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We prove that for infinite compact planar sets K with big complementary components the algebras P (K), R(K), A(K) (and C(K)) as well as the Sarason algebra H ∞ + C on the unit circle are quasi pre-Bézout rings that do not have the Bézout property. It is also shown that for a compact Hausdorff space X the real algebra C(X, τ ) has the pre-Bézout property, but that surprisingly, C(X, τ ) may be a Bézout-ring without X being an F -space. We also present several classes of rings of holomorphic functions in several complex variables that do not have the Bézout property.

Introduction

In the present article we study several algebraic properties of various algebras R of continuous functions. Our leading question is whether every pair of functions f and g admits a greatest common divisor 1 (gcd) in R and we address the problem whether any such gcd belongs to the ideal I(f, g) generated by f and g. In our setting, R will be one of the fundamental algebras appearing in planar approximation theory, respectively function theory, namely R = P (K), the uniform closure of the polynomials in C(K), R = R(K), the smallest closed subalgebra of C(K) containing all rational functions without poles in K, and R = A(K), the algebra of continuous functions on K that are holomorphic in the interior K • of K. We recall that in the case K = D, P (K) = A(K). Here it is known that there exist pairs of functions in A(D) that do not have a gcd, but that if a gcd of f and g exists, then it actually belongs to I(f, g) (see [START_REF] Von Renteln | Divisibility structure and finitely generated ideals in the disc algebra[END_REF]).

In Theorem 3.1 we will show that in any uniformly closed subalgebra A of A(K) containing the polynomials there exist two functions having no gcd (provided K is infinite). Moreover, if K satisfies additional topological properties, then gcd(f, g) ∈ I(f, g) for A = P (K), R(K) and A(K), whenever it exists (Theorems 3.5 and 3.7).

If one considers certain superalgebras of A(D), then the situation changes dramatically. For example, it is well known that in the algebra H ∞ = H ∞ (D) of bounded analytic functions on D, n functions f 1 , . . . , f n always admit a gcd d, but in general, d does not belong to the ideal I(f 1 , . . . , f n ) (see [START_REF] Von Renteln | Hauptideale und äussere Funktionen im Ring H ∞[END_REF]).

In our present work we shall be concerned with the Sarason algebra H ∞ + C of sums of boundary values of bounded holomorphic functions in the unit disk D and continuous functions on the unit circle T. It will be shown in Theorem 4.1 that H ∞ + C behaves more like the diskalgebra; that is there exist pairs of functions in H ∞ + C that do not have a gcd. Moreover, if a gcd of f and g exists, then it belongs to I(f, g) (provided it is not a zero-divisor) (see Theorem 4.2).

In section 5, we study some algebras lying between A(D) and H ∞ (D): these are the algebras H ∞ S consisting of all functions in H ∞ (D) that admit a continuous extension to S, where S ⊆ T := ∂D is measurable. We show that if S = ∅ and S = T, then a gcd must not exist and if existent, it may not belong to the ideal.

Let K be either R or C. If X is a compact Hausdorff space, then C(X, K) is the space of all continuous K-valued functions on X.

The problems on existence and representation of gcds for the ring C(X, K) have been succesfully dealt with by several authors. The case of real-valued functions is explained in the monograph by Gillman and Jerison [14]. The case of continuous functions on X with values in a topological division ring M (including as a special case M = C) is treated in the survey article [36] by E. Vechtomov. We learnt about this general setting only after the present manuscript had been finished. Our methods yield a direct approach to the characterization of those X for which C(X, K) has the Bézout property; that is for which every finitely generated ideal is principal. In contrast to [36], that emphasized the algebraic features, we are interested in the analytical aspects. Our main focus will be the study of the real algebra

C(X, τ ) = {f ∈ C(X, C) : f • τ = f },
where τ is a topological involution on X.

This algebra, which is a more general object than C(X, K), first appeared in a paper by Arens and Kaplansky [START_REF] Arens | Topological representation of algebras[END_REF], and is meanwhile considered as a standard model for real function algebras; see the monograph [START_REF] Kulkarni | Real Function algebras[END_REF] by Kulkarni and Limaye. We will show in Theorem 6.1 that C(X, τ ) always is a pre-Bézout ring2 . Whereas in C(X, K) every finitely generated ideal is principal if and only if X is an F -space, that is if and only if cozero-sets are completely separated3 (see [14,36,6]), we will be able to prove that C(X, τ ) may enjoy the Bézout-property (also called F -property) without X being an F -space (Theorem 6.11).

In the final two sections we consider some classical algebras A of holomorphic functions in several complex variables and give some relations of our problems to the famous Gleason property and discuss connections with the Bass stable rank of A (for a definition, see below). For example, Theorem 8.1 will tell us that no integral domain whose Bass stable rank is strictly bigger than two has the Bézout property. However, if one allows zero-divisors, then it is known that for any n = 1, 2, . . . there exist Bézout rings R whose stable rank is n + 1. As an example let X = βR n \ R n , and R = C(X, R), where βR n is the Stone-Čech compactification of R n (see [6, p. 331]).

Let us recall here the notion of Bass stable rank. An n-tuple (a 1 , . . . , a n ) in a commutative ring R with unit element 1 is said to be invertible, if there exists (x 1 , . . . , x n ) ∈ R n such that n j=1 x j a j = 1. The invertible (n + 1)-tupel (a 1 , . . . , a n , b) ∈ R n+1 is said to be reducible, if there exists (x 1 , . . . , x n ) ∈ R n such that (a 1 + x 1 b, . . . , a n + x n b) is invertible in R. The smallest integer n for which every invertible (n + 1)-tuple in R is reducible, is called the Bass stable rank of R, and is denoted by bsr R. If there does not exist such an n, then bsr R = ∞. This definition is ideally suited for integral domains; these are commutative unital rings without zero-divisors. Recall that a ∈ R is a zero-divisor, if there is p ∈ R \ {0} such that pa = 0. We consider the additively neutral element 0 as a divisor of itself. In integral domains, if d = gcd(a, b), then any other gcd of a and b is the product of d times a unit.

Definitions and elementary properties

For rings having zero-divisors, we have the strange situation that whenever d is a gcd, then there may exist non-invertible multiples of d that are gcds, too. For example, let d be a zero-divisor, say pd = 0, and d = gcd(f, g) for some f, g ∈ R. If we assume that 1p is not invertible, then d ′ := (1p)d is a non-invertible multiple of d. But it is also a gcd of f and g (because

d ′ = d).
For a more concrete example, just look at the ring R = Z/Z 6 = {0, 1, . . . , 5}, modulo 6. R has zero-divisors; for example 2 • 3 = 0 (mod 6). Now 2 is a gcd of 2 and 4 (note that 2 divides 2 and 4 and 2 = 1 • 2 + 0 • 4); but 4 is also a gcd of 2 and 4 (since 2 = 2 • 4 (mod 6), so 4 divides 2, and 4 = 0 • 2 + 1 • 4). Thus we have found a noninvertible multiple of 2, namely 4, that is a gcd, too.

In general, if d and D are gcd's of a, b ∈ R, then D always is a multiple of d. Thus, in order to avoid this phenomenon just discussed, we therefore add a third condition. Let us call rd a proper multiple of If R is a commutative unital complex Banach algebra, then the converse of Observation 2.4 holds, too: Observation 2.5. Let R be a commutative unital complex Banach algebra and let d be a gcd of a, b ∈ R. Then d is a pgcd of a and b if and only if d is not a zero-divisor.

d if r is not invertible in R. Definition 2.2. Let R be a commutative unital ring. Let a, b ∈ R. An element d ∈ R is called a proper greatest
Proof. Let d = gcd(a, b) and suppose that there is p ∈ R \ {0} with pd = 0. Since R is a complex Banach algebra, we may choose α ∈ C such that 1αp is not invertible (by taking α -1 to be in the spectrum of p). Then (1αp)d = d. Hence we have a non-invertible multiple of d that divides a and b. Thus d is not a pgcd.

We note that Observation 2.5 is not true for an arbitrary commutative unital ring. As an example, we may take the quotient ring R = Z/Z 8 = {0, 1, . . . , 7}, mod 8. Note that the units in R are {1, 3, 5, 7} and that the divisors of 6 are {1, 2, 3, 5, 6, 7}. Obviously gcd(6, 6) = 6. We claim that 6 actually is a pgcd of (6, 6), although 6 is a divisor of zero. In fact, {0, 2, 4, 6} × 6 = {0, 4}; but neither 0 nor 4 is a divisor of 6. So no proper multiple of 6 is a divisor of 6.

We are now ready to define the Bézout properties. Note that for rings without zero-divisors, item 1) below coincides with the notion given in [9, p. 260 3) R is a pseudo-Bézout ring (or a gcd domain) if any two nonzero elements a, b ∈ R have a gcd. 4) R is a Bézout ring (or a Bézout domain) if R is both pre-and pseudo-Bézout.

Observe that the class of pre-Bézout rings is contained in the class of quasi pre-Bézout rings. For integral domains, these two classes coincide (in view of Observation 2.4).

It is straightforward that R is a Bézout ring if and only if every finitely generated ideal in R is a principal ideal. Bézout rings are also known under the name of F -rings (see [START_REF] Gillman | Rings of continuous functions in which every finitely generated ideal is principal[END_REF]). Also, if R is a pseudo-Bézout ring, then actually a gcd of every finite set of ring elements exist. The situation is different for pre-Bézout rings. For example, in A(D) the functions

f (z) = 1 -z, g(z) = (1 -z) exp - 1 + z 1 -z , h(z) = 1 + z,
have a gcd, namely gcd(f, g, h) = 1, but a gcd(f, g) does not exist (see [START_REF] Von Renteln | Divisibility structure and finitely generated ideals in the disc algebra[END_REF]) 4For completeness, let us also introduce the following variants.

