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Abstract: This paper presents the background for the calculation of various numbers that can be
used to characterize crystal-preferred orientation (CPO), also known as texture in materials
science, for large datasets using the combined scripting possibilities of MTEX and MatLabw.
The paper is focused on three aspects in particular: the strength of CPO represented by orientation
and misorientation distribution functions (ODFs, MDFs) or pole figures (PFs); symmetry of PFs
and components of ODFs; and elastic tensors. The traditional measurements of texture strength
of ODFs, MDFs and PFs are integral measurements of the distribution squared. The M-index is
a partial measure of the MDF as the difference between uniform and measured misorientation
angles. In addition there other parameters based on eigen analysis, but there are restrictions on
their use. Eigen analysis does provide some shape factors for the distributions. The maxima of
an ODF provides information on the modes. MTEX provides an estimate of the lower bound
uniform fraction of an ODF. Finally, we illustrate the decomposition of arbitrary elastic tensor
into symmetry components as an example of components in anisotropic physical properties. Ten
examples scripts and their output are provided in the appendix.

One of the major objects of quantitative texture
analysis is to provide standard procedures to allow
the numerical comparison between samples. Stan-
dard texts such as Bunge (1969, 1982), Matthies
et al. (1987) and Engler & Randle (2010) present
the mathematical background of classical texture
analysis. Almost all the early theoretical and math-
ematical development of quantitative texture analy-
sis was driven by requirements of metal forming in
material science, with the exception of some con-
tributions from spherical statistics (e.g. Fisher
1953; Watson 1966; Mardia 1972; Bingham 1974;
Watson 1983). Many students in Earth sciences
(and probably some in materials sciences) are not
often exposed to the theoretical and mathemat-
ical development of quantitative texture analysis
as they have access to modern automated texture
acquisition equipment; the most widely available
are electron backscattered diffraction (EBSD) sys-
tems on scanning electron microscopes (SEMs) in
most university electron microscopy centres. In
this paper we provide some basic background to
the quantities characterizing texture and proce-
dures, which we will present as MTEX scripts. The
increasing acquisition speed of EBSD in recent

years has caused a dramatic increase in the size of
individual sample data files and the number of speci-
mens studied; it is now not uncommon for 20–50
samples to be studied for a single project. With
this increase of data there is a need to study many
samples in a coherent way and analyse the trends
for various characteristics for strength, symmetry
and components. The characteristics chosen to ana-
lyse and describe large datasets or databases will
depend on the objectives of the project. MTEX pro-
vides a unique means for the customized quantitat-
ive texture analysis of large multi-file projects as
the MatLabw environment uses a scripted language
and a complex analysis can be developed in a m-file,
which can evolve with changing requirements of
the project.

This paper is designed as a reference for Earth
and material scientists who want to use the MTEX
texture analysis software to apply the methods
presented in this paper. MTEX is a comprehensive
open-source freely available MatLabw toolbox that
covers a wide range of problems in quantitative
texture analysis, for example, ODF modelling,
pole figure to ODF inversion, EBSD data analysis,
grain modelling and anisotropic physical properties
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(Hielscher & Schaeben 2008; Bachmann et al. 2010;
Bachmann et al. 2011; Mainprice et al. 2011). The
MTEX toolbox can be downloaded from http://
mtex.googlecode.com. Unlike many other texture
analysis software, it provides a programming inter-
face which allows for the efficient processing of
complex research problems in the form of scripts
(m-files). The MatLabw environment provides a
wide variety of high-quality graphics file formats
to aid publication and display of the results. In
addition, the MTEX toolbox will work identi-
cally on Microsoft Windows, Apple Mac OSX and
Linux platforms in 32- and 64-bit modes with a
simple installation procedure.

In MTEX texture analysis information such as
ODFs, EBSD data and pole figures are represented
by variables of different types. For example, in
order to define a unimodal ODF with half-width
108, modal preferred orientation (10–308) in Euler
angles and orthorhombic crystal symmetry of
mmm, the command which generates a variable
myODF of type ODF is issued, which is displayed
as a script and output in Appendix I. We use this
style of displaying script and the output of each
script in the appendix to make the syntax of MTEX
as clear as possible. Note that there is also an
exhaustive interactive documentation included
in MTEX, which explains the syntax of each
command in detail.

Reference datasets

To illustrate the descriptive tools we use three
datasets: (1) a visco-plastic self-consistent (VPSC)
model of the development of olivine CPO in sim-
ple shear; (2) the classical olivine CPO database
with a 110 samples of Ben Ismaı̈l & Mainprice
(1998); and (3) the detailed study with 57 sam-
ples measured using state-of-the-art EBSD mea-
surements of the crust–mantle transition zone of
the Oman Ophiolite. We will now briefly describe
these datasets.

VPSC modelling is now well established as
robust method for studing CPO development in
minerals undergoing plastic deformtion for all
types of strain histories (e.g. Tommasi et al. 2000;
Bascou et al. 2002; Ulrich & Mainprice 2005).
Here we present the classic case of the develop-
ment of olivine CPO under progressive simple
shear straining using the code developed by Leben-
sohn & Tomé (1993), with a constant strain incre-
ment of 0.025, a grain interaction parameter a of
100 (see Tommasi et al. 2000 for discussion) and
a velocity gradient tensor (Lij) for simple shear
with L12 ¼ 1 and all other values equal to zero.
The initial CPO is composed of 1000 random orien-
tations (‘grains’). We have chosen to model an

olivine A-type CPO (major slip system is
[100](010)), which is the most abundant olivine
CPO type in natural samples (Ben Ismaı̈l & Main-
price 1998). Tommasi et al. (2000) give an exten-
sive introduction of VPSC modelling of olivine
CPO; we have used their parameterization for
olivine slip systems given in their table 2, with the
slip systems having critical resolved shear stress
(CRSS) values of 1 for (010)[100] and (001)[100],
2 for (010)[001], 3 for (100)[001], 4 for {011}[100]
and {031}[100] and 6 for {110}[001]. A low value
of CRSS signifies an easy slip system; (010)[100]
is six times easier than {110}[001]. The advantage
of the VPSC model for the present study is that
it provides the evolution of the CPO as function
of finite shear strain (Fig. 1). VPSC model data
also have no ‘noise’, associated with more com-
plex microstructures and deformation histories of
naturally deformed samples.

The olivine database of Ben Ismaı̈l & Mainprice
(1998) has become a reference for the CPO of
naturally deformed olivine in upper mantle rocks.
The database contains 110 olivine CPO measured
using the universal stage with 100 grains per sam-
ple. Although the number of grains is relatively
small compared to modern EBSD studes, the uni-
versal stage data are very reliable and represents
over 30 years of olivine studies from a large range
of geodynamic environments. The advantage of
this dataset is it contains many different olivine
CPOs, but is dominated by A-type CPO which we
have simulated using the VPSC model.

The data published by Higgie & Tommasi
(2012) are high-quality EBSD data with many thou-
sands of grains per sample. The sample area was
restricted to an 80 m vertical section of the crust–
mantle transition zone in the Oman Ophiolite. In
the 57 samples taken from the 80 m section there
is an olivine CPO transition from axial-[100]
symmetry ([100] has a pole figure with a point
maxima and all other pole figures are girdles, also
know as [100] fibre texture) to axial-[010] sym-
metry. The main advantages of this dataset are that
there is a CPO symmetry transition from axial-
[100] to axial-[010] and the number of samples
and EBSD data points are very high from a small
field area.

Strength

When studying crystal-preferred orientation (CPO),
one of the first questions is how strong is the CPO
of my specimen? To answer this question you
have to decide which phase of your polyphase
specimen you want to study, as all the methods we
will introduce apply to a single phase with a spec-
ified crystal symmetry. In traditional quantitative
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texture analysis, this question is typically answered
by either looking at a specific peak in the ODF
associated with a texture component or the texture
index of the ODF. The ODF is the first choice
because the ODF contains all the crystal orientation
information and its total volume is defined by the
crystal symmetry and specimen symmetry. The defi-
nition of the ODF is made by ignoring the shape,
position and grain size of the crystals and just
considering their orientation. Typically an orien-
tation is defined by three Euler rotation angles w1,

F and w2 as defined by Bunge (1982), referring to
successive rotations about z, x, z. Often we use the
letter g to represent an orientation and V(g) its
volume portion in the ODF. Often for data such as
EBSD maps composed of gridded diffraction
points we will assume V(g) ¼ 1 as diffraction vol-
ume is the same for all points. We define DV(g) as
the volume portion of all crystals, not necessarily
adjacent crystals, having orientations within an
(infinitesimal) volume element dg of g, and V as
the total volume for all the crystals of this phase

Shear strain             (100)               (010)               (001)

