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a b s t r a c t

Hourly resolution time series of groundwater level fluctuations are analyzed after removing

the seasonal cycle. It is found that fluctuations of groundwater levels have fractal scaling and

a persistent behavior. We show also that groundwater level fluctuations exhibit non-Gaussian

heavy tailed probability distribution that is well fitted by the Lévy stable distribution. Implica-

tions of the present results on the groundwater system modeling as a fractional Lévy motion

and the connection with the anomalous diffusion inside the soil are discussed.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The distribution of groundwater and dynamic fluctu-

ations in groundwater levels have direct impacts on the

environment quality. This is particularly the case of the prob-

lems raised by drinking water supplies and subsurface wa-

ter quality. Level fluctuations of groundwater system are

dynamic responses of the system to its recharge and dis-

charge. The groundwater system may be considered as a

complex dynamic system characterized by non-stationary

input (recharge), output (base flow), and response (ground-

water levels) (see e.g. [4,22]). The recharge of groundwa-

ter system is mainly ensured by the rainfall process that

pass through the soil layer. This infiltration process is known

to transport contaminants on the soil surface toward the

groundwater system. Various works were conducted to study

impacts of rainfall process on groundwater dynamic. These
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works are mostly concerned by large scale evolution and

combine generally modeling and data mining approaches

[6,8,9,36,41]. The present study deals with the groundwater

dynamic at a smaller scale related to the area of a plot. The

study is based on experiments conducted on the experimen-

tal field of the French Institute for Agricultural Research at

the INRA-Avignon Research Center. This site is devoted to an-

alyze the mass transport process under the soil surface. The

present paper aims to analyze the temporal characteristics of

groundwater fluctuations in a region characterized by rapid

intense rainfall and violent storm. The goal of the work is to

show that under conditions described above the statistical

behavior of the groundwater level fluctuations due to rain-

fall events is non-Gaussian and found to be well represented

by the class of stable heavy tailed probability distribution.

Scaling properties of the observed groundwater level fluctu-

ations are quantified. The obtained results suggest that the

dynamic of the groundwater level fluctuations has persistent

behavior and a fractal property revealing a long memory ef-

fect and a probably complex relation with the rainfall pro-

cess. Also, our results do not support the use the Brownian

and the fractional Brownian motions to describe the dynamic
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Fig. 1. Relief map and piezometers position. The three measure points are located in points 1,2 and 3 (in the corners of the map).

Table 1

Statistics from the groundwater height fluctua-

tions.

Piezometers Mean value (m) Std (m)

1C 26.552 0.258

2L 26.625 0.265

3C 26.256 0.244
of the groundwater level fluctuations [46,48]. According to

these findings, implications on the groundwater dynamics

and the characterization of the infiltration process through

the soil layer as a random porous media are discussed. The

paper is presented in five parts. The Section 2 is devoted to

the presentation of the experiment. In Section 3 we present

the analysis methods applied in this paper and their mathe-

matical properties. Section 4 is focused on the presentation

and the interpretation of the results obtained from the data

experiments. We end the paper with a discussion in Section 5

about the implication and the contribution of the present pa-

per on the study of groundwater dynamics.

2. Field measurements

The investigations were carried out from data mea-

sured from the workshop site “Fontanille” of the Research

Center of INRA Avignon. The site is located in an exten-

sive, almost flat area, about 8 km South-Est of Avignon

(43◦54′58′′N,4◦52′58′′E) in the Vaucluse region which is sit-

uated in South-Est of France at approximately 100 km North

of the Mediterranean facade. The surface under study is

0.64 Ha. A general view of the experiment field and the re-

lief map are given in Fig. 1. The ground surface altitude varies

slightly around 31 m. A more detailed description of the

workshop site and its technical characteristics are available

in [7].

The Vaucluse region is subjected to a Mediterranean cli-

mate which is characterized by a summer drought, a strong

sunshine and an irregular rainfall. The mean annual temper-

ature is 14.8°C. However, this value does not represent the

strong variation between the mean annual temperature in

winter (6.5°C) and in summer (22.6°C) seasons. The mean an-

nual precipitation is 650–700 mm/a which is formed by 80–

100 of rainy days mainly during April–May and September–

October. As a general remark of the climate, rainy days are

rare but they often induce intense rainfall and violent storm.

The groundwater system is part of the recent quaternary

aquifer of the Lower Durance and is mainly composed of an
alluvial plain. We are in presence of a free layer of quaternary

sands ranging between 4 and 6 m below the soil surface.

As said above, the site is devoted to the study of mass

transfer process from soil surface to groundwater and is

equipped with various instruments intended to measure the

evolution of different quantities involved in the physical phe-

nomena under consideration. In particular for the present

study, we focus on fluctuations of the groundwater level due

to the rainfall. The general way to quantify these fluctuations

requires the use a piezometer network. Each piezometer is

made of a borehole in which pressure probe is put and de-

signed for a measure at a single point within the aquifer.

