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Fundamental Limits of Simultaneous Energy and
Information Transmission

Selma Belhadj Amor and Samir M. Perlaza

Abstract—In this paper, existing results regarding the funda-
mental limits of simultaneous energy and information trans-
mission in wireless networks are reviewed. In point-to-point
channels, the fundamental limits on the information rate given
a minimum energy rate constraint are fully characterized by
the notion of information-energy capacity function introduced
by Varshney in 2008. In a centralized multi-user channel, the
fundamental limits on the information rates given a minimum
energy rate constraint are described by the notion of information-
energy capacity region. Alternatively, in a decentralized multi-
user channel, these fundamental limits are described by the
information-energy Nash region. All these fundamental limits
reveal the intrinsic trade-off between the conflicting tasks of
information and energy transmission.

I. INTRODUCTION

Efficient energy utilization is among the main challenges
of future communication networks in order to extend their
lifetime and to reduce operating costs. Networks rely generally
on battery-dependent devices. In some cases, such battery-
dependency is relevant at a point in which the battery lifetime
is the network lifetime as well. This is typically the case
of wireless sensor networks. Once sensors are deployed,
their batteries become generally inaccessible and cannot be
recharged or replaced. Within this context, wireless energy
transmission becomes an alternative to eliminate the need
for in situ battery recharging. Nonetheless, for decades, the
traditional engineering perspective was to design separately
information transmission systems and energy transmission
systems. However, this approach has been shown to be sub-
optimal [1] due to the fact that a radio frequency (RF) signal
carries both energy and information. From this standpoint, a
variety of modern wireless systems and proposals question
the conventional separation approach and suggest that RF
signals can be simultaneously used for information and energy
transmission [2].

Typical examples of communications technologies already
exploiting this principle are radio frequency identification
(RFID) devices and power line communications. Beyond the
existing applications, simultaneous energy and information
transmission (SEIT) appears as a promising technology for
a variety of emerging applications including low-power short-
range communication systems, sensor networks, machine-to-
machine networks and body-area networks, among others [3].

When a communication system involves sending energy
along with information, it should be designed to simulta-
neously meet two goals: (a) To reliably transmit energy at
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a given rate with a sufficiently small probability of energy
outage; and (b) To reliably transmit information at a given
rate with a sufficiently small probability of error. However,
these two tasks are usually conflicting. In fact, from a global
perspective, imposing a constraint on an energy rate impacts
deeply the overall performance of the network components.
In order to better understand this impact and to identify the
optimal behavior of the network, one needs to determine the
fundamental limits on data transmission rates while guar-
anteeing a given energy rate constraint and vice-versa. An
object of central interest in this perspective is the information-
energy capacity region which is the set of all information-
energy rate tuples at which reliable transmission of infor-
mation/energy is possible. In a decentralized network, each
decision maker aims to maximize its own individual reward
by appropriately choosing a particular transmit or receive
configuration The individual choice of each component does
not necessarily achieve the capacity of the network, in other
words, the individual choice is not necessarily optimal from
a global viewpoint. Hence, the information-energy capacity
results are not sufficient to describe the fundamental limits
of these networks. The asymptotic overall performance of the
network can be identified in the case in which each decision
maker, locally maximizes its individual gain given its own
performance metrics. Game theory provides an interesting
framework which allows describing the network performance.

This paper reviews the existing results regarding the fun-
damental limits of SEIT in wireless networks. These funda-
mental limits are characterized in terms of information-energy
capacity function in point-to-point channels and in terms of
information-energy capacity region in centralized multi-user
channels. Alternatively, in a decentralized multi-user channel,
these fundamental limits are described by the information-
energy Nash region.

II. POINT-TO-POINT INFORMATION-ENERGY TRADE-OFF

In a point-to-point communication, information and energy
transmission are subject to a trade-off between the information
rate (bits per channel use) and the energy rate (energy units
per channel use) which is evidenced for instance in the
constraints induced in the choice of a given modulation [4].
Consider the transmission of a 4-PAM signal over a point-
to-point channel in the alphabet {−2,−1, 1, 2}. If there is no
received energy rate constraint, one can clearly convey up to 2
bits/ch.use by using all symbols of the constellation. However,
if one requires the received energy rate to be for instance the
maximum possible, the maximum transferable information rate
is 1 bit/ch.use using only the most-energetic symbols.

A. Discrete Memoryless Channels
A discrete memoryless channel (DMC) with energy har-

vester (EH) is characterized by a finite input alphabet X , two
finite output alphabets Y and S, and a conditional probability



distribution PY S|X . Let n denote the transmission blocklength.
At each time t ∈ {1, . . . , n}, if the input symbol xt ∈ X is
transmitted, the probability of observing the channel output
yt ∈ Y at the receiver and the additional output st ∈ S at the
EH is PY S|X(yt, st|xt). In the following, there is no particular
assumption on the the joint distribution PY S .

Within this context, two main tasks are to be simultaneously
accomplished: information transmission and energy transmis-
sion.