Definition 2.7. Let R be a commutative unital ring. 5) R is a strong pre-Bézout ring if for every n ≥ 2, d = gcd(a 1 , . . . , a n ) belongs to the ideal I(a 1 , . . . , a n ) generated by the a j in R, whenever d exists.

6) R is a pre-Bézout ring of order n if d = gcd(a 1 , . . . , a n ) belongs to the ideal I(a 1 , . . . , a n ) generated by the a j in R, whenever d exists.

It is clear that the class of strong pre-Bézout rings is contained in the class of pre-Bézout rings of order n and that this latter class is contained in the class of pre-Bézout rings. We were unable to prove (or disprove) whether these three classes of pre-Bézout rings coincide.

Next we present some elementary properties of our first four classes of rings above, some of them are surely known.

Observation 2.8. Let R be a quasi pre-Bézout ring or a pseudo-Bézout ring without zero-divisors. Suppose that for a, b ∈ R, gcd(a, b) = 1 and that ax = by for some x, y ∈ R. Then b divides x (and a divides y).

Proof. a) Let R be a quasi pre-Bézout ring. Since the multiplicative neutral element 1 is not a zero-divisor, we obtain from Observation 2.4 that 1 = pa + qb for some p, q ∈ R. Hence b) Now suppose that R is a pseudo-Bézout ring without zero-divisors. First we show that for any c, A, B ∈ R there exists u ∈ R -1 such that c gcd(A, B) = ugcd(cA, cB). Indeed, gcd(A, B) divides A and B; hence c gcd(A, B) divides cA and cB. Thus c gcd(A, B) divides gcd(cA, cB). So gcd(cA, cB) = rc gcd(A, B) for some r ∈ R, or in other words, gcd(cA, cB) is a multiple of c gcd(A, B). In particular, d := gcd(cA,cB) c ∈ R. On the other hand, gcd(cA, cB) divides cA and cB. Hence d divides A and B. So d divides gcd(A, B). Therefore, c gcd(A, B) is a multiple of gcd(cA, cB).

Since R has no zero-divisors, we conclude that gcd(cA, cB) and c gcd(A, B) differ by a unit. Now (modulo units) Since R is an integral domain, a gcd(x, y) = y and so a divides y.

Observation 2.9. Let R be a pre-Bézout ring and let f, g ∈ R. Then I(f, g) is a principal ideal if and only if a gcd of f and g exists. The converse holds for any commutative unital ring. In fact, assume that I(f, g) equals the principal ideal I(p). Then p is a common divisor. We claim that p is a gcd. So let d be any other divisor of f and g. Then f = F d and g = Gd for some F, G ∈ R. Now

p = xf + yg = x(F d) + y(Gd) = d(xF + yG).
Hence d is a divisor of p and so p is a gcd. ii) If d is a zero-divisor, then i) may not be true.

Proof. i) If h is a divisor of f 1 d , .
. . , fn d , then f k d = hg k , for some g k ∈ R, k = 1, . . . , n. So dh is a common divisor of f 1 , . . . , f n . Since d is a greatest common divisor of f 1 , . . . , f n , dh divides d; that is, dhk = d for some k ∈ R. Hence d(1hk) = 0. By assumption, 1hk = 0; whence h is invertible.

ii) Let pd = 0 and suppose that 1-p is not invertible. If d = gcd(a, b), then we see that 1p is a proper common factor of a/d and b/d.

Division in some classical planar algebras

In this section we show that in each uniformly closed subalgebra A of C(K) with P (K) ⊆ A ⊆ C(K) there exist two functions having no greatest common divisor, provided K ⊆ C is infinite. If K is finite, then all of these algebras coincide and can be identified with C n , where n is the cardinal of K. Here C n is endowed with coordinatewise multiplication. It is an easy exercise that in this case, these algebras have the Bézout property: if f = (f 1 , . . . , f n ) and g = (g 1 , . . . , g n ), then the ideal I(f, g) generated by f and g is the principal ideal generated by

|f | + |g| := (|f 1 | + |g 1 |, . . . , |f n | + |g n |).
Theorem 3.1. Let K be an infinite compact planar set and let A be a uniformly closed subalgebra of C(K) containing the polynomials. Then A does not have the pseudo-Bézout property.

The idea of the proof, motivated by the disk-algebra case (see the addendum, Proposition 9.1), is to demonstrate the existence of a function of the form

g = (z -α)H ∈ P (K),
where H has a discontinuity at a non-isolated peak point α for P (K), and to consider the pair (zα, g).

Proof. Let K be the polynomial convex hull of K; that is K is the union of K with all the bounded components of C \ K (holes). It is obvious that ∂ K ⊆ ∂K. Usually ∂ K is called the outer boundary of K. A well known theorem [10, p. 205] or [34, p. 62] tells us that every point in ∂ K is a peak-point for P (K) (hence for all our algebras A). Let α be one of those peak points that are not isolated (within K), and let p be an associated peak function in

P (K). Choose a sequence (z n ) of distinct points in K converging to α. Then p(z n ) → 1 and p(z n ) ∈ D.
By passing to a subsequence, if necessary, we may assume that (p(z n )) is an interpolating sequence for H ∞ . Using Earl's interpolation theorem [11, p. 309], there is an interpolating Blaschke product B satisfying B(p(z 2n )) = 0 and B(p(z 2n+1 )) = δ for all n and some constant δ > 0 and such that the zeros of B cluster only at 1. Hence B • p is discontinuous at α. Let us point out, that for any q ∈ C(K) with q(α) = 0, the function q • (B • p) is continuous at α. Next we show that if q ∈ A and q(α) = 0, then q • (B • p) ∈ A. To this end, consider the partial products B n := n j=1 L j of the Blaschke product B. Then B n converges locally uniformly (in D) to B. Since B n is analytic in a neighborhood of the spectrum p(K) of p, we see that

B n • p ∈ P (K) ⊆ A. Now q • (B n • p) converges uniformly in K to q • (B • p). Hence q • (B • p) ∈ A.
We claim that the functions f (z) := z -α and g(z) := (z -α)B(p(z)) do not have a gcd in A. Assume, to the contrary, that d = gcd(f, g) exists. Then, in particular, f = dF and g = dG for some F, G ∈ A.

If F (α) = 0, then (when viewed as continuous functions on K),

(z -α)(B • p) = g = f F G = (z -α) G F . Hence B • p = G/F on K \ {α}. Now G/F is continuous at α. Since α is not isolated in K, we deduce that B • p has a continuous extension to α; a contradiction. Thus F (α) = 0.
Since α is a peak-point, by [5, p. 101 ], the maximal ideal M(α) = {f ∈ A : f (α) = 0} has an approximate identity. By Cohen's factorization theorem (see [5, p. 74

]), F = F 1 F 2 where F j ∈ A and F j (α) = 0. Now F 1 d divides f . But F 1 d also divides g. In fact, F 2 (B • p) ∈ A and (F 1 d)(F 2 (B • p)) = dF (B • p) = (z -α)(B • p) = g. Since d is a gcd, we see that F 1 d divides d. Thus d(1 -kF 1 ) = 0 for some k ∈ A. Since d is not a zero-divisor (note that d has a single zero at the non-isolated point α), we conclude that F 1 is invertible in C(K); a contradiction. Lemma 3.2. Let a ∈ K • and let f ∈ A = P (K), R(K) or A(K). Then f ∈ A implies that z → (f (z) -f (a))/(z -a) ∈ A.
Proof. The assertion is obvious for A(K). So let (p n ) be a sequence of polynomials (respectively rational functions with poles off K) that uniformly approximates f on K. Obviously g n := (p n -p n (a))/(z -a) ∈ A and g := (ff (a))/(za) ∈ A(K). Since on the boundary, ∂K, the sequence (g n ) converges uniformly to g, we may apply the maximum principle for holomorphic functions to deduce that (g n ) converges uniformly to g also on the interior K • of K. Since the algebra A is uniformly closed, we deduce that g ∈ A.

Algebras satisfying the conclusion of Lemma 3.2, are sometimes called "stable algebras". In what follows, Z(f ) denotes the zero set of the function f . Lemma 3.3. Let K be a compact set having connected complement in C. Suppose that for f, g

∈ P (K), d = gcd(f, g) exists. Then Z(d) = Z(f ) ∩ Z(g). Proof. Let f = dF and g = dG. Since Z(d) ⊆ Z(f ) ∩ Z(g), we may assume that Z(f ) ∩ Z(g) = ∅. So let z 0 ∈ Z(f ) ∩ Z(g). Suppose, to the contrary, that d(z 0 ) = 0. Then F (z 0 ) = G(z 0 ) = 0. If z 0 ∈ K • , then, by Lemma 3.2, D(z) := z -z 0 divides F and G. If z 0 ∈ ∂K = ∂ K, then
z 0 is a peak-point for P (K). Hence, as above, M(z 0 ) has an approximate identity. By the Cohen-Varopoulos factorization theorem [START_REF] Th | Sur les formes positives d'une algèbre de Banach[END_REF], there is a joint factor D ∈ P (K) of F and G with D(z 0 ) = 0. In both cases, therefore, dD is a joint divisor of f and g and so d = hdD for some h ∈ P (K). Hence d(1 -hD) = 0. This implies that D(z 0 ) = 0 (otherwise

d(z 0 ) = 0.) This is a contradiction. Hence Z(f )∩Z(g) ⊆ Z(d). Because the reverse inclusion is trivial, we get that Z(f ) ∩ Z(g) = Z(d).
Lemma 3.4. Let K ⊆ C be compact. Suppose that there is κ > 0 such the diameter of every component of C \ K is larger than κ. Then the assertion of Lemma 3.3 holds for A = R(K) and A(K) as well.

