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We obtain sharp sufficient conditions for exponentially integrable stochastic processes X = {X(t) : t ∈ [0, 1]}, to have sample paths with bounded Φ-variation. When X is moreover Gaussian, we also provide a bound of the expectation of the associated Φ-variation norm of X. For an Hermite process X of order m ∈ N and of Hurst index H ∈ (1/2, 1), we show that X is of bounded Φ-variation where Φ(x) = x 1/H (log(log 1/x)) -m/(2H) , and that this Φ is optimal. This shows that in terms of Φ-variation, the Rosenblatt process (corresponding to m = 2) has more rough sample paths than the fractional Brownian motion (corresponding to m = 1).

Introduction and Main Results.

Let Φ : R + → R + be a strictly increasing continuous function such that Φ(0) = 0 and lim t→∞ Φ(t) = ∞. The Φ-variation of a function f : [0, 1] → R is defined according to Young [START_REF] Young | Sur une généralisation de la notion de variation de puissance p-ième bornée au sens de N. Wiener, et sur la convergence des séries de Fourier[END_REF] by

V Φ (f ) := sup 0=t 0 <•••<tn =1 n∈N n i=1 Φ |f (t i ) -f (t i-1 )| .
The particular case Φ(t) = t p is classical and corresponds for p = 1 to the concept of bounded variation introduced by Jordan [START_REF] Jordan | Sur la série de Fourier[END_REF], and for p > 1 to the one of bounded p-variation introduced by Wiener [START_REF] Wiener | The quadratic variation of a function and its Fourier coefficients[END_REF]. The Φ-variation is closely related to convergence of Fourier series (see [START_REF] Dudley | Concrete Functional Calculus[END_REF]Chapter 11]), Hausdorff dimension (see e.g. [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF]Theorem 8.4]), rough paths theory (see [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]Definition 9.15]) and integration theory (see [START_REF] Dudley | Concrete Functional Calculus[END_REF]Chapter 3]). If d is a pseudo-metric on [0, 1] (d has all properties of a metric except for the implication d(s, t) = 0 ⇒ s = t), we will write

V(Φ, d) := sup 0=t 0 <•••<tn =1 n∈N n i=1
Φ d(t i , t i-1 ) .

Furthermore, set log * (x) = log(1 + x) and log * 2 (x) = log * (log * x) for all x ≥ 0. In several cases we only define a given function Φ : R + → R explicitly on (0, ∞), and in this case we always set Φ(0) = 0.

A classical result by P. Lévy states that the sample paths of a Brownian motion are of bounded p-variation if and only if p > 2. This result has been improved by Taylor [26, Theorem 1 and its Corollary] who derived that the optimal Φ-variation function of the Brownian motion is Φ(t) = t 2 / log * 2 (1/t). Taylor's result has been extended to the fractional Brownian motion by Dudley and Norvaiša [START_REF] Dudley | Concrete Functional Calculus[END_REF] and to other Gaussian processes with stationary increments by Kawada and Kôno [START_REF] Kawada | On the variation of Gaussian processes[END_REF] and Marcus and Rosen [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF][START_REF] Marcus | p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments[END_REF]. Furthermore, the ability to solve rough differential equations for the Brownian motion under minimal regularity assumptions relies on the above mentionned characterization of the Brownian sample paths of Taylor, see Theorems 10.41 and 13.15 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF].

Let us recall and briefly discuss a quite general result by Jain and Monrad which has also motivated this work, and which is the key ingredient in the recent work Friz et al. [START_REF] Friz | Jain-Monrad criterion for rough paths and applications[END_REF] on rough path analysis of Gaussian processes. Assume that X = {X(t) : t ∈ [0, 1]} is a centered Gaussian process and let d(s, t) = X(s) -X(t) L 2 for all s, t ∈ [0, 1]. Let 1 < p < ∞ (the case p = 1 being trivial). Jain and Monrad [START_REF] Jain | Gaussian measures in Bp[END_REF]Theorem 3.2] showed that if (1.1) V(Ψ, d) < ∞ where Ψ(t) = t p (log * 2 (1/t)) p/2 , t > 0 then X has sample paths of bounded p-variation almost surely. A closer examination of their proof shows that (1.1) implies the Lipschitz property (1.2) |X(t, ω) -X(s, ω)| ≤ C(ω)d(s, t) log * 1 d(s, t)

1/2 ∀0 ≤ s, t ≤ 1
with probability one, which in turn is shown under the weaker and also necessary assumption

(1.3) V( Ψ, d) < ∞ where Ψ(t) = t p , t ≥ 0.
As (1.2) immediately implies that X has almost all sample paths of bounded Φ-variation, where Φ(t) = t p (log * (1/t)) -p/2 , t > 0, the double logarithm term in Ψ indicates which strengthening of the assumption (1.3) is necessary to get the finer property of having paths of bounded p-variation.

It also follows (as remarked, (1.3) implies (1.2), see notably Remark 2.3) that the latter property holds only if X has the Lipschitzian property (1.2). For d continuous with respect to the usual metric on [0, 1], the fact that X be of bounded p-variation almost surely, thus implies that X is continuous almost surely for the usual metric, which is in contrast with the fact that a function f with bounded p-variation is not necessarily continuous (although both limits lim y→x-f (y), lim y→x+ f (y) exist). Recall in addition that f is continuous almost everywhere in the sense of the Lebesgue measure, see Bruneau [START_REF] Bruneau | La variation totale d'une fonction[END_REF] for these facts; and that by Jordan's example [START_REF] Jordan | Sur la série de Fourier[END_REF], a function with finite variation may have positive jumps on each rational.

We consider exponentially integrable processes and study the Φ-variation of their sample paths. We obtain general sufficient conditions for the sample paths to be of bounded Φ-variation. Our conditions are sharp. When applied to Gaussian processes, we recover and complete Jain and Monrad sufficient condition for bounded p-variation, but also extend it to general Φ-variation spaces.

Introduce for every 0 < α < ∞, the functions φ α (x) = e |x| α -1, x ∈ R. We consider processes X satisfying the following increment condition, in which d is a given pseudo-metric on [0, 1]: (1.4) For some 0 < α < ∞, E φ α X(t) -X(s) d(t, s) ≤ 2 for all t, s ∈ [0, 1].

The cases 1 ≤ α < ∞ and 0 < α < 1 are of different nature since in the second case the functions φ α are no longer convex. Accordingly, define for a random variable U

U φα = inf ∆ > 0 : E φ α U ∆ ≤ 1
and write U ∈ L φα , if U φα < ∞. For α ≥ 1, φ α is an Orlicz function and the space (L φα , • φα ) is an Orlicz space and hence a Banach space. However, for 0 < α < 1, (L φα , • φα ) is only a quasi-Banach space, i.e. satisfies all the axioms of a Banach space except that the triangle inequality is replaced by: there exists a constant K α > 0 such that

U + Y φα ≤ K α U φα + Y φα for all U, Y ∈ L φα
(we may choose K α = 2 1/α in our case). We refer to [START_REF] Rao | Theory of Orlicz spaces[END_REF] for the theory of Orlicz spaces. The quasi-Banach space property of (L φα , • φα ) for 0 < α < 1 follows by [START_REF] Matuszewska | A note on the theory of s-normed spaces of ϕ-integrable functions[END_REF]Section 2.1]. Furthermore, we refer to Talagrand [START_REF] Talagrand | Sample boundedness of stochastic processes under increment conditions[END_REF] for sharp results on sample boundedness of stochastic processes satisfying (1.4).

The following theorem provides sufficient conditions for a class of stochastic processes with finite exponential moments to have sample paths of bounded Φ-variation.

Theorem 1.1. Let X = {X(t) : t ∈ [0, 1]} be a separable stochastic process satisfying the increment condition (1.4) for some α > 0. Suppose that there exists a continuous, strictly increasing function

Ψ : R + → R + with V(Ψ, d) < ∞. Suppose moreover that there exists C > 0 such that for all M > 0, ∞ m=0 2 m Φ(M y m )e -x α m < ∞ where (1.5) x m = Φ -1 (C2 -m ) K α 2 -m 0 (log * ( 2 -m ε )) 1/α Ψ -1 (dε) , y m = 2 -m 0 log * 1 ε 1/α Ψ -1 (dε), (1.6)
and K α is universal constant only depending on α. Then X has sample paths of bounded Φvariation almost surely.

Here and in the next theorems, separability is understood with respect to the usual metric on [0, 1], see Subsection 2.1. For α = 2, a process satisfying (1.4) is called sub-Gaussian and this case includes all Gaussian processes if we set d(s, t) = X(s) -X(t) L 2 for all s, t ∈ [0, 1]. On the other hand, processes satisfying (1.4) includes many non-Gaussian processes, for example all processes which are represented by multiple Wiener-Itô integrals of a fixed order m ∈ N, and in this case we can take α = 2/m and d(s, t) = c m X(s) -X(t) L 2 for a suitable constant c m > 0. Processes satisfying (1.4) with α = 1 are usually called sub-exponential. From Theorem 1.1 we derive the following result: Theorem 1.2. Suppose that X = {X(t) : t ∈ [0, 1]} is a separable stochastic process satisfying the increment condition (1.4) for some α > 0. Then the following (1)-(4) holds:

(1) Suppose that V(Ψ, d) < ∞ for Ψ(t) = t p , p > 0, and set Φ(t) = t p (log * 2 (1/t)) -p/α . Then X has sample paths of bounded Φ-variation almost surely. (2) Suppose that V(Ψ, d) < ∞ for Ψ(t) = t p (log *
2 (1/t)) -p/α and p > 0. Then X has sample paths of bounded p-variation almost surely.

(3) For all β > 0 let Φ β (t) = e -t -1/β . Suppose that V(Φ β0 , d) < ∞ for some β 0 > 1/α. Then for all β < 1 -1/α + β 0 , X has sample paths of bounded Φ β -variation almost surely.

(4) For all c, r > 0 let Φ c,r (t) = e -r(log 1 t ) c . Suppose that V(Φ c,r , d) < ∞. Then for all v > r, X has sample paths of bounded Φ c,v -variation almost surely.