The location of the piezometer’s network is given in Fig. 1.

The network is located in measure points numbered from 1

to 14. We focus here on the first three piezometers located at

points 1,2 and 3 that allow us to study time characteristics of

the level fluctuations and also to estimate an eventual space

variability linked to an eventual soil heterogeneity. For each

location, time series data of 10.000 measurements are avail-

able corresponding to 14 months record duration starting on

February 02th 2005 and ending on March 27th 2006. A brief

statistical summary of the data is given in Table 1. Of interest

is that values of groundwater level are given here following

the NGF (Nivellement Général de la France) norm that takes

the sea level as a reference point (It corresponds to the meter

ASL (Above Sea Level) system.) .

As a general remark from Table 1, the three time series

present very similar statistics. This means that no signifi-

cant space variability is found between these three positions.

This interpretation was confirmed by more advanced anal-

ysis. The three time series was processed in the same man-

https://www.researchgate.net/publication/240489454_Temporal_Scaling_of_hydraulic_head_and_river_base_flow_and_its_implication_for_groundwater_recharge?el=1_x_8&enrichId=rgreq-9447edaa-98d2-4b76-a495-36eb8e03741a&enrichSource=Y292ZXJQYWdlOzI4NTU4ODMyNztBUzozMDI2MDgzODI2NjA2MDlAMTQ0OTE1ODg2ODU1OQ==
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Fig. 2. Rainfall relative intensity showing some examples of short duration event with strong intensity (upper than two times the mean intensity).

Table 2

Statistics of rainfall events from the time series.

Event duration Number Proportion (%)

1-3 h 92 79.31

4-6 h 18 15.52

7 h and more 6 5.17

C

ner for each analysis methods proposed in the present study.

Owing to this similarity between the three cases, we will

present only the results relating to the time series from mea-

sure point 1 (hereafter named as η(t)) in this paper.

Simultaneously with the groundwater level measure-

ment, a tipping-bucket rain gauge was used to collect rainfall

data with a time resolution of 1 h and an intensity resolution

less than 3% at a rainfall intensity of order 50 mm/h. More

detailed description and extended analysis about the preci-

sion and the accuracy of the installed rainfall measurement

system can be found in the technical notes [19]. Also, rain-

fall time series is made of 10000 points. Table 3 gives a brief

summary of the rainfall duration distribution. Table 2 shows

that around 80% of rainfall events last less than 3 h but they

can have rapidly a strong intensity (see examples in Fig. 2) .

3. Analysis methods

In this section we present briefly different analysis meth-

ods that were applied to the data. In addition to the classical

Fourier spectral methods, technique of simulation of surro-

gate data and model of probability density function for non-

Gaussian stable distribution will be used in this paper. The

aims of these methods are respectively to identify the cor-

related with rainfall events component of the groundwater

level variation, to characterize its scale properties and to fit

its probability distribution.
3.1. Fourier transform of time series

The first step in our analysis will be to use Fourier trans-

form that allows one to represent the time series as a sum of

combinations of amplitudes and phases as:

η̂( f ) =
∫ ∞

−∞
η(t) e−2π it f dt (1)

where η(t) is the initial time series and η̂( f ) is its Fourier

transform. Eq. (1) is the decomposition of the time series in

term of harmonic component. Real data from experiments

being of discrete nature

{η(t1), η(t2), . . . , η(ti), . . ., η(tn)}
then it is convenient to replace the integral form of (1) with

the corresponding discrete form as:

η̂( fk) =
∑

j

η(t j) e−2π it j fkδt (2)

We note that in Eq. (2), δt is the time step of the data record

and ti = i · δt is the discrete time . In the Fourier space, the

frequency values are given by fk = k · δ f where δ f = 1/δt de-

fines the frequency resolution. In general, η̂( fk) will be com-

plex of the form a( fk) + ib( fk). Of interest is that η̂( fk) may

be expressed in polar form though:

η̂( fk) =| η̂( fk) | ei�( fk) (3)

where | η̂( fk) |=
√

a2 + b2 is the Fourier amplitude at fre-

quency fk and �( fk) = tan−1( b
a ) represents the phase. Also,

one can define the autocorrelation function as (see for exam-

ple in Koopmans [17] p.30):

η(τ ) = lim
T→+∞

1

2T

∫ T

−T

η(t + τ )η(t)dt (4)

Eq. (4) quantifies the coherency or the similarity level

between observations as a function of the time separation

τ between them. The Wiener Khinchin theorem [17] states



106 M. Joelson et al. / Chaos, Solitons and Fractals 82 (2016) 103–115

C

that the autocorrelation function Cη(τ ) is the inverse Fourier

transform of the power spectral density.

