = 0}. Let X 1 , X 2 , . . . be independent copies of X and let S n = X 1 + . . . + X n . Let 0 < γ < 1 and let β ≤ γ √ pq n 1/3 . Then for all k such that letting x = k-np √ npq , |x| ≤ βn 1/6 , we have

P{S n = k} = e -x 2 2 √ 2πnpq e E , with |E| ≤ |x| 3 √ npq + |x| 4 npq + |x| 3 2(npq) 3 2 
+ 1 4n min(p,q)(1-γ) . This slightly more precise formulation than the one given in Chow and Teicher [START_REF] Chow | Probability Theory: Independence, Interchangability, Martingales, Third Edition[END_REF], p. 46, is easily extrapolated from their proof. More generally, let X = {X n , n ≥ 1} be a sequence of independent, square integrable random variables taking values in a common lattice L(v 0 , D) = {v 0 +Dk, k ∈ Z}, where v 0 and D > 0 are real numbers. Let also M n = n j=1 E X j , Σ n = n j=1 Var(X j ). We say that X satisfies a local limit theorem if (1.1) ∆ n := sup

N =v0n+Dk Σ n P{S n = N } - D √ 2π e -(N -Mn ) 2 2Σn
= o(1).

This fine limit theorem has connections with Number Theory, see for instance Postnikov [START_REF] Postnikov | Introduction to analytic number theory[END_REF]. If X is an i.i.d. sequence, then (1.1) holds if and only if the "span"D is maximal (D = sup d > 0; ∃a ∈ Z : P{X ∈ a + dZ} = 1 ). This is Gnedenko's well-known result, which is also optimal (Matskyavichyus [17]). Under stronger integrability conditions, the remainder term can be improved (see [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF] Theorem 4.5.3), [START_REF] Petrov | Sums of Independent Random Variables[END_REF] Theorem 6 p.197). The general form of the local limit theorem ( [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], Th. 4.2.1) for i.i.d. random variables, states Theorem 1.2. In order that for some choice of constants a n and b n lim

n→∞ sup N ∈L(v0n,D) b n λ P{S n = N } -g N -a n b n = 0,
where g is the density of some stable distribution G with exponent 0 < α ≤ 2, it is necessary and sufficient that

(i) S n -a n b n D ⇒ G as n → ∞ (ii) D is maximal.
There are essentially two approaches used: the method of characteristic functions and the Bernoulli part extraction method. In the later case, this method is called the extraction method of the Bernoulli part of a random variable and was developed by McDonald [START_REF] Macdonald | On local limit theorems for integer valued random variables[END_REF], for proving local limit theorems in presence of the central limit theorem. Kolmogorov [START_REF] Kolmogorov | Sur les propriétés de fonctions de concentrations de M. P. Lévy[END_REF] (see also Kolmogorov's interesting comment p. 29) initiated twenty years before a similar approach in the study of Lévy's concentration function. We also mention Arratia, Barbour and Tavaré [START_REF] Arratia | Logarithmic Combinatorial Structures[END_REF][START_REF] Arratia | The Poisson-Dirichlet distribution and the scale-invariant Poisson process[END_REF] probabilistic approach in the study of the asymptotic behaviour of logarithmic combinatorial structures, and the recent work of Röllin and Ross [START_REF] Röllin | Local limit theorems via Landau-Kolmogorov inequalities[END_REF] based on Landau-Kolmogorov inequalities.

An important problem inside the general study of the local limit theorem concerns the case when the considered sums are weighted sums of Bernoulli variables, the "simple" case when the weights are increasing covering already non-trivial examples of random models used in number theory. The purpose of the next Section is to underline this in providing a few examples of such models, which we believe, are challenging problems for probabilists.

Additionally, for weighted sums of independent or i.i.d. random variables, the Bernoulli part extraction method reduces the problem to the case of weighted sums of Bernoulli variables, thereby making this case crucial too for the application of this method.

The goal of this work is to investigate the local limit theorem for weighted sums of Bernoulli variables. In Section 3, we use the characteristic function method to prove new local limit theorems. Next in Section 4, we give an application of the almost sure local limit theorem to Burr's representation problem in additive number theory, using an appropriate random model. Finally, we also give an example showing that the standard form (1.1) of the local limit theorem, fails to be sharp enough for estimating the probability P{S n ∈ E} for infinite sets of integers E; and this already in the simple case where S n is a sum of n independent standard Bernoulli random variables and E an arithmetic progression.

2. Some Random Models in Number Theory.

2.1.

A Probabilistic Model for the Dickman Function. This function originates from the study by Dickman of the asymptotic distribution of the largest prime factor P + (n) of a natural integer n. He has shown that the limit

(2.1) lim n→∞ 1 n # k; 1 ≤ k ≤ n : P + (k) ≤ n 1/u = ρ(u)
exists, and ρ(u), called the Dickman Function, is defined as the continuous solution of the differential-difference equation

uρ ′ (u) + ρ(u -1) = 0, (u > 1)
with the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. We have

∞ 0 ρ(v)dv = e γ
, where γ is Euler's constant. This is a function of first importance in analytic number theory, which has been thoroughly investigated by Hensley, Hildebrand, Tenenbaum notably, see [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF] for more details.