It follows from Theorem 1.3 below that Theorem 1.2(1) gives the optimal result for all Hermite processes (including the fractional Brownian motion and the Rosenblatt process). In the special case where X is a centered Gaussian process we recover the above cited result by Jain and Monrad [START_REF] Jain | Gaussian measures in Bp[END_REF]Theorem 3.2] from Theorem 1.2(2) if we set α = 2. The functions Φ β , defined in (3), play an important role in Fourier theory, where it follows from the Salem-Baernstein theorem that every continuous periodic function of bounded Φ β -variation has uniform convergent Fourier series if and only if β > 1, see Remark 2.6 for more details. In particular, all continuous periodic functions of bounded p-variation for some p ≥ 1 have an uniform convergent Fourier series. For α > 1 we have 1 -1/α > 0 and hence we may choose β = β 0 in Theorem 1.2 [START_REF] Bruneau | La variation totale d'une fonction[END_REF], which shows that V(Φ β , d) < ∞ implies that X is of bounded Φ β -variation. This should be compared with Proposition 1.7, which shows that when X is centered Gaussian (α = 2) and the function Φ satisfies the ∆ 2 -condition (i.e. Φ(2x) ≤ CΦ(x) for all x), then the opposite implication holds, that is, if X is of bounded Φ-variation then V(Φ, d) < ∞. Notice, however, that the functions Φ β , considered in Theorem 1.2(3), do not satisfy the ∆ 2 -condition. In the special case where c = 1 and X is centered Gaussian, Theorem 1.2(4) implies the second statement of Jain and Monrad [START_REF] Jain | Gaussian measures in Bp[END_REF]Theorem 3.2].

In all of the above cited papers by Taylor [START_REF] Taylor | Exact asymptotic estimates of Brownian path variation[END_REF], Dudley and Norvaiša [START_REF] Dudley | Concrete Functional Calculus[END_REF], Kawada and Kôno [START_REF] Kawada | On the variation of Gaussian processes[END_REF] and Marcus and Rosen [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF][START_REF] Marcus | p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments[END_REF] the limiting Φ-variation of some Gaussian processes is moreover considered. To recall this notion we let, for any δ > 0, Π δ denote the set of all partitions

π = {0 = t 0 < • • • < t n = 1} of [0, 1] such that |π| := max i=1,...,n t i -t i-1 ≤ δ, and for π ∈ Π δ set v Φ (f, π) = n i=1 Φ |f (t i ) -f (t i-1 )| . The limiting Φ-variation of a function f : [0, 1] → R is defined by (1.7) V * Φ (f ) := lim δ→0 sup{v Φ (f, π) : π ∈ Π δ } .
Let X be a fractional Brownian motion with Hurst index H ∈ (0, 1), and Φ denote the function

Φ(t) = t 1 H (log * 2 (1/t)) 1 2H
, t > 0.

Dudley and Norvaiša [START_REF] Dudley | Concrete Functional Calculus[END_REF]Theorem 12.12] showed that with probability one

(1.8) lim δ→0 sup{v Φ (X, π) : π ∈ Π δ } = 2 1 2H ,
which characterizes the limiting Φ-variation of the fractional Brownian motion, and includes the Brownian motion case for H = 1/2, which goes back to the fundamental work Taylor [26, Theorem 1]. Eq. (1.8) implies that the fractional Brownian motion is of bounded Φ-variation, and that Φ is optimal for in the sense described in Theorem 1.3 below. Kawada and Kôno [START_REF] Kawada | On the variation of Gaussian processes[END_REF] and Marcus and Rosen [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF][START_REF] Marcus | p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments[END_REF] derived the limiting Φ-variation of other classes of Gaussian processes with stationary increments. On the other hand, the limiting Φ-variation of a symmetric α-stable Lévy process X with α ∈ (0, 2) is characterized by Fristedt and Taylor [9, Theorem 2] and from their result it follows that there does not exists an optimal Φ-variation function for an α-stable Lévy process, in contrast to the Brownian motion.

In the following we will recall the definition of Hermite processes (see Taqqu [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] or Tudor [START_REF] Tudor | Analysis of Variations for Self-similar Processes A Stochastic Calculus Approach[END_REF]): Let B be an independently scattered symmetric Gaussian random measure on R with Lebesgue intensity measure. An Hermite process of order m ∈ N with Hurst parameter

H ∈ (1/2, 1) is a stochastic process X = {X(t) : t ∈ [0, 1]} of the form (1.9) X(t) = c 0 R m t 0 m i=1 (v -u i ) -(1/2+(1-H)/m) + dv dB(u 1 ) • • • dB(u m ).
Here c 0 > 0 is a positive norming constant and the integral in (1.9) is a multiple Wiener-Itô integral, see e.g. Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. Hermite processes appear as the limit in non-central limit theorems, see Taqqu [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] or Tudor [START_REF] Tudor | Analysis of Variations for Self-similar Processes A Stochastic Calculus Approach[END_REF], they have stationary increments, are self-similar with index H, and for m ≥ 2 are non-Gaussian. An Hermite process X of order m = 2 is usually called a Rosenblatt process, and for m = 1, X is the fractional Brownian motion. We may and do assume that X has been chosen with continuous sample paths almost surely. Our next result is the following theorem which characterizes the limiting Φ-variation of Hermite processes.

Theorem 1.3. Let X = {X(t) : t ∈ [0, 1]} be an Hermite process of order m ∈ N with Hurst index H ∈ (1/2, 1), and Φ = Φ m,H be given by

(1.10) Φ(t) = t 1 H (log * 2 (1/t)) m 2H t > 0.
Then with probability one

(1.11) lim δ→0 sup{v Φ (X, π) : π ∈ Π δ } = σ m,H
where the constant σ m,H ∈ (0, ∞) is defined in (1.12). In particular, we deduce that X has sample paths of bounded Φ-variation with probability one, and Φ is optimal in the sense that for all Φ :

R + → R + satisfying Φ(x)/Φ(x) → ∞ as x → 0, we have V Φ(X ) = ∞ a.s. Moreover, σ m,H ≤ V Φ (X) < ∞ a.s.
We note that the functions Φ = Φ m,H are decreasing in m, in particular, for all 1 ≤ m < k we have that Φ k,H (x)/Φ m,H (x) → 0 as x → 0, and hence Theorem 1.3 shows that when m increases then the sample paths of X becomes more "rough" when measured in terms of Φ-variation. In particular, the Rosenblatt process with Hurst index H has more "rough" sample paths than the fractional Brownian motion. The next remark concerns the constant σ m,H appearing in Theorem 1.3. 

σ m,H = 2 m 2H sup R m Q(u 1 , . . . , u m )ξ(u 1 ) • • • ξ(u m ) du 1 • • • du m : ξ ∈ L 2 (R), ξ 2 ≤ 1 1/H where Q(u 1 , . . . , u m ) = c 0 1 0 m i=1 (v -u i ) -(1/2+(1-H)/m) + dv.
We note that 0 < σ m,H < ∞, and in fact we have the upper bound

σ H m,H ≤ 2 m 2 Q L 2 (R m ) = 2 m 2 (m!) -1 2 X(1) L 2 and (1.13) Q L 2 (R m ) = c 0 β(1/2 -1-H m , 2-2H m ) m H(2H -1) 1/2
where β(x, y) := 1 0 t x-1 (1 -t) y-1 dt denotes the beta function evaluated in (x, y) ∈ (0, ∞) 2 . Equality (1.13) follows by the proof of [START_REF] Tudor | Analysis of Variations for Self-similar Processes A Stochastic Calculus Approach[END_REF]Proposition 3.1]. By duality arguments it follows that σ H m,H = 2

1 2 X(1) L 2 for m = 1, whereas σ H m,H < 2 m 2 X(1) L 2 for m ≥ 2.
The next results are related to Theorems 1.1-1.3. We will in particular estimate the associated Φ-variation norm of X. Some notions and notation are necessary. Let B Φ be the class of all real functions f : [0, 1] → R such that V Φ (f ) < ∞, namely having bounded Φ-variation. Recall some basic facts in the case where Φ is convex. Then Φ is also continuous. The class B Φ is a symmetric and convex set, but is not necessarily a linear space. Musielak and Orlicz [START_REF] Musielak | On generalized variations (I)[END_REF] haved proved that B Φ is a vector space if and only if Φ verifies the ∆ 2 -condition (Φ(2x) ≤ CΦ(x) for all x). In the latter case we define for any f ∈ B Φ ,

f Φ = inf{r > 0 : V Φ (f /r) ≤ 1},
and |||f ||| Φ = |f (0)| + f Φ . We know by a theorem of Maligranda and Orlicz [START_REF] Maligranda | On some properties of functions of generalized variation[END_REF], that the space (B Φ , |||•||| Φ ) is a Banach space, and in fact a Banach algebra. When Φ(x) = |x| p , p ≥ 1, we denote this space B p , and we will write V Φ (•) = V p (•) and • Φ = • p ; we note that the latter takes the simple form f p = V p (f ) 1/p . In the following we give explicit estimates on the expected Φ-variation norm of Gaussian processes under some additional assumptions on Φ and Ψ. In particular, Corollary 1.6 completes Jain and Monrad's result [START_REF] Jain | Gaussian measures in Bp[END_REF]Theorem 3.2] with an explicit estimate of the expected p-variation norm. We note that in Jain and Monrad's result, Φ and Ψ are given and condition V(Ψ, d) < ∞ reads on d. Here we adopt the same point of view and we notice that our main result can also be read this way for Gaussian processes, namely with Φ and Ψ satisfying (1.5), next X subject to satisfy condition V(Ψ, d) < ∞ (the increment condition (1.4) is automatically satisfied with α = 2). Theorem 1.5. Suppose that Φ, Ψ : R + → R + are strictly increasing continuous functions with Φ(0) = Ψ(0) = 0, lim t→∞ Φ(t) = lim t→∞ Ψ(t) = ∞ such that Φ and Ψ satisfy (1.5) of Theorem 1.1. In addition, suppose that Φ is convex and Ψ -1 is absolute continuous with a derivative (Ψ -1 ) ′ satisfying

(1.14) (Ψ -1 ) ′ (xy) ≤ K 0 x q-1 (Ψ -1 ) ′ (y), and that Φ(xy) ≤ K 0 x p Φ(y)
for all x, y ≥ 0 and some constants p, q, K 0 > 0. For all separable, centered Gaussian processes

X = {X(t) : t ∈ [0, 1]} with d(s, t) = X(s) -X(t) L 2 for all s, t ∈ [0, 1], such that V(Ψ, d) < ∞, the following estimate holds E X Φ ≤ K V(Ψ, d) + V(Ψ, d) p/2+1 + V(Ψ, d) pq 1/p
where K is a finite constant not depending on process X.

Corollary 1.6. Let p ≥ 1 and set

Ψ(x) = x p [log * 2 (1/(x ∧ 1))] p/2 x > 0.
For all separable, centered Gaussian processes

X = {X(t) : t ∈ [0, 1]} with d(s, t) = X(s) - X(t) L 2 for all s, t ∈ [0, 1], the estimate holds (1.15) E X p ≤ KW 1/p p (1 + W 1/2 p )
where

W p := V(Ψ, d)
and K is a finte constant not depending on process X.