Sη( f ) =
∫ ∞

−∞
Cη(τ )e−i2π fτ dτ (5)

The spectral density (5) gives the frequency distribution of

the energy of η(t). It constitutes the second statistical mo-

ment in Fourier frequency domain. Again, discrete form of

the spectrum in (5) reads as:

Sη( fk) =
∑

j

Cη(τ j)e−i2πτ j fk (6)

From (3), it is straightforward that Sη( f ) =| η̂( fk) |2. From

this later expression, one can remark that the phase infor-

mation is discarded. This means the limit of the spectral

analysis. Indeed, although the spectrum function gives the

frequency distribution of the energy, it does not provide any

explanation on the origin of this later. Phase information can

be assessed with higher order spectral analysis in term of

nonlinear interactions between Fourier components. Higher

order spectral analysis is an useful tool to highlight determin-

istic chaotic dynamics.

3.2. Testing coherency with rainfall signal by the surrogate

data method

Let us design by λ(t) the time series of the rainfall. The

main idea of this section is to analyze the coherency between

both time series λ(t) and η(t). For such purpose, we first de-

fine the cross correlation function by generalizing the rela-

tion (4) as:

λη(τ ) = lim
T→+∞

1

2T

∫ T

−T

λ(t + τ )η(t)dt (7)

By applying the Fourier transform to (7), it may be shown

that the cross correlation Cλη(τ ) depends on the phase shift

between the time series λ(t) and η(t) and their Fourier am-

plitudes. In Fourier space, it is more convenient to define the

cross correlation between both time series by a normalized

coherency bounded by 0 and 1 and phase function as:

Rλη( f ) = | Sλη( f ) |2

Sλ( f )Sη( f )
(8)

Phλη( f ) = arctan

(−Im(Sλη( f ))

Re(Sλη( f ))

)
(9)

where Sλη(f) is the Fourier transform of Cλη(τ ) and Sη(f) and

Sλ(f) are respectively the Fourier transform of the autocorre-

lation of each time series according to relation (5).

The idea that a part of the groundwater level signal η(t) is

highly correlated with the rainfall time series and then con-

stitutes the rainfall-response of groundwater level is formu-

lated as a null hypothesis. If this hypothesis is significant then

appropriate amplitude and phase relationships have to exist

in the groundwater signal. One way to test the null hypoth-

esis is then to construct from the groundwater signal η(t) a

surrogate data that does not contain any phase properties.

Starting from the Fourier transform η̂( f ), the surrogate data

is made by replacing the phase function �(f) in the expres-

sion (3) with a random uniform values and taking after the

inverse Fourier transform to build a new time series.
The surrogate method destroys the phase properties but

preserves other properties such as spectrum or probability

distribution [43]. In order to validate the significance of the

null hypothesis we compare observed correlations of rainfall

time series with real and surrogate data.

3.3. Higher order spectral analysis

The first tool for nonlinear spectral analysis comes from

the bispectrum that is the Fourier transform of the triple cor-

relation [27,31]. It reads as:

R(u, v) = η̂(u)η̂(v)η̂(−u − v) (10)

R is a function of two frequency variables u and v and its in-

verse Fourier transform writes as

r(τ, θ ) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
η̂(u)η̂(v)η̂(−u − v)

× ei(uτ+vθ )dudv (11)

Recalling that the inverse Fourier transform of the product of

two functions is given by their convolution in time space; it

is straightforward to show that r(τ , θ ) is of the form:

r(τ, θ ) =
∫ +∞

−∞
η(t)η(t + τ )η(t + θ )dt (12)

The expression (12) generalizes the autocorrelation function

and allows us to describe higher statistical properties of the

time series [31]. In particular, let usrecall that Gaussian distri-

bution is fully defined by the two first moments: mean and

variance. Then a Gaussian process is also entirely described

by its autocorrelation function and does not possess higher

order correlation functions. Thus, the bispectrum is an in-

dicator of the non-Gaussianity property of the time series

[11]. The bispectrum may be seen also as a quantification

of the interactions strength between three Fourier compo-

nents. Three components (u, v, u + v) interactions can be as-

cribed to nonlinearities of the quadratic type. These later are

characteristic of low dimensional chaotic dynamics [15]. In

practice, it is more convenient to use the bicoherence (nor-

malized form of the bispectra) giving a bounded quantity be-

tween 0 and 1.