There is a probabilistic way of describing the Dickman Function. We refer to Hwang and Tsai [START_REF] Hwang | Quickselect and the Dickman function[END_REF]. Let X = {X j , j ≥ 1} be a sequence of independent random variables such that (2.2)

P{X j = j} = j -1 P{X j = 0} = 1 -j -1 . (j ≥ 1) Proposition 2.1. Let D n = n j=1 X j .
Then

lim n→∞ P n -1 D n < x = e -γ x 0 ρ(v)dv (x > 0).
Arratia, Barbour and Tavaré [START_REF] Arratia | The Poisson-Dirichlet distribution and the scale-invariant Poisson process[END_REF], Corollary 2.8 proved a (restricted) local limit theorem for D n

(2.3) lim n→∞ nP{D n = k n } = e -γ ρ(x), when lim n→∞ k n /n = x > 0.
The almost sure local limit theorem was recently established in Giuliano, Szewczak and Weber in [START_REF] Giuliano | Almost Sure Local Limit Theorem for the Dickman distribution[END_REF]. The proof is essentially based on a long and delicate study of the related correlations functions. A proof of the local limit theorem in the form (2.3) using only characteristic functions is also given, correcting the one indicated [START_REF] Hwang | Quickselect and the Dickman function[END_REF]. No local limit theorem for X (in the sense of (1.1)) is known.

Remarks 2.2. (i) Hensley [START_REF] Hensley | The convolution powers of the Dickman function[END_REF] has shown that the limiting law is infinitely divisible. In the same paper, he also constructed another very interesting probabilistic model, adapted to the "psixiology" i.e. to functions Ψ, Φ linked to P + , P -. (ii) Obviously D n also reads as D n = n j=1 jβ j where {β j , j = 1, . . . n} are independent Bernoulli random variables such that (2.4)

P{β j = 1} = j -1 P{β j = 0} = 1 -j -1 . (j = 1, . . . , n) (iii) Let Z 1 , .
. . Z n be independent Poisson distributed random variables with intensity E Z j = 1/j, and let T n = n j=1 jZ j . Then we have the exact formula P{T n = n} = e -n j=1 1/j , based on Cauchy formula for cycles of permutations ( [START_REF] Arratia | Logarithmic Combinatorial Structures[END_REF], formula (1.2)). (iv) Vervaart has shown that independent Bernoulli random variables can be embedded into a Poisson process (see [START_REF] Vervaat | Success epochs in Bernoulli trials with applications in number theory[END_REF], Chapter 4).

A Diophantine Equation.

Let N = {ν 0 , . . . , ν P } be a finite set of integers. Consider the diophantine equation (2.5) x 1 + . . . + x n = y 1 + . . . + y n , in which the unknown x i , y j , 1 ≤ i, j ≤ n, are subject to belong to N. Let N n (N) denote the number of 2n-uples (x 1 , . . . , x n , y 1 , . . . , y n ) ∈ N 2n which satisfy (2.5).

Examine the basic case N = {0, . . . , P -1} and note N n (P ) = N n (N). Recall the approach used in [START_REF] Postnikov | Introduction to analytic number theory[END_REF] §2.4. Let X be a random variable defined by

P{X = k} = P -|k| P 2 if 0 ≤ |k| < P, 0 if |k| ≥ P.
We easily verify that E X = 0, σ 2 = E X 2 = P 2 -1 6 and E |X| 3 ≤ CP 3 . Moreover, E e 2iπtX = (1/P )F P -1 (2πt) where F m is the Fejér kernel,

F m (u) = 1 m + 1 sin m+1 2 u sin u 2 2 .
Note that if u(k) is the number of solutions of the equation x-y = k, 0 ≤ x ≤ P -1, 0 ≤ y ≤ P -1, then u(k) = P -|k| if |k| < P , and u(k) = 0 if |k| ≥ P . So that in turn P{X = k} = u(k) P 2 , k ∈ Z. Let X 1 , . . . , X n be independent copies of X and note S n = X 1 + . . . + X n . As (x 1 -y 1 ) + . . . + (x n -y n ) = 0 if and only if x 1 -y 1 = k 1 , . . . , x n -y n = k n , for some integers k j verifying k 1 + . . . + k n = 0, we have

P{S n = 0} = k 1 +...+kn =0 |k i |<P P X 1 = k 1 . . . P X n = k n = N n (P ) P 2n .
We have, as a direct consequence of the approximate local limit theorem with effective remainder given in [START_REF] Giuliano | Approximate Local Limit Theorems with Effective Rate and Application to Random Walks in Random Scenery[END_REF], Corollary 1.8,

(2.6) N n (P ) √ n P 2n-1 = 3/π + O 1 P 2 + P √ n ,
uniformly over n, P such that for n ≥ CP 2 .

Remark 2.3. (i) As P{S n = 0} = 1 0 | sin P πt P sin πt | 2n dt, it is easy to bound from below N n (P ) by CP 2n-1 /
√ n and to get the upper bound C ε P 2n-1+ε / √ n, for any ε > 0, uniformly in P and n. See for instance [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], inequality (2.3).

In fact, one "can"take ε = 0.

Theorem 2.4 ([7], Th. 2.1).

There exist absolute constants C ′ , C ′′ such that for any positive integers P and n, (2.7)

C ′ P 2n-1 √ n ≤ N n (P ) ≤ C ′′ P 2n-1 √ n .
The proof depends on finer bounds of the previous Fejér integrals, requiring more elaborated calculations.