3.46

1.73

0.87

0.43

0.22

0.00

E1       E2       E3
Fig. 1. Evolution of olivine VPSC model CPO presented as pole figures of the 1000 individual orientations as a function
of shear strain. The arrows indicate the shear sense on the shear plane. Note the shear strain scale is not linear. E1, E2
and E3 are eigenvectors of the orientation tensor for each individual pole figure, where the eigenvalues (l1, l2, l3)
corresponding to the vectors have magnitudes l1 ≥ l2 ≥ l3. The eigen analysis is discussed later in the text.
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for the whole sample. The ODF for the most general
case of triclinic crystal and triclinic specimen sym-
metry is then f(g) in

DV(g)
V

= f (g) dg,

where dg = sinFdw1 dFdw2/8p2 is the rotation-
ally invariant volume element of the orientation
manifold with respect to which ODFs are normal-
ized. Since the uniform ODF is f ;1, an ODF is
expressed in multiples of the uniform distribution,
sometimes abbreviated as ‘mud’. Notice the ODF
is a density function in terms of volume fraction
of crystals in a given orientation range; the tra-
ditional quantitative texture analysis is therefore
expressed in volume fractions. When using EBSD
maps with gridded diffraction points in spacing
less than the grain size, using all indexed points
should give a reasonable representative area
(depending on the spacing) for the grains and the
correct area fraction weighting for the ODF and
all subsequent analysis that uses the ODF. If we
take the EBSD map points and model the grain
structures by whatever process, we should obtain
the average orientation of the grain and a weighting
proportional to the grain area. If we use the popular
‘one point per grain model’ without the area weight-
ing, this is not traditional quantitative texture
analysis as weighting is set to 1 for all grains with
different areas. This approach may be useful for a
specific project, for example when studying nuclea-
tion and grain growth. The volume fraction
approach of traditional quantitative texture analysis
is appropriate for physical property calculations,
whereas the ‘one point per grain model’ is not.

Having established the definition of an ODF we
can define the texture index of ODF as

JODF =
∫
| f (g)|2 dg = f

∥∥ ∥∥2

L2 .

Note that the definition of JODF involves the
square of f; this type of functional is called a L2-
norm. For a uniform distribution JODF ¼ 1 and for
a single orientation JODF will have an infinitely
large value. For a given combination of crystal
symmetry, specimen symmetry and ODF kernel
function with given half-width, the bell-shaped
spread for a single orientation will have a corre-
sponding maximum value. As an example, the
ODFs in a script are defined by their crystal sym-
metry (CS), specimen symmetry (SS) and a single
orientation (unimodal ODF) for a single crystal of
olivine and plagioclase felspar An80, respectively,
and the texture indices JODF are calculated for
both ODFs. The example uses the recommended

and default MTEX de la Vallee Poussin kernel to
represent ODFs for CPO studies (example script
and output in Appendix II).

From the output we can see the texture index for
the unimodal orientation distribution for olivine is
140.01 and for plagioclase is 560.05; the speci-
men symmetry is the triclinic for both ODFs. The
ratio of the texture indices plagioclase/olivine is
4 due to different volumes of Euler angle mani-
fold for plagioclase (CS triclinic) and olivine
(CS orthorhombic). The domain of the Euler angle
manifold using Bunge’s Euler angles in degrees
is [0, 360) × [0, 180] × [0, 360) for triclinic and
[0, 180) × [0, 180] × [0, 180) for orthorhombic
crystal symmetry. Since the volume is

�
sin Fdw1

dF dw2/8p2 over the corresponding domains, the
volume ratio of ODFs plagioclase (CS triclinic)
and olivine (CS orthorhombic) is 8p2/2p2 = 4.
Comparing the texture indices JODF of ODFs of
different symmetry is therefore not recommended
unless a correction for the volume of the ODFs is
made. For broader unimodal orientation distri-
butions, the required correction is not as simple as
in the example above.

In an almost identical way we can define the
misorientation distribution function (MDF). The
misorientation g̃ is the difference between two
orientations g1 and g2 and is defined as g̃ = g−1

1 g2

such that g1g̃ = g2. The MDF fMDF(g̃) is then
defined for the two orientations with triclinic
crystal symmetry by

DV(g̃)
V

= fMDF(g̃) dg̃,

where dg̃ is the same rotationally invariant volume
element of the orientation manifold. We can define
the texture index of a MDF as

JMDF =
∫
| fMDF(g̃)|2 dg̃ = fMDF

∥∥ ∥∥2

L2 .

As seen before, JMDF involves the square of fMDF

and this type of functional is called the L2-norm.
For a uniform distribution JMDF is 1; for a uni-
modal misorientation distribution JMDF will have a
maximum value. In the case of MDF the specimen
symmetry does not apply to the misorientation
Euler manifold, which is uniquely defined by the
crystal symmetry of g1 and g2. In the simplest case
the two misorientations have the same crystal
symmetry; for olivine with orthorhombic symmetry
the MDF domain using Bunge’s Euler angles is
[0, 90) × [0, 90] × [0, 180), whereas for the ODF
it is ([0, 180) × [0, 180] × [0, 180)). We can repeat
the above exercise for olivine and plagioclase, but
this time using the calcMDF with the option
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‘uncorrelated’ as we have not associated specimen
co-ordinates with g1 and g2 and using the ODFs of
two modal orientations (see example script and
output in Appendix III).

The texture index values for the olivine and
plagioclase MDFs are 49.32 and 197.39 respect-
ively, whereas for the ODFs they are 140.01 and
560.05. As for the ODF, the maximum value for a
unimodal misorientation distribution depends on
the domain and the volume of the Euler angle mani-
fold; the larger the volume the larger the texture
index value. As the ODF (depending on specimen
and crystal symmetry) generally has a larger
domain than the MDF (depending on crystal sym-
metries of g1 and g2), texture indices for JODF .
JMDF for pronounced unimodal ODF and its uncor-
related MDF.

A characteristic introduced into quantitative
texture analysis by Schaeben (1988) is the entropy
of an ODF (or MDF). The entropy of an ODF is
defined as

SODF = −
∫

f (g) ln f (g) dg.

Whereas the texture index is a measure of strength
or concentration, the entropy is a measure of the
deviation from the uniform ODF which quantifies
the dispersion of orientations within the ODF.
SODF ¼ 0 for the uniform ODF and has a mini-
mum (negative) value for a unimodal orientation.
The entropy involving the ln function responds
very sensitively to small values of an ODF, while
the texture index involving squaring responds very
sensitively to large values of an ODF. Hielscher
et al. (2006) have shown that the SODF is related
to JODF by

− ln JODF ≤ SODF ≤ 0.

We discuss the implications of this relationship in
the section ‘Components’.

Another CPO strength characteristic based on
the misorientation angle distribution, introduced
by Skemer et al. (2005), is called the M-index.
The method is based on the difference between the
theoretical uniform distribution and the measured
uncorrelated misorientation angle distributions for
a given crystal symmetry class. The theoretical
uniform distribution can be analytically calculated
using Rodrigues vectors (Morawiec 2004) or quater-
nions (Grimmer 1979). The M-index in terms of
continuous misorientation angle density for the
uniform distribution f (U)(u) and measured f (M)(u)
can be defined

M = 1

2

∫
| f (U)(u) − f (M)(u)|du = 1

2
f (U) − f (M)∥∥ ∥∥

L1,

whereas Skemer et al. (2005) used a discrete
approach with a look-up table for the uniform distri-
bution D(U)

i and a histogram with bins of 18 for mea-
sured distribution D(M)

i , defined

M = umax

2n

∑n

i=1

|D(U)
i − D(M)

i |.

The M-index is the L1-norm of the difference. It
does not involve a squared function as for JODF

and JMDF. The L1-norm of the difference between
any two probability density functions measures the
probability mass that is differently distributed
by the two densities. The M-index only uses the
marginal angle distribution of the misorientation
distribution function (MDF), as any misorientation
can be decomposed into a rotation axis and
angle and only the angle is used to calculated the
M-index. As the discrete approach has already
been described by Skemer et al. (2005), we illustrate
how to calculate the M-index using the continuous
functions with MTEX. The following four steps are
required:

(1) calculate the uniform misorientation angle
distribution for crystal symmetry of your
mineral;

(2) calculate the uncorrelated MDF from the
ODF;

(3) calculate uncorrelated misorientation angle
distribution from MDF; and

(4) calculate the M-index (see example script in
Appendix IV).