Recall that in the setting of Corollary 1.6 the condition W p < ∞ is Jain and Monrad's sufficient conditions of bounded p-variation. In the case where W p ≤ 1, (1.15) simplifies to the estimate E X p ≤ KW 1/p p . The next result gives a necessary condition for a centered Gaussian process to be of bounded Φ-variation in the case where Φ satisfies the ∆ 2 -condition, i.e., there exists a finite constant C such that Φ(2x) ≤ CΦ(x) for all x ≥ 0.

Proposition 1.7. Suppose that X = {X(t) : t ∈ [0, 1]} is a separable, centered Gaussian process, d(s, t) = X(s) -X(t) L 2 for s, t ∈ [0, 1], Φ is convex and satisfies the ∆ 2 -condition. If X is of bounded Φ-variation then V(Φ, d) < ∞.
Next we discuss some related results. For p-variation of Markov processes we refer to Manstavičius [START_REF] Manstavičius | p-variation of strong Markov processes[END_REF], for p-variation of stable processes we refer to Xu [START_REF] Xu | Espaces d'interpolation réels entre les espaces Vp: Proprietes géométriques et applications probabilistes[END_REF], and for results on the pvariation of the local time of stable Lévy processes in the space variable we refer to Marcus and Rosen [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF][START_REF] Marcus | p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments[END_REF]. A result of Vervaat [START_REF] Vervaat | Sample path properties of self-similar processes with stationary increments[END_REF], states that if X is a self-similar process with index 0 < H ≤ 1 and has moreover stationary increments, then its sample paths have nowhere bounded variation, unless X(t) ≡ tX(0). The weak variation of a class of Gaussian processes is characterized in Xiao [START_REF] Xiao | Weak variation of Gaussian processes[END_REF], and various results on the moduli of continuity for Gaussian random fields are obtained in Meerschaert et al. [START_REF] Meerschaert | Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields[END_REF]. In a different direction, the asymptotics of the renormalized quadratic variation of the Rosenblatt process is analyzed in Tudor and Viens [START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF] using Malliavin calculus.

The paper is organized as follows: Theorems 1.1-1.2 are proved in Section 2. Theorem 1.3 is proved in Section 3. We prove Theorem 1.5, Corollary 1.6 and Proposition 1.7 in Section 4. Finally, some results used in the proofs are moved to the Appendix.

2. Proofs of Theorems 1.1 and 1.2.

2.1. Preliminaries. Recall some basic facts. Let d be a pseudo-metric on [0, 1] with finite diameter D. Moreover, let X = {X(t) : t ∈ [0, 1]} be a stochastic process with basic (complete) probability space (Ω, A, P). We further say that X is separable (for the usual distance on [0, 1]), if there exists a countable subset S of [0, 1] (separation set) and a null set N of A, such that for any ω ∈ N c and any t ∈ [0, 1], there is a sequence {t n , n ≥ 1} ⊂ S verifying t n → t and X(t, ω) = lim n→∞ X(t n , ω). By [10, Ch. 4.2, Theorem 1], every stochastic process X = {X(t) : t ∈ [0, 1]} admits a separable version X with values in the extended reals. The measurability of the functional V Φ (X) follows from the separability assumption on X. For each continuous, strictly increasing function f : R + → R, f -1 will denote its inverse. Recall that log * (x) = log(x + 1), log * 2 (x) = log * (log * x) for all x ≥ 0, and that Φ : R + → R + denotes a continuous, strictly increasing function with Φ(0) = 0 and lim t→∞ Φ(t) = ∞.

The following metric entropy result, Theorem 2.1, plays a key role in the proof of Theorem 1.1 both to obtain good modulus of continuity estimates on X, but also to estimate certain probabilities. It relies on the covering numbers N (T, d, ε), ε > 0, of a pseudo-metric space (T, d), which are defined to be the smallest number of open balls of radius ε to cover T . Note also that φ -1 α (x) = (log * x) 1/α , x ≥ 0. Theorem 2.1. Let (T, d) be a pseudo-metric space with diameter D, and let X = {X(t) : t ∈ T } be a separable stochastic process such that the increment condition (1.4) is fulfilled for some 0 < α < ∞ and with [0, 1] replaced by T . Further assume that 

D 0 (log * N (T, d, ε)) 1/α dε < ∞. Let δ(ε) = ε 0 (log * N (T, d, u))
F (t) = sup 0=t 0 <•••<tn =t n∈N n i=1 Ψ d(t i , t i-1 )
.

The basic observation is that if s ≤ t, then Ψ d(s, t) ≤ F (t) -F (s). Hence, (2.1) d(t, s) ≤ Ψ -1 F (t) -F (s) 0 ≤ s ≤ t ≤ 1,
and in particular

D ≤ Ψ -1 (F (1)) (notice that F (1) = V(Ψ, d)).
Introduce for all m ∈ Z and j = 1, . . . , ⌈F (1)2 m ⌉, the sets

I m,j =](j -1)2 -m , j2 -m ], S m,j = {s ∈ [0, 1] : F (s) ∈ I m,j }.
Put also

Z m = ♯ j = 1, . . . , ⌈F (1)2 m ⌉ : sup s,t∈Sm,j Φ(|X(t) -X(s)|) > C2 -m ,
where ♯A denotes the number of elements in a set A, and ⌈x⌉ denotes the least integer larger than x.

We have d(s, t) ≤ Ψ -1 (2 -m ) for all s, t such that F (s),

F (t) ∈ I m,j . Let 0 < ρ < 2 -m /2. Consider a subdivision of I m,j of size 2ρ, thus of length N = N (ρ) bounded by 2 -m /ρ + 1 ≤ 2 -m+1 /ρ. It induces a partition U 1 , . . . , U N (ρ) of S m,j .
For any non-empty element U from this partition, any s, t ∈ U , we have Ψ -1 (|s -t|) ≤ Ψ -1 (2ρ). Pick u arbitrarily in U , we see that the d-ball centered at u and of radius Ψ -1 (2ρ), contains U . Moreover, repeating this operation for each non-empty element U 1 , . . . , U N (ρ) , we manufacture like this a covering of S m,j by d-balls of radius Ψ -1 (2ρ), centered in S m,j of size at most N . Thus N (S m,j , d,

Ψ -1 (2ρ)) ≤ 2 -m+1 /ρ. Letting ρ = Ψ(ε)/2, we deduce (2.2) N (S m,j , d, ε) ≤ 2 -m+2 Ψ(ε) , 0 < ε < Ψ -1 (2 -m ).
In particular, for m = 0 and by considering F (t) = F (t)/F (1) and Ψ(t) = Ψ(t)/F (1) instead of F and Ψ we obtain that

(2.3) N ([0, 1], d, ε) ≤ 4F (1) Ψ(ε) , 0 < ε < Ψ -1 (F (1)).
By Remark 2.2(ii) and (2.2), sup

s,t∈Sm,j |X(s) -X(t)| φα ≤ K α Ψ -1 (2 -m ) 0 log * 2 -m+2 Ψ(ε) 1/α dε ≤ K α 4 1/α y m
where we use the estimate

(2.4) log * (yx) ≤ (y ∨ 1) log * (x) for all y, x ≥ 0.
With C given as in the theorem and x m defined in (1.5) we have

P sup s,t∈Sm,j Φ(|X(s) -X(t)|) > C2 -m ≤ P sup s,t∈Sm,j |X(s) -X(t)| > x m sup s,t∈Sm,j |X(s) -X(t)| φα ≤ 1 φ α (x m )
.

And this holds for j = 1, . . . , ⌈F (1)2 m ⌉. By letting r 0 = φ -1 α (1) and xm = x m ∨ r 0 we have

(2.5) P sup s,t∈Sm,j Φ(|X(s) -X(t)|) > C2 -m ≤ 1 φ α (x m )
since the left-hand side of (2.5) is always less than or equal to one.

Fix now a partition

π = {0 = t 0 < • • • < t n = 1} of [0, 1]. Let m 0 ∈ Z be any number satisfying max 1≤i≤n F (t i ) -F (t i-1 ) ≤ 2 -m0 . Introduce the following sets Λ m = 1 ≤ i ≤ n : 2 -m-1 < F (t i ) -F (t i-1 ) ≤ 2 -m , m ≥ m 0 , E(ω) = 1 ≤ i ≤ n : Φ |X(t i , ω) -X(t i-1 , ω)| > C[F (t i ) -F (t i-1 )] . (2.6) We have n i=1 Φ |X(t i , ω) -X(t i-1 , ω)| = i∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| + i / ∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| ≤ i∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| + CF (1). (2.7)
In order to control the remainding subsum, we start with the following simple bound,

i∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| = ∞ m=m0 i∈E(ω)∩Λm Φ |X(t i , ω) -X(t i-1 , ω)| ≤ ∞ m=m0 sup i∈E(ω)∩Λm Φ |X(t i , ω) -X(t i-1 , ω)| ♯ E(ω) ∩ Λ m . (2.8)
We now need some auxiliary estimates. We first claim that (2.9)

♯ E(ω) ∩ Λ m ≤ 9Z m-2 (ω)
for all m ≥ m 0 .