Remark 2.5. We don't exactly know how the normalized ratios Nn(P )

P 2n
behave when n and P vary simultaneously; a question which is tightly related to the variation properties of powers of the Fejér kernels {F n Pj (u), j ≥ 1} for growing sequences {P j , j ≥ 1}. 2.3. Freiman-Pitman's Probabilistic Model of the Partition Function. This is probably the most informative example. Let q m (n), m ≤ n, denote the number of partitions of n into distinct parts, each of which is at least m, namely the number of ways to express n as (2.8)

n = i 1 + . . . + i r , m ≤ i 1 < . . . < i r ≤ n.
Let X m , . . . , X n be independent random variables defined by (2.9)

P{X j = 0} = 1 1 + e -σj , P{X j = j} = e -σj 1 + e -σj .
The random variable Y = X m + . . . + X n can serve to modelize the partition function q m (n). There is a one-to-one correspondence between the number of partitions of n of the required type and the number of vectors (x m , . . . , x n ) with x j = 0 or 1 such that mx m + . . . + nx n = n. Notice that (1 + e -σj ) P{Y = n}.

In [START_REF] Freiman | Partitions into distinct large parts[END_REF] p. 387 and 389, the authors noticed that an appropriate local limit theorem would allow to write 

P{Y = n} ∼ e -(E Y -n) 2 /(2Var(Y )) /
q m (n) ∼ e σn n j=m (1 + e -σj ) 1 B √ 2π .
In place, Freiman and Pitman directly estimated the integral in (2.10) in a long delicate work [START_REF] Freiman | Partitions into distinct large parts[END_REF].

Remark 2.6. By Euler's pentagonal theorem, q 0 (n) appears as a coefficient in the expansion of k≤n (1 + e ikθ ).

The basic problem illustrated by the previous examples states as follows.

Problem 2.7. Let {k j , j ≥ 1} be an increasing sequence of positive integers and {p j , j ≥ 1} be a sequence of reals in ]0, 1[. Describe the CLT and LLT for the sequence

S n = k 1 β 1 + . . . + k n β n , n ≥ 1,
where β j are independent Bernoulli random variables defined by (2.11)

P{β j = 1} = p j P{β j = 0} = 1 -p j . (j ≥ 1)
In the Freiman-Pitman model, the system of independent random variables varies with the choice of the integer. And so there is, properly speaking, no central limit theorem involved and thereby no local limit theorem either, except when placing the problem in the setting of triangular arrays. Corresponding forms of the central limit theorem exist. As to suitable versions of the local limit theorem for triangular arrays with remainder term, we don't know whether such a result exists in the litterature. Thus it makes sense to also consider a "local" version of the previous problem.

Problem 2.8 (Finite version). To obtain effective sharp estimates of

P{S n = N }.
We refer to [START_REF] Giuliano | Approximate Local Limit Theorems with Effective Rate and Application to Random Walks in Random Scenery[END_REF] where this question is investigated.

Returning to the Freiman-Pitman model, we observe that the relevant question rather concerns the search of sharp estimates of P{S n = 0} (namely of 1/2 -1/2 E e 2iπtSn dt), the random variables being centered, than working out a local limit theorem, which is quite another problem. Nevertheless, this model, as well as others previously reviewed, sheds light on limitations to the domain of validity of the local limit theorem, in a quite informative way. Some further useful remarks are necessary. We note throughout {ς, ς j , j ≥ 1} a sequence independent standard Bernoulli random variables (namely associated with p j ≡ 1/2) and 

T n = ς 1 + . . . + ς n n ≥ 1.
< p j < 1/2, 1 ≤ j ≤ n, S n = k 1 ε 1 ς 1 + . . . + k n ε n ς n . Problem 2.
8 reduces to first estimate (conditionnally to ε j ) a sum of the same kind

T ′ n = k ′ 1 ς 1 + . . . + k ′ n ς n
with k ′ j increasing, but where the Bernoulli random variables are standard. Remark 2.10. If 1/2 < a < 1, let τ 0 be verifying 0 < τ 0 < 2 min(α, 1 -α). Define a pair of random variables (V, ε) as follows.

P{(V, ε) = (1, 1)} = 0 P{(V, ε) = (1, 0)} = α -τ0 2 . P{(V, ε) = (0, 1)} = τ 0 P{(V, ε) = (0, 0)} = 1 -α -τ0 2 .
Let ς be independent from (V, ε).

Then V + ες L = β. Remark 2.11. Fix the integer n. Let T ′ m = k m ς m + . . . + k n ς n , 1 ≤ m ≤ n,
and consider the parallelogram H m = h = k i1 + . . . + k ir with i 1 < . . . < i r and 1 ≤ r ≤ m . Then we have the following formula

P{T ′ 1 = b} = 1 2 m h∈Hm∪{0} P{T ′ n-m = b -h}. (2.12)

Weighted Local Limit Theorems.

We use the characteristic function method to study the local limit theorem for the sums

B ν = β 1 + . . . + β ν , ν = 1, 2, . . .
where β j are independent random variables defined by

P{β j = 0} = ϑ j , P{β j = k j } = 1 -ϑ j , (3.1) 
with 0 < ϑ j < 1 for each j, and k j are increasing positive weights. Let

Var(B ν ) = ν j=1 (1 -ϑ j )ϑ j k 2 j , ϑ = ν inf j=1 ϑ j (1 -ϑ j ).
Theorem 3.1. Let ̺n ≤ k < k + ν ≤ n where 0 < ̺ < 1, n is some positive integer, and let k j = k + j -1, j = 1, . . . , ν. Let 1/24 < ε < 1/6. For every m ∈ Z,

P{B ν = n} - e - ( k+ν-1 j=k (1-ϑ j )j-n) 2 2Var(Bν ) 2πVar(B ν ) ≤ C
Var(B ν )