This follows exactly as above; just note that in view of [10, p. 205] (Gonchar's criterion) every boundary point of K is a peak point for R(K).

Theorem 3.5. The algebra P (K) is a quasi pre-Bézout ring for every compact set K in C.

Proof. Since K is the maximal ideal space of P (K), by [10, p. 27], we may identify P (K) with P ( K). Let (f, g) be a pair of functions in P (K) for which d = pgcd(f, g) exists. In particular f = dF and g = dG, where F, G ∈ P (K). If we assume that F and G have a common zero on K, then, as above, we would get a common factor D of F and G with D(z 0 ) = 0. Since by Observation 2.5, d is not a zero-divisor, it follows from d(1 -hD) = 0 that hD = 1. Evaluating at z 0 yields the contradiction 0 = 1. Thus Z(F ) ∩ Z(G) = ∅5 . Hence, 1 = xF + yG for some x, y ∈ P (K). Multiplying by d yields that d ∈ I(f, g).

Corollary 3.6. If P (K) is an integral domain, then it has the pre-Bézout property.

By the same arguments, one can prove that A = R(K) and A = A(K) are quasi pre-Bézout rings if every point of the topological boundary of K is a peak-point. In particular, we have: Theorem 3.7. Let K ⊆ C be compact. Suppose that there is κ > 0 such the diameter of every component of C \ K is larger than κ. Then R(K) and A(K) are quasi pre-Bézout rings. If R(K) and A(K) are integral domains, then they have the pre-Bézout property. This holds in particular for K = K • and K • connected.

Greatest common divisors in H ∞ + C

We refer the reader to the monograph by Garnett [START_REF] Garnett | Bounded Analytic Functions[END_REF] for all the background material on M(H ∞ ) that we need here.

If A is one of the algebras H ∞ , H ∞ + C or L ∞ , then M(A) denotes its maximal ideal space. We may identify X := M(L ∞ ) with the Shilov boundary of H ∞ + C (or H ∞ ). Recall that M(L ∞ ) is an extremely disconnected compact space; in particular, the open-closed sets form a basis of the topology. The characteristic function of E ⊆ X is denoted by χ E and we let

E c = X \ E. We know that χ E is continuous on X if and only if E is closed-open. Every function in f ∈ L ∞ ≃ C(X) has a canonical continuous extension to M(H ∞ ) given by f (x) = supp x f dµ x ,
where supp x is the support set of the representing measure µ x for the functional x ∈ M(H ∞ ). Note that µ x is a probability measure that lives on the class of Borel-sets on X. We will mainly apply this formula to the function χ E and use the notation

{0 < χ E < 1} to denote the set {x ∈ M(H ∞ + C) : 0 < χ E (x) < 1}. If f ∈ H ∞ +C, then f , restricted to M(H ∞ +C), equals the Gelfand- transform of f . If f ∈ C(M(H ∞ + C)), then Z(f ) = {m ∈ M(H ∞ + C) : f (x) = 0} denotes the zero set of f . If S ⊆ M(H ∞ + C), then S • is the set of interior points of S.
Whereas H ∞ is a pseudo-Bézout ring (see [START_REF] Von Renteln | Hauptideale und äussere Funktionen im Ring H ∞[END_REF]), we have the following situation in H ∞ + C. Theorem 4.1. There exist pairs of functions f, g ∈ H ∞ + C that do not have a greatest common divisor.

Proof. Let E be a nonvoid, proper closed-open subset of X = M(L ∞ ). By Axler's Theorem [2], there is a Blaschke product B with Bχ E ∈ H ∞ + C. We claim that B and Bχ E have no greatest common divisor. Intuitively seen, this is "clear", since χ E / ∈ H ∞ +C. We have developed the following proof:

Suppose that there is a gcd d. In particular, B = dF and Bχ E = dG for some F, G ∈ H ∞ + C.

Claim 1 We claim that F and G have no common zeros. Suppose to the contrary, that 

F (m) = G(m) = 0 for some m ∈ M(H ∞ + C). Looking at the canonical extensions of F and G to M(H ∞ ), we may use the fact that D is dense in M(H ∞ ) to conclude that inf z∈D (|F (z)|+ |G(z)|) = 0. Hence there is an interpolating sequence (z n ) in D such that F (z n ) → 0 as well as G(z n ) → 0.
q ∈ H ∞ + C such that d = q(bd). So d(1 -qb) ≡ 0. Since |B| = 1 and B = dF imply that d = 0 on the Shilov boundary X of H ∞ + C, we deduce that bq = 1 on X. Hence bq = 1 on M(H ∞ + C). In particular b is invertible in H ∞ + C. This is a contradiction.
Claim 2 F and G do have a common zero. In fact, on E we have that dG = dF . Since d, as a divisor of B, has no zeros on X, we conclude that G = F on E. On E c we see that dG = 0. Hence, G = 0 on E c and so, G = Gχ E . By [15, Lemma 2.2], G = 0 on {0 < χ E < 1}. Since M(H ∞ + C) is connected (see [START_REF] Hoffman | Banach Spaces of Analytic Functions[END_REF]), { χ E < 1} is not closed, and so there exists

x ∈ Z(G)\{ χ E < 1}. Hence supp x ⊆ E and G(x) = 0. Thus 0 = G(x) = supp x G dµ x = supp x F dµ x = F (x).
This finishes the proof of Claim 2.

But Claim 1 and Claim 2 contradict each other. Thus a gcd of B and Bχ E cannot exist.

Theorem 4.2. H ∞ + C is a quasi pre-Bézout ring. Proof. Let (f, g) be a pair of non-zero functions in H ∞ + C. Suppose that d = pgcd(f, g) exists. Then, by Observation 2.4, d is not a zero- divisor. Hence Z(d) • ∩ X = ∅ (otherwise there would exist a set S ⊆ Z(d) • ∩ X, S closed-open in X, with (dχ S )(dχ S c ) ≡ 0. Since d = dχ S c , we would have found a zero-divisor in H ∞ + C of d.) Now Z(d) • ∩ X = ∅ implies that X \ Z(d) is dense in X (otherwise there would exist a set S ⊆ Z(d) ∩ X, S closed-open in X; but then d = dχ S c and so d = 0 on {0 < χ S c < 1} ∪ { χ S = 1} = { χ S > 0}, an open set in M(H ∞ + C) that contains S. Hence Z(d) • ∩ S = ∅; a contradiction).
Let f = dF and g = dG. Suppose that Z(F ) ∩ Z(G) = ∅. As above, we get an interpolating Blaschke product b with Z(b) = ∅ dividing F and G and so

d(1 -qb) = 0 on M(H ∞ + C). Since X \ Z(d) is dense in X, qb ≡ 1 on X \ Z(d) implies that qb ≡ 1 on X. Thus, as shown previously, b is invertible. This contradiction shows that Z(F ) ∩ Z(G) = ∅. Hence, 1 = uF + vG for some u, v ∈ H ∞ + C. Accordingly, d = u(dF ) + v(dG) ∈ I(f, g).

Some algebras between the disk algebra and H ∞ (D)

For a measurable set S ⊆ T, let H ∞ S be the algebra of those functions in H ∞ that admit a continuous extension to S. Thus,

H ∞ S = H ∞ if S = ∅ and H ∞ S = A(D) if S = T.
In this short section we give an answer to the following question raised by Amol Sasane: Do the algebras H ∞ S have the pre-Bézout property and/or the pseudo-Bézout property whenever S = ∅ and S = T? 

S = ∅; that is if A = H ∞ .
Proof. If A = A(D) then, by [START_REF] Von Renteln | Divisibility structure and finitely generated ideals in the disc algebra[END_REF], A has the pre-Bézout property, but not the pseudo-Bézout property, whereas by [START_REF] Von Renteln | Hauptideale und äussere Funktionen im Ring H ∞[END_REF], A = H ∞ has the pseudo-Bézout property, but not the pre-Bézout property. So let us assume that S = ∅ and S = T.

Choose α ∈ S and β ∈ T \ S. Let B α be a Blaschke product whose zeros cluster only at α and let S α be the atomic inner function corresponding to α. Similarily for β. Then

f α := (z -α)S α , g α := (z -α)B α , f β := (z -β)S β and g β := (z -β)B β are in A(D) ⊆ H ∞ S .
Since S β and B β belong to H ∞ S , and have no common inner factor, we conclude that zβ is a gcd of f β and g β in H ∞ S . But zβ is not in the ideal generated by f β and g β in H ∞ S , since otherwise 1 = xS β + yB β for some x, y ∈ H ∞ . But this last statement cannot hold, because S β and B β go to zero at β. Thus H ∞ S is not a pre-Bézout ring.