For i ∈ E(ω) ∩ Λ m choose an integer j = 1, . . . , . . . , ⌈F (1)2 m ⌉ such that F (t i ) ∈ I m,j . Then F (t i-1 ) ∈ I m,j-1 ∪ I m,j = J, say. For some k = 1, . . . , ⌈F (1)2 m-2 ⌉, we have J ⊆ I m-2,k which by definition of Λ m and E(ω) implies that

(2.10) sup s,t∈S m-2,k Φ(|X(t, ω) -X(s, ω)|) > C(F (t i ) -F (t i-1 )) ≥ C2 -(m-2) .
On the other hand, for each k = 1, . . . , ⌈F (1)2 m-2 ⌉ we have

(2.11) ♯{i ∈ E(ω) ∩ Λ m : F (t i ) ∈ I m-2,k } ≤ 9.
Indeed, to show (2.11) let i 1 and i 0 be the largest and least integers in

A k := {i ∈ E(ω) ∩ Λ m : F (t i ) ∈ I m-2,k }. Since F (t i0 ), F (t i1 ) ∈ I m-2,k , by definition, we have 2 -(m-2) ≥ F (t i1 ) -F (t i0 ) = i∈A k : i>i0 [F (t i ) -F (t i-1 )] ≥ i∈A k : i>i0 2 -m-1 ≥ 2 -m-1 ♯A k -1 ,
which shows (2.11). Combining (2.10) and (2.11) we obtain (2.9). By (2.8) and (2.9),

i∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| ≤ 9 ∞ m=m0 Z m-2 (ω) sup i∈E(ω)∩Λm Φ |X(t i , ω) -X(t i-1 , ω)| .
Besides, by Theorem 2.1 there exists a finite constant K α > 0 depending on α only such that if

Θ = sup s,t∈[0,1] |X(s) -X(t)| δ(d(s, t)) , (2.12) then Θ φα ≤ K α (δ is defined in Theorem 2.1 with T = [0, 1]). Now, if i ∈ E(ω) ∩ Λ m , we have by (2.1), d(t i , t i-1 ) ≤ Ψ -1 F (t i ) -F (t i-1 ) ≤ Ψ -1 (2 -m ), and hence Φ |X(t i , ω) -X(t i-1 , ω)| ≤ Φ Θ(ω)δ d(t i , t i-1 ) ≤ Φ Θ(ω)δ • Ψ -1 (2 -m ) .
By (2.3) and (2.4) we have with

c d = [(4F (1)) ∨ 1] 1/α that δ • Ψ(2 -m ) ≤ Ψ(2 -m ) 0 log * 4F (1) Ψ(ε) 1/α dε ≤ c d Ψ(2 -m ) 0 log * 1 Ψ(ε) 1/α dε = c d y m ,
and hence (2.13)

i∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| ≤ 9 ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω).
In the following we will show that the right-hand side of (2.13) is finite almost surely. For all ǫ > 0 choose M such that

P(Θ ≤ M ) ≥ 1 -ǫ. For ω ∈ {Θ ≤ M }, ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω) ≤ ∞ m=m0 Φ M c d y m Z m-2 (ω) =: Z M (ω).
Suppose that m 0 is the greatest integer such that F (1) ≤ 2 -m0 , and hence for all m ≥ m 0 we have that F (1)2 m ≥ 1/2, which implies that ⌈F (1)2 m ⌉ ≤ 2F (1)2 m . By definition of Z m and (2.5) we have for all m ≥ m 0 ,

E Z m = ⌈F (1)2 m ⌉ j=1 P sup s,t∈Sm,j Φ(|X(s) -X(t)|) > C2 -m ≤ ⌈F (1)2 m ⌉ 1 φ(x m ) ≤ 2F (1)2 m 1 φ α (x m ) ≤ 4F (1)2 m e -x α m (2.14)
where we have used that 1/φ α (x m ) ≤ 2e -x α m in the last inequality. Hence

E Z M = ∞ m=m0 Φ M c d y m E Z m-2 ≤ 4F (1) ∞ m=m0 2 m Φ M c d y m e -x α m < ∞
by assumption (1.5). That is, the random variable in (2.13) is finite with probability greater than 1 -ǫ for all ǫ > 0 and hence finite almost surely. By (2.7)

(2.15)

n i=1 Φ |X(t i , ω) -X(t i-1 , ω)| ≤ 9 ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω) + CF (1).
This inequality holds for all ω in a measurable set Ω 0 of probability 1 and all partitions π. Note also that the right-hand side does not depend on the given partition π; it only depends on the process X. So that we can take supremum over all partitions π on the left-hand side. And recalling in view of the separability assumption that V Φ (X) is measurable, we have shown that for all ω ∈ Ω 0 ,

V Φ (X(•, ω)) ≤ 9 ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω) + CF (1),
which shows that X has sample paths of bounded Φ-variation almost surely, and completes the proof.

Remark 2.3. Suppose that V(Ψ, d) < ∞ with Ψ(x) = x p , and let δ(ε) be defined as in Theorem 2.1 with T = [0, 1]. Then the estimate (2.3) shows that

δ(ε) ≤ ε 0 log * 4 ε p 1/α du ≤ C p,α ε log * 1 ε 1/α .
Specify this for X Gaussian (α = 2). We deduce from Theorem 2. 

|X(t, ω) -X(s, ω)| ≤ C(ω) |s -t| 1/p (log * 1 |s-t| ) 1/2 (log * 2 1 |s-t| ) 1/2 ∀0 ≤ s, t ≤ 1.
thereby implying that has sample paths of bounded Ψ 1 -variation almost surely, where

Ψ 1 (x) = |s -t| p (log * 2 1 |s-t| ) -p/2 (log * 1 |s-t| ) p/2
, which is clearly weaker than bounded p-variation. Thus, we can not obtain bounded p-variation only from the modulus of continuity of X.

Next we will show Theorem 1.2 by suitable applications of Theorem 1.1. Case (1): Set Ψ(t) = t p and Φ(t) = t p (log * 2 (1/t)) -p/α for all t > 0 and Φ(0) = Ψ(0) = 0. Since Ψ -1 (t) = t 1/p we have that

Proof of

y m = 2 -m 0 log * 1 ε 1/α Ψ -1 (dε) = (1/p) 2 -m 0 log * 1 ε 1/α ε 1/p-1 dε ∼ (1/p)m 1/α 2 -m/p
as m → ∞ since the integrand is regularly varying. For all m ≥ 1, we have by substitution that

2 -m 0 log * 2 -m ε 1/α Ψ -1 (dε) = K α,p 2 -m/p .
We note that Φ -1 (t) ∼ t 1/p (log * 2 (1/t)) 1/α as t → 0, and hence, for all C > 0 and all m larger than some m 0 ≥ 1

x m = Φ -1 (C2 -m ) K α 2 -m 0 (log * ( 2 -m ε )) 1/α Ψ -1 (dε) ≥ K α,p C 1/p 2 -m/p log(m) 1/α 2 -m/p = K α,p C 1/p log(m) 1/α . For all M > 0, ∞ m=m0 2 m Φ(M y m )e -x α m ≤ M p K α,p ∞ m=m0 2 m 2 -m m p/α e -K α α,p C α/p log m = M p K α,p ∞ m=m0 m p/α-K α α,p C α/p < ∞ for C = (p/α + 2) p/α K -p α,p
. This shows (1.5) and completes the proof of (1).

Case (2): The proof of this case is analogous with the one of case (1). We set Φ(t) = t p and Ψ(t) = t p (log * 2 (1/t)) p/α . As t → 0 we have Ψ -1 (t) ∼ t 1/p /(log * 2 (1/t)) 1/α and (Ψ -1 ) ′ (t) ∼ (1/p)t 1/p-1 /(log * 2 (1/t)) 1/α . Hence

y m = 2 -m 0 log * 1 ε 1/α (Ψ -1 ) ′ (ε) dε ≤ K α,p 2 -m/p m 1/p ,
and therefore

Φ(M y m ) ≤ M p K α,p 2 -m m p/α
for all m large enough. Further, x m ≥ K α,p C 1/p (log m) 1/α for all m large enough. Indeed,

2 -m 0 log * 2 -m ε 1/α Ψ -1 (dε) = 2 -m 1 0 log * 1 v 1/α (Ψ -1 ) ′ (2 -m v) dv ≤ K α,p 2 -m 1 0 log 1 v 1/α (2 -m v) 1 p -1 dv (log * 2 2 m v ) 1/α ≤ K α,p 2 -m/p (log m) 1/α 1 0 log 1 v 1/α v 1 p -1 dv ≤ K α,p 2 -m/p (log m) 1/α . Thus x m = Φ -1 (C2 -m ) K α 2 -m 0 log * ( 2 -m ε ) 1/α Ψ -1 (dε) ≥ K α,p C 1/p 2 -m/p 2 -m/p (log m) 1/α = K α,p C 1/p (log m) 1/α
for m large enough. Hence (1.5) follows by setting C = (p/α + 2) p/α K -p α,p . Case (3): Let Φ β (t) = e -t -1/β and note that Φ -1 β (t) = (log(1/t)) -β , t > 0. Let β 0 > 1/α and set Ψ = Φ β0 , Φ = Φ β . For all m ≥ 1,

y m ≤ y 1 = 1 0 log * 1 ε 1/α Ψ -1 (dε) = Ψ -1 (1) 0 log * 1 Ψ(ε) 1/α dε ≤ K α,β0 Ψ -1 (1) 0 ε -1/(β0α) dε < ∞. Moreover, 2 -m 0 log * 2 -m ε 1/α Ψ -1 (dε) = 2 -m 0 log * 2 -m ε 1/α log 1 ε -1-β0 ε -1 dε = 1 0 log * 4 ε 1/α log 2 m ε -1-β0 ε -1 dε ≤ K α,β0 m -1-β0 . Set C = 1. Since Φ -1 (C2 -m ) ≥ m -β we have that x m ≥ m 1+β0-β , and hence ∞ m=1 2 m Φ(M y m )e -x α m ≤ Φ(M y 1 ) ∞ m=1 exp m log(2) -m α(1+β0-β) < ∞ (2.16) since α(1 + β 0 -β) > 1.
Case (4): Recall that Φ c,r (t) = e -r(log 1 t ) c and note that Φ -1 c,r = Φ 1 c ,r ′ with r ′ = r -1/c . We set Ψ = Φ c,r and Φ = Φ c,v where v > r. Since ε → (log(1/ε)) c/α is slowly varying at zero we have as

n → ∞ y m = 2 -m 0 log * 1 ε 1/α Ψ -1 (dε) = Ψ -1 (2 -m ) 0 log * 1 Ψ(ε) 1/α dε = Φ 1 c ,r ′ (2 -m ) 0 log 1 ε c α dε ∼ Φ 1 c ,r ′ (2 -m ) log 1 Φ 1 c ,r ′ (2 -m ) c α = (r ′ ) 1 α e -r ′ (m log 2) 1/c (m log 2) 1 α .
Set C = 1. Further, as we always have that

x m ≥ K α Φ -1 (C2 -m )y -1 m , it follows that x m ≥ 1 2 K α exp (r ′ -v ′ )(m log 2) 1/c (m log 2) -1 α ≥ exp(δm 1/c )
for all m ≥ m 0 , for some m 0 ≥ 1, where δ = (r ′ -v ′ )(log 2) 1/c /2. For all M > 0 we have

∞ m=m0 2 m Φ(M y m )e -x α m ≤ Φ(M y 1 ) ∞ m=m0 exp m log(2) -exp αδm 1/c < ∞.
Remarks 2.5.

1. In the two first cases of the proof of Theorem 1.2 the series in (1.5) converges slowly, whereas in the two last cases, the above series converges fastly. 2. Concerning Case 3, we observe from (2.16) that by the assumption made on β, namely β < 1 + β 0 -1/α, the convergence of the series in (1.5) is controlled by the sole sequence (x m ), the fact that (y m ) be bounded indeed suffices. If β < β 0 -1/α, then the convergence of the above series in (1.5) is already granted by the sequence (y m ).