JODF, JMDF and M-index are plotted as a function
of shear strain in Figure 2, representing the continu-
ous evolution of the CPO with progressive plastic
deformation using the VPSC model data presented
earlier. Figure 2 shows the results with a progress-
ively increasing value for all three characteristics.
Both JODF and JMDF are normalized such that uni-
form distribution has a value of 1. The 1000 orien-
tations (‘grains’) of the starting CPO have JODF

and JMDF values of 1.13 and 1.00, respectively. The
M-index characteristic is normalized to have value
0 for a uniform distribution and the starting CPO
has a value of 0.00. The maximum value for a shear
strain is also quite different for JODF, JMDF and
M-index, being 7.84, 2.51 and 0.31, respectively,
corresponding to ranges of 6.71, 1.51 and 0.31.
JODF has a range that is 4.44 times that of JMDF

and 21.64 times that of the M-index characteristic.
The curvature of the evolution of JODF and JMDF

with shear strain is concave to the top, whereas the
M-index is slightly convex to the top. The ODF-
related characteristic JODF has a much larger range
than the uncorrelated-MDF-related characteristics
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JMDF and M-index, which is directly related to the
fact that the uncorrelated MDF is an autocorre-
lated function of the ODF and has a smaller total
Euler angle volume, hence a smaller normalized
amplitude.

Earth scientists in general prefer pole figures to
represent CPO rather than ODFs or MDFs. Pole
figures have the advantage of being plotted in
the specimen reference frame and can be easily
related to structural features, such as grain-shaped
defined lineation and foliation. For unit axes +h
and unit directions r we define the pole density in
terms of a Radon transform of the ODF f :

P(+h, r) = 1

2p

∫
{+gh=r}

f (g) dg.

Since +h is a unit axis given in crystal coordinates,
we consider it as a parameter rather than a variable;
P(h, W) is then referred to as pole figure. Since r is
a unit direction given in specimen coordinates,
it is referred to as a parameter and P(W, r) is referred
to as inverse pole figure. Unit vectors can be
expressed in spherical polar angles (a, b), the
polar angle a [ [0, 180] and the azimuthal angle

b [ [0, 360). We can then define a texture index
for the h-pole figure P(h, W) as

JPF =
∫
|P(h, r)|2 dr = ‖P‖2

L2

with the rotationally invariant (infinitesimal) sur-
face element dr = sinadadb/4p of the unit
sphere, which makes JPF a rotationally invariant
functional of P.

For the uniform ODF f ¼ 1 the pole density
P(h, r) ¼ 1 for all r and any h with JPF ¼ 1. The
value of JPF will be a maximum for a single orien-
tation g with the same conditions as the ODF and
MDF above for a given combination of crystal sym-
metry, specimen symmetry, ODF kernel function
and half-width; in addition, it will vary with the
crystal multiplicity of +h. Multiplicity is a function
of the crystal symmetry as it refers to the total num-
ber of symmetrically equivalent crystallographic
axes or poles +h. The simplest case is triclinic sym-
metry with a multiplicity of 1. Higher symmetries
all have some multiplicities larger than 1 depend-
ing on the specific direction or pole considered.

Consider the case of a single orientation of
a-quartz crystal symmetry and the pole figures of
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c(0001), a(2�1�10),m(10�10), r(10�11) and z(1�101).
The multiplicity of the poles in the orientation
sphere (both hemispheres) are c ¼ 2, a ¼ 3, m ¼ 6,
r ¼ 6 and z ¼ 6 (Fig. 3). Using example script in
Appendix V we calculate for each pole figure the
maximum pole figure density JPF, the multiplicity
m and the product m × JPF. See example script
and output in Appendix V for further details.

From the small table of results produced by the
script in Appendix V the effect of multiplicity m
on the maximum (Max) and JPF is obvious: the
pole figure with smallest multiplicity c(0001) has
the highest maximum density (Jpf) and the pole
figures with higher multiplicity m(10�10), r(10�11)
and z(1�101) have lower maximum densites (JPF).
The intermediate case is the a(2�1�10) pole figure
with a multiplicity if the sign of 1a and 2a is
taken into account. If we had used the option ‘anti-
podal’ for generating the pole figures then the
multiplicity would have been 6, as it would have
been for the pole figure recorded by X-ray texture
goniometer where the diffracted intensities of
+a(2�1�10) and −a(�2110) are the same due to the dif-
fraction physics (also known as Friedel’s law). In
MTEX it is possible to consider three-dimensional
vectors either as directions with positive and nega-
tive signs (also called polar vectors) or as unsigned
axes where positive and negative directions are
not distinguished (also called non-polar axes). The
option ‘antipodal’ indicates that the vectors, for
example pole to planes, are to be treated as axes

without sign. Taking m × JPF we can see the
product is the same for all pole figures. When com-
paring pole figure maximum densities and JPF, care
has to taken to consider the effect of multiplicity.
In this simple example the variation of maximum
pole figure densities and JPF, that is, the product
m × maxr P(h, r) = 91.90 for all pole figures.
However maximum pole figure density is not a
good measure of CPO strength in most cases for
three reasons: (1) pole figures generally have sub-
maxima and these are not taken into account; (2)
JPF is an integral measure of all directions in the
pole figure and hence more representative; and (3)
maximum values of density functions are not prob-
abilities, whereas integrals of density functions are
probabilities. In any case the pole figure itself is
only a partial representation of the complete CPO
present in the ODF. In an identical manner we can
calculate the JIPF of an inverse pole figure, which
may be useful in some cases such as uniaxial
plastic deformation as the complete information is
represented in the inverse pole figure.

Eigen analysis

Other measures of CPO strength based on pole
figures have been presented in the literature based
on eigenvector and eigenvalue analysis. For this
eigen analysis the pole figure data have to be
in the form of unit axes +++++n and this is very
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min

max
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max _

__
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Y -Z

Fig. 3. Single orientation (w1 ¼ 0, F ¼ 0, w2 ¼ 0) a-quartz pole figures, upper (left) and lower (right) hemisphere
equal area projections. The ODF is calculated with the de la Vallée Poussin kernel with a half-width of 108.
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convenient for studies based on single orientations.
Some of the first applications of the eigen method
to CPO were made by Watson (1966), Stauffer
(1966) and Darot & Bouchez (1976), who were
more interested in the symmetry distributions than
the CPO strength. The eigen method is based on
the orientation tensor T, defined

T = 1

n

∑n

i=1

nin
T
i = 1

n

∑n

i=1

xixi xiyi xizi

xiyi yiyi yizi

xizi yizi zizi

⎛
⎝

⎞
⎠

where there are unit axes +ni with components
(xi, yi, zi)T . In MTEX the orientation tensor can be
calculated 300 times faster than the summation
method above using a row vector [x, y, z] filled
with xi, yi, zi. These data can be extracted from an
EBSD object for a specific pole +++++h so that
T = 1/n([x, y, z]T [x, y, z]) (this method is illus-
trated in example script in Appendix VI).

Using eigen analysis on structural data, Wood-
cock (1977) suggested a strength characteristic
C = ln(l1/l3) where C ¼ 0 to 1 and l1, l2 and
l3 are the eigenvalues of the orientation tensor T
where l1 ≥ l2 ≥ l3 and we use the normalization
l1 + l2 + l3 ¼ 1. Later Lisle (1985) used a charac-
teristic developed by Mardia (1972) and more
recently by Mardia & Jupp (2000): I = (15n/2)
(l2

1 + l2
2 + l2

3 − 1/3). Unfortunately the equation
was misprinted in Lisle (1985) and was reproduced
with the error in Vollmer (1990) where the value
of I depends on the pole figure symmetry, the
maximum value is 5.00 for a perfect point max-
imum and 0.3125 for a girdle.

For some high crystal symmetries the multi-
plicity of some crystal directions results in eigen
analysis yielding unexpected results. Consider the
example of cubic crystal symmetry; the (100)-pole

figure of a simple unimodal de la Vallée Poussin
ODF has three antipodally symmetric maxima.
The eigenvalues are l1 = l2 = l3 = 1/3 as they
would be in the uniform case. For axes concentrated
symmetrically along antipodally symmetric small
circles through the space diagonals, the three eigen-
values are again equal. Eigen analysis has its pitfalls
when symmetry is present. It is therefore rec-
ommended to use eigen analysis of pole figures
of low mutiplicity, ideally 1.

Using olivine visco-plastic self-consistent
(VPSC) simulation of CPO mentioned previously
as our source for the (100)-pole figure, we have
plotted all the pole figure characteristics as a func-
tion of shear strain (Fig. 4a) and ODF texture
index (Fig. 4b). The maximum pole figure density
shows the largest range (7.54) of 1.38–8.92. The
JPF has a range of 2.98 over 1.02 to 4.00. The C
characteristic of Woodcock (1977) has range 3.08
from 0.05 to 3.13. Finally the I characteristic of
Mardia (1972) has a starting value of less than
zero, a range 2.34 from 20.55 to 1.79. The curva-
ture and the numerical range of all characteristics
can be observed in Figure 4, with curvature of JPF

and I being similar. We still recommend using
the integral characteristics JODF and JPF, as they
sample the completely filled and empty spaces of
the ODF and pole figure respectively.