ν 1/6-4ε ϑ 1/3 ρ + e -2π 2 ϑρ 2 δ 2 ν 1/3 . Put (3.2) P ν = ν j=1 (1 -ϑ j ), M ν = ν j=1 (1 -ϑ j )k j , B ν = ν j=1 (1 -ϑ j )ϑ j k 2 j .
Theorem 3.2.

sup n∈Z P{B ν = n} - 1 √ 2πB ν e -(n-Mν ) 2 2Bν ≤ C P ν . Further if n 0 := ν j=1 (1 -ϑ j )k j is integer, then P{β 1 + . . . + β ν = n 0 } - 1 √ 2πB ν ≤ C P ν .
Before passing to the proofs, we begin with making a brief analysis. Let ϕ j (t) = E e 2iπtβj , ϕ Bν (t) = E e 2iπtBν . By the Fourier inversion formula,

P{B ν = m} = |t|≤τ e -2iπmt ϕ Bν (t)dt + τ ≤|t|≤ 1 2 e -2iπmt ϕ Bν (t)dt := I τ (ν, m) + I τ (ν, m),
where τ > 0 will be chosen to be small, depending of m. The first integral term produces the main term and is easily tractable. The estimation of the second integral term is in fact the hard part of the problem, where all the difficulty is concentrated. It is necessary to show that

τ ≤|t|≤ 1 2 e -2iπmt ϕ Bν (t)dt ≪ 1 
Var(B ν ) .

There seems to be no other way than controlling τ ≤|t|≤ 1 2

|ϕ Bν (t)|dt. From Lemma 3.3-(i) will follow that |ϕ Bν (t)| ≤ exp -2 ν j=1 ϑ j (1 -ϑ j ) sin 2 πtk j . The whole matter consequently directly depends on the behaviour of the sine sum ν j=1 ϑ j (1 -ϑ j ) sin 2 πtk j away from 0, an obviously difficult question. Thus, answers can be expected only for specific cases.

3.1. Estimates of I τ (ν, m). Recall Lemma 3 in [START_REF] Freiman | Partitions into distinct large parts[END_REF]. Although stated with the choice of probability values given by (2.9), this lemma is general. For completion, we have included a slightly shorter proof. Lemma 3.3. Let m be a positive real and p be a real such that 0 < p < 1. Let β be a random variable defined by P{β = 0} = p, P{β = m} = 1 -p = q. Let ϕ(t) = E e 2iπtβ . Then we have the following estimates, (i) For all real t, |ϕ(t)| ≤ exp -2pq sin 2 πtm

(ii) If q| sin πtm| ≤ 1/3, ϕ(t) = exp 2iπqmt -2π 2 pqm 2 t 2 + B(t) ,
and |B(t)| ≤ Cqm 3 t 3 , the constant C being absolute.

Proof. One verifies that |ϕ(t)| 2 = 1 -4pq sin 2 πmt. As moreover 1 -ϑ ≤ e -ϑ if ϑ ≥ 0, (i) follows.

Write now ϕ(t) = 1 + q e 2iπmt -1 = 1 + u and notice that |u| = 2q| sin πmt|. We use the fact that if |θ| ≤ 2/3, then

1 + θ = exp{θ -θ 2 + B}, |B| ≤ C|θ| 3 .
And C is an absolute constant. From the bound |e z -(1 

+ z 1! + . . . + z n n! )| ≤ |z| n+1 ( 
u -q 2iπmt -2(πmt) 2 | ≤ Cqm 2 |t| 2 u 2 + (2qπmt) 2 | ≤ Cq 2 m 3 |t| 3 |u| 3 ≤ Cq 3 m 3 |t| 3 .
As we assumed q| sin πtm| ≤ 1/3, we consequently find that

ϕ(t) = 1 + u = exp{u -u 2 + B} = exp 2iπqmt -2π 2 pqm 2 t 2 + B(t) , with |B(t)| ≤ Cqm 3 t 3 .
The next Lemma provides an estimate for the main integral term. Let 0 < δ ≤ 1 3π and put

(3.3) τ = δ ( ν j=1 (1 -ϑ j )k 3 j ) 1/3 . Lemma 3.4. For every n ∈ Z, τ -τ e -2iπnt ϕ Bν (t)dt - e - ( ν j=1 (1-ϑ j )k j -n) 2 2Var(Bν ) 2πVar(B ν ) ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν )
Var(B ν ) .

Further if n

0 := ν j=1 (1 -ϑ j )k j is integer, then τ -τ e -2iπn0t ϕ Bν (t)dt = 1 2πVar(B ν ) 1 + B , with |B| ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν )
1 + Var(B ν ) .

Proof of Lemma 3.4. As δ ≤ 1 3π , we observe that for j = 1, . . . , ν,

sup |t|≤τ (1 -ϑ j )| sin πtk j | ≤ (1 -ϑ j )πτ k j = δ(1 -ϑ j )πk j ( ν j=1 (1 -ϑ j )k 3 j ) 1/3 ≤ δ(1 -ϑ j ) 1/3 π ≤ 1 3 . Lemma 3.3 thus implies, ϕ Bν (t) = ν j=1 ϕ j (t) = exp 2iπt ν j=1 (1 -ϑ j )k j -2π 2 t 2 Var(B ν ) + B 1 (t) ,
and

|B 1 (t)| ≤ C|t| 3 ν j=1 (1 -ϑ j )k 3 j . By (3.3), sup |t|≤τ |B 1 (t)| ≤ Cτ 3 ν j=1 (1 -ϑ j )k 3 j = Cδ 3 .
Noting then ς = ν j=1 (1 -ϑ j )k j -n and writing that ϕ

Bν (t) = exp 2iπt(ς + n) -2π 2 t 2 Var(B ν ) + B 1 (t) ,
we thus deduce the following bound 

τ -τ e -2iπnt ϕ Bν (t) -e 2iπtς-2π 2 t 2 Var(Bν ) dt ≤ τ -τ e -2iπnt ϕ Bν (t) -e 2iπtς-2π 2 t 2 Var(Bν ) dt = τ -τ e 2iπtς-2π 2 t 2 Var(Bν ) e B(t) -1 dt ≤ τ -τ e -2π 2 t 2 Var(Bν ) e B(t) -1 dt ≤ τ -τ |B(t)|dt ≤ Cτ δ 3 .