3. Concerning Case 4, let 0 < r ′′ < r ′ . Notice, although not used here that y m ≤ Ke -r ′′ (m log 2) 1/c , and so

Φ(M y m ) ≤ exp -v log 1 M Ke -r ′′ (m log 2) 1/c c ≤ K ′ exp -v(r ′′ ) c (m log 2) ,
where K, K ′ depend on r ′ , r ′′ , c, M . And so when 0 < r < 1, Φ(M y m ) ≤ K ′′ 2 -ρm for suitable constants K ′′ and ρ > 1. Consequently, ∞ m=m0 2 m Φ(M y m ) < ∞, which of course suffices for concluding.

Remark 2.6. For β > 0 let Φ β (t) = e -t -1/β for all t > 0 and Φ β (0) = 0. Moreover, for any r > 0 let Φβ,r (t) = t 0 Φ β (s) r ds, t ≥ 0. Fix an r > 0. From the Salem-Baernstein theorem, [5, Theorems 11.8 and 11.13], it follows that every continuous periodic function of bounded Φβ,rvariation has uniform convergent Fourier series if and only if β > 1 (argue as on p. 568 in [START_REF] Dudley | Concrete Functional Calculus[END_REF]). The same result holds with Φβ,r replaced by Φ β , which follows from the estimate Φβ,1 (t) ≤ Φ β (t) ≤ Φβ, 1 2 (t) which holds for all t close enough to zero.

Proof of Theorem 1.3.

Let n ≥ 0 be a fixed positive integer and H n : R → R be the n-th Hermite polynomial which is defined by

H n (x) = (-1) n n! e x 2 /2 d n dx n e -x 2 /2 , n ≥ 1,
and

H 0 (x) = 1. For each f ∈ L 2 (R) set B(f ) = R f (s) dB(s)
and let H n be the L 2 -closure of the linear span of

H n (B(f )) : f ∈ L 2 (R), f L 2 = 1 .
Next choose a real number a n > 0 such that (3.1)

na 1/n n + ∞ k=n+1 (ka 2/n n 2/n) k k! ≤ 2.
All Y ∈ H n satisfy the following equivalence of moments inequality

Y p ≤ p n/2 Y 2 for all p > 2,
cf. e.g. [1, Eq. (4.1)], and hence for all Y ∈ H n with Y 2 ≤ a n we have

E exp(|Y | 2/n ) = n k=0 1 k! E [|Y | 2k/n ] + ∞ k=n+1 1 k! E [|Y | 2k/n ] ≤ na 1/n n + ∞ k=n+1 (ka 2/n n 2/n) k k! ≤ 2. (3.2)
Throughout the rest of this section X = {X(t) : t ∈ [0, 1]} will denote an Hermite process of the form (1.9), and we let Q t denote the kernel

Q t (u 1 , . . . , u m ) = c 0 t 0 m i=1 (v -u i ) -(1/2+(1-H)/m) + dv, u 1 , . . . , u m ∈ R. Since X(t) ∈ H m for all t ∈ [0, 1], (3.2) shows that X satisfies (1.4) with α = 2/m and d(s, t) = a -1 m X t -X s 2 for all s, t ∈ [0, 1]
, where a m is given by (3.1). By self-similarity and stationary increments we have that d(s, t) = c0 |s -t| H for all s, t ∈ [0, 1] and a suitable constant c0 . We let Φ be given by (1.10) and Ξ : R + → R + denote the function

Ξ(x) = x H (log * 2 (1/x)) m/2 x > 0, Ξ(0) = 0.
We note that Ξ is an asymptotic inverse to Φ in the sense that Φ(Ξ(x)) ∼ Ξ(Φ(x)) ∼ x as x → 0.

3.1. Proof of the upper bound in Theorem 1.3. In the following we will show the upper bound

(3.3) V * Φ (X) ≤ σ m,H a.s.
To show (3.3) we will need the following two-sided Law of the Iterated Logarithm for X.

Lemma 3.1. For each t > 0 we have with probability one,

(3.4) lim δ→0 sup u,v≥0 0<u+v<δ |X(t + u) -X(t -v)| Ξ(u + v) ≤ σ H m,H .
Proof. Fix t > 0 and consider the process

Z(u, v) = X(t + u) -X(t -v). For all δ ∈ (0, 1) set S(δ) = {(u, v) ∈ R 2 + : 0 < u + v ≤ δ},
and note that S(δ) = δS [START_REF] Arcones | On decoupling, series expansions, and tail behavior of chaos processes[END_REF]. By the stationary increments and self-similarity of X it follows that Z is self-similar of index H, and hence

(3.5) P sup (u,v)∈S(δ) |Z(u, v)| > z = P sup (u,v)∈S(1) |Z(u, v)| > zδ -H .
By Borell [START_REF] Borell | Tail probabilities in Gauss space[END_REF], we have that

(3.6) t -2/m log P sup (u,v)∈S(1) |Z(u, v)| ≥ t → -1 2ς 2/m Z as t → ∞
where

ς Z = sup ξ∈L 2 (R) ξ L 2 (R) ≤1 (u,v)∈S(1) R m Q t+u (u 1 , . . . , u m ) -Q t-v (u 1 , . . . , u m ) ξ(u 1 ) • • • ξ(u m ) du 1 • • • du m .
Using the scaling property of the kernel

{Q t : t ∈ [0, 1]} we obtain that ς Z = 2 -m/2 σ H m,H . Fix ǫ ∈ (0, 1/2) and choose ǫ > 0 such that (1 -ǫ) 2 (1 + ǫ) 2/m > 1. For n ∈ N set δ n = e -n 1-ǫ , Ξ n = δ H n ς Z (2 log * 2 (1/δ n )) m/2 , S n = S(δ n ) and E n = sup (u,v)∈Sn |Z(u, v)| ≥ (1 + ǫ)Ξ n .
By (3.5),

P(E n ) = P sup (u,v)∈S(1) |Z(u, v)| > (1 + ǫ)Ξ n δ -H n = P sup (u,v)∈S(1) |Z(u, v)| > (1 + ǫ)ς Z 2(1 -ǫ) log(n) m/2 .
According to (3.6), there exists T > 0 such that for all t ≥ T P sup (u,v)∈S( 1)

|Z(u, v)| ≥ t ≤ exp - t 2/m (1 -ǫ) 2ς 2/m Z .
Hence there exists a positive integer N ≥ 1 such that for all n ≥ N we have

P(E n ) ≤ exp -(1 -ǫ)(1 + ǫ) 2/m (1 -ǫ) log(n) = n -β
where β := (1 -ǫ) 2 (1 + ǫ) 2/m . Since β > 1, the Borel-Cantelli lemma shows that there exists a measurable set Ω 1 with P(Ω 1 ) = 1 and for all ω ∈ Ω 1 there exists an integer n 0 (ω) such that for all n ≥ n 0 (ω) we have that sup

(u,v)∈Sn |Z(u, v, ω)| ≤ (1 + ǫ)Ξ n .
For all ω ∈ Ω 1 , δ ≤ δ n where n ≥ n 0 (ω) we have sup

u,v≥0 0<u+v<δ |Z(u, v, ω)| Ξ(|u + v|) ≤ sup j: j≥n sup |Z(u, v, ω)| Ξ(|u + v|) : (u, v) ∈ S j \ S j+1 ≤ sup j: j≥n sup |Z(u, v, ω)| Ξ(δ j+1 ) : (u, v) ∈ S j \ S j+1 ≤ sup j: j≥n (1 + ǫ)Ξ j Ξ(δ j+1 ) = (1 + ǫ)ς Z 2 m/2 sup j: j≥n δ j δ j+1 H log * 2 (1/δ j ) log * 2 (1/δ j+1 ) m/2 . Since δ j δ j+1 → 1 and log * 2 (1/δ j ) log * 2 (1/δ j+1 ) → 1 as j → ∞
we can for all ω ∈ Ω 1 choose n ≥ n 0 (ω) such that for all δ < δ n we have

(3.7) sup u,v≥0 0<u+v<δ |Z(u, v, ω)| Ξ(|u + v|) ≤ (1 + ǫ) 2 ς Z 2 m/2 .
Since ǫ > 0 was arbitrary chosen and σ H m,H = ς Z 2 m/2 , (3.7) implies (3.4), and the proof is complete.

Proof of Theorem 1.3 (the upper bound). We will show the upper bound (3.3). To this aim recall from the beginning of this section that X satisfies (3.2) with d(s, t) = c0 |s -t| H and α = 2/m. Set Ψ(t) = t 1/H for all t ≥ 0, and recall that Φ is defined in (1.10). According to the proof of Theorem 1.2(i) we know that Φ and Ψ satisfy (1.5) for a suitable large constant C > 0, which will be fixed throughout the proof. Furthermore, since V(Ψ, d) < ∞ the conditions of Theorem 1.1 are satisfied. By definition of d and Ψ above we have that

F (t) = c1/H 0 t for all t ∈ [0, 1]. Set K = CF (1)
and let ε > 0 be a fixed positive number. For any partition π

= {0 = t 0 < • • • < t n = t} of [0, 1] let I 1 = i = 1, . . . , n : Φ(|X(t i , ω) -X(t i-1 , ω)|) ≤ (1 + ǫ)σ m,H (t i -t i-1 )| , I 2 = i = 1, . . . , n : (1 + ǫ)σ m,H (t i -t i-1 ) < Φ(|X(t i , ω) -X(t i-1 , ω)|) ≤ K(t i -t i-1 ) , I 3 = i = 1, . . . , n : K(t i -t i-1 ) < Φ(|X(t i , ω) -X(t i-1 , ω)|) .
By the definition of I 1 we have the trivial inequality

(3.8) i∈I1 Φ(|X(t i ) -X(t i-1 )|) ≤ (1 + ǫ)σ m,H .
In the following we will show that the sum over I 2 and I 3 are negligible.