Symmetry

For many aspects of sciences, symmetry is an effec-
tive way to characterize an object. The theoretical
connection between symmetry and material proper-
ties has been studied for nearly 120 years (Curie
1894); CPO is no exception. With seminal work in
Earth sciences published by Sander (1930) and
later others (e.g. Paterson & Weiss 1961; Weiss &
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Wenk 1985; Nakamura & Nagahama 2000), these
methods have remained rather conceptional than
practical. Several theoretical studies have been per-
formed (e.g. Bunge & Esling 1985; Bunge &
Nielsen 1997; Bachmann et al. 2010), but until
now they have not been widely used and quantitat-
ive analysis of ODF symmetry has in fact been
quite restricted.

In Earth sciences the preoccupation has been the
study of pole figures, which are well adapted for
c[001]-axes with a multiplicity of 1 and hence to
the eigen analysis using the orientation tensor T
introduced above. Various symmetry-related char-
acteristics have been proposed using the orthogonal
eigenvalues of the orientation tensor T. These
include the shape characteristic K = ln(l1/l2)/
(ln(l2/l3) of Woodcock (1977) and the fabric
symmetry characteristics of Vollmer (1990): point
maxima P = l1 − l2; girdle G = 2(l2 − l3); and
random R = 3l3. These indices range from 0 to
1 and have the property that P + G + R = 1. Wood-
cock’s (1977) K characteristic has values K .1
for point maxima clustering and K,1 for girdles.
Vollmer’s characteristics P, G and R have proved
popular for describing omphacite clinopyroxene
pole figures (e.g. Abalos 1997; Mauler et al.
2001). In naturally deformed eclogites, omphacite
clinopyroxene pole figures display transition from
a linear fabric (L-type) with girdle (010) pole
figure and the [001] pole figure a point maximum,
to schistosity planar fabric (S-type) with point
maximum (010) pole figure and the [001] pole
figure a girdle. Ulrich & Mainprice (2005) intro-
duced the LS-index, which has a value of 1 for the
end-member L-type and a value of 0 for the end-
member S-type omphacite CPO

LS = 1

2
2 − P010

G010 + P010

( )
− G001

G001 + P001

( )[ ]

where the subscripts of the P and G indices refer to
the pole figures (010) and [001]. The main idea
behind a CPO symmetry index, like the LS-index
of Ulrich & Mainprice (2005), is based on the fact
you can use two pole figures of orthogonal crystallo-
graphic directions or axes to characterize the sym-
metry of the CPO in the ideal case of axial CPO
(or fibre texture ODF as it is referred to in mate-
rials science). An axial CPO has one axial symmetry
crystallographic direction or axis (h, e.g. defined
in MTEX as h ¼Miller(1, 0, 0, CS, ‘Olivine’,
‘hkl’)) with specimen coordinates (r, e.g. defined
as r ¼ vector3d(‘polar’, polarangle, azimuthangle))
which in MTEX can be used to define a fibre texture
ODF with the command fibreODF(h, r, CS, SS).
The axial crystallographic direction or axis will

have a point maximum pole figure and all other
pole figures will have either large or small circle
girdles. Axial symmetries are common in specimens
experimentally deformed in axial compression (e.g.
Nicolas et al. 1973). We take as an example a
common axial CPO in olivine with orthorhombic
crystal symmetry so that a[100], b[010] and c[001]
are perpendicular, an axial CPO with [010] as the
axial symmetry direction which will have a point
maximum [010] pole figure, and [100] and [001]
pole figures which will have great circle girdles
normal to the [010] point maximum. In this case
we can define an index based on the pole figure of
the axial direction +[010] and any perpendicular
direction [u0w]. The choice of the perpendicular
direction [u0w] can be guided by the knowledge of
one of these [u0w] also forms an axial direction in
other specimens; in the case of olivine [100] it can
also be an axial direction as shown by simple shear
experiments (e.g. Bystricky et al. 2000). For
example, we can define the BA-index as:

BA = 1

2
2 − P010

G010 + P010

( )
− G100

G100 + P100

( )[ ]

where the subscripts of the P and G indices refer to
the pole figures [010] or [100]. Note that for real
data, Ulrich & Mainprice (2005) found that the
random characteristic R of Vollmer (1990) was
never zero. The P010 and G100 values are therefore
normalized by the sum of G010 + P010 and G100 +
P100, respectively, to give the desired range of 0–1
for any value of R. When the BA-index is 0 the
[010] pole figure is a perfect point maximum with
P010 ¼ 1 and G010 ¼ 0 and the [100] pole figure
is a perfect great circle girdle with P100 ¼ 0 and
G010 ¼ 1. When BA-index is 1 the [010] pole
figure is a great circle girdle with P010 ¼ 0 and
G010 ¼ 1 and the [100] pole figure is a perfect
point maximum with P100 ¼ 1 and G010 ¼ 0. When
BA-index is 0.5 the [010] pole figure is a perfect
point maximum with P010 ¼ 1 and G010 ¼ 0 and
the [100] pole figure is a perfect point maximum
with P100 ¼ 1 and G010 ¼ 0. This is the most
common CPO for olivine, with all 3 pole figures
[100], [010] and [001] having a point maxi-
mum. Three common olivine CPOs can be charac-
terized by this simple BA-index using [010] and
[100] pole figures; for olivine other combinations
are possible (BC and AC). Note that this method
based on eigenvalues does not require knowledge
of the orientation of the specimen reference frame
in absolute terms, for example a xenolith with no
structural reference frame. When plotting results in
MTEX, the specimen X can be defined to be north
or east and the eigenvalue analysis will give the
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same results; only the eigenvectors will change
orientation. The eigenvalues are of course invariant
with respect to rotation.

To illustrate the properties of the BA-index and
the K shape factor we will use the olivine VPSC
A-type CPO simulation depicted in Figures 1 and
5. The BA index and K for (100), (010) and (001)
pole figures have a value 0.68, 2.40, 0.46 and 0.86,
respectively, in our nearly uniform starting CPO.
BA-index decreases with increasing shear strain,
reaching a value of 0.50 indicative of perfect point
maxima in the (100) and (010) pole figures at a
shear strain of 2.81 (Fig. 5a). K for the (100) pole
figure has a similar evolution to the BA-index,
reaching an almost constant value of 0.65 at a
shear strain of 1.52 with K ,1, both parameters
classifying it as a girdle (Fig. 5b). This is also the
case for K for (010) with K ,1 with value 0.65 at
a shear strain of 1.73. The K for (001) varies con-
siderably at low strain with K ,1 and K up to 14
at high shear strain. The value for most of the
strain history is K . 1, indicating point maxima
clustering or point maxima. The pole figures for
the largest shear strain of 3.46 show all strong
point maximum symmetry (Fig. 5c) with a slight
tail of a girdle with very low densities for (100)
and (001). The BA-index of 0.5 indicates point
maxima pole figures as observed and the K char-
acteristic for (100) and (001) K ,1 indicates
girdles, which at most is a minor component of
these pole figures. The K characteristic for the rela-
tively weaker (001) pole figure with K .1 indicates
a point maxima as observed. The contoured pole

figures of the VPSC model at the highest strain
(Fig. 5c) shows the point maxima is well developed
in all three pole figures. The individual orientation
distributions are shown in Figure 1 for selected
shear strain values. Note that the eigenvectors
have a stable direction with respect to the density
distributions at low-strain levels for (100) and
(010) pole figures. The eigenvectors E1 and E3
track the high and low densities that rotate in
simple shear deformation, respectively. Based on
this test of the BA-index and other tests on the
LS-index by Ulrich & Mainprice (2005) for axial
tension, axial extension, pure shear and simple
shear, it appears that normalized symmetry indices
such as the LS- or BA-index correctly characterize
the pole figure symmetry. In contrast, the K charac-
teristic seems to be strongly influenced by the
weaker densities in the pole figures and may give
unreliable results. This is probably due to the fact
it is not a normalized characteristic, and hence
does not have a fixed range.

We present a brief example of the application of
the BA index to a CPO transition in olivine, using
data from the study of the crust–mantle transition
zone of the Oman Ophiolite (Higgie & Tommasi
2012) presented earlier. The axial (010) CPO is
associated with melt-rich layers, where the axial
(100) CPO occurs in layers with plastic deformation
microstructure. The authors used the conventional
P, G and R characteristics of Vollmer (1990), but
the scatter in the data from a study with all EBSD
samples failed to provide a clear classification of
the CPO symmetry, for example using the ODF

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

P and G Vollmer (1990) & BA-index

 BA-index 

 B
A

-in
de

x 

Shear strain

BA-index = 0.5

At shear strain 3.46
P(100) > G(100) : Point maximum
P(010) > G(010) : Point maximum
P(001) > G(001) : Point maximum

BA-index = 0.5 : 100 and 010 both point maxima

0.0

0.5

1.0

1.5

2.0

2.5

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

 K  Woodcock (1977)

 K 100 
 K 010 

 K 001 

 K
 fo

r 
(1

00
) 

an
d 

(0
10

) 
po

le
 fi

gu
re

s

 K
 fo

r 
(0

01
) 

po
le

 fi
gu

re

Shear strain

K (001)
K (100)

K (010)

K=1.0

K(001)=1.0

Point

Girdle

Girdle

Point

At shear strain 3.46
K (100) < 1 : Girdle
K (010) < 1 : Girdle
K (001) > 1 : Point maxima

(a) (b)

(c)

min:
0

max:
8.9

min:
0

max:
9.8

min:
0.1

max:
4.6 0

1

2

3

4

5

6

7

8

9

VPSC model CPO : shear strain = 3.46
(100)                     (010)                     (001)

Fig. 5. Pole figure symmetry characteristics for olivine from a VPSC simulation.