Now we also have that

(x) = e x 2 /2 ∞ x e -t 2 /2 dt, π √ x 2 + 2π + (π -1)x ≤ R(x) ≤ π (π -2) 2 x 2 + 2π + 2x
for all x ≥ 0, we further have

|H| ≤ |u|≥2πτ √ Var(Bν ) e -u 2 2 du 2π Var(B ν ) = e -2π 2 τ 2 Var(Bν ) 2π Var(B ν )) R 2πτ Var(B ν ) ≤ C e -2π 2 τ 2 Var(Bν ) Var(B ν )(1 + Var(B ν )) . Consequently τ -τ e -2iπnt ϕ Bν (t)dt - e -ς 2 2Var(Bν ) 2πVar(B ν ) ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν ) Var(B ν )(1 + Var(B ν ) )
.

Now if there is an integer n such that ν j=1 (1-ϑ j )k j = n, then ς = 0 and ϕ Bν (t) = exp 2iπtn- 2π 2 t 2 Var(B ν ) + B 1 (t) ; whence τ -τ e -2iπnt ϕ Bν (t)dt = τ -τ e -2π 2 t 2 Var(Bν ) 1 + e B1(t) -1 dt = 1 + B τ -τ e -2π 2 t 2 Var(Bν ) dt, (3.4) with |B| ≤ Cτ δ 3 . As moreover τ -τ e -2π 2 t 2 Var(Bν ) dt - 1 2πVar(B ν ) ≤ C e -2π 2 τ 2 Var(Bν ) Var(B ν )(1 + Var(B ν ) ) , we have τ -τ e -2iπnt ϕ Bν (t)dt = 1 2πVar(B ν ) 1 + B 1 + B 1 ,
where

|B 1 | ≤ Ce -2π 2 τ 2 Var(Bν ) /(1 + Var(B ν ) ). We conclude to τ -τ e -2iπnt ϕ Bν (t)dt = 1 2πVar(B ν ) 1 + B 2 ,
with

|B 2 | ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν )
1 + Var(B ν ) .

3.2.

Estimates of I τ (ν, m). We assume here that k j = k + j -1, j = 1, . . . , ν. Then, Lemma 3.5.

|t|>τ |ϕ Bν (t)|dt ≤ e -ϑν 3 τ 2 2 .
Proof. This is an immediate consequence of the following lemma 

j = k + j -1, j = 1, . . . , ν, for every n ∈ Z, τ 0 e -2iπnt ϕ Bν (t)dt - e - ( k+ν-1 j=k (1-ϑ j )j-n) 2 2Var(Bν ) 2πVar(B ν ) ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν )
Var(B ν )

≤ C ν 1/6-4ε ρ -1 + e -2π 2 ρ 2 δ 2 ν 1/3
Var(B ν ) .

By combining with Lemma 3.5 and using Fourier inversion formula,

P{B ν = n} - e - ( k+ν-1 j=k (1-ϑ j )j-n) 2 2Var(Bν ) 2πVar(B ν ) ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν )
Var(B ν ) + e -ϑν 3 τ 2
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.

We have the following estimates

     (i) δ nν 1/3 ≤ τ = δ ( ν j=1 (1-ϑj )k 3 j ) 1/3 ≤ δ ρn(ϑν) 1/3 , (ii) ϑ(ρn) 2 ν ≤ Var(B ν ) = ν j=1 (1 -ϑ j )ϑ j k 2 j ≤ n 2 ν, (iii) τ 2 Var(B ν ) ≥ ϑδ 2 n 2 ν 2/3 (ρn) 2 ν = ϑρ 2 δ 2 ν 1/3 . Choose δ = ν -ε with 1/24 < ε < 1/6. Then τ δ 3 ≤ δ 4 ρn(ϑν) 1/3 = 1 ρnϑ 1/3 ν 1/3+4ε = ν 1/6-4ε ϑ 1/3 ρnν 1/2 ≤ ν 1/6-4ε ϑ 1/3 ρ Var(B ν )
.