3.4. Non-Gaussian probability distribution

In order to give insight on the probability distribution of

the ground water fluctuations level, we will use the stable

laws called also α-stable law. The stable laws were intro-

duced by Lévy in [21] during his investigations of the behav-

ior of the sums of independent identically distributed ran-

dom variables. Briefly, we recall here some basic properties

of the Lévy α-stable law. A stable distribution law is deter-

mined by four parameters: an index of stability α, a location

parameter μ, a skewness parameter β and a scale parame-

ter γ . A random variable X is said to have a stable distribu-

tion (noted as X ∼ Sα(β , γ , μ)) if its characteristic function

satisfies

�X (t) = exp(iμt − γ α|t|α[1 − iβ sign(t) W(α, t)]) (13)

where
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W(α, t) =
{

tan( πα
2

) if α �= 1

− 2
π log |t| if α = 1

and

sign(t) =
{

1 if t > 0
0 if t = 0
−1 if t < 0

The stability index also called as the characteristic exponent

or the tail index satisfies 0 < α ≤ 2 and the skewness param-

eter −1 ≤ β ≤ 1 . The location parameter μis defined only

when the stability index is α > 1 (μ ∈ R). In this case, the

first absolute moment is given by < |X| >= 2γ
π �(1 − 1/α)

where �(.) is the gamma function. If β = 0, then the distribu-

tion is symmetric around μ. The scale parameter also called

as dispersion parameter has a real positive value γ > 0 that

determines the width of the distribution law. The location

parameter μ describes the shift of the peak. The tail index

α determines the rate at which the tails of the distribution

taper off.

An important property of α-stable distributions is the role

that they play in the generalized central limit theorem. The

generalization of the central limit theorem due to Gnedenko

and Kolmogorov [10] states that the sum of a number of ran-

dom variables with a power-law tail (Paretian tail) distribu-

tions will tend to an α-stable distribution. More precisely, us-

ing the generalized central limit theorem, it can be shown

that:{
lim
t→∞

tαPr(X > t) = Cα(1 + β)γ α

lim
t→∞

tαPr(X < −t) = Cα(1 − β)γ α
(14)

where Cα = 1
π �(α)sin( πα

2 ). From (14), it yields that in gen-

eral, the pth order moment of a stable random variable is

finite if and if only p< α. We note also from (14) that α-

stable distribution laws are well adapted to model self-affine

behavior. Indeed, the power-law tail behavior in (14) is di-

rectly linked with a possibly fractal dynamic in the physical

process [39].

To perform the probability distribution of the Lévy α-

stable random variable X, we adopt the integral expression

given by Zolotarev in [49].

The main interest of Zolotarev’s formulas is that instead

of others integral expression, they do not include infinite in-

tegral and then are well adapted to numerical computations.

In which follow, we give Zolotarev’s formulas of the PDF of a

stable random variable X ∼ Sα(β , γ , μ). First, we consider

the case of a random variable X0 ∼ Sα(β , 1, 0). By setting

ζ = −βtan πα
2 , the PDF of X0 can be expressed as:

if α �= 1

fα,β,1,0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(x−ζ )
1

α−1

π |α−1|
∫ π

2

−ζ
V(θ, α,β)

× exp
{
−(x − ζ )

α
α−1

× V(θ, α,β)}dθ , if x > ζ

�(1+ 1
α ) cos(ξ )

π , if x = ζ

fα,−β,1,0(−x), if x < ζ

(15)
if α = 1

f1,β,1,0(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2|β| exp

(
−πx

2β

) ∫ π
2

− π
2

V(θ, 1, β)

× exp
(
− exp

(
−πx

2β

)
× V(θ, 1, β))dθ , if β �= 0

1
π(1+x2)

, if β = 0

where ξ = 1
α arctan(−ζ ) and

V(θ, α,β) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(cos αξ )
1

α−1

(
cos θ

sin α(ξ+θ )

) α
α−1

× cos (αξ+(α−1)θ )
cos θ

, α �= 1

2
π

(
π
2 +βθ

cos θ

)
× exp

{
1
β

(
π
2

+ βθ
)

tan θ
}

, α = 1

From the probability distribution function given by (15),

one can easily build the probability distribution function of

the random variable X with the help of the stability property,

X = γ X0 + μ ∼ Sα(β, γ ,μ).

To fit the four stable parameters from experiment data,

we will use the sample characteristic function method (see

for example in [16,18]). The method is based on regression

type on the log-characteristic function [14]. Indeed, the log-

arithm of the real part and the imaginary part of the log-

characteristic function are linear and then, give rise to a re-

gression model with the data.

4. Data analysis and results

In this section, we present the results obtained by apply-

ing to our data series the analysis methods developed in the

previous section.

4.1. Detecting rainfall correlated component of groundwater

level fluctuations

The first step of the paper is to detect and extract the rain-

fall correlated component of the groundwater level variation.

As a preliminary investigation, the graphs of the two time se-

ries λ(t) and η(t) are shown in Fig. 3 in a synchronized time.

The upper part of the figure depicts the groundwater level

variation when the bottom part represents the time evolu-

tion of the rainfall. A qualitative inspection from the ground-

water level variation allows one to remark that the time se-

ries η(t) is formed by two distinct components characterized

by a large and a small time scales. According to the character-

istic time scale of the rainfall time series, it is ‘a priori’ clear

that the large scale component of the groundwater level cor-

responds more to the seasonal variation than a response of

this later to the rainfall forcing. Owing to the intensive prac-

tice of the gravity flow irrigation in the region during second

half of the year, one can also note the reversed sense of the

large time scale variation of the groundwater level compared

with the natural annual evolution.