10



texture index in Figure 6a. Using the normalization
of the BA index given above it is possible to classify
the 57 CPOs in a reasonable order (Fig. 6b). The
data points are widely scattered, but trend lines
that are linear least-squared fits to the texture indi-
ces of the ODFs and pole figures show the ODF
texture index is not correlated with symmetry in
Figures 6a and 6b, increasing slightly toward
the axial (100) pole (BA ¼ 1). Each pole figure
has a different evolution from the axial (010) to
axial (100) poles; the (100) increases, the (010)
decreases and (001) is constant. Globally the (010)
has the largest texture index, the (100) is intermedi-
ate and (001) has the smallest. The majority of the
samples have a BA index of between 0.15 and
0.45 (Fig. 6) and there are none in the region 0.0–
0.15, so a perfect axial (010) CPO dos not exist in
this sample set. In contrast, there are high values
of BA index up to 0.94, very close to being perfect
axial (100) fabrics, as in the simple shear exper-
iments of Bystricky et al. (2000).

Bingham statistics are well known in Earth
sciences as a means of describing the dispersion of
palaeomagnetic directions with antipodal symmetry
on a sphere (Bingham 1974). The Bingham method
is based on using eigenvectors of the orientation
tensor used above, more commonly called the
covariance matrix in statistics. Schaeben (1996),
Kunze & Schaeben (2004) and Bachmann et al.
(2010) extended the Bingham method to the dis-
tribution of quaternions. In this section we pro-
vide a brief description (more details are given in
the papers cited above). Quaternions look like
vectors with four coefficients, and differ from
vectors in the way their multiplication is imple-
mented. They also instructively describe a rotation
in terms of its angle and axis, in a similar way to
three Euler angles. A rotation can be described by

a unit quaternion and is given as

q = cos
v

2
+ n sin

v

2

by Meister & Schaeben (2005), where n is a Carte-
sian unit vector rotation axis and the angle v is an
anticlockwise rotation about n. Parameterized in
terms of quaternions, the obvious ODF manifold is
the unit sphere in R4 or a torus defined by the spheri-
cal coordinates of n and the angle v.

The important summary statistic for the Bing-
ham quaternion distribution is the (4 × 4) orien-
tation tensor T

T = 1

n

∑n

l=1

qlq
T
l ,

where ql is a quaternion and qT
l is its transpose. It

is sufficient to estimate its four location and four
shape parameters, which can be interpreted in
terms of principal axes and corresponding principal
moments of inertia of a cloud of unit axes in four-
dimensional real space restricted to the three-
dimensional unit sphere. It should be noted that q
and 2q describe the same rotation. The spectral
decomposition of T provides the four eigenvectors
(as four orthonormal quaternions) a1, . . . , a4 and a
corresponding set of real eigenvalues l1, . . . ,l4.

The eigenvectors immediately provide estima-
tors of the location parameters while the eigenval-
ues provide estimators of the shape parameters by
a system of algebraic equations involving the nor-
malizing constant. The eigenvalues sum to 1 and
are usually sorted according to some convention.
The shape parameters are only determined up to
an additive constant and sorted correspondingly.
The Bingham quaternion distribution is antipodally
symmetric and includes a bimodal bipolar case, a
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multimodal great circle (fibre) case and a multi-
modal spherical case. Kunze & Schaeben (2004)
introduced instructive parameters referring to
these cases in terms of ratios of differences of
shape parameters or ratios of eigenvalues, respect-
ively. Generally, the shape of a Bingham distri-
bution cannot be inferred from a single shape
parameter or a single eigenvalue; it requires all
four of them to be defined.

The Bingham quaternion distribution cannot
simply be generalized to account for crystal sym-
metry; its symmetrization by superposition is no
longer an exponential distribution and cannot gen-
erally be applied to EBSD data. For the analysis
of EBSD data there is a special case of interest if
the largest eigenvalue l1 is almost 1 or at least much
bigger than the other three (e.g. l4≤l3≤l2≪l1).
By sorting the individual orientation measure-
ments such that they finally belong to one asym-
metric unit of the orientation manifold, they form
a highly concentrated cloud of orientations and the
Bingham parameters can be estimated whatever
the crystal symmetry. In this special case, l1 pro-
vides a measure of spherical dispersion and l2, l3,
l4 further distinguish the shape of the highly con-
centrated distribution in the ODF manifold.
Defining a shape factor as

SF = l2/l3

l3/l4

,

it has three critical values of interest: (1) for a cloud
of concentric spheres of equal density SF ¼ 1; (2)
for an elongated cloud of cigar-like shapes
(prolate) of equal density SF . 1; and (3) for a flat-
tened cloud of discus-like shape (oblate) of equal
density SF , 1. Details including significance tests
are given by Bachmann et al. (2010).

In conclusion, with the limited number of par-
ameters complex ODFs cannot be represented with
Bingham methods, although ODFs with simple
symmetries such as fibre and unimodal can be
reasonably well approximated.

With MTEX there are two routes for making a
Bingham analysis and constructing a Bingham
ODF: (1) using single orientation data such as qua-
ternions, Euler angle triplets or EBSD data; or (2)
using an ODF constructed from any data type,
including pole figure inversion. The second route
is more universal and has the advantage of produ-
cing a continuous distribution function that has a
degree of smoothness, which is more like the
simple symmetries that a Bingham ODF can rep-
resent. The essential steps of the second route are
as follows:

(1) determine the mean orientation (qm), the
orientation tensor (T ) and eigenvalues of the
ODF using the command ‘mean’;

(2) estimate the shape parameters k of the
Bingham quaternion distribution using the
command ‘evalkappa’;

(3) calculate the Bingham ODF using the
command ‘BinghamODF’;

(4) measure the error difference between your
data ODF and the Bingham model ODF
using the command ‘calcError’; and lastly

(5) calculate the shape factor (SF) from the eigen-
values (see example script in Appendix VII).

As an example we computed the spherical dis-
persion (SD) and shape factor (SF) for the 1998
Olivine CPO database shown in Figure 7. The plot
of spherical dispersion v. shape factor exhibits a
clustering of points near the spherical shape with
SF near 1. The spherical disperion values cluster
around low values consistent with a strong CPO.
The histogram of shape factor confirms the strong
clustering around 1 with over 25% of the database
near 1. The second histogram of the L1 norm error
between data and model Bingham ODFs shows
low values of L1 indicating a good approximation
(e.g. L1≤ 0.4 are not very common).

Components

ODF modes

MTEX provides a means for detecting maxima inside
an ODF, which is particularly well adapted to ODFs
with a complex distribution. The command to
search the ODF stored as a 3D grid for maxima
has the syntax [modes, values] ¼ calcModes(odf, n),
where n is the number of maxima to be found,
modes are the orientations and values are ODF den-
sities at each orientation. An example script and
output is given in Appendix VIII.

Once the modes have been detected they can be
displayed using the annotate command on an ODF
or pole figure plots, for example using annotate
(modes, ‘Marker’, ‘s’,‘MarkerSize’, 12, ‘MarkerFa-
ceColor’, ‘black’) after the plotodf or plotpdf com-
mands. By using the percentage of the maximum
ODF density we can constrain all the maxima to
be within a specific range such as ≥50%. We first
applied the method to the VPSC model, which
shows a decrease in the number of modes with
increasing shear strain (Fig. 8a). We have also
searched all the 110 ODFs of the 1998 Olivine data-
base for 5 maxima ≥50% and the results are shown
in Figure 8b. There is clear tendency for the ODFs
with low texture indices to have many maxima
and the ODFs with strongest texture index to have
only one, i.e. unimodal ODFs with a spherical
shape and low spherical dispersion in Figure 7.
The database shows the general features as the
VPSC model despite the considerable scatter; this
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is due to the database containing a majority of
A-type CPOs.