The I 2 -sum:

Set β = (1 + ε) 1 1+1/H . For all δ > 0 let U δ = (t, ω) : |X(t + u, ω) -X(t -v, ω)|) ≤ βσ H m,H Ξ(u + v) for all u, v ∈ R + , 0 < u + v ≤ δ .
By Lemma 3.1 and an application of Tonelli's theorem there exists a measurable set Ω 0 ⊆ Ω with P(Ω 0 ) = 1 such that for all ω ∈ Ω 0 , 1 U 1/n (t, ω) → 1 for λ-a.e. t ∈ (0, 1), where λ denotes the Lebesgue measure. For ω ∈ Ω 0 we have by Lebesgue's theorem,

lim n→∞ λ(t ∈ (0, 1) : (t, ω) ∈ U 1/n ) = lim n→∞ 1 0 1 {(t,ω)∈U 1/n } dt = 1 0 1 dt = 1
and hence there exists δ 0 = δ 0 (ω) such that for all δ ≤ δ 0 we have

(3.9) λ t ∈ (0, 1) : (t, ω) ∈ U δ ≥ 1 -ǫ.
For all r > 0, Φ(rΞ(x)) ∼ r 1/H x as x → 0, and hence we may and do assume that δ 0 is chosen such that for all x ∈ (0, δ 0 ),

Φ(βσ H m,H Ξ(x)) ≤ ββ 1/H σ m,H x = (1 + ε)σ m,H x. For δ ≤ δ 0 and π ∈ Π δ we have that (3.10) (t, ω) ∈ U δ and t ∈ [t i-1 , t i ] for some i = 1, • • • , n ⇒ i ∈ I 1 .
By (3.9) and (3.10) we have i∈I1

(t i -t i-1 ) ≥ 1 -ǫ which implies that i∈I2 (t i -t i-1 ) ≤ ε. Hence (3.11) i∈I2 Φ(|X(t i , ω) -X(t i-1 , ω)|) ≤ K i∈I2 (t i -t i-1 ) ≤ Kε.
The I 3 -sum: Recalling that F (t) = tF (1) for all t ∈ [0, 1], and with E(ω) defined in (2.6) we have

E(ω) = {i = 1, . . . , n : Φ(|X(t i , ω) -X(t i-1 , ω)|) > C[F (t i ) -F (t i-1 )]} = {i = 1, . . . , n : Φ(|X(t i , ω) -X(t i-1 , ω)|) > CF (1)(t i -t i-1 )} = I 3 .
Since the assumptions of Theorem 1.1 are fulfilled, we have for all m 0 ∈ Z with max 1≤i≤n F (t i ) -

F (t i-1 ) ≤ 2 -m0 that i∈I3 Φ(|X(t i , ω) -X(t i-1 , ω)|) ≤ 9 ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω) < ∞ (3.12)
almost surely, cf. (2.13). Next we choose m 0 = m 0 (ω) such that almost surely

(3.13) 9 ∞ m=m0 Φ Θ(ω)y m Z m-2 (ω) ≤ ǫ. Furthermore, choose δ = δ(ω) > 0 such that |F (t)-F (s)| ≤ 2 -m0 for all s, t ∈ [0, 1] with |s-t| ≤ δ.
For all π ∈ Π δ we have max 1≤i≤n F (t i ) -F (t i-1 ) ≤ 2 -m0 and hence by (3.12) and (3.13)

(3.14) i∈I3 Φ(|X(t i ) -X(t i-1 )|) ≤ ε
with probability one. By combining (3.8), (3.11) and (3.14) we have with probability one

V * Φ (X) = lim δ→0 sup π∈Π δ v Φ (X, π) ≤ ǫ + Kǫ + (1 + ǫ)σ m,H ,
which proves (3.3) since ε was chosen arbitrary. 

1 0 lim sup h→0 |f (x + h) -f (x)| p |h| dx ≤ V p (f ). (3.15) 
As an extension of this result we have the following lemma (we recall that the limiting Φ-variation

V * Φ (f ) is defined in (1.7)). Lemma 3.2.
Let φ, ψ : R + → R + be continuous, strictly increasing functions such that φ(0) = ψ(0) = 0 and lim t→∞ φ(t) = lim t→∞ ψ(t) = ∞. Let H ψ be the Hausdorff measure with determining function ψ. For all f : [0, 1] → R measurable we have

(3.16) H ψ x ∈ [0, 1] : lim sup h→0 |f (x + h) -f (x)| φ(h) > 1 ≤ V * ψ•φ -1 (f ).
Note that H ψ coincide with the Lebesgue measure when ψ is the identity function.

Proof. Set Φ = ψ • φ -1 . We use a simple adaptation of Marcinkiewcz's argument, namely a direct application of Vitali's covering lemma for Hausdorff's measures [START_REF] Fernique | Gaussian Random Vectors and their Reproducing Kernel Hilbert Spaces[END_REF]. For all δ > 0 let

E δ = [x, x + h] : t ∈ (0, 1), h ≤ (1 -x) ∧ δ, |f (x + h) -f (x)|) > φ(h) .
Then E δ is a Vitali covering of the set

A := x ∈ [0, 1] : lim sup h→0 |f (x + h) -f (x)| φ(h) > 1 ,
and hence we can for all ǫ > 0 pick a finite family of disjoint intervals in E δ , say (x n , x n + h n ) for n = 1, . . . , N , such that

N n=1 ψ(h n ) ≥ H ψ (A) -ε.
By definition of E δ we have that h n ≤ δ for all n = 1, . . . , N . Let π be a partition in Π δ which includes the disjoint intervals (x n , x n + h n ) for n = 1, . . . , N . By definition of Φ and

π v Φ(f, π) ≥ N n=1 Φ(|f (x n + h n ) -f (x n )|) ≥ N n=1 ψ(h n ) ≥ H ψ (A) -ε,
which proves (3.16).

Proposition B.1 from the appendix has the following corollary which we will use in the proof of the lower bound:

Corollary 3.3. With probability one, lim sup n→∞ |X(1/n)| Ξ(1/n) = σ H m,H .
We are now ready to prove the lower bound in Theorem 1.3:

Proof of Theorem 1.3 (the lower bound). In the following we will show that (3.17)

V * Φ (X) ≥ σ m,H a.s.
Let ǫ ∈ (0, 1) be fixed. Set φ(t) = (1 -ǫ)σ H m,H Ξ(t) for t ≥ 0. By Corollary 3.3 and the stationary increments of X we have for all t ∈ [0, 1] that almost surely lim sup

h→0 |X(t + h) -X(t)| φ(h) > 1.
Hence by Tonelli's theorem, we have for almost all ω ∈ Ω that

(3.18) 1 = λ t ∈ [0, 1] : lim sup h→0 |X(t + h, ω) -X(t, ω)| φ(h) > 1 .
We will use Lemma 3.2 with ψ being the identity function, which by (3.18) implies

V * φ -1 (X) ≥ 1 a.s. Since φ -1 (t) ∼ σ -1 m,H (1 -ε) -1/H Φ(t) as t → 0, we have V * Φ (X) ≥ (1 -ε) 1/H σ m,H a.
s., which implies (3.17) since ε was arbitrary chosen.

3.3. Proof of the remainding parts of Theorem 1.3. The upper and lower bounds (3.3) and (3.17) implies (1.11). We have that V * Φ (X) < ∞ a.s. implies V Φ (X) < ∞ a.s. since X has bounded sample paths. The inequality V * Φ (X) ≤ V Φ (X) and (1.11) show σ m,H ≤ V Φ (X) < ∞ a.s. To show the last claim let Φ : R + → R + be a function satisfying Φ(x)/Φ(x) → ∞ as x → 0. For each partition π

= {0 = t 0 < • • • < t n = 1} of [0, 1] we have v Φ(X, π) = n i=1 Φ(|X(t i ) -X(t i-1 )|) ≥ min i=1,...,n Φ(|X(t i ) -X(t i-1 )|) Φ(|X(t i ) -X(t i-1 )|) n i=1 Φ(|X(t i ) -X(t i-1 )|). (3.19)
For all K > 0 choose ǫ > 0 such that Φ(x)/Φ(x) ≥ K for all x ∈ (0, ǫ]. By continuity of X we may choose δ = δ(ω) > 0 such that |X(t) -X(s)| ≤ ǫ for all s, t ∈ [0, 1] with |s -t| ≤ δ. By (3.19),

sup π∈Π δ v Φ(X, π) ≥ K sup π∈Π δ v Φ (X, π) ≥ Kσ m,H ,
which shows that V Φ(X ) ≥ Kσ m,H for all K > 0, and hence V Φ(X ) = ∞ since σ m,H > 0. This completes the proof of Theorem 1.3. 4.1. Proof of Theorem 1.5. Let C > 0 be a constant such that (1.5) is satisfied, and notice from the definition of C that it does not depend on the metric d. We will use the same notation, and some of the same decompositions, as in the proof of Theorem 1.1, in particular, E(ω), Θ(ω), c d , F, y m and x m are defined as in the proof of Theorem 1.1. Moreover, let π = {0 = t 0 < • • • < t n = 1} be a partition of [0, 1]. Throughout the proof K will denote a constant which does not depend on the metric d, but might vary from line to line. Set U := {i = 1, . . . , n :

F (t i ) -F (t i-1 ) ≤ 1}. Since ♯(U c ) ≤ F (1) we have that i∈E(ω) Φ |X(t i , ω) -X(t i-1 , ω)| ≤ i∈E(ω)∩U Φ |X(t i , ω) -X(t i-1 , ω)| + F (1)Φ sup s,t∈[0,1] |X(t, ω) -X(s, ω)| .
Let m 0 be the greatest integer satisfying F (1) ∧ 1 ≤ 2 -m0 , and note that m 0 ≥ 0. By definition of U and decomposition (2.15) there exists a measurable set Ω 0 with P(Ω 0 ) = 1 such that for all ω ∈ Ω 0 ,

(4.1) V Φ (X(•, ω)) ≤ 9 ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω) + CF (1) + F (1)Φ sup s,t∈[0,1] |X(t) -X(s)| .
We have Θ φ2 ≤ K. There is no loss to assume K ≥ 1. As E e ( Θ K ) 2 ≤ 2, it follows from Jensen's inequality that E Θ ≤ K(log 2) 1/2 ≤ K. We have for ω ∈ A := {Θ ≤ 4E Θ},

(4.2) ∞ m=m0 Φ Θ(ω)c d y m Z m-2 (ω) ≤ Kc p d ∞ m=m0 Φ y m Z m-2 (ω) =: Kc p d Z(ω),
and by Tchebycheff's inequality, P(A) ≥ 3/4. Further, from (2.14) 

E Z = ∞ m=m0 Φ(y m )E Z m-2 ≤ KF (1) 
δ(D) ≤ Ψ -1 (F (1)) 0 log * F (1) Ψ(ε) 1/2 dε = 1 0 log * 1 ε 1/2 Ψ-1 (dε) = F (1) 1 0 log * 1 ε 1/2 (Ψ -1 ) ′ (F (1)ε) dε ≤ K 1 0 log * 1 ε 1/2 Ψ -1 (dε) F (1) q .
Thus, for ω ∈ Ω 1 we have

(4.3) Φ sup s,t∈[0,1] |X(t) -X(s)| ≤ Φ(Θδ(D)) ≤ KF (1) pq Φ(Θ). Recall that c p d = [(4F (1)) ∨ 1] p/2 ≤ K(F (1) p/2 + 1). By (4.1)-(4.3) we have for all ω ∈ Ω 0 ∩ Ω 1 that V Φ (X(•, ω)) ≤ K F (1) p/2+1 + F (1) + F (1) pq .
Hence, by the assumption (1.14) on Φ we have for all r > 0 that

V Φ (X(•, ω)/r) ≤ Kr -p V Φ (X(•, ω)) ≤ Kr -p F (1) p/2+1 + F (1) + F (1) pq ,
which by the definition of • Φ shows that

X(•, ω) Φ ≤ K F (1) p/2+1 + F (1) + F (1) pq 1/p .
The estimate (4.2) and the strong integrability properties of Gaussian semi-norms (see [START_REF] Fernique | Gaussian Random Vectors and their Reproducing Kernel Hilbert Spaces[END_REF] inequality 0.34) achieves the proof.