For the sake of completeness, we perform this qualitative

interpretation by computing the correlation between both

time series λ(t) and η(t). The results in term of coherency

and phase shift functions are shown in Fig. 4 according to the
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Fig. 3. Top: Groundwater level variation is shown (measured (in m) following the NGF norm) . Middle part: Rainfall intensity (in mm/h). Bottom part: The

groundwater level fluctuations (in m).

Fig. 4. Normalized coherency function and phase shift between rainfall and groundwater level variations. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
formulations given in (8) and (9). The upper part of Fig. 4 rep-

resents the phase shift between both time series and the bot-

tom part shows the normalized coherency function. From the

coherency function, despite the noisy character of the curve,

a coherent structure appears for a frequency domain from

fl = 2e−6Hz to fh = 1e−5Hz. The phase information for the

same frequency domain presents also a fairly stable evolu-
tion that may be seen as a phase signature of the correlation

between both time series.

In contrast with these observations, correlation with the

surrogate data (blue color in Fig. 4) shows an erratic phase

behavior and a considerably low level of coherency with the

rainfall time series at the same frequency domain. At fre-

quency values lower than fl, real and surrogate data have
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Fig. 5. Normalized coherency function and phase shift between rainfall and groundwater level fluctuations ψ(t).
sensibly comparable behaviors. This indicates that low fre-

quency component of groundwater level does not correlate

with rainfall time series and constitutes groundwater annual

cycle rather than its response to the rainfall forcing. The same

observation may be found for frequency values higher than

fh. However this later case is less easy to interpret given the

lack of precision at high frequency values due to the limita-

tion induced by the frequency sampling value.

These observations and the comparison with the surro-

gate data results would indicate that the component of the

groundwater level variation correlated with rainfall is lo-

cated at frequency values higher than fl. Consequently, to

extract the component of the groundwater level variations

η(t) that is correlated to rainfall time series, we use a dig-

ital high-pass filter. The result of the high-pass filtering of

the groundwater level variations η(t) is a new time series of

fluctuations ψ(t). A special care is taken on the filtering pro-

cess to avoid phase shift between the initial time series η(t)

and the fluctuations component ψ(t). For such purpose, the

high-pass filter was built with the Digital Filter block [33]

implemented in the Signal Processing Toolbox of Matlab. A

digital filter is characterized by its transfer function that is

designed by three main parameters namely, the type of the

filter, the order of the filter and the filter function. For the

first parameter, one can choose between Infinite Impulse Re-

sponse (IIR) or Finite Impulse Response (FIR). The primary

advantage of IIR filters over FIR filters is that they typically

meet a given set of specifications with a much lower filter or-

der than a corresponding FIR. Other interest of the IIR filter

is that it allows zero-phase filtering approach (via the Matlab

filtfilt function), which eliminates the nonlinear phase dis-
tortion. Among the various mathematical filter function, we

choose the Butterworth function because it allows to get sig-

nal processing filter designed to have as flat a frequency re-

sponse as possible. It is also referred to as a maximally flat

magnitude filter. After some attempts, a fourth order IIR But-

terworth high pass frequency with a cutoff frequency at fl is

found to be fully satisfactory.

The time plot of the rainfall correlated fluctuations is

shown in Fig. 3. In order to complete the verification, we

compute now the correlation between the groundwater level

fluctuations ψ(t) and the rainfall time series λ(t). The results

are given in Fig. 5 and show the existence of characteristic

peak at frequency f0 = 5e−6Hz. Such peak traduces the exis-

tence of statistical time scale τ 0of 2.3 days in the groundwa-

ter response to rainfall forcing.

4.2. Groundwater fluctuations analysis

Frequency spectrum analysis

The frequency power spectrum of groundwater fluctua-

tions ψ(t) is plotted in Fig. 6 in double logarithmic coordi-

nates. The spectrum is calculated for a frequency range vary-

ing from 1e−6Hz up to the Nyquist frequency fN = 1
2�t

which

is equal to 5e−4Hz. A quasi continuous power spectrum em-

bedded in noise can be found especially at high frequency.

The power spectrum shows a broad maximum around a fre-

quency peak at f = 6.5e−6Hz. As a general remark, the broad-

ness of the spectrum peak and the continuous aspect of

this later are rather indicative of stochastic dynamic than

a deterministic one. This would be confirmed later by the

higher order analysis that provides a quantification of the
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Fig. 6. Frequency spectrum of groundwater level fluctuations ψ(t).
nonlinear interactions between Fourier components. Such

nonlinear interactions are known to be a necessary condition

to low dimensional chaotic dynamics. Looking at the whole

power spectrum it appears that this later exhibits a region

of linear trend for a frequency range from 6.5e−6Hz up to

3e−5Hz. This trend can be described by a power law regres-

sion as:

Sψ ( f ) = A f −κ (16)

Value of the parameter κ in Eq. (16) are found to be equal

to 0.602. The frequency domain of power law is included into

the correlated interval with the rainfall forcing. This seems to

show the existence of a fractal power law property of the cor-

related rainfall component of the groundwater level fluctua-

tions. However, we do not have found explanation for the de-

parture from the power law observed at the high frequency

part of the spectrum.