ODF components

The components of an ODF are explicitly shown
when the ODF is created or when requested using
the command display(odf), which gives a standard
output of crystal and specimen symmetry, the type
of ODF (uniform, fibre, Bingham and radially sym-
metric) and other details. Some of these character-
istics can be deduced using the methods given
above. The construction of ODF requires specifi-
cation of a radially symmetric kernel function, its
half-width and/or its spherical harmonic band-
width. Each kernel function has it advantages and
disadvantages; the recommended kernel for tex-
ture work in MTEX is the de la Vallee Poussin. We

have used de la Vallee Poussin kernel with a half-
width of 108 corresponding to a bandwidth of 28
for all examples in this paper to make the presen-
tation as homogeneous as possible. Changing the
kernel function or its characteristics half-width or
bandwidth will of course change the results, and
this applies to this section.

Hielscher et al. (2006) studied the relationship
between the entropy of the ODF and its texture
index. During the course of this study they discov-
ered the following relationship between entropy
(S), texture index (J ) and fmin:

S ≥− (J − 1)fmin

J − 1 + (1 − fmin)2
ln fmin

− (J − fmin)(1 − fmin)
J − 1 + (1 − fmin)2

ln
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and, in particular, 0 5 S 52 ln J where fmin is
the lower bound of the uniform component of
the ODF. For any pair of values for S and J the
value of fmin can be found by iteration, except for
the trivial case of uniform ODF where S ¼ 0,
J ¼ 1 and fmin ¼ 1. To understand how fmin varies
with uniform ODF component, we have con-
structed a simple linear mixing model with the
code modelODF ¼ Xf × uniformODF + (1 2 Xf) ×
unimodalODF, where Xf is volume fraction of
uniform ODF component. The method is illustrated
in the example script in Appendix IX.

We have calculated fmin as a function of the ODF
texture index (Fig. 9a). The fmin fraction pro-
gessively decreases, as expected, with increasing
ODF texture index. The fmin fraction reaches a
nearly constant low value at ODF texture index of
about 4. The calculation of fmin for the olivine
1998 CPO database shows high values at low
ODF texture index and increasingly lower values
at higher texture index (Fig. 9b), although there is
considerable scatter.

Elastic tensor symmetry components

In seismology the heterogeneous distribution of
earthquake sources (e.g. subduction zones and
faults) and receivers (e.g. seismometers), as well
as the complexity of inversion methods, justifies
undertaking anisotropy analysis assuming a high-
elastic symmetry within the Earth to reduce the
number of independent coefficients. The most fre-
quently used assumption is to use hexagonal (also
called transverse isotropy in geophysics) with only
five independent coefficients. To understand the
impact of high-elastic symmetry in seismological
analysis has been the motivation for geophysical
interest in the decomposition of a general triclinic

elastic tensor into components of higher symmetry
(e.g. Backus 1970; Harder 1988; Arts et al. 1991;
Mainprice & Silver 1993; Browaeys & Chevrot
2004). We have implemented the method of Bro-
waeys & Chevrot (2004) which is based on the
Euclidean norm of a general triclinic elastic
tensor. The Euclidean norm is defined in the stan-
dard way by

������
X · X

√
where X is a Euclidean vector

with 21 elements, filled with 21 independent coeffi-
cients of the elastic tensor in the form of an eigen-
tensor (Kelvin 1856). The transformation of a
Voigt elastic stiffness tensor C(i, j) to Euclidean
vector X is

X = [C(1,1),C(2,2),C(3,3),
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The general triclinic Euclidean vector X can be be
decomposed into a series of vectors representing
each symmetry class to be analysed such as the holo-
hedral elastic classes (triclinic, monoclinic, ortho-
rhombic, tetragonal, hexagonal and isotropic):

X = Xtric + Xmono + Xortho + Xtetra + Xhex + Xiso

with 21, 13, 9, 6, 5 and 2 independent constants,
respectively. The Euclidean norm is used as a dis-
tance function measuring the difference between,
for example, a monoclinic and a higher symmetry
orthorhombic tensor,

Dmono =
������������
X − Xmono

√
·
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√
,
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Fig. 9. Application of the fmin lower bound of the uniform component of the ODF v. ODF texture index: (a) olivine
VPSC simple shear model; and (b) olivine 1998 CPO database. A half-width of 108 was used for all the ODF
calculations. The grey area in (a) corresponds to the data range in (b).The trend line in (b) is a power law fit to the data
(no physical meaning is attached to this fit). Data from Ben Ismaı̈l & Mainprice (1998).
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where the Euclidean vector of the arbitrary tensor
C(i, j) to be analysed is X and the Euclidean vec-
tors of the tensors for monoclinic and orthorhom-
bic components are Xmono and Xortho, respectively,
which have been constructed from X using the
method of orthogonal projectors. Pmono−ortho is
the percentage contribution of the component of
the monoclinic symmetry class in the interval
from monoclinic to orthorhombic. Further compu-
tational details of the construction of the symmetry
classes using projectors are given in the appendix of
Browaeys & Chevrot (2004).

Although the Euclidean norm is the obvious
choice, it is not invariant under inversion of the
elastic tensor and different values are obtained
when using stiffness and compliance tensors
(Moakher & Norris 2006). It is therefore recom-
mended to use Browaeys & Chevrot (2004) analysis
only when using the Voigt stiffness tensor, for
example as calculated from polycrystalline aggre-
gate using the Voigt average. Moakher & Norris
(2006) discuss other norms suitable for the stiffness
and compliance tensors.

As an example we can apply this method to the
olivine CPO database of Ben Ismaı̈l & Mainprice
(1998). The following steps are required for all
110 CPOs:

(1) import CPO into MTEX using the command
loadEBSD;

(2) calculate ODF using calcODF;
(3) calculate the elastic stiffness tensors with

calcTensor; and finally
(4) convert tensor to matrix form and decomposi-

tion of the elastic tensor using the Elastic_
Tensor_Decomposition (see example
script in Appendix X).

We applied the method to our VPSC model and plot-
ted the results as function of ODF texture index in
Figure 10a. We find that our initial random CPO
results in an isotropic tensor, as expected, with no
anisotropic components. The anisotropic elastic
components with monoclinic and orthorhombic
symmetry increase rapidly with ODF texture index,
whereas all other anisotropic components are close
to zero. As simple shear strain has monoclinic
macro-scale symmetry, it is perhaps not surprising
that the monoclinic elastic component is dominant
in the VPSC model. The orthorhombic component
is clearly associated with the development of the
A-type CPO, which has macro-scale orthorhombic
symmetry related to the CPO with point maxima
of (100), (010) and (001). Results of the applica-
tion of the method to the olivine database is
plotted in Figure 10b as mean values for each sym-
metry class displayed as a histogram. The orthor-
hombic symmetry has the highest frequency of
3.6% in 1998 CPO database. The most common
CPO in the database is A-type, which seems to cor-
relate well with results from the VPSC model. To
put these anisotropic results from the database into
perspective, the dominant elastic symmetry com-
ponent (not in histogram) is an isotropic component
with frequency of 91.7% for the database. Elastic
anisotropy is therefore a small component when
compared to isotropic anisotropy.

Conclusions

We have illustrated the use of MTEX commands for
the evaluation of strength, symmetry and com-
ponents of textures. Many of these commands can
be applied to the ODF or uncorrelated MDF, and
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Fig. 10. (a) Plot of elastic symmetry components frequency v. ODF texture index for the olivine simple shear model.
(b) Histogram of the mean frequency for the anisotropic elastic components for the 110 samples of the olivine CPO
database of Ben Ismaı̈l & Mainprice (1998). Note that the dominant isotropic elastic components (c. 90%) are excluded
from these figures to allow the variation of the anisotropic components to be seen.
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hence can be universally applied to these density
functions calculated from single orientation or
inversion of pole figure data. The traditional
methods of characterizing texture strength are all
of the form ‖ f ‖2

L2 , including JODF, JMDF and JPF.
They are sensitive to high values and are integrals
of density functions, which are probabilities. In con-
trast, the entropy S of an ODF is sensitive to low
values and hence very complimentary to JODF.
The M-index has been formulated as a measure of
uncorrelated MDF here and is L1-norm of the differ-
ence of uniform and measured probability density
functions. It measures the probability mass that is
differently distributed, which is clearly very differ-
ent to the traditional parameters. All these par-
ameters are influenced by crystal and specimen
symmetry for ODF and crystal symmetry for
MDF. In addition, pole figures JPF are strongly influ-
enced by the crystallographic multiplicity of the
plane normal or direction such that any analysis
using JPF must take this into account. Other mea-
sures of texture strength can be derived from eigen
analysis of pole figures or ODFs. In principle, the
eigen analysis can only be applied in the absence
of symmetry. It therefore has to be applied with
caution and in restricted conditions, such as antipo-
dal symmetry or very strong and simple CPO-like
fibre textures. On the other hand, eigen analysis
provides a measure of ‘simplified’ symmetry for
pole figures and ODFs of spherical, prolate or
oblate shapes of their distributions. Two types of
components of the ODF can be determined: (1)
maxima of the ODF, which provide convenient
method for defining modes; and (2) lower bounds
of the uniform component of the ODF (fmin), provid-
ing a value of non-orientated fraction that may have
applications in some physical processes e.g. recrys-
tallization and phase transformation. Finally, we
also implemented the decomposition of arbitrary
elastic tensors into symmetry components, which
is useful in global geophysics.
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Appendix I Script and output:

specification of ODF

Script

myODF ¼ unimodalODF(orientation(’Euler’, 10*
degree, 20*degree, 30*degree), . . .