4.2. Proof of Corollary 1.6. We apply Theorem 1.5 with Ψ(x) = x p [log * 2 (1/(x ∧ 1))] p/2 and Φ(x) = x p for x > 0. By the proof of Theorem 1.2(2) the conditions of Theorem 1.1 are satisfied. To show (1.14) we notice that Φ(xy) = x p Φ(y), and hence the second part of (1.14) is satisfied. Since Ψ is strictly increasing and continuous on [0, ∞) and continuous differentiable in (0, ∞) \ {1}, it follows that Ψ -1 is absolutely continuous. Moreover, we deduce that (Ψ -1 ) ′ (x) ∼ px 1/p-1 (log * 2 (1/x)) -1/2 as x → 0, which implies the existence of two constants

K 1 , K 2 > 0 such that (4.4) K 1 x 1/p-1 [log * 2 (1/(x ∧ 1))] -1/2 ≤ (Ψ -1 ) ′ (x) ≤ K 2 x 1/p-1 [log * 2 (1/(x ∧ 1 
))] -1/2 for all x > 0. For all x, y > 0 we obtain by (4.4) that

(Ψ -1 ) ′ (xy) ≤ K(xy) 1/p-1 [log * 2 (1/(xy ∧ 1))] -1/2 ≤ Kx 1/p-1 y 1/p-1 [log * 2 (1/(y ∧ 1))] -1/2 ≤ Kx 1/p-1 (Ψ -1
) ′ (y), which shows that (Ψ -1 ) ′ satisfies the first part of (1.14) with q = 1/p. Hence, the corollary follows by Theorem 1.5.

Before we proving Proposition 1.7 we note the following: If Φ satisfies the ∆ 2 -condition (Φ(2x) ≤ CΦ(x), x ≥ 0) then with c 0 := log(C)/ log(2) we have

(4.5) Φ(x) ≤ K(1 + x c0 ) for all x ≥ 0.
Indeed, this estimate follows by successive applications of the ∆ 2 -condition.

Proof of Proposition 1.7.

The assumption V Φ (X) < ∞ a.s. implies that X Φ < ∞ a.s., and by the strong integrability of Gaussian semi-norms we have E [e ǫ X 2 Φ ] < ∞ for some ε > 0. Using (4.5) we deduce E

[V Φ (X)] < ∞. Next we note that E [V Φ (X)] ≥ sup 0=t 0 <•••<tn =1 n∈N n i=1 E [Φ(|X(t i ) -X(t i-1 )|)] (4.6) ≥ sup 0=t 0 <•••<tn =1 n∈N n i=1 Φ(E [|X(t i ) -X(t i-1 )|]) = sup 0=t 0 <•••<tn =1 n∈N n i=1 Φ(Cd(s, t)) (4.7)
where the last inequality follows by convexity of Φ and Jensen's inequality. Note that due to separability of X it is enough to take supremum over a countable family of partitions of [0, 1] in (4.6)-(4.7). By (4.5), we obtain V(Φ, d) < ∞ which completes the proof.

Before continuing, let us make a general remark on modulus of continuity and Φ-variation.

Remark 4.1. A sufficient condition for f to belong to B Φ is that there exists Ψ : R + → R + increasing and a pseudo-metric d on T such that

(i) V(Ψ, d) < ∞, (ii) M Φ,Ψ (f ) := sup s,t∈[0,1] d(s,t)>0 Φ |f (s) -f (t)| Ψ d(s, t) < ∞. (4.8) Choosing for instance Φ(x) = |x| p , Ψ(x) = |x| p (log * |x|) p/2 shows that f ∈ B p as soon as (a) sup 0=t 0 <•••<tn =1 n∈N n-1 i=1 d(t i+1 , t i ) p log * 1 d(t i+1 , t i ) p/2 < ∞, (b) sup s,t∈[0,1] d(s,t)>0 f (s) -f (t) d(s, t)(log * 1 d(s,t) ) 1/2 < ∞.
Letting f = X(•, ω) where X is Gaussian and d(s, t) = X(s) -X(t) 2 , we see that condition (b) is for instance satisfied under assumption (1.3), which is a weak requirement. However condition (a) although general, is too strong compared to assumption (1.1). As to (4.8), it is a consequence of

n i=1 Φ |f (t i+1 ) -f (t i )| = n i=1 Φ |f (t i+1 ) -f (t i )| Ψ d(t i+1 , t i ) Ψ d(t i+1 , t i ) ≤ sup s,t∈[0,1] d(s,t)>0 Φ |f (s) -f (t)| Ψ d(s, t) n i=1 Ψ d(t i+1 , t i ) , which shows that V Φ (f ) ≤ M Φ,Ψ (f )V(Ψ, d).
Appendix A. Proof of Theorem 2.1

We prove Theorem 2.1 by using the metric entropy method. Let

N (ε) = max(N (T, d, ε), D/ε), 0 < ε ≤ D. For n = 0, 1, . . . let ε n = 2 -n D, v n = 12ε n (log N (ε n )) 1/α
, and let ϑ n ⊂ T be a sequence of centers of d-balls corresponding to a minimal covering of T of size ε n , #ϑ n = N (T, d, ε n ), and let ϑ 0 = {s 0 }. We first note that

∞ n=1 v n ≤ 12 ∞ n=1 ε n log N (T, d, ε n ) + log(D/ε n )) 1/α ≤ 12 2 ∞ n=1 εn εn+1 log N (T, d, ε)) 1/α dε + D ∞ n=1 2 -n n 1/α = 12 2 D/2 0 log N (T, d, ε)) 1/α dε + C α D ≤ C α δ(D).

One can define for any

t ∈ T , ϑ n (t) ∈ ϑ n such that d(t, ϑ n (t)) < 2 -n D. Let s, t ∈ T such that ε k+1 < d(s, t) ≤ ε k for some k ≥ 0. Writing X(t) = X(ϑ k (t)) + ∞ n=k+1 Y n (t) where Y n (t) = X(ϑ n (t)) -X(ϑ n-1 (t)), we have |X(s) -X(t)| ≤ |X(ϑ k (s)) -X(ϑ k (t))| + ∞ n=k+1 |Y n (s) -Y n (t)
|. Indicate for later use two simple properties.

(

i) Note that d(ϑ n (t), ϑ n-1 (t)) ≤ d(ϑ n (t), t) + d(t, ϑ n-1 (t)) ≤ 3ε n . Thus by assumption, X(ϑ n (t)) -X(ϑ n-1 (t)) φα ≤ 3ε n . (ii) Next, d(ϑ k (s), ϑ k (t)) ≤ d(ϑ k (s), t) + d(s, t) + d(t, ϑ k (t)) ≤ 3ε k , so that d(s, t) ≤ ε k implies that d(ϑ k (s), ϑ k (t)) ≤ 3ε k . Now, sup ε k+1 <d(s,t)≤ε k |X(s) -X(t)| ≤ sup d(s,t)≤ε k |X(ϑ k (s)) -X(ϑ k (t))| + ∞ n=k+1 sup s,t∈T |Y n (s) -Y n (t)| ≤ ∞ n=k ξ n , (A.1)
where we set

ξ n = sup d(s,t)≤εn |X(ϑ n (s)) -X(ϑ n (t))| + sup s,t∈T |Y n (s) -Y n (t)|.
Note before continuing that by assumption, the series ∞ n=1 ξ n converges almost surely. For, we need the following technical lemma.

Lemma A.1. Let 0 < α < ∞. Let ξ 1 , . . . , ξ n , n ≥ 2, be random variables such that for some ∆ > 0, E exp{ |ξ i |/∆ α } ≤ 2, 1 ≤ i ≤ n. Then, E exp sup 1≤i≤n |ξ i | ∆(2 log n/log 2) 1/α α ≤ 2.
In particular We now assume t ≥ 8 1/α and will use the elementary bound which follows from Markov inequality,

(A.3) P{|U | ≥ u} ≤ 1/φ α (u/ U φα )
for all random variables U and u ≥ 0. Recalling (ii) and that v n = 12ε n (log N (ε n )) 2) , we observe that N (T, d, ε n ) 2 2 n(t α -2) -1 ≥ N (T, d, ε n ) 2 2 n(t α -2) /2. Thus our estimate produces the bound

P |X(u) -X(v)| d(u, v) > 12tε n (log N (ε n )) 1/α 6ε n ≤ #{ϑ n } 2 φ α t(log N (ε n )) 1/α . Writing 1 + φ α (t(log N (ε n )) 1/α ) = (N (T, d, ε n ) ∨ 2 n ) t α -2+2 ≥ N (T, d, ε n ) 2 2 n(t α -
P sup d(s,t)≤εn |X(ϑ n (s)) -X(ϑ n (t))| > (t/2)v n ≤ 2N (T, d, ε n ) 2 N (T, d, ε n ) 2 2 n(t α -2) ≤ 2 -nt α /2+1 .
Next, let θ n = ϑ n × ϑ n-1 and proceed as follows (recalling (i)),

P sup s,t∈T |Y n (s) -Y n (t)| > (t/2)v n ≤ (u,v)∈θn ,d(u,v)≤3εn (u ′ ,v ′ )∈θn ,d(u ′ ,v ′ )≤3εn P |(X u -X v ) -(X u ′ -X v ′ )| > 6tε n (log N (ε n )) 1/α ≤ (u,v)∈θn ,d(u,v)≤3εn (u ′ ,v ′ )∈θn ,d(u ′ ,v ′ )≤3εn P |X u -X v | > 3tε n (log N (ε n )) 1/α +P |X u ′ -X v ′ | > 3tε n (log N (ε n )) 1/α ≤ 2(#ϑ n ) 2 (u,v)∈θn,d(u,v)≤3εn P |X u -X v | > 3tε n (log N (ε n )) 1/α .
We have X(u) -X(v) φα ≤ 3ε n for (u, v) ∈ θ n . Therefore, using again (A.3),

P sup s,t∈T |Y n (s) -Y n (t)| > (t/2)v n ≤ (#ϑ n ) 4 φ α t(log N (ε n )) 1/α .
Writing similarly 1 + φ α (t(log N (ε n )) 1/α ) = (N (T, d, ε n ) ∨ 2 n ) t α -4+4 ≥ N (T, d, ε n ) 4 2 n(t α -4) , we observe that N (T, d, ε n ) 4 2 n(t α -4) -1 ≥ N (T, d, ε n ) 4 2 n(t α -4) /2. We get here 4 2 n(t α -4) ≤ 2 -nt α /2+1 , since we assumed t ≥ 8 With probability one, X n ∈ C ν (R + ) for all n ∈ N. Furthermore, the sequence {X n : n ≥ 1} is relative compact in C ν (R + ) and the set of its limits points coincides with K Q , where K Q is the space of all functions y : R + → R of the form

P sup s,t∈T |Y n (s) -Y n (t)| > (t/2)v n ≤ 2N (T, d, ε n ) 4 N (T, d, ε n )
y(t) = R m Q t (u 1 , . . . , u m )ξ(u 1 ) • • • ξ(u m ) du 1 • • • du m , t ∈ R +

Remark 1 . 4 .