Higher order spectrum

In order to attempt to describe the groundwater level

fluctuations as a chaotic dynamical system, we compute the

bicoherence function. Because of real-valued nature of the

data, only the non-redundant domain of the bicoherence

function is represented in a normalized axis (see for exam-

ple [13]). In Figs. 7 and 8, the x-axis and y-axis represent fre-

quency domain in dimensionless unit by dividing frequen-

cies by F0 which is the frequency of spectrum peak. Here,

we try to consider the observations in terms of interactions

between Fourier components. As shown in Fig. 7, the bico-

herence function exhibits high values (up to 0.8) in a large

part of the frequency domain upper than the frequency peak

(at 5.5e−5Hz) without a precise pattern excepted at a low

frequency that seems to indicate a phase coupling effect

around the main peak frequency. Due to the lack of specific

patterns which are the hallmark of phase relationships, the

present result does not allow us to describe the groundwa-

ter level fluctuations dynamic as a chaotic deterministic sys-
tem induced by nonlinear quadratic interactions. Neverthe-

less, the high values of the bicoherence reflect the presence of

more complex nonlinear interactions involving a large num-

ber of Fourier components. Here, we note that this result dif-

fers from those obtained by Wang and Peng [44]in which a

low dimensional deterministic chaos is found to govern the

groundwater level dynamics at large time scale (they studied

a time series of 25 years with time resolution of five days).

Despite this fact, comparison with the surrogate data re-

sults gives us more useful information. Indeed, in contrast

to the real data results, the surrogate data has a zero value

of the bicoherence function (see Fig. 8). This is not also sur-

prising with regard to the surrogate construction principle

that is based on phase randomization. As a consequence, the

high values of the bicoherence of the real data are undoubtely

linked to its phase structure. Owing to the fact that higher

order statistics of the real data does not vanish, thus the real

data are probably of non-Gaussian nature. At the present step

of our analysis, we assume that the groundwater level fluctu-

ations ψ(t) have fractal and non-Gaussian nature (see for ex-

ample in [40]). This later property will be more investigated

in the next section.

Probability distribution

In this section, we estimate the probability distribution

function of the groundwater level fluctuations. The proba-

bility distribution function of ψ(t) is depicted in double lin-

ear and in double logarithmic coordinates in the Fig. 10. The

data probability density is represented with the symbol ‘o’

in the figure. Probability distribution models are drawn with

solid and dashed lines. As a first comment, the random like

character of the fluctuations is attested by a density probabil-

ity that is close to Gaussian law in its middle part while the

asymptotic behavior of probability distribution shows heavy

tails properties that are well fitted with an alpha stable prob-

ability distribution. By fitting the data probability distribu-

tion function, we find a stability index of α = 1.90 that is
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Fig. 7. Top: Bicoherency Function of the groundwater level fluctuations ψ(t). Bottom: Spectrum function in linear scale.

Fig. 8. Top: Bicoherency Function of the surrogate of the groundwater level fluctuations ψ(t). Bottom: Spectrum function in linear scale.
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Fig. 9. Detrended Fluctuations analysis of the time series ψ(t).
indicative of a non-Gaussian character. A negative weak value

of the skewness parameter β = −0.36 is also found traduc-

ing an asymmetry property on the fluctuations. The scale pa-

rameter is found to be equal to σ = 0.6 that is a well com-

parable value with the normalized Gaussian standard devia-

tion(∼ S2(0, 1/
√

2, 0)).

Estimating long range memory with Hurst exponent

Another way to state the random nature of the physical

process is to analyze its long term behavior. In other words,

we will test if the time series ψ exhibits long term memory

or long range dependence. Long range dependence means

that the physical process depicted by the data has an under-

lying trend with some degree of autocorrelation. Such prop-

erty is known to be related to self-affine characteristic and

fractal nature of the data. Indeed, self-affine signals may be

described by a finite fractal dimension which is related to the

Hurst exponent. It means also that in this case, the process is

embedded in a low dimensional phase space. This lets the

opportunity to model the process by nonlinear chaotic deter-

ministic laws with only few parameters . However, we note

that the existence of long range dependence does not provide

an ability to discriminate between stochastic or deterministic

nature for the studied process. Another important property

related to the self-affinity is the scale invariance. This later is

vital in the sense that with scale invariance property, short

length data may get insight on more large scale behavior. As

a consequence, long range dependence was widely studied

for many years in hydrology and geophysics. In this paper,

we will estimate the Hurst exponent that is the oldest and

the best-known among the various estimators of the inten-

sity of long range dependence proposed in the literature. The

Hurst exponent may be defined as follows: a stochastic pro-

cess �(t) has a Hurst exponent H if it verifies:

�(ct)
d= cH�(t) ∀t ≥ 0, ∀c > 0 (17)

Eq. (17) is written in the sense of finite-dimensional distri-

butions that means for any d ≥ 1 sequence of time points

t1, . . ., td and any positive constant c, e−H(�(t1), . . . ,�(td))
has the same distribution as (�(ct1), . . .,�(ctd)).