Next we claim that f α and g α do not have a gcd in H ∞ S (hence H ∞ S is not a pseudo-Bézout ring either.) Let d = gcd(f α , g α ) and let F, G ∈ H ∞ S satisfy f α = dF and g α = dG. Since S α and B α are relatively prime inner functions, we conclude from the canonical factorization theorem for Hardy space functions that S α must divide (in H ∞ ) F and B α divides G. But F and G are continuous at α. Hence

F (α) = G(α) = 0. Now (1 + αz)/2 is a peak function in A(D) ⊆ H ∞ S . Since M(α) := {f ∈ H ∞ S : f (α) = 0}
is the kernel of the multiplicative linear functional φ : f → f (α), we may apply, as in the proof of Lemma 3.3, the Cohen-Varopoulos factorization theorem to get a joint factor D of F and G with D(α) = 0. Thus dD divides d and so d(1 -kD) = 0 for some k ∈ H ∞ S . Since d has no zeros in D, kD = 1. In particular, D(α) = 0. This contradiction shows that a gcd of f α and g α cannot exist.

We refer the reader to [25, p. 29-30] and [START_REF] Mortini | On the pre-Bézout property of Wiener algebras on the disc and the half-plane[END_REF], [START_REF] Mortini | Some algebraic properties of the Wiener-Laplace algebra[END_REF] where some other function algebras were studied with respect to the Bézout properties dealt with here.

6. The Bézout properties for C(X, τ ) Let X be a compact Hausdorff space and τ a topological involution on X. Then

C(X, τ ) = {f ∈ C(X, C) : f • τ = f } is a real algebra. It is useful to note that if f = u + iv ∈ C(X,
τ ), then u, iv, |f | and f belong to C(X, τ ), but not v. On the other hand, v 2 does belong to C(X, τ ). Finally, the only constant functions in C(X, τ ) are the real ones.

We shall tacitely use the facts that if S ⊆ X is a τ -invariant closed set, (that is if τ (S) = S), then any f ∈ C(S, τ ) can be extended to a function F ∈ C(X, τ ); in fact if f * ∈ C(X) is any Tietze-extension of f to X, we just let

F = f * + (f * • τ ) 2 .
(see [START_REF] Mortini | Stable ranks for the real function algebra C(X, τ )[END_REF]Lemma 3.2]). If, additionally, f (S) ⊆ [a, b], then F can be chosen so that its image lies in the interval [a, b], too. We call F a τ -invariant Tietze extension of f . Theorem 6.1. Let X be a compact Hausdorff space. Then C(X, τ ) is a pre-Bézout ring.

Proof. Let f, g ∈ C(X, τ ) and assume that d is a gcd of f and g. We claim that

Z(d) = Z(f ) ∩ Z(g).
Since d divides each of the functions f and g, d cannot have a zero where f or g hasn't one. Thus

Z(d) ⊆ Z(f ) ∩ Z(g). Now h := |f | + |g| ∈ C(X, τ ).
We claim that h is a common divisor of f and g. In fact, if f (x) = 0, then

|f (x)| |f (x)| + |g(x)| ≤ |f (x)| |f (x)| = |f (x)| → 0 as x net- -→ conv.
x 1 ∈ Z(f ).

Hence f (x) = F (x)h(x), where

F (x) = f (x) √ |f (x)|+ √ |g(x)| if f (x) = 0 0 if f (x) = 0
is continuous on X and so F ∈ C(X, τ ). Similarily for g. Since d is assumed to be a gcd of f and g, we see that h divides d and so

Z(h) ⊆ Z(d). Thus Z(d) = Z(f ) ∩ Z(g).
In particular, we have that (6.1)

Z(d) • = [Z(f ) ∩ Z(g)] • = Z(f ) • ∩ Z(g) • .
Let U = Z(f ) • ∩ Z(g) • ( note that U may be empty or not) and let

Y = X \ U. Then Y is τ -invariant. Write f = dF and g = dG. We claim that Z(F ) ∩ Z(G) ∩ Y = ∅; in other words Z(F ) ∩ Z(G) ⊆ Z(d) • .
In fact, assuming the contrary, let 

x 0 ∈ Z(F ) ∩ Z(G) ∩ Y . Then x 0 ∈ Z(f ) ∩ Z(g) = Z(d). Now,
= (Dk)(x 0 ) = D(x 0 )k(x 0 ) = 0.
Thus we have shown that F and G have no common zero outside U. This implies that on Y 1 = qF +pG, and so d = q(dF )+p(dG) = qf +pg for some p, q ∈ C(Y, τ ).

Extending p and q to a function in C(X, τ ), gives

d = qf + pg on X, too, since U ⊆ Z(f ) ∩ Z(g) = Z(d).
An analysis of the proof above shows that we also get the following extension to n-tuples. In the spirit of [6], we include a nice connection to dimension theory and the Bass stable rank. Recall that dim X denotes the covering dimension of a compact space [START_REF] Pears | Dimension theory of general spaces[END_REF]. Theorem 6.2. Let X be a compact Hausdorff space such that dim X < ∞. Let E be the set of fixed points of τ and n = bsr C(X, τ ); that is6 

n = max dim X 2 , dim E + 1.
Then the following assertions hold:

(1) C(X, τ ) is a strong pre-Bézout ring;

(2) Suppose that m ≥ max{2, n}. If f 1 , . . . , f m have a gcd d in C(X, τ ), then there exist g 1 , . . . , g m ∈ C(X, τ ) such that 1 ∈ I(g 1 , . . . , g m ) and f j = dg j . (3) If 2 ≤ m < n, then (2) may not hold.

Proof. (1) Exactly as in Theorem 6.1; just switch to n-tuples (here we do not need the assumption on the finiteness of the dimension of X).

(2) Let d = gcd(f 1 , . . . , f n ) and write f j = dF j , where F j ∈ C(X, τ ). By the previous proof,

L := n j=1 Z(F j ) ⊆ n j=1 Z(f j ) • = Z(d) • .
Let Y = X \Z(d) • . Then there are p j ∈ C(Y, τ ) such that on Y we have 1 = n j=1 p j F j . We claim that the invertible n-tuple (F 1 , . . . , F n )| Y can be extended to an invertible n-tuple in C(X, τ ). To show this, let h ∈ C(X, τ ), 0 ≤ h ≤ 1, be chosen so that h ≡ 1 on L and h ≡ 0 on Y . Then (F 1 , . . . , F n , h) is an invertible (n + 1)-tuple in C(X, τ ). Since bsr C(X, τ ) = n, we conclude that (F 1 , . . . , F n , h) is reducible. Hence there exist (q 1 , . . . , q n ) ∈ C(X, τ ) such that the n-tuple

(F 1 + q 1 h, . . . , F n + q n h)
is invertible in C(X, τ ). If we set g j = F j + q j h, then we see that (g 1 , . . . , g n ) is the invertible extension of the n-tuple (F 1 , . . . , F n )| Y we have been looking for. Thus 1 ∈ I(g 1 , . . . , g n ). Moreover, f j = dF j = dg j on X, since the set where g j differs from F j is contained in the zero-set of d.

(3) We have to show that if the length of the tuple (f 1 , . . . , f m ) is strictly smaller than the Bass stable rank n of the algebra then it is, in general, not possible to choose the factors g j in f j = dg j , d = gcd(f 1 , . . . , f n ), in such a way that they generate the entire ring.

So suppose that bsr C(X, τ ) > 2. Then there is an invertible triple (F, G, h) in C(X, τ ) that is not reducible. By [START_REF] Mortini | Stable ranks for the real function algebra C(X, τ )[END_REF]Theorem 3.4] this is equivalent to say that (F, G)| Z(h) does not admit an extension to an invertible pair in C(X, τ ). The non-reducibility implies that Z(h) = ∅, Z(h) = X, as well as

∅ = Z(F ) ∩ Z(G) ⊆ X \ Z(h). Choose a τ - invariant open set U with Z(F ) ∩ Z(G) ⊆ U and U ∩ Z(h) = ∅. Let d ∈ C(X, τ ), 0 ≤ d ≤ 1, satisfy d ≡ 0 on U and d ≡ 1

on Z(h).

Let f := dF and ǧ := dG. We claim that d is a gcd of f and ǧ. In fact, 1 = pF + qG on Y := X \ U, for some p, q ∈ C(Y, τ ). We may extend p and q to functions in C(X, τ ). On Y we have d = p f + qǧ. But this actually holds on X, too, since f and ǧ vanish identically on U ⊆ Z(d). Therefore, since d is a divisor of f and ǧ, we conclude that d = gcd( f , ǧ). Now let us assume that there is an invertible pair (u, v) in C(X, τ ) such that f = du and ǧ = dv. Now outside Z(d), f = du and f = dF imply that F = u. Also, G = v outside Z(d). In particular, (u, v) = (F, G) on Z(h), because for x ∈ Z(h) we have d(x) = 1. Thus we would have found an invertible extension of (F, G)| Z(h) . This contradiction shows that for the gcd d of f and ǧ one cannot write f = du and ǧ = dv where 1 ∈ I(u, v).

We note that if D is any other gcd of f and ǧ, then the situation does not change (see [START_REF] Gillman | Some remarks about elementary divisor rings[END_REF]Lemma 4]).

Item (2) above extends in several ways the corresponding results for C(X, R) and C(X, C) that appeared in [6].

In what follows, let G(f, g) be the set of all gcds of f and g. 

f = u|f | for some function u ∈ C(X, τ ) without zeros on X \ Z(f ) • . Moreover, G(f, |f |) = ∅ or G(f, |f |) = {u|f | : u ∈ C(X, τ ), Z(u) ⊆ Z(f ) • } or G(f, |f |) = {vf : v ∈ C(X, τ ), Z(v) ⊆ Z(f ) • }.
| = |G| on X \ Z(f ) ⊆ X \ Z(d). Using continuity, we arrive at |F | = |G| on X \ Z(f ) = X \ Z(f ) • . Since F and G have no common zero outside Z(f ) • , we deduce that Z(F ) ∪ Z(G) ⊆ Z(f ) • . This proves the claim. Thus, on X \ Z(f ) • , f = F (|f |/G) = (F/G)|f |.
As u (respectively v) we now take any τ -invariant Tietze extension of

F/G (respectively G/F ) from X \ Z(f ) • to X. Conversely, if f = u|f |, then |f | is a common divisor of f and itself. It is now obvious that |f | is a gcd.
The following result (given in the C(X, C) setting) seems to be new. Note that it cannot be extended to C(X, τ ) since the imaginary part of a non-real, complex-valued function in C(X, τ ) does not belong to C(X, τ ) (whereas its real part does). Recall that a function f is said to be positive if f ≥ 0. 