symmetry(’mmm’), ’halfwidth’, 10*degree)

Output

myODF ¼ ODF (show methods, plot)
crystal symmetry: mmm
sample symmetry : triclinic
Radially symmetric portion:

kernel: de la Vallee Poussin, hw ¼ 10
center: (10,20,30)
weight: 1

Appendix II Script and output: ODF

texture index

Script

% Olivine crystal symmetry
CS ¼ symmetry (’mmm’, [4.756 10.207 5.98],
’mineral’, ’Olivine’)

% specimen symmetry
SS ¼ symmetry (’–1’)
% Olivine orientation g
g ¼ orientation (’Euler’, 0*degree, 0*degree,
0*degree, CS, SS)

Olivine_ODF_single_crystal ¼ unimodalODF
(g, ’halfwidth’, 10*degree)

J_Olivine ¼ textureindex (Olivine_ODF_single_
crystal)

% Plagiocase An80 crystal symmetry
CS ¼ symmetry(’–1’, [8.178 12.87 14.187],
[93.5, 115.9, 90.65]*degree,. . .
’X||a*’, ’Z||c’, ’mineral’, ’An80’);

% Plagiocase An80 orientation g
g ¼ orientation(’Euler’, 0*degree, 0*degree,
0*degree, CS, SS)

AN80_ODF_single_crystal ¼ unimodalODF
(g, ’halfwidth’, 10*degree)

J_AN80 ¼ textureindex (AN80_ODF_single_crystal)
% ratio triclinic AN80 to orthorhombic
Olivine J_AN80/J_Olivine

Ratio ¼ J_AN80/J_Olivine

Output

g ¼ orientation (show methods, plot)
size: 1 x 1
crystal symmetry: Olivine (mmm)
sample symmetry : –1
Bunge Euler angles in degree
phi1 Phi phi2
0 0 0

Olivine_ODF_single_crystal ¼ ODF
(show methods, plot)
crystal symmetry: Olivine (mmm)
sample symmetry : –1
Radially symmetric portion:
kernel: de la Vallee Poussin, hw ¼ 10
center: (0,0,0)
weight: 1
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J_Olivine ¼ 140.0125
g ¼ orientation (show methods, plot)
size: 1 x 1
crystal symmetry: An80 (–1, X||a*, Z||c)
sample symmetry : –1
Bunge Euler angles in degree
phi1 Phi phi2
0 0 0

AN80_ODF_single_crystal¼ ODF (show methods, plot)
crystal symmetry: An80 (–1, X||a*, Z||c)
sample symmetry : –1
Radially symmetric portion:
kernel: de la Vallee Poussin, hw ¼ 10Â8
center: (0,0,0)
weight: 1
J_AN80 ¼ 560.0500
Ratio ¼ 4.0000

Appendix III Script and output: MDF

texture index

Script

% Olivine crystal symmetry
CS ¼ symmetry (’mmm’, [4.756 10.207 5.98],
’mineral’, ’Olivine’);

% Olivine orientation g1
g1 ¼ orientation (’Euler’, 0*degree, 0*degree,
0*degree, CS, SS);

Olivine_odf_g1 ¼ unimodalODF (g1, ’halfwidth’,
10*degree);

% Olivine orientation g2
g2 ¼ orientation (’Euler’, 0*degree, 90*degree,
0*degree, CS, SS);

Olivine_odf_g2 ¼ unimodalODF (g2, ’halfwidth’,
10*degree);

% uncorrelated Misorientation Distribution
Function

mdf_uncorrelated ¼ calcMDF (Olivine_odf_g2,
Olivine_odf_g1,. . .
’uncorrelated’, ’halfwidth’, 10*degree)

% texture index for MDF
J_MDF_olivine ¼ textureindex (mdf_uncorrelated)
% Plagiocase An80 crystal symmetry
CS ¼ symmetry (’–1’, [8.178 12.87 14.187],
[93.5, 115.9, 90.65] * degree ,. . .

’X||a*’, ’Z||c’, ’mineral’, ’An80’);
% Plagiocase An80 orientation g1
g1 ¼ orientation (’Euler’, 0*degree, 0*degree,
0*degree, CS, SS);

AN80_odf_g1 ¼ unimodalODF(g1,’halfwidth’,
10*degree);

% Plagiocase An80 orientation g2
g2 ¼ orientation (’Euler’, 0*degree, 90*egree,
0*degree, CS, SS);

AN80_odf_g2 ¼ unimodalODF (g2, ’halfwidth’,
10*degree);

% uncorrelated Misorientation Distribution
Function

mdf_uncorrelated ¼ calcMDF (AN80_odf_g1,
AN80_odf_g2, . . .
’uncorrelated’, ’halfwidth’, 10*degree)

% texture index for MDF
J_MDF_AN80 ¼ textureindex (mdf_uncorrelated)
% ratio
Ratio ¼ J_MDF_AN80/J_MDF_olivine

Output

mdf_uncorrelated ¼ MDF (show methods, plot)
crystal symmetry: Olivine (mmm)

crystal symmetry: Olivine (mmm)
Portion specified by Fourier coefficients:
degree: 28
weight: 1

J_MDF_olivine ¼ 50.4447
mdf_uncorrelated ¼ MDF (show methods, plot)
crystal symmetry: An80 (-1, X||a*, Z||c)
crystal symmetry: An80 (-1, X||a*, Z||c)
Portion specified by Fourier coefficients:
degree: 28
weight: 1

J_MDF_AN80 ¼ 201.7788
Ratio ¼ 4.00

Appendix IV Script: M-index

Script

% Step 1 : Uniform misorientation angle
distribution

% Define Crystal symmetry (should match with
your data)

CS_Orthorhombic ¼ symmetry (’mmm’);
% get the misorientation angle distribution for
crystal symmetry mmm

[density_uniform,�] ¼ angleDistribution
(CS_Orthorhombic);

% normalize the misorientation angle
distribution

density_uniform ¼ density_uniform/sum
(density_uniform);

% Step 2 : calculate the uncorrelated MDF
from ODF

% Calculate uncorrelated MDF from ODF
MDF ¼ calcMDF(ODF);
% Step 3 : uncorrelated misorientation angle
distribution from MDF

[density_MDF,�] ¼ calcAngleDistribution (MDF,
’resolution’, 1*degree);
% normalize the misorientation angle
distribution

density_MDF ¼ density_MDF/sum(density_MDF);
% Step 4 : calculate the M-index
M_index ¼ (sum((abs(density_uniform-density_
MDF))/2));

Appendix V Script and output: pole

figure texture index and multiplicity

for quartz

Script

% J_pf example alpha-quartz
% crystal symmetry and Euler angle frame
CS ¼ symmetry(’–3m’, [4.916 4.916 5.4054],
’X || a*’, ’Z||c’, . . .
’mineral’, ’alpha–quartz’);

% triclinic specimen symmetry
SS ¼ symmetry(’–1’);
% orientation g
g ¼ orientation (’Euler’, 0*degree, 0*degree,
0*degree, CS, SS);

Quartz_ODF ¼ unimodalODF (g, ’halfwidth’,
10*degree);

% Classic Quartz selection of pole figures (hkil)
% c(0001), a(2–1–10), m(10–10), r(10–11), z(1–101)
h ¼ [Miller(0, 0, 0, 1, CS, ’hkl’), Miller (2, –1,
–1, 0, CS, ’hkl’), . . .
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Miller (1,0, –1, 0, CS, ’hkl’), Miller
(1, 0, –1, 1, CS, ’hkl’), . . .