We pass to the control of the error terms. For the major integral term we have,

τ δ 3 + e -2π 2 τ 2 Var(Bν ) Var(B ν ) ≤ 1 
Var(B ν )

ν 1/6-4ε ϑ 1/3 ρ + e -2π 2 ϑρ 2 δ 2 ν 1/3 .
Consequently,

P{B ν = n} - e - ( k+ν-1 j=k (1-ϑ j )j-n) 2 2Var(Bν ) 2πVar(B ν ) ≤ C Var(B ν ) ν 1/6-4ε ϑ 1/3 ρ + e -2π 2 ϑρ 2 δ 2 ν 1/3 .
3.4. Other Estimates of I τ (ν, m). The following lemma is relevant. Introduce for q ≥ 1 integer,

= ϕ(q) := ν j=1 θ j cos 2πtk j 2q ν j=1 θ j . Lemma 3.7. For any 0 < c ≤ 1, 1 0 |ϕ Bν (t)|dt ≤ ϕ(q) c 2q + e -(1-c) ν j=1 ϑj (1-ϑj ) . (3.5) ϕ θ1,...,θν ,k1,...,kν (q) 
Proof of Lemma 3.7. Let θ j = ϑ j (1-ϑ j ), j = 1 . . . , ν and note E = t; |t| ≤ 1 2 : ν j=1 θ j cos 2πtk j > c ν j=1 θ j . At first, by using Tchebycheff's inequality,

λ{E} ≤ c ν j=1 θ j ) -2q 1 2 -1 2 ν j=1 θ j cos 2πtk j 2q dt = c -2q ϕ(q) 2q , Since |ϕ Bν (t)| ≤ 1, we have 1 0 |ϕ Bν (t)|dt ≤ λ{E} + E c |ϕ Bν (t)|dt ≤ c -2q ϕ(q) 2q + E c
|ϕ Bν (t)|dt, By Lemma 3.3, using that 2 sin 2 a = 1 -cos 2a, we have for all real t,

|ϕ Bν (t)| = ν j=1 |ϕ j (t)| ≤ exp - ν j=1 2θ j sin 2 πtk j = exp - ν j=1 θ j exp ν j=1 θ j cos 2πtk j .
So that

E c |ϕ Bν (t)|dt ≤ E c e -ν j=1 2θj sin 2 πtkj dt ≤ e -ν j=1 θj E c e | ν j=1 θj cos 2πtkj | dt ≤ e -(1-c) ν j=1 θj . By combining 1 0 |ϕ Bν (t)|dt ≤ ϕ(q) c 2q + e -(1-c) ν j=1 θj .
Remark 3.8. Assume ϑ j = ϑ for all j. Then ϕ(q) = ν -1 ν j=1 cos 2πtk j 2q and further

ν j=1 cos 2πtk j 2q 2q = N 2q (N),
where N 2q (N) is the number of solutions of (2.5) with corresponding set of values N = {k 1 , . . . , k ν }. So that

1 0 |ϕ Bν (t)|dt ≤ N 2q (N) (cν) 2q + e -(1-c)ϑ(1-ϑ)ν .
-In the case when N = {1, . . . , ν}, this together with Theorem 2.4 gives

1 0 |ϕ Bν (t)|dt ≤ ν 2q-1 √ q(cν) 2q + e -(1-c)ϑ(1-ϑ)ν = 1 νc 2q √ q + e -(1-c)ϑ(1-ϑ)ν . Taking c = 1 -(2q) -1 gives 1 0 |ϕ Bν (t)|dt ≤ C ν √ q + e -ϑ(1-ϑ)ν/2q . Take q large, q ∼ ϑ(1 -ϑ)ν/3 log ν. It follows that 1 0 |ϕ Bν (t)|dt ≤ C log ν ν 3/2
whereas, in the other hand Var(B ν ) = ϑ(1 -ϑ) ν j=1 j 2 ∼ Cϑ(1 -ϑ)ν 3 ... Remark 3.9. We also have 

ν j=1 ϑ j (1 -ϑ j ) sin 2 πtk j ≥ ν ν j=1 ϑ j (1 -ϑ j )
P{B ν = n} - e -(n-E Bν ) 2 2Var(Bν ) 2πVar(B ν ) ≤ C τ δ 3 + e -2π 2 τ 2 Var(Bν ) Var(B ν ) + 1 ν j=1 ϑ j (1 -ϑ j ) ≤ C 1 ( ν j=1 (1 -ϑ j )k 3 j ) 1/3 + e -2π 2 δL 2 ( ν j=1 (1 -ϑ j )k 2 j ) 1/2 + 1 ν j=1 ϑ j (1 -ϑ j ) . ≤ C ν j=1 ϑ j (1 -ϑ j )
.

Now similarly,

P{B ν = n 0 } - 1 2πVar(B ν ) ≤ B 2 2πVar(B ν ) + 1 ν j=1 ϑ j (1 -ϑ j ) ≤ C ( ν j=1 (1 -ϑ j )k 2 j ) 1/2 1 ( ν j=1 (1 -ϑ j )k 3 j ) 1/3 + e -2π 2 δL 2 + 1 ν j=1 ϑ j (1 -ϑ j ) ≤ C ν j=1 ϑ j (1 -ϑ j )
.

This achieves the proof.

4. An ASLLT related to Burr's problem.

Let λ 0 < λ 1 < . . . be a sequence of positive integers, call it A, and let

P (A) = i ε i λ i , ε i = 0 or 1, a i ∈ A and i ε i < ∞ .
Burr asked in [START_REF] Burr | Combinatorial theory and its applications III[END_REF] which sets S of integers are equal to P (A) for some A? He mentioned that if the complement of S grows sufficiently rapidly, then there exists such a sequence A. Hegyvari showed in [START_REF] Hensley | The convolution powers of the Dickman function[END_REF] 

that if B = {b i , i ≥ 1} is such that 7 ≤ b 1 < b 2 < • • •
+ b j = b k + b ℓ implies i = k, j = ℓ or i = ℓ, j = k,
then there is no sequence A for which P (A) = N\B. We refer to [START_REF] Burr | Combinatorial theory and its applications III[END_REF][START_REF] Folkman | On the representation of integers as sums of distinct terms from a fixed sequence Canad[END_REF][START_REF] Hensley | The convolution powers of the Dickman function[END_REF] for similar questions. Here we examine a variant of the initial problem. Consider the set E composed with all finite sums (4.3)

λ j1 + . . . + λ jn , 0 ≤ j 1 ≤ . . . ≤ j n , n ≥ 1.
Let 0 < η < 1 and let E η ⊆ E be the set composed with all finite sums λ j1 + . . . + λ jn such that at most ⌊ηn⌋ summands may coincide. Now let {x n , n ≥ 1} be a sequence of integers increasing nearly linearly, so that it is a relatively "full" sequence. More precisely, we assume there are reals a > 1, δ > 0 such that (4.4)

x n -na ∼ δ √ n, n → ∞.