3, f = h|f | for some h ∈ C(X, C) with Z(h) ⊆ Z(f ) • . Let h = h 1 + ih 2 . Then u = h 1 |f | and v = h 2 |f |. Hence |f | divides u and v. But, outside Z(f ), |f | = √ u 2 + v 2 = u 2 + v 2 √ u 2 + v 2 = u |f | u + v |f | v.
Hence, on X, Conversely, let d be a positive gcd of u and v. Then, (by the proof of Theorem 6.1), u = Ud and v = V d for some U, V ∈ C(X, R) such that U and V have no common zeros on the compact set

|f | = h 1 u + h 2 v ∈ I(u, v). Therefore, |f | is a gcd of u and v. Next we deal with |u| + |v|. Since |u| + |v| = (|h 1 | + |h 2 |) |f |, we see that |u|+|v| ∈ I(|f |) ⊆ I(u, v). Now, outside Z(f ) = Z(|u|+|v|), u |u| + |v| = h 1 |h 1 | + |h 2 | . Since Z(|h 1 | + |h 2 |) = Z(h) ⊆ Z(f ) • , we see that for any Tietze exten- sion U of h 1 |h 1 | + |h 2 | X\Z(f ) • we have u = U(|u| + |v|) on X.
X \ Z(u) • ∩ Z(v) • = X \ Z(f ) • . Hence, outside Z(f ), u √ u 2 + v 2 = U U 2 + V 2 =: φ u . Since φ u ∈ C(X \ Z(f ) • ), φ u admits a continuous extension to X (also denoted by φ u ). The same holds for v √ u 2 +v 2 . Thus f = u + iv = |f |(φ u + iφ v ).
Since φ u and φ v have no common zeros outside Z(f ) • , we obtain from Lemma 6.3 that f and |f | have a gcd. Proposition 6.5. Let X be a compact Hausdorff space. Suppose that X contains a convergent sequence of distinct points. Then there exist two functions in C(X, τ ) that do not have a gcd. That is, C(X, τ ) is not a pseudo-Bézout ring.

Proof. By hypothesis card X is infinite. Let (x n ) be a convergent sequence of distinct points in X; say x n → x. Let M = {x n : n ∈ N} and let E be the set of fixed-points of τ . Without loss of generality, we may assume that x n / ∈ {x j : j = n}. If E ∩ M contains infinitely many points, say {z 1 , z 2 , . . . }, then we use the τ -invariant Tietze Lemma to get functions g

n ∈ C(X, τ ) such that -1 ≤ g n ≤ 1, g n (z n ) = (-1) n and g n (z k ) = 0 if k = n. Let g = n 2 -n g n .
Then, due to uniform convergence, g ∈ C(X, τ ). We claim that g and |g| have no gcd. In fact, assuming the contrary, we see from Lemma 6.3, that g = u|g| for some u ∈ C(X, τ ) without zeros on X \ Z(g) • . (Note that g and u are real valued.) Hence, u(z 2n ) = 1 and u(z 2n+1 ) = -1. Since z n → x, we deduce that u is discontinuous at x.

If E ∩ M = ∅ or finite, then we first need to choose a subset S = {y n : n ∈ N} of M such that S ∩ τ (S) = ∅.

To do this, let n 1 be the smallest index such that x j / ∈ E ∪ {τ (x)} for all j ≥ n 1 and let y 1 = x n 1 . Let n 2 > n 1 be the smallest index such that x n 2 ∈ {τ (x 1 ), . . . , τ (x n 1 )} and set y 2 = x n 2 . Then y 2 / ∈ E and y 2 = τ (x). Having found y j we choose n j+1 > n j to be the smallest index such that x n j+1 / ∈ {τ (x 1 ), . . . , τ (x n j )} and let y j+1 = x n j+1 . Again, n j+1 > n 1 implies that y j+1 / ∈ E and y j+1 = τ (x). This concludes the construction of the y n .

Since y n / ∈ {y j : j = n}, and τ (S) ∩ S = ∅, we may use Tietze's extension Lemma, to get for each n a function Proof. Let d = gcd(f, |f |). By Lemma 6.3, f = u|f | for some u ∈ C(X, τ ) that has no zeros on X\Z(f ) • ⊇ X\Z(f ). Since by hypothesis, this latter set is dense in X, u actually is invertible in C(X, τ ).

f n ∈ C(X, τ ) such that -1 ≤ f n ≤ 1, f n (y n ) = f n (τ (y n )) = (-1) n and f n (y k ) = f n (τ (y k )) = 0 if k = n. Now let f = n 2 -n f n . Then, as above, f ∈ C(X, τ
We claim that this implies that f |E has an invertible extension to X. To show this, let T be a τ -invariant Tietze extension of |f | |E to X with

T (x) ∈ [min E |f |, max E |f |] for every x ∈ X. Since E ∩ Z(f ) = ∅, we see that min E |f | > 0. Hence F (x) = f (x) if x ∈ E T (x)u(x) if x ∈ X \ E
is the desired extension. Definition 6.7 ( see [14]). Let X be a completely regular Hausdorff space and E ⊆ X.

a) E is called a cozero-set, if E = {x ∈ X : f (x) = 0} for some real- valued function f ∈ C(X, R). b) Two disjoints sets A and B in X are said to be completely separated if there is a function f ∈ C(X, R), 0 ≤ f ≤ 1, such that f ≡ 0 on A and f ≡ 1 on B.
c) X is said to be an F -space if disjoint cozero-sets are completely separated. 7We note that for normal spaces (by Urysohn's Lemma), two disjoint sets A and B are completely separated if and only if the closures of A and B are disjoint. Moreover, X is an F -space if and only if disjoint cozero-sets are contained in disjoint zero-sets.

Examples of F -spaces are extremely disconnected spaces. These are spaces with the property that disjoint open sets have disjoint closures. For example, the Stone-Čech compactification of N is an example; or the maximal ideal space of L ∞ (T) (see [11, Chapter V, Ex. 8]). There also exist connected F -spaces (see [14, p. 211]). Proposition 6.8 (see [14]). A completely regular Hausdorff space X is an F -space if and only if for every f ∈ C(X, R) the sets {x ∈ X :

f (x) < 0} and {x ∈ X : f (x) > 0} are completely separated Proof. Let X be an F -space and let f ∈ C(X, R). Consider the func- tions h = |f | -f and g = f + |f |. Then {h = 0} = {f < 0} and {g = 0} = {f > 0}.
Since X is an F -space, the cozero-sets {h = 0} and {g = 0} are completely separated.

To show the converse, we take two disjoint cozero-sets A = {h = 0} and B = {g = 0} and let f = h 2g 2 . Then f = h 2 > 0 on A and f = -g 2 < 0 on B. The hypothesis that {f < 0} and {f > 0} are completely separated now yields the assertion.

The following important Lemma is well known. Recall that C b (S, K) denotes the set of all bounded continuous functions on S. Lemma 6.9 ([14]). Let X be a completely regular Hausdorff space. The following assertions are equivalent.

(1) X is an F space;

(2) For every cozero-set S ⊆ X and every

h ∈ C b (S, R) there is a (bounded) continuous extension H ∈ C(X, R) of h; (3) for every f ∈ C(X, R) there is u ∈ C(X, R) such that f = u|f |. In (2) one can replace C b (S, R) by C b (S, C). Proof. (1) =⇒ (2) is in [14, p. 208].
(2) =⇒ (3) is trivial (just look at f /|f | on S = X \ Z(f ).)

(3) =⇒ (1) Since u = 1 on {f > 0} and u = -1 on {f < 0}, these sets are completely separated. Hence X is an F -space by Proposition 6.8. Corollary 6.10. Let X be a compact F -space. Suppose that f, g ∈ C(X, τ ) satisfy |f | ≤ |g| and g ≡ 0. Then q = f /g : X \ Z(g) → C admits an extension to a function Q ∈ C(X, τ ).

Proof. Write q = f g/|g| 2 and let f g = u 1 + iu 2 . Note that u j /|g| 2 ∈ C b (X \ Z(|g|)). According to Lemma 6.9, let q j ∈ C(X, R) be an extension of u j /|g| 2 , j = 1, 2. Furthermore, let

Q 1 = q 1 + (q 1 • τ ) 2 , Q 2 = q 2 -(q 2 • τ ) 2 .
Then the τ -invariance of Z(|g|) implies that

Q := Q 1 + iQ 2 ∈ C(X, τ )
and that Q, restricted to X \ Z(g), coincides with q.

We are now able to show that C(X, τ ) is a Bézout-ring if X is an Fspace. Our result includes the known facts that under this topological condition on X, C(X, R) and C(X, C) are Bézout rings (see [14, p. 208], [36, p. 741], [6]). To our big surprise, though, the converse, known to be true for C(X, K), does no longer hold for C(X, τ ). Theorem 6.11. Let X be a compact Hausdorff space. Then

(1) C(X, K) is a pseudo-Bézout (hence Bézout ring) if and only if X is an F -space. In that case, if f, g ∈ C(X, K), then

I(f, g) = I(|f | + |g|).
(2) C(X, τ ) is a Bézout-ring if X is an F -space.