Miller (1, –1, 0, 1, CS, ’hkl’)];
% number of pole figures
no_pfs ¼ length (h);
% Pole figure grid (r) and volume increment dr
% 1 degree pole figure grid
resolution ¼ 1;
r ¼ S2Grid (’regular’, ’resolution’, resolution
*degree);

% get polar angle theta of pole figure grid
[theta] ¼ polar (r);
% normalize by 4*pi for grid on sphere (upper and
lower hemispheres)

dr ¼ (resolution.*degree).^2.*cos (resolution
*degree)./4./pi;

% calculate pole figure density on 1 degree grid
pfs ¼ calcPoleFigure (Quartz_ODF, h, r,
’complete’);

% plot pole figures
plotpdf (Quartz_ODF,h)
% get maximum values of all pole figures
pfs_max (1:no_pfs) ¼ max (pfs);
% Pole figure texture index
% preallocation memory for pole figures
pfT2 ¼ zeros(no_pfs);
fprintf(’ h k i l Max Jpf m m x Jpf \ n’)
for ipole ¼ 1:no_pfs
% get intensities P_h(r)
d ¼ get (pfs(ipole), ’intensities’);
d ¼ reshape (d,size (r));

% Normalized pole figure texture index
pfT2(ipole) ¼ sum (sum(dr.*sin(theta).*d.^2))/
sum(sum(dr.*sin(theta).*d));

% multiplicity of pole figure for
% uniquely for alpha-quartz with c-axis
multiplicity ¼ 2
m ¼ 2*pfT2(1)/pfT2(ipole);

% product m x Jpf
mJpf ¼ m*pfT2(ipole);

% get hkil
h ¼ get(pfs(ipole), ’h’);
pf_hkl ¼ get(h, ’hkl’);
fprintf(’%2i %2i %2i

%2i %6.2f %6.2f %4.1f %6.2f \n’,. . .
pf_hkl (1,1),
pf_hkl(1,2), pf_hkl(1,3), pf_hkl(1,4),. . .
pfs_max (ipole), pfT2 (ipole), m, mJpf)

end

Output

h k I L Max Jpf m m × Jpf
0 0 0 1 45.95 23.07 2.0 46.15
2 –1 –1 0 30.63 15.40 3.0 46.15
1 0 –1 0 15.32 7.70 6.0 46.15
1 0 –1 1 15.31 7.70 6.0 46.15
1 –1 0 1 15.31 7.70 6.0 46.15

Appendix VI Script: orientation tensor,

eigenvectors and -values, and Vollmer P and

G parameters for Bytownite

Script

% Step 1 Extract individual orientations from
ebsd object

o ¼ get(ebsd(’BYTOWNITE’), ’orientations’);
% Step 2 vectors of [100] directions in specimen
co-ordinates

v ¼ o * Miller(1, 0, 0, CS, ’BYTOWNITE’, ’uvw’);
% Step 3 extract x,y,z components from v
[x,y,z] ¼ double(v);
% Step 4 orientation tensor OT
% OT ¼ weighted multipication of the column
vector by a row vector

% of the scatter data OT ¼ 1/n ([x,y,z]T.[x,y,z])
OT ¼ 1./numel(x)*[x,y,z]’*[x,y,z];
% Step 5 Eigen-values and -vectors of OT matrix
[Vec, Diagonal] ¼ eig(OT);
% Step 5 Eigen-values : conversion diagonal
matrix to vector

value ¼ diag (Diagonal);
% Step 6 Sort Eigen-values in descending order
[value,index] ¼ sort (value, ’descend’);
% Step 7 Sort Eigen-vectors
vec1(1:3) ¼ Vec (: ,index(1));
vec2(1:3) ¼ Vec (: ,index(2));
vec3(1:3) ¼ Vec (: ,index(3));
% Step 8 Calculate Vollmer (1990) P and G
distribution parameters

NORM ¼ value(1)+ value(2)+ value(3);
% Point maximum
P100 ¼ (value(1)-value(2))/NORM
% Girdle
G100 ¼ (2.0*(value(2)-value(3)))/NORM

Appendix VII Script: mean orientation,

eigenvectors and -values of a classical

ODF, and calculating the Bingham

ODF, its spherical dispersion and

shape factor

Script

% Bingham analysis and Bingham ODF construction
% mean orientation qm, Eigen-values (lambda)
and orientation tensor (T)

[qm,lambda,T] ¼ mean(dataODF);
% kappa for Bingham ODF estimated from
Eigen–values

kappa ¼ evalkappa(lambda, ’approximated’);
% kappa and ODF orientation tensor (T), CS and
SS define Bingham ODF

modelODF ¼ BinghamODF(kappa, T, CS, SS)
% measure of ODF difference data - model with
the L1 norm

Error ¼ calcError(dataODF, modelODF, ’L1’)
% Parameters associated with eigenvalues
(Lambda)

% sort into descending order for lambda
lambda ¼ sort(lambda, ’descend’);
% SD measure of spherical dispersion
SD ¼ 1.0 - lambda(1);
% SF Shape factor
SF ¼ (lambda(2)/lambda(3))/(lambda(3)/
lambda(4))3;

Appendix VIII Script and output:

detecting modes in an ODF

Script

% Calculate modes in ODF
% modes (orientations) and values (densities)
[modes, values] ¼ calcModes(odf,n);
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% number of modes dectected (n or less)
n_modes ¼ numel(values);
% calculate percent of maxium ODF density for
all modes

% extract Euer angles from modes
Mode_euler ¼ get (modes, ’Euler’)/degree;
% print results
fprintf(’\n’);
fprintf(’ Number modes searched ¼ %i \ n’, n);
fprintf(’ \n’);
fprintf(’ Detected modes \n’);
fprintf(’ Mode No. Percent density phi1 PHI
phi2 \n’);

for i ¼ 1:n_modes
percent ¼ 100*values(i)/values(1);
fprintf(’ %i %8.2f %8.2f %8.2f %8.2f \n’, i,
percent, Mode_euler(i,:)) ;

end

Output

Number modes searched ¼ 5
Detected modes

Mode
No.

Percent
density

phi1 PHI phi2

1 100.00 104.72 77.58 8.91
2 90.37 307.60 33.77 154.94
3 74.09 293.58 62.27 161.85
4 52.47 100.47 34.13 22.41
5 34.84 156.40 53.54 164.76

Appendix IX Script: linear mixing

law for two ODFs

Script

% model unimodal ODF is A-type olivine CPO
[100](010) : a//x b//y c//z

% model uniform ODF
odf_uniform ¼ uniformODF(CS,SS);
% Define volume fraction range for uniform
component

Xfmin ¼ 0.00; Xfmax ¼ 0.99;
Range ¼ Xfmax - Xfmin;
Steps ¼ 100;
Delta ¼ Range/Steps;
for II ¼ 1:Steps
% fraction model uniform ODF
Xf ¼ Xfmin+ II*Delta;
VolFrac(II) ¼ Xf;

% model unimodal ODF with half width of 2
odf_type(1,:) ¼ Xf*odf_uniform+ . . .
(1.0–Xf)*unimodalODF(orientation(’Euler’,
0*degree,0*degree,0*degree),. . .

CS, SS, ’halfwidth’,2*degree);
% model unimodal ODF with half width of 10
odf_type(2,:) ¼ Xf*odf_uniform+ . . .
(1.0–Xf)*unimodalODF(orientation(’Euler’,
0*degree, 0*degree,0*degree),. . .

CS, SS, ’halfwidth’,10*degree);
% model unimodal ODF with half width of 30
odf_type(3,:) ¼ Xf*odf_uniform+ . . .
(1.0–Xf)*unimodalODF(orientation(’Euler’,
0*degree,0*degree,0*degree),. . .

CS, SS, ’halfwidth’, 30*degree);
% loop over model unimodal ODF with diferent
halfwidths for n ¼ 1:3

% Texture index of odf (J)
J ¼ textureindex (odf_type(n,:));

% Entropy of odf (S)
S ¼ real(entropy(odf_type(n,:)));

% Lower bound uniform fraction (fmin)
fmin(n,II) ¼ Find_Lower_Bound_Fmin_
ODF(J,S);
end

end

Appendix X Script: analysis of the

symmetry of an elastic stiffness tensor

Script

% Step 1
% create an EBSD variable containing the
olivine orientation data

% as phi1, PHI, phi2 using the Bunge Euler
convention

% and default active rotation.
ebsd ¼ loadEBSD (file_name, CS, SS, ’interface’,
’generic’,. . .

’ColumnNames’, {’phi1’ ’Phi’ ’phi2’}, ’Columns’,
[1 2 3], ’Bunge’);

% Step 2
% Default odf for physical properties with
Dirichlet kernel

% with Band–width ¼ Lmax ¼ 4 for elastic
properties (tensor 4th rank)

K_L4 ¼ kernel(’Dirichlet’,4);
odf_d¼ calcODF(ebsd(’Olivine’), ’kernel’, K_L4);
% Step 3
% Calculate the Voigt average stiffness tensor
using ODF and

% single crystal olivine stiffness tensor
[C_Voigt, C_Reuss, C_Hill]¼ calcTensor(odf_
d,C_Olivine_Single_Crystal);

% Step 4
% convert tensor to Voigt 6 by 6 matrix form
M_Voigt¼ matrix(C_Voigt,’Voigt’);
% Perform elastic tensor decomposition
[Psym,Std_Error_std,Csym]¼ Elastic_Tensor_
Decomposition(M_Voigt);
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