We are interested in estimating from below the proportion of terms from this sequence which may be represented by a sum λ j1 + . . . + λ jn , namely which belong to E.

Theorem 4.1. Let D = g.c.d. λ i -λ j , i > j ≥ 0 . Let also

(4.5) ρ = sup r : ∞ j=0 λ j r j < ∞ .
Assume that 0 < ρ ≤ 1. Then for some 0 < η < 1 depending on both ρ and a,

lim inf t→∞ 1 log t n≤t 1 √ n 1 {xn∈Eη} ≥ D √ 2πσ e -δ 2 2σ 2 .
Here we have noted σ 2 = (1 -r) ∞ j=0 λ 2 j r j -(1 -r) ∞ j=0 λ j r j 2 , and 0 < r < ρ is solution of the equation

(1 -r) ∞ j=0 λ j r j = a.
Further, there exists with probability one a random subsequence λ ′ j = λ ′ j (ω), j = 1, . . ., tending to infinity with n, such that for all n large enough, among λ ′ 1 , . . . , λ ′ n at most ⌊nη⌋ may coincide, and

lim t→∞ 1 log t n≤t 1 √ n 1 {xn=λ ′ 1 +...+λ ′ n } = D √ 2πσ e -δ 2 2σ 2 .
4.1. Preliminaries. We first recall some auxiliary results on which the proof is based. Let X be a square integrable random variable with lattice distribution function F and put

(4.6) µ = E X, σ 2 = E X 2 -(E X) 2 .
Let D be the maximal span of X. Let also {X k , k ≥ 1} be independent copies of X, and consider their partial sums S n = X 1 + . . . + X n , n ≥ 1. We assume throughout that σ > 0. Almost sure versions with rate of Gnedenko's theorem (see after (1.1)) were recently proved in [START_REF] Giuliano | Almost sure local limit theorems with rate[END_REF]. Let g(x) = D √ 2πσ e -x 2 /(2σ 

n = κ + O η (log n) -1/2+η , then 1 log N n≤N 1 √ n 1 {Sn=κn} a.s. = g(κ) + O η (log N ) -1/2+η .
4.2. Proof. We consider the following random model. Let 0 < r < ρ and let X be a random variable defined by 2 . This case being excluded by construction, we have σ > 0. Let also {X k , k ≥ 1} be independent copies of X, and consider their partial sums S n = X 1 + . . . + X n , n ≥ 1 Now observe that

P{X = λ j } = (1 -r)r j , j = 0, 1, . . . . The function µ(r) = (1 -r) ∞ j=0 λ j r j is continuous on [0, ρ[. Further µ(0) = 0 and lim r↑ρ µ(r) = ∞. We can thus select a real r ∈]0, ρ[ so that E X = µ(r) = a. Next E X 2 = (1-r) ∞ j=0 λ 2 j r j < ∞. And because r < ρ, E X 2+α < ∞ for some positive α. It is further clear that σ 2 = E X 2 -(E X) 2 cannot vanish unless X is a constant almost surely, since σ 2 = E (X -E X)
P X i1 = X i2 = . . . = X i k = ∞ j=0 P{X = λ j } k = (1 -r) k ∞ j=0 r kj = (1 -r) k (1 -r k ) ≤ 2(1 -r) k ,
if k is large, which we do assume. Thus

P ∃1 ≤ i 1 < . . . < i k ≤ n : X i1 = X i2 = . . . = X i k ≤ 2C k n (1 -r) k .
We take k = ⌊nη⌋. Since n! ∼ √ 2πnn n e -n , we have for n large

C k n ≤ 2 n n -k n-k n k k n 2π(n -k)k 1/2 ≤ 1 1 -η n(1-η) 1 η nη = 1 1 -η 1 η -1 1 η nη . Let C n = ∃1 ≤ i 1 < . . . < i ⌊nη⌋ : X i1 = X i2 = . . . = X i ⌊nη⌋ , n = 1, 2, . . .
These sets are non-increasing. And so

P ∞ n=m C n ≤ P C m ≤ 1 -r η(1 -η) 1 η -1 mη . Since (1 -η) 1 η -1 = exp{-1-η η log 1 1-η } → 1 as η ↑ 1, and 0 < r < 1, it follows that one can select η so that 1 -r η(1 -η) 1 η -1 < 1. This choice implies that P lim sup n→∞ C n = 0.
Thus, with probability one, for all n large enough, there is no k-uple, 1 ≤ i 1 < . . . < i k , with k ≥ ⌊nη⌋, such that X i1 = X i2 = . . . = X i k . In particular, with probability one, for all n large enough, at most ⌊nη⌋ from the random variables X i , i ≤ n may coincide.

Besides, using Gnedenko's theorem we have, uniformly in N , √ n P{S n = N } = D σ √ 2π e -(N -na) as claimed. The second part of the Theorem is a direct consequence of (4.12).