(3) There exists a compact space X not enjoying the F -property, and a continuous involution τ on X such that C(X, τ ) is a Bézout ring.

Proof.

(1) Suppose that C(X, K) is a pseudo-Bézout ring. Then, in particular, for each real-valued continuous function f , a gcd of f and |f | exists. By Lemma 6.3, f = u|f | for some u ∈ C(X, R). By Lemma 6.9, X is an F -space. The converse follows from (or as in) (2).

(2) Suppose that X is an F -space and let f ∈ C(X, τ ). Let

F (x) = f (x) |f (x)| + |g(x)| if x ∈ X \ [Z(f ) ∩ Z(g)]
and

G(x) = g(x) |f (x)| + |g(x)| if x ∈ X \ [Z(f ) ∩ Z(g)].
Since X \ [Z(f ) ∩ Z(g)] is the cozero-set of |f | + |g|, we may conclude from Corollary 6.10 that the bounded functions F and G admit continuous extensions to functions in C(X, τ ). Thus (3) Let X be an infinite compact F -space and let x 0 ∈ X be a non-P -point 8 (note that such points exist, since otherwise X would be a finite set; see [14, p. 212]). Consider a second copy of X and glue those copies, denoted by X 1 and X 2 , together at x 0 .9 The result is a compact set Y that is not an F -space. In fact, let f ∈ C(X), f not constant in a neighborhood of x 0 . Hence g defined by g

f = F (|f | + |g|) and g = G(|f | + |g|),
(x) = |f (x) -f (x 0 )| if x ∈ X 1 and g(x) = -|f (x) -f (x 0 )| if x ∈ X 2 is continuous on Y .
But the closures of the cozero-sets {y ∈ Y : g < 0} and {y ∈ Y : g > 0} are not disjoint; x 0 is the common intersection. Hence Y is not an F -space. Now let τ be defined on Y by declaring the point x 2 ∈ X 2 to be the image of 10 Then τ is a continuous involution on Y with unique fixed point x 0 . We claim that the associated algebra C(Y, τ ) has the Bézout property. In fact, let h, k ∈ C(Y, τ ). Since X is an F -space, d := gcd(f, g) exists as a function in C(X) and h C(X) + k C(X) = d C(X). We may assume that d(x 0 ) is real (otherwise rotate). Now let D(y) = d(y) if y ∈ X 1 and D(y) = d(τ (y)) if y ∈ X 2 . At x 0 , D is well defined and so

x 1 ∈ X 1 if x 1 = x 2 in X.
D ∈ C(Y, τ ). It is now obvious that D C(Y, τ ) = h C(Y, τ ) + k C(Y, τ ).
We remark that (2) can also be shown by applying (1) directly. In fact if f, g ∈ C(X, τ ), then |f |+|g| ∈ C(X, τ ) and, by ( 1 

d + d • τ = (k + k • τ )f.
Hence, in C(X, τ ), we also have I(f, g) = I(|f | + |g|). We aimed for the present presentation, though, in order to have an independent and easy analytic approach to the known assertion (1). Definition 6.12. Let us call a compact Hausdorff space a local Fspace, if for every x ∈ X there exists a closed neighborhood N of x such that N is an F -space. Theorem 6.13. Let X be a compact Hausdorff space and suppose that the involution τ has no fixed points in X. Then the following assertions are equivalent.

(1) C(X, τ ) is a Bézout ring;

(2) X is a local F -space;

(3) X is an F -space.

Proof. (1) =⇒ (2) By [START_REF] Mortini | Stable ranks for the real function algebra C(X, τ )[END_REF]Lemma 5.8], X can be covered by finitely many open sets V j associated with closed sets S j such that V j ⊆ S j and that S j ∩ τ (S j ) = ∅. Now C(S j , C) = C(X, τ )| S j . By assumption, C(X, τ ) is Bézout; so C(S j , C) is Bézout, too. Thus, by Theorem 6.11(1), S j is an F -space. Henceforth, X is a local F -space.

The following argument has been kindly communicated to us by Jan van Mill.

(2) =⇒(3) Let U and V be two disjoint cozero sets in X. We need to show that U and V are completely separated; that is U ∩ V = ∅.

Suppose, to the contrary, that x ∈ U ∩ V = ∅. By hypothesis there is a closed neighborhood N of x that is an F -space. Moreover, U ∩ N and V ∩ N are (relatively open and non-void) disjoint cozerosets in N. Since N is a compact F -space, the closures (within N) of U ∩ N and V ∩ N are disjoint. These closures, though, coincide with

U ∩ N ∩ N = U ∩ N, respectively V ∩ N . Let O be an open set with x ∈ O ⊆ N. Since U ∩ O ⊆ U ∩ O ⊆ U ∩ N and V ∩ O ⊆ V ∩ O ⊆ V ∩ N we obtain the contradiction that x ∈ U ∩ V ∩ O ⊆ U ∩ N ∩ V ∩ N = ∅.
We conclude that U ∩ V = ∅.

(3) =⇒ (1) This is in Theorem 6.11.

An analysis of the proof shows that a similar result is true if the set of fixed points of τ is open-closed in X.

Function spaces of several variables

In this section we prove that in the setting of several complex variables, none of the classical natural rings of holomorphic functions are Bézout. The origin in C n is denoted by 0 n . Definition 7.1. Let Ω 0 (C n ) be the germ of functions holomorphic in a neighborhood 11 of the origin in C n , and let S ⊆ C n be a set with 0 n ∈ S • .

(1) Let R either be a subring of Ω 0 (C n ) or a subring of C S , the space of all complex-valued functions defined on S.

We say that R is k-stable at 0 n if it has the following property: let f ∈ Ω 0 (C n ) and suppose that there is a neighborhood U ⊆ S of 0 n such that z j f | U ∈ R| U for j = 1, ..., k. Then f admits an extension to a function in R.

(2) R is said to be G-stable12 at 0 n if for all f ∈ R there exist h j ∈ R, (j = 1, . . . , n), such that

f (z) -f (0 n ) = n j=1 z j h j (z),
where z = (z 1 , . . . , z n ).

Of course, if R is k-stable at 0 n , then R is m-stable at 0 n for every m ≥ k.

In dimension one, our notion of 1-stability at a ∈ K • is weaker than the notion of "stable algebras" considered in Lemma 3.2, since the 1-stability only garantees that if (za)f ∈ A(K)| U for some f holomorphic in a neighborhood U of a, then there is an extension F of f that belongs to A(K); but not necessarily f itself (when we start from such an f ∈ A(K)). Our "local" definition though, will suffice to unveil rings that do not enjoy the Bézout property.

The following Lemma is well known in the theory of holomorphic functions of several complex variables.

Lemma 7.2. Let f ∈ Ω 0 (C n ), n ≥ 2. Suppose that the zero set, Z(f ), of f is contained in the (n -2)-(complex) dimensional set {z ∈ C n : z 1 = 0, z 2 = 0}. Then f is zero-free.
Proof. By [21, p. 247], functions in Ω 0 (C k ), k ≥ 2, have no isolated zeros. Now assuming that Z(f ) = ∅, let (0, 0, w 3 , . . . , w n ) ∈ Z(f ) ⊆ {z ∈ C n : z 1 = 0, z 2 = 0}.

Consider the function F of two complex-variables, defined by

F (z 1 , z 2 ) = f (z 1 , z 2 , w 3 , . . . , w n ).
Then F ∈ Ω 0 (C 2 ) and 0 is an isolated zero of F . This is a contradiction.

Proposition 7.3. The algebra A(K) is 2-stable at (0, 0) for every compact set K ⊆ C 2 with (0, 0) ∈ K • .

Proof. Let f ∈ Ω 0 (C 2 ). Suppose that for j = 1, 2 there exist h j ∈ A(K) such that for every z in a neighborhood U ⊆ K of (0, 0)

h j (z) = z j f (z).
Then f admits a holomorphic extension F to K • \ {(0, 0)} given by h 1 /z 1 if z 1 = 0 and h 2 /z 2 if z 2 = 0. Since (0, 0) is an isolated singularity of F , it is removable. Now it easy to check that F admits a continuous extension to ∂K, because (0, 0) ∈ K • . Thus F ∈ A(K) and so A(K) is 2-stable at (0, 0). Further examples of 2-stable rings are the full germ Ω 0 (C n ) and the ring of entire functions in C n . For an open set Ω ⊆ C n , let H(Ω) be the set of all holomorphic functions on Ω. If Ω is a pseudoconvex domain in C n , n ≥ 2, then by the Oka-Hefer theorem, H(Ω) is G-stable at every point (see [22]). More advanced examples of G-stable rings are A(Ω), where Ω is a strictly pseudoconvex domain with C 2 -boundary in C n (see [START_REF] Øvrelid | Generators of the maximal ideals of A(D)[END_REF]). See also [START_REF] Backlund | Counterexamples to the Gleason problem[END_REF] for some counterexamples. Theorem 7.4.

(1) Let R be a 2-stable subring of Ω 0 (C n ) containing the polynomials, n ≥ 2. Then R does not have the pre-Bézout property.

(2) Let R be a G-stable subring of Ω 0 (C n ) containing the polynomials, n ≥ 2. Then R does not have the pre-Bézout property of order n.

(3) Let R be a G-stable subring of H(Ω) containing the polynomials, n ≥ 2. Then R does not have the pre-Bézout property of order n.