 14 The constant σ m,H in (1.11) is defined by(1.12) 

  Theorem 1.2. Cases (1)-(4) follow from Theorem 1.1, once we have shown that the sum (1.5) is finite. The two sequences (x m ) m≥1 and (y m ) m≥1 are defined in (1.6). In the following K with subscript will denote a finite constant only depending on the subscript, but might vary throughout the proof. Given two sequences (a m ) m≥1 and (b m ) m≥1 , we write a m ∼ b m as m → ∞ if a m /b m → 1 as m → ∞, and similar for functions.

3. 2 .

 2 Proof of the lower bound in Theorem 1.3. We first recall a result of Marcinkiewicz based on Vitali covering lemma. Let f ∈ B p , then

4 .

 4 Proofs of Theorem 1.5, Corollary 1.6 and Proposition 1.7.

∞ m=0 2 m

 2 Φ(y m )e -x 2 m ≤ KF[START_REF] Arcones | On decoupling, series expansions, and tail behavior of chaos processes[END_REF].Let B := {Z ≤ 4E Z}. By Tchebycheff's inequality again, P(B) ≥ 3/4, and so Ω 1 := A ∩ B has probability larger than 1/2. By the definition of Θ in (2.12), we have that sup s,t∈[0,1] |X(t) -X(s)| ≤ Θδ(D). Set Ψ := Ψ/F (1), and hence Ψ-1 (x) = Ψ -1 (F (1)x) for x ≥ 0. Recalling D ≤ Ψ -1 (F (1)), we have by the assumption (1.14) on Ψ that

ξ

  i φα (2 log n/log 2) 1/α . Proof. Let B = (2 log n/log 2)

3 :B. 1 .

 31 α dt < ∞. This shows that Θ ∈ L φα (P) and moreover that Θ φα ≤ C α . Appendix B. An Law of the Iterated Logarithm for Hermite processes Set ν(t) = t H (1 + | log t|) m/2 t > 0, ν(0) = 0, and let C ν (R + ) be the space of all continuous functions y : R + → R satisfying lim t→∞ The following functional Law of the Iterated Logarithm implies Corollary 3.Proposition For all n ∈ N and t ≥ 0 let (B.1)X n (t) = X(t/n) n -H (2 log 2 (1/n)) m/2 .

  1/α du, ε ∈ [0, D]. Then there exists a finite constant K α depending on α only such that Remarks 2.2. (i): It is possible to deduce Theorem 2.1 from Kwapień and Rosiński [13], Corollary 2.2 and Remark 1.3[START_REF] Borell | Tail probabilities in Gauss space[END_REF], by modifying the functions φ α in a suitable way in the case α < 1 to obtain a Young function. The result of[START_REF] Kwapień | Sample Hölder continuity of stochastic processes and majorizing measures[END_REF] relies on the majorizing measure method, and hence does also apply under the metric entropy integral condition by a well known existence result. For the reader's convenience we give a direct proof of Theorem 2.1 using metric entropy methods and which holds for any α > 0 in Appendix A.

		sup s,t∈T	|X(s) -X(t)| δ(d(s, t))		
	(ii): Theorem 2.1 implies that			
	sup s,t∈T	|X(s) -X(t)| φα ≤ K α	0	D	(log

φα ≤ K α . * N (T, d, ε))

1/α dε, a classical result. And at this regard, it is a natural complement of this one. 2.2. Proof of Theorem 1.1. Put for 0 ≤ t ≤ 1,

  which justifies the implication(1.3) ⇒ (1.2) invoked in the Introduction. Furthermore, the above estimates remain valid under the conditions considered in Theorem 1.2(2). Remark 2.4. The following example provides a good illustration of Jain and Monrad result (see Introduction). Taking d(s, t) = d 1 (|s -t|) where d 1 (u) ≤ u 1/p log * 2 (1/u) -1/2 and Ψ(t) = t p (log * 2 (1/t)) p/2 for t > 0, we see that V(Ψ, d) < ∞, so that X has sample paths of bounded p-variation almost surely. Further, from Remark 2.3

			1, that
	sup s,t∈T	|X(s) -X(t)| d(s, t)(log * 1 d(s,t) ) 1/2 φ2	≤ K,

  1/α . Then Hence, ∞ n=1 ξ n ∈ L φα (Ω) and the convergence almost sure of the series follows from Beppo-Levi's lemma.

	E exp As to second assertion, by applying the bound previously obtained with ∆ = sup n sup 1≤i≤n |ξ i | ∆B α log 2 2 log n ≤ E exp sup 1≤i≤n |ξ i | ∆ α log 2 2 log n ≤ 1≤i≤n E exp |ξ i | ∆ α log 2 2 log n ≤ (2n) log 2 2 log n = exp log(2n) 2 log n log 2 ≤ 2. i=1 ξ i φα , we get (A.2). Thus by assumption (1.4) and Lemma above, sup d(s,t)≤εn |X(ϑ n (s)) -X(ϑ n (t))| φα ≤ 3ε n 4 log N (T, d, ε n ) log 2 1/α ≤ 3ε n 4 log N (ε n ) log 2 1/α , and sup ∃k ≥ 0 : sup ε k+1 <d(s,t)≤ε k |X(s) -X(t)| > ∞ n=k v n ⊂ ∃k ≥ 0 : ∞ n=k ξ n > ∞ n=k v n . Consequently, P sup k≥0 sup ε k+1 <d(s,t)≤ε k |X(s) -X(t)| ∞ n=k v n > t ≤ P ∃k ≥ 0 : ∞ n=k ξ n > t ∞ n=k v k ≤ P ∃j ≥ 0 : ξ j > tv j ≤ ∞ j=0 P{ξ j > tv j }. But P{ξ n > tv n } = P sup d(s,t)≤εn |X(ϑ n (s)) -X(ϑ n (t))| + sup s,t∈T |Y n (s) -Y n (t)| > tv n |Y From (A.1), therefore follows that ≤ P sup
	s,t∈T

α = E exp sup 1≤i≤n |ξ i | ∆ n (s) -Y n (t)| φα ≤ 6ε n 4 log 2 log N (T, d, ε n ) 1/α . d(s,t)≤εn |X(ϑ n (s)) -X(ϑ n (t))| > (t/2)v n + P sup s,t∈T |Y n (s) -Y n (t)| > (t/2)v n .

  1/α , we get from (A.3),

	P	sup d(s,t)≤εn |X(ϑ u,v∈ϑn P |X(u) -X(v)| d(u, v)	>	(t/2)v n d(u, v)
	d(u,v)≤3εn		
	≤			
		u,v∈ϑn		
	d(u,v)≤3εn		

n (s)) -X(ϑ n (t))| > (t/2)v n ≤

  1/α . By combining,P{ξ n > tv n } ≤ 2 -nt α /2+2 .

	Consequently,						
		P sup k≥0	sup ε k+1 <d(s,t)≤ε k	|X(s) -X(t)| ∞ n=k v n	> t	≤ 2	n=0 ∞	2 -nt α /2 .
	Let γ = (log 2)/6. It follows that			
	≤	∞ 8 1/α ∞	e γt α ∞ e γt α -(log 2)n( t α P sup k≥1 sup ε k+1 <d(s,t)≤ε k 2 -1+1) dt ≤ |X(s) -X(t)| ∞ n=k v n ∞ 2 -n	> t dt ∞ e γt α -(log 2) t α 4 dt
	=	n=1 ∞	8 1/α e -( log 2 12 )t α dt < ∞.	n=1		8 1/α
		8 1/α					
	Now, note that						

∞ n=k v n ≤ 48δ(2 -k D) ≤ 48δ(2d(s, t)) ≤ 96δ(d(s, t)) since δ is concave. Let Θ := sup s,t∈T |X(s) -X(t)| δ(d(s, t)) .

where ξ ∈ L 2 (R) and ξ L 2 (R) ≤ 1. Theorem 3.1 of Mori and Oodaira [START_REF] Mori | The law of the Iterated Logarithm for self-similar processes represented by multiple Wiener integrals[END_REF] shows Proposition B.1 where the processes X n in (B.1) are replaced by processes Xn of the form

In the Gaussian case m = 1, Proposition B.1 follows easily from Mori and Oodaira's result using time inversion X, that is, {X(t) : t ≥ 0} D = {t 2H X(1/t) : t ≥ 0}. However, in the non-Gaussian case m ≥ 2 it is not clear to us about such time inversion holds. To proof Proposition B.1 we will use the same approximation of X as is done in the proof of [START_REF] Mori | The law of the Iterated Logarithm for self-similar processes represented by multiple Wiener integrals[END_REF]Theorem 3.1]. In fact, with the obvious modification, the proof of [21, Theorem 3.1] will also work for the setting considered in Proposition B.1. In the following (i)-(iii) we will list which modifications which needs to be done. 

). This follows by the same arguments as in the proof of [START_REF] Mori | The law of the Iterated Logarithm for self-similar processes represented by multiple Wiener integrals[END_REF]Lemma 7.3]. (iii): In the proof of Theorem 3.1 on the pages 389-390 in [START_REF] Mori | The law of the Iterated Logarithm for self-similar processes represented by multiple Wiener integrals[END_REF] we replace X p n (t) on the mid of page 389 with X p n (t) = X p (t/n)/(n -H (2 log 2 1/n)) m/2 ), which will prove Proposition B.1.