A Concluding Remark.

A probably well-known fact is that the local limit theorem is not a sufficiently sharp tool for estimating the probability P{S n ∈ E}, where E is an infinite set of integers and S n = X 1 +. . .+X n a sum of independent copies of a random variable X. As we could not find in the litterature an explicit example, we mention here a very simple one given in [START_REF] Weber | Correlation properties of divisors of Bernoulli sums[END_REF] and showing that this already arises for bounded random variables and for elementary sets E, namely arithmetic progressions.

Let d be some positive integer and take E = dN. Let also B n = β 1 + . . . + β n , where β i are independent standard Bernoulli random variables. By using the sharpest form of the local limit theorem for standard Bernoulli random variables, derived from [START_REF] Petrov | Sums of Independent Random Variables[END_REF]Theorem 13 = O log 5/2 n n 3/2 , which is much better than (5.1). We refer to [START_REF] Weber | Correlation properties of divisors of Bernoulli sums[END_REF] for more details.

1 + 1 0e 1 0 n j=m 1 +

 1111 e -σj e 2iπαj e -2iπαn dα = e σn x j ∈{0,1} m≤j≤n -σ(mxm+...+nxn) e -2iπ(mxm+...+nxn-n)α dα = e σn x j ∈{0,1} m≤j≤n e -σn χ{mx m + . . .+ nx n = n} = q m (n).Hence the formula (in which σ only appears in the right-hand side) (2.10) q m (n) = e σn e -σj e 2iπαj e -2iπαn dα.This also implies (letting ϕ(t) = E e 2iπtY be the characteristic function of Y ) q m (n) = e )e -2iπαn dα = e σn n j=m

  2πVar(Y ). Choosing σ as being the unique solution of the equation E Y = n j=m j 1+e σj = n would then give P{Y = n} ∼ 1/B √ 2π, and by reporting

Remark 2 . 9 (

 29 Reduction to standard Bernoulli random variables). Let β be a Bernoulli random variable with P{β = 1} = α = 1 -P{β = 0}. Assume 0 < α < 1/2. Let ε, ς be such that β, ε, ς are independent and P{ε = 1} = 2α = 1 -P{ε = 0}. Trivially ες L = β. We can thus write when 0

  n+1)! e |z| , valid for z ∈ C and n ∈ N * ([18], 3.8.25), we get by applying it with z = 2iπmt,

2π 2 t 2

 2 Var(Bν ) dt = R e 2iπtς-2π 2 t 2 Var(Bν )and recalling Boyd's estimate[18, p. 179] of Mill's ratio R

Lemma 3 . 6 ( 1 j=m sin 2 πjt ≥ k 4 min 1 , (tk) 2 .-ϑ 2 ν j=1 sin 2 τ 2 2 . 3 . 3 .

 3611222233 [START_REF] Freiman | Partitions into distinct large parts[END_REF],Lemma 8). For |t| ≤ 1/2 and any positive integers m and k such that k ≥ 2 we have m+k-By Lemma 3.3-(i), |ϕ Bν (t)| ≤ exp -2 ν j=1 ϑ j (1 -ϑ j ) sin 2 πtk j ≤ exp -2ϑ ν j=1 sin 2 πtk j .Thus |t|>τ |ϕ Bν (t)|dt ≤ |t|>τ e πjt dt ≤ |t|>τ e -ϑν 2 min(1,ν|t|) 2 dt ≤ e -ϑν 3 Proof of Theorem 3.1. By Lemma 3.4 applied with k

1 )P

 1 By operating quite differently, we obtained in[START_REF] Weber | Small divisors of Bernoulli sums[END_REF] the following uniform estimate. Let Θ(d, m) be the Theta elliptic function defined byΘ(d, m) = ℓ∈Z B n ∈ dN -Θ(d, n) d = O log 5/2 n n 3/2 .By using Poisson summation formula, this implies thatsup 2≤d≤n P B n ∈ dN -2 πn z≡0(d)e -(2z-n) 2 2n

  By picking ω in a measurable set of full measure, we find by what proceeds and (4.11), that there exists a subsequenceλ ′ 0 ≤ λ ′ 1 ≤ . . ., λ ′Further, for all n large enough, at most ⌊nη⌋ from the summands λ ′ 1 , . . . , λ ′ n may coincide. Thusλ ′ n → ∞ with n. But x n = λ ′ 1 + . . . + λ ′n and the fact that among λ ′ 1 , . . . , λ ′ n , at most ⌊nη⌋ can coincide, implies that x n ∈ E η . We consequently deduce

	σ	D √ 2π e -δ 2 2σ 2 as n → ∞. Since the assumptions of Theorem 4.2 are also fulfilled, it follows that
	(4.11)	lim t→∞	1 log t n≤t	1 √ n	1 {Sn=xn}	a.s. =	D 2πσ √	e -δ 2 2σ 2 .
						n = λ ′ n (ω), such that
	(4.12)	lim t→∞	1 log t n≤t	1 √ n	1 {xn=λ ′ 1 +...+λ ′ n } =	D 2πσ √	e -δ 2 2σ 2 .
			lim inf t→∞	1 log t n≤t	1 √ n	1 {xn∈Eη} ≥	D 2πσ √	e -x 2 2σ 2 ,

2 /2nσ 2 + o(1). By assumption lim n→∞ (x n -na)/ √ n = δ, so that (4.8) is satisfied. Therefore √ n P{S n = x n } ∼