A wide range of techniques are now available to estimate

the Hurst exponent H. The Hurst exponent is normalized be-

tween the values 0 and 1. From (17) it is easy to check that for

example Brownian motion that is memoryless process has

self-similarity with H = 0.5. Thus, values other H = 0.5 de-

note the presence of memory effect. Particular interest fo-

cuses on the hypothesis that H > 0.5, indicating relatively

long-range dependence that implies a persistent time series

characterized by long term memory effects.

The traditional method to estimate this exponent is the

rescaled adjusted range analysis (R/S analysis), that has its

roots in early work of the British hydrologist Hurst [12], who

investigated dependence properties of phenomena such as

levels of the River Nile. Of interest is that R/S analysis is non-

parametric, meaning there is no assumption or requirement

of the shape of the underlying distribution. Then, the result

provides compatible information with the probability distri-

bution analysis made above and may be interpreted in a con-

sistent way with this later. Here we use the fast algorithm

developed in [1]. Details on R/S analysis presentation is now

available in a large number of publications (see e.g. [1,26]). A
value of the Hurst exponent H = 0.54 is found for the ground-

water fluctuations time series ψ(t).

In order to confirm the result of the R/S analysis, we will

use also the Detrended Fluctuation Analysis (DFA). The DFA

was first proposed by Peng et al. [34,35] to quantify scal-

ing properties of biological processes. The method can be

summarized as follows [36]. From the original time series

{ψ(t1),ψ(t2), . . .,ψ(ti), . . .,ψ(tn)} we note y(tj) a cumula-

tive time series defined as:

y( j) =
j∑

i=1

[ψ(ti)− < ψ >] (18)

where < ψ > is the average value of the time series ψ(tj).

Then the cumulative time series is divided into Nl = (n/l)

non-overlapping segments of length l. For each segment ν =
1, 2, . . ., Nl , a fit by least-squares line is made giving a new set

of time series noted as Ỹν . Then, we calculate the root mean

square of the cumulative and the detrended time series.

F (ν, l) =

√√√√1

l

l∑
j=1

[Y ((ν − 1)l + j) − Ỹν ( j)]2 (19)

Finally, the mean values of F(ν , l) are calculated as follows

F (l) = 1

Nl

Nl∑
ν=1

F (ν, l) (20)

By plotting log(F(l)) against log(l), an almost linear re-

lationship may be found that indicates the presence of a

power-law scaling of the form ClH where C is a constant.

The result from the groundwater fluctuations ψ(t) is given

in Fig. 9. The estimated value of the Hurst exponent with DFA

method is found to be H = 0.5343. The estimation was per-

formed using three confidence levels as shown in Table 3.

We note that detailed aspects on the construction of the

confidence intervals may be found in the paper of Weron

[45]. Of interest is that the value of the Hurst exponent given

by the R/S analysis is inside the confidence intervals for all

three levels. Such result suggests that the value of the Hurst

exponent from the R/S analysis method provide an accept-

able estimate of the exact one.
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a b

Fig. 10. Probability distribution function of groundwater level fluctuations ψ(t) in linear (left) and logarithmic (right) coordinates. The stability index of the

stable law is equal to α = 1.9.

Table 3

Two-sided empirical confidence inter-

vals for the Hurst exponent estimation

from the DFA method.

Conf. Low Conf. High Level

0.4469 0.5416 0.9000

0.4376 0.5507 0.9500

0.4186 0.5662 0.9900
Relationship between Hurst exponent and stability

index

To model stochastic processes with long range correla-

tion, generalization of the Brownian motion with the frac-

tional Brownian motion (H > 0.5) was carried out by Mandel-

brot [25]. However, these processes are Gaussian have finite

variance and then are not suitable to represent physical pro-

cess with infinite variance laws such as the alpha stable dis-

tribution. According to the theorem of Taqqu [42], for infinite

variance process, a relationship exists between the stability

index and the Hurst exponent:

H = (3 − α)/2 (21)

A striking fact is that the estimated value of the stability

index from data matches Eq. (21). The departure between the

value of stability index estimated from real data and that de-

ducted from Taqqu theorem by the relation (21) is found of

order of one percent. Also, our Hurst exponent value is found

to be exactly the same as that obtained by [46] and [47].

To resume the analysis, it is found that groundwater

level fluctuations ψ(t) is of fractal nature with non-Gaussian

heavy tail probability distribution marked by a persistent be-

havior. Significations and implications of these results will be

addressed in the last section of this paper.