Proof.

(1) R is 2-stable. First we show that d = gcd(z 1 , z 2 ) exists and that d can be chosen to be the unit element 1. In fact, let g ∈ R be a divisor of z 1 and z 2 . Then z j = gf j for f j ∈ R, (j = 1, 2). Obviously, the zero set, Z(g), of g is contained in the (n -2)-(complex) dimensional space {w ∈ C n : w 1 = w 2 = 0}. By Lemma 7.2, g is zero-free. Hence 1/g ∈ Ω 0 (C n ) and so z

j (1/g) = f j ∈ R. Since R is 2-stable, 1/g ∈ R.
Thus g is a unit in R and so g divides 1. That is, gcd(z 1 , z 2 ) = 1. It is clear that 1 does not belong to the ideal I(z 1 , z 2 ).

(2), (3) R is G-stable. Let g be a divisor of z j , j = 1, . . . , n. Then

z j = gf j for f j ∈ R. It is clear that Z(g) ⊆ {0 n }; hence, by Lemma 7.2, g is zero-free. Moreover, since R is G-stable, g(z) -g(0 n ) = n j=1 z j h j (z) = g(z) n j=1 f j (z)h j (z),
where h j ∈ R. Thus g is a divisor of gg(0 n ). Since g(0 n ) = 0, we see that g divides g(0 n ). Hence, gcd(z 1 , . . . , z

n ) = 1. But 1 / ∈ I(z 1 , . . . , z n ). Definition 7.5. Let S ⊆ C n , 0 ∈ S • and let R be a subring of C S , (1) R is said to be inversionally closed, if f is invertible in R when- ever f ∈ R and Z(f ) = {z ∈ S : f (z) = 0} is empty. (2) R is said to be locally holomorphic at 0 n if every element in R
is holomorphic in a neighborhood of 0 n (the neighborhood may depend on the element considered). Proof. First we show that d = gcd(z 1 , . . . , z n ) exists and that d can be chosen to be the unit element 1. In fact, let g ∈ R be a divisor of z j , j = 1, . . . , n. Then z j = gf j for f j ∈ R. Hence Z(g) ⊆ {0 n }. Since g is holomorphic in a ball around 0 n , Lemma 7.2 implies that g(0 n ) = 0, and so g is zero free on S. Since R is inversionally closed, g is invertible in R. Thus gcd(z 1 , . . . , z n ) = 1. But 1 / ∈ I(z 1 , . . . , z n ). Thus R does not have the pre-Bézout property of order n.

If we delete condition (c), then we obtain the following weaker result. Theorem 7.7. Let S ⊆ C n , n ≥ 2. Suppose that 0 n is an interior point of S. Let R be a subring of C S satisfying the following two conditions: Proof. Suppose, to the contrary, that R is a Bézout ring. If d is a divisor of z j , (j = 1, . . . , n), then, as shown above, d has no zeros on S. Since R is pseudo-Bézout, this holds in particular for d = gcd(z 1 , . . . , z n ). But d / ∈ I(z 1 , . . . , z n ), because every element in this ideal vanishes at 0 n . This contradicts the assumption that R has the pre-Bézout property.

As special cases, we obtain the following assertions for the algebras A(K), R(K) and P (K). Corollary 7.8.

i) Let K ⊆ C n be compact with K • = ∅. Then A(K) does not have the pre-Bézout property of order n, n ≥ 2.

ii) If we additionally assume that K ⊆ C n is polynomially (respectively rationally) convex, then P (K) (respectively R(K)) does not have the pre-Bézout property of order n, n ≥ 2.

Proof. This follows from Theorem 7.6 by noticing that A(K), P (K) and R(K) are inversionally closed under these conditions on K.

In the Corollary above, K had non-empty interior. If we delete this assumption, then we obtain the following companion to Theorem 3.1. Theorem 7.9. Let K = C 1 × C 2 ⊆ C × C n-1 be compact and suppose that C 1 is infinite. Let A be a uniformly closed subalgebra of C(K) with C[z 1 ] ⊆ A. Then A does not have the Bézout property.

Proof. Let K 1 = C 1 × {0 n-1 }. We claim that P (K 1 ) ⊆ A| K 1 . Let f ∈ P (K 1 ) and choose a sequence of polynomials p j ∈ C[z 1 , . . . , z n ] with max

z∈K 1 |p j (z) -f (z)| → 0.
Then (q j ) defined by q j (z 1 , . . . , z n ) = p j (z 1 , 0, . . . , 0) is a Cauchy sequence in A (here we have used that C[z 1 ] ⊆ A). Because A is complete, (q j ) converges to an element Q in A. Restricting to K 1 gives Q| K 1 (z 1 , 0, . . . , 0) = f (z 1 , 0, . . . , 0). Thus Q| K 1 = f and so P (K 1 ) ⊆ A| K 1 . Since P (K 1 ) is isomorphic to P (C 1 ), and C 1 ⊆ C is infinite and compact, we obtain from Theorem 3.1 that P (K 1 ) is not a Bézout ring.

As a consequence, A does not have the Bézout property, either. In fact, let f, g ∈ P (C 1 ) be the functions from Theorem 3.1. They do not have a gcd in P (C 1 ) or C(C 1 ). For z = (z 1 , . . . , z n ) ∈ K 1 , let f (z) = f (z 1 ) and ǧ(z) = g(z 1 ). Then f and ǧ belong to P (K 1 ). Because C(C 1 ) is isomorphic to C(K 1 ), f and ǧ do not have a gcd in C(K 1 ). Since P (K 1 ) ⊆ A| K 1 , there exist F, G ∈ A such that F | K 1 = f and G| K 1 = ǧ. Now assuming that A is Bézout, we would get functions d, φ, ψ ∈ A such that d = φF + ψG and such that d divides F and G. Restricting to K 1 , shows that d| K 1 divides f and ǧ in C(K 1 ) and

d| K 1 ∈ C(K 1 ) f + C(K 1 )ǧ.
Accordingly, d| K 1 would be a gcd in C(K 1 ) of f and ǧ. This is a contradiction.

Thus A is not Bézout.

Bézout property, Bass stable rank

In this section we will estimate the Bass stable rank of Bézout domains having no zero-divisors. It turns out that the proof of Theorem 8.1 works in exactly the same manner as that of a result by Zabavskyi [37, p. 666] telling us that any Bézout domain with the additional property of being Hermite (in the sense of Kaplansky, see [START_REF] Kaplansky | Elementary divisors and modules[END_REF], [START_REF] Gillman | Some remarks about elementary divisor rings[END_REF] or [START_REF] Henriksen | Some remarks on elementary divisor rings II[END_REF]) has the Bass stable rank less than or equal to two. For the reader's convenience, we recopy that short proof here, with indication of the necessary changes for our present setting. We conclude that bsr R ≤ 2.

Here are some easy examples showing that both cases bsr R = 1 or 2 can occur. 1) Let R be a field: then R is a commutative unital Bézout ring with bsr R = 1;

2) If R = Z, then R is a commutative unital Bézout ring (Euclidean algorithmn) and bsr R = 2. (Note that the tuple (3, 5) generates Zfor example 2 • 3 + (-1) • 5 = 1, but (3, 5) is not reducible, because the equation 3 + p5 = ±1 has no solution in Z.)

3) The algebra H(C) of entire functions is a Bézout ring [24, p. 109] and has Bass stable rank 1, [START_REF] Pelling | Linear compositions of two entire functions, A solution by L. Rubel to problem 6117[END_REF] and [START_REF] Corach | Stable rank in holomorphic function algebras[END_REF].

Corollary 8.2. Let A be a regular, complex, unital Banach algebra without zero-divisors, and let M(A) be its spectrum. Suppose that A has the Bézout property. Then the covering dimension of M(A) is less than or equal to 3. These results are no longer true if A has zero-divisors. For example, if X is an F -space of dimension n, then C(X, C) is a regular Bézout ring of stable rank ⌊n/2⌋+1 (see [6] for the existence of such F -spaces). Theorem 8.3. For n ≥ 4, let K ⊆ C n be a compact set with K • = ∅. Suppose that A is a subring of A(K) such that the coordinate functions z j , (j = 1, . . . , n), belong to A. Then bsr A ≥ 3, and A is not a Bézout domain.

Proof. Without loss of generality, let 0 ∈ K • and B := {z ∈ C n : |z| ≤ 1} ⊆ K • , where |z| = n j=1 |z j | 2 with z = (z 1 , . . . , z n ). Consider the restriction ring R = A| B . Note that R ⊆ A(B) and that R does not have zero-divisors, although A may possess some.

We show that bsr R ≥ 3. Having done this, we conclude from Theorem 8.1 that R does not have the Bézout property. Accordingly, A has not the Bézout property either.

To show the assertion on the stable rank, let k = ⌊ n 2 ⌋ and Thus d √ k is a common divisor of f and g. But as we have seen in section 2, a proper multiple of a gcd cannot be a gcd whenever the algebra is an integral domain. This contradiction shows that a gcd(f, g) cannot exist.

Definition 2. 1 .