5. Conclusions and discussions

The main purpose of the present paper was to character-

ize the dynamical behavior of groundwater level fluctuations
due to the rainfall process. The study deals with the case of

groundwater located in the South-East region of France in

which it is known that the rainfall process is marked by an

accentuated occurrences of fast events. In the first step of the

paper, the component correlated with rainfall is extracted

from the global level fluctuations of the groundwater. By

applying spectral analysis, the energy spectrum of this

component of the groundwater level fluctuations is found

to have an invariant scaling law. Indeed, a power law is

found at a frequency domain corresponding to the frequency

interval correlation with rainfall time series. This result

would indicate a fractal nature of the level fluctuations. It is

also consistent with the results found recently in the study

of [46,47]. However, the high frequency part of the spec-

trum does not follow the power law. We do not have exact

explanation about this behavior that is reminiscent of noise

effect. However, as pointed out by Serletis [38], noise does

not affect the fractal structure of the time series. To access on

more complete information, higher order spectral analysis

is carried out in order to attempt to describe the underlying

dynamics as a low dimensional chaotic system dominated by

nonlinear interactions between Fourier components. Despite

the high values of the corresponding bicoherence function, it

does not allow us to describe the dynamic of the groundwa-

ter level fluctuations as the effects of nonlinear interactions

between few Fourier components. However comparison

between real and surrogate data shows that the real data

time series has non-vanishing higher order moments linked

to its phase structure that traduces a non-Gaussian character.

According to this constatation, the probability distribution of

the groundwater level fluctuations is investigated. As shown

in Fig. 10 heavy tailed probability distribution is found from

the data time series. Also, the Lévy stable laws fit well the

probability distribution of the data. A stability index of order

α = 1.9 is found revealing a non-Gaussian behavior of the

groundwater level fluctuations. The probability distribution

is slightly skewed. This result is reminiscent of earlier works

such as in [3]. On the other hand, the Hurst exponent was
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estimated from the data and found to be around of 0.54.

Here also, our result corroborates the Hurst exponent value

found in [46,47]. This value is indicative of a persistent

behavior that is compatible with fractal property revealed by

the spectrum analysis. From more theoretical consideration,

our values check almost fairly the relationship between the

stability index of the probability distribution function and

the Hurst exponent as established by the mathematical the-

orem in [42]. The combination of the heavy tailed probability

distribution, the fractal behavior of the energy distribution

found in the spectral analysis and the persistent behavior

constitutes a complete proof on the existence of long mem-

ory effects inside the groundwater fluctuation dynamics.

Our results are comparable to these found by Peng et al. [35]

concerning a biological system. With regard to the mod-

eling aspect, our results raise a question on the validity of

Brownian or fractional Brownian motions (see for examples

in [4,22,47]) to model the groundwater recharge dynamic

known that these motions belong to the class of Gaussian

finite variance processes (see for example [29]). Also, the

characteristics of this long-memory process is essential to

forecasting problem [5] and have to be taken into account

in models. A possible way to reconcile these two constraints

would be the appeal to the class of fractional Lévy motions

(see for example [24]). Fractional Lévy motions are based on

the Lévy stable laws and may be declined as a random walk

that generates anomalous diffusion (see for example [2]).

According to general theory of the subsurface hydrol-

ogy, the present results have consequences on the oth-

ers quantities that define the groundwater system. In par-

ticular, following the transfer function models established

by Gelhar [9], the fractal non-Gaussian properties found

here may concern also the dynamics of the groundwater

recharge.

More generally, the implications of these results to the

characterization of mass transfer process in the heteroge-

neous media that is the soil layer may be essential. One spe-

cific question that we have raised at the origin of this paper

was the description of the transfer of the mass of water from

natural rainfall events inside the soil layer. For this purpose, it

is straightforward that no direct reliable method is available

to study mass transfer process through the soil layer under

in situ condition. To address this goal, the groundwater level

fluctuations and the rainfall events were observed in a syn-

chronized manner. In other words, instead of studying the

soil layer as a system, we have analyzed its input and out-

put. The fractal non-Gaussian character with long memory

behavior found in the groundwater level fluctuations and on

the other hand, the presence of the same properties recog-

nized in the rainfall process (see for example [23,32,37]) sug-

gest that the transport process inside the soil may be also

of non-Gaussian nature with a memory effect. Such idea in-

volves modeling of the the mass spread as an anomalous dif-

fusion law that is based on non-local operator (see for exam-

ples [20,28,30]).

To end this paper, it is important to recall that the results

given herein are limited in some aspects of the temporal evo-

lution of the groundwater level fluctuations at the given lo-

cations. This study deals with the context of small scale space

for which the effect of spatial variability was found negligi-

ble. However, at more large scale, lateral input and the base
flow effects would be important and have to be taken in ac-

count by a time-space analysis.
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