 1 Let R be a commutative unital ring. Let a, b ∈ R. An element d ∈ R is called a greatest common divisor of a and b (denoted by d = gcd(a, b)), if the following two properties hold (1) d divides a and b; that is there are x, y ∈ R such that a = xd and b = yd; (2) if r ∈ R is a common divisor of a and b, then r divides d.

  common divisor of a and b (denoted by d = pgcd(a, b)), if the following properties hold (1) d is a greatest common divisor of a and b; (2) there is no proper multiple rd of d which divides both a and b. Observation 2.3. If d 1 and d 2 are two pgcds of a and b, then d 2 = ud 1 for some invertible element u ∈ R. Proof. Since d 1 and d 2 are gcds, there are x 1 and x 2 ∈ R such that d 2 = x 2 d 1 and d 1 = x 1 d 2 . If x 2 were not a unit, then d 2 would be a proper multiple of d 1 that divides a and b. Thus d 1 can't be a pgcd. Observation 2.4. Suppose that d = gcd(a, b) and that d is not a zerodivisor. Then d is a pgcd of a and b. Proof. Let rd be a common divisor of a and b. Then rd divides d; that is x(rd) = d for some x ∈ R. Hence d(1xr) = 0. Since, by assumption, d is not a divisor of zero, we conclude that xr = 1. Thus r is invertible.

  ]. Definition 2.6. Let R be a commutative unital ring. 1) R is a pre-Bézout ring if d = gcd(a, b) belongs to the ideal I(a, b) generated by a, b ∈ R, whenever d exists. 2) R is a quasi pre-Bézout ring if d = pgcd(a, b) belongs to the ideal I(a, b) generated by a, b ∈ R, whenever d exists.

1 =

 1 pa + qb =⇒ x = p(ax) + qbx = p(by) + qbx = b(py + qx). Thus b divides x.

x

  = x gcd(a, b) = gcd(xa, xb) = gcd(yb, xb) = b gcd(x, y). Hence b divides x and so by = ax = a(b gcd(x, y)) implies that (a gcd(x, y)y)b = 0.

Proof.

  Let d = gcd(f, g). By definition of the pre-Bézout property, d = xf + yg for some x, y ∈ R. Thus d ∈ I(f, g) ⊆ I(d). Hence I(d) = I(f, g).

  The associated interpolating Blaschke product b now has the property that Z(b) ⊆ Z(F ) ∩ Z(G). By [3, p. 90] or [16, p. 2], b divides F and G. Thus bd divides B and Bχ E . Hence bd must divide the assumed gcd d. That is, there is

Theorem 5 . 1 .

 51 The algebra A = H ∞ S has the pre-Bézout property if and only if S = T, that is if A = A(D), and A has the pseudo-Bézout property if and only if

  as above, D = |F | + |G| divides F and G and D(x 0 ) = 0. Hence dD divides f and g. Since d is a gcd, dD divides d. So dDk = d for some k ∈ C(X, τ ). Thus d(Dk -1) ≡ 0. By (6.1), Z(d) • ∩ Y = ∅. Thus Y \ Z(d) is dense in Y and so Dk -1 ≡ 0 on Y . Evaluating at x 0 , yields a contradiction: 1

Lemma 6. 3 .

 3 The functions f and |f | have a gcd in C(X, τ ) if and only if

Proof.

  Let d be a gcd of f and |f |. Write f = F d and |f | = Gd. By the proof of Theorem 6.1, F and G have no common zero outside Z(f ) • . But actually more holds. We claim that G and F are zero free on X \ Z(f ) • . To see this, note that |f | = |F | |d| = |G| |d|; so |F

Proposition 6. 4 .

 4 Let X be a compact Hausdorff space, and let f = u + iv ∈ C(X, C), v ≡ 0. Then f and |f | have a gcd if and only if u and v have a positive gcd. In that case, |f | = √ u 2 + v 2 and |u| + |v| are gcds of u and v. Proof. Let d be a gcd of f and |f |. Then, by Lemma 6.

  Similarily for v. Hence I(u, v) ⊆ I(|u| + |v|) and so I(u, v) = I(|u| + |v|). Whence |u| + |v| is a positive gcd of u and v.

  ) and f and |f | do not have a gcd. Proposition 6.6. Let f ∈ C(X, τ ) have maximal support. Suppose that f and |f | have a gcd. Then for every τ -invariant closed subset E of X with E ∩ Z(f ) = ∅, the restriction f | E admits an extension to an invertible function in C(X, τ ).

  and so |f | + |g| is a common divisor. But if d is an arbitrary divisor of f and g, then |d| divides |f | and |g| and so |d| divides |f | + |g|. Again, by Corollary 6.10, |d|/d = d/|d| admits a continuous extension (from X \ Z(d) to X) to a function in C(X, τ ). Thus d divides |d|. Hence d divides |f | + |g| and so |f | + |g| is a gcd of f and g. Thus C(X, τ ) is a pseudo-Bézout ring. By Theorem 6.1, if a gcd (f, g) exists, it belongs to the ideal generated by f and g. Hence C(X, τ ) has the Bézout property and I(f, g) = I(|f | + |g|).

  ), we have that |f | + |g| = af + bg for some a, b ∈ C(X, C). Now A := (a + a • τ )/2 and B := (b + b • τ )/2 ∈ C(X, τ ) and |f | + |g| = Af + Bg. Moreover, if d ∈ C(X, C) divides f and g, then d + d • τ divides f and g, too. In fact, d = kf implies d • τ = (k • τ )f and so

Theorem 7 . 6 .

 76 Let S ⊆ C n , n ≥ 2. Suppose that 0 n is an interior point of S. Let R be a subring of C S satisfying the following three conditions:(a) R is locally holomorphic at 0 n ; (b) R contains the set C[z 1 , . . . , z n ] of holomorphic polynomials;(c) R is inversionally closed. Then R does not have the pre-Bézout property of order n.

  (a) R is locally holomorphic at 0 n ; (b) R contains the set C[z 1 , . . . , z n ] of holomorphic polynomials. Then R does not have the Bézout property.

Theorem 8 . 1 .

 81 Let R be a commutative unital ring without zero-divisors. Suppose that R has the Bézout property. Then bsr R ≤ 2.Proof. Let (a, b, c) ∈ R 3 satisfy aR + bR + cR = R. Since R is Bézout, aR + bR = dR,where d is a gcd of f and g. Moreover, dR + cR = R. Since d is not a divisor of zero, by Observation 2.10, gcd(a/d, b/d) = 1. Since R is Bézout, there exist u, v ∈ R with (a/d)u + (b/d)v = 1 13 . As in Zabavskyi, we now show that (a + cv)R + (bcu)R = R. In fact, (a + cv)u + (bcu)v = d and (a + cv)(b/d) -(bcu)(a/d) = c[v(b/d) + u(a/d)] = c. Thus d, c ∈ (a + cv)R + (bcu)R. Hence (a + cv)R + (bcu)R = R.

  Proof. Let d := dim M(A). By [7, p. 299], bsr A = d 2 + 1. By Theorem 8.1, it follows that d 2 ≤ 1. Hence d ≤ 3.

z

  j z k+j .Then the (k + 1)-tupel T = (z 1 , . . . , z k , g) is invertible in R k+1 because 1 = k j=1 z k+j z j + g(z) ∈ I(z 1 , . . . , z k , g). Moreover, d √ k divides g because (d √ k)(S √ k) = Sf = g and S √ k ∈ A(D), since k(1) = 0.

  Observation 2.10. Let R be a commutative unital ring.i) If d ∈ R is not a zero-divisor and if d = gcd(f 1 , . . . , f n ), then

	f 1 d , . . . , fn d have no common (non invertible) factors; that is gcd( f 1 d , . . . , fn d ) is a unit.

see Definition 2.6

see Definition 6.7

Since a proof never appeared in literature, we present it in the addendum to this paper

Note that here Z(f ) denotes the zero set of the Gelfand transform of f on the maximal ideal space K of P (K).

the formula is derived in[START_REF] Mortini | Stable ranks for the real function algebra C(X, τ )[END_REF].

This notion of an F -space is not to be confused with the notion of an F -space in the theory of metrizable topological vector spaces

Recall that x 0 is a P -point if every f ∈ C(X, K) is constant in a neighborhood of x 0 .

This can be realized by setting Y = {(x, x 0 ) : x ∈ X} ∪ {(x 0 , x) : x ∈ X}.

We may set τ (x, x 0 ) = (x 0 , x) and τ (x 0 , x) = (x, x 0 ).

G stands for Gleason; one also says that "R has the Gleason property at 0 n " see e.g.[START_REF] Backlund | Counterexamples to the Gleason problem[END_REF],[START_REF] Lemmers | Solving the Gleason problem on linearly convex domains[END_REF] 

To achieve this equality, Zabavskyi used that R is Hermite
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But T is not reducible in R; otherwise there is (h 1 , . . . , h k ) ∈ R k such that (z 1 + h 1 g, . . . , z k + h k g) is invertible in R k ; in particular there is no common zero in B. Hence, by using the fact that for k j=1 |z

is a continuous, zero-free extension of the identity function (z 1 , . . . , z k ) from the unit sphere ∂B 2k ⊆ R 2k to the unit ball B 2k . A contradiction to Brouwer's fixed point theorem (or its siblings). Thus we have found a non-reducible, invertible k + 1-tuple. We conclude that bsr R > k = ⌊ n 2 ⌋ ≥ 2.

Addendum

Proposition 9.1 ( [START_REF] Von Renteln | Divisibility structure and finitely generated ideals in the disc algebra[END_REF]). The functions f (z) = 1z and

Proof. Suppose, to the contrary, that d = gcd(f, g) exists. We claim

Since q ∈ A(D), we conclude that S/u, and so S ∈ A(D). A contradiction.

Next we look for a noninvertible multiple of d that also divides f and g. Since d divides f , there is k ∈ A(D) such that dk = f . By the paragraph above, k is not invertible. Since f is zero free outside {1}, we deduce that Z(k) = {1}. Now