1) Information Transmission: The goal of information
transmission is that, over n uses of the channel, the transmitter
conveys a message M to the receiver at rate R bits per channel
use. The message M is uniformly distributed over the set
M , {1, . . . , b2nRc}. The channel input at time t is

Xt = ϕ
(n)
t (M), t ∈ {1, . . . , n}, (1)

for some encoding function ϕ(n)
t of the form ϕ

(n)
t : M→ R.

The receiver observes the random sequence Y n and uses
it to estimate the message M by means of an appropriate
decoding rule M̂ (n) = Φ(n)(Y n) of the form Φ(n) : Yn →M
and the average probability of error is given by

P (n)
error(R) , Pr(M̂ (n) 6= M). (2)

2) Energy Transmission: At each time t, the energy that can
be harvested from the output letter st is given by ω(st) for
some energy function ω : S → R+. For the n-length sequence
sn, the energy that can be harvested is ω(sn) =

∑n
t=1 ω(st)

(Note that the energy that is harvested can also be as a function
of the input sequence). The expected energy rate (in energy-
units per channel use) at the EH is given by

B(n) , 1

n

n∑
t=1

E[ω(St)] . (3)

The goal of the energy transmission is to guarantee that
the expected energy rate B(n) is not less than a given target
energy transmission rate B that must satisfy 0 < B 6 BThresh,
with BThresh is the maximum feasible energy rate. Hence, the
probability of energy outage is defined as follows:

P
(n)
outage(B) = Pr

{
B(n) < B − ε

}
, (4)

for some ε > 0 arbitrarily small.
3) Simultaneous Energy and Information Transmission:

The DMC is said to operate at the information-energy rate
pair (R,B) ∈ R2

+ when the transmitter and the receiver use a
transmit-receive configuration such that: (i) information trans-
mission occurs at rate R with probability of error arbitrarily
close to zero; and (ii) energy transmission occurs at a rate not
smaller than B with energy-outage probability arbitrarily close
zero. Under these conditions, the information-energy rate pair
(R,B) is said to be achievable.

Definition 1 (Achievable Information-Energy Rates). The
(R,B) ∈ R2

+ is achievable if there exists a sequence of
encoding and decoding functions

{
{φ(n)t }nt=1,Φ

(n)
}∞
n=1

such
that both the average error probability and the energy-outage
probability tend to zero as the blocklength n tends to infinity.
That is,

lim sup
n→∞

P (n)
error(R) =0, and (5)

lim sup
n→∞

P
(n)
outage(B)=0. (6)

Often, increasing the energy rate implies decreasing the
information rates and vice versa. This trade-off is accurately
modeled by the notion of information-energy capacity func-
tion. The goal is set to maximize information rate under a
given minimum received energy rate constraint.

Definition 2 (Information-Energy Capacity Function). Let
b ∈ [0, BThresh] denote the minimum energy rate that must
be guaranteed at the input of the energy harvester. For each
blocklength n, define the function C(n)(b) as follows:

C(n)(b) , max
Xn:B(n)>b

I(Xn;Y n) (7)

where the maximization is over all the length-n input se-
quences Xn for which the expected energy rate B(n) is not
smaller than b. The information-energy capacity function for
a minimum energy rate b is defined as

C(b) , lim sup
n→∞

1

n
C(n)(b). (8)

Theorem 1 (Information Capacity Under Minimum Energy
Rate (Theorem 1 in [5])). The supremum over all achievable
information rates in the DMC under a minimum energy rate
b in energy-units per channel use is given by C(b) in bits per
channel use.

4) Examples: This subsection reviews some closed form
expressions (provided in [5]) of information-energy capacity
function in bits per channel use for a minimum energy rate b
for some particular channels to better see the optimal trade-offs
between information and energy rates. Three binary channels
are considered for the special case in which the receiver and
the EH observe the same output sequence, i.e., at each time t,
St = Yt. Thus, the channel law reduces to PY |X .

In a noiseless binary channel, the information-energy ca-
pacity function for a minimum energy rate b is

C(b) =

{
1, if 0 6 b 6 1

2 ,
H2(b), if 1

2 6 b 6 1,
(9)

where H2(·) is the binary entropy function. For any 0 6 b 6 1
2

the energy rate constraint is vacuous and equiprobable inputs
achieve capacity. However, when 1

2 6 b 6 1, the capacity-
achieving distribution is Bernouilli with parameter b. Note that
the capacity is monotonically decreasing with b and thus the
more energy is requested, the more the transmitter is forced to
use the most energetic symbol which reduces the information
rate.

In a binary symmetric channel with cross-over probability
p, the information-energy capacity function for a minimum
energy rate b is

C(b) =

{
1−H2(p), if 0 6 b 6 1

2 and
H2(b)−H2(p), if 1

2 6 b 6 1− p. (10)

In the energy-unconstrained problem, equiprobable inputs are
capacity-achieving and yield an energy rate of 1

2 . For any
0 6 b 6 1

2 the energy rate constraint is vacuous. For b > 1
2 ,

the distribution must be perturbed so that the symbol 1 is
transmitted more frequently to increase the energy rate. The
maximum energy rate that is feasible is 1−p, when 1 is always
transmitted.



In the Z-channel with 1 to 0 cross-over probability ε, i.e.,

the binary DMC with PY |X =

[
1 0
ε 1− ε

]
, the information-

energy capacity function for a minimum energy rate b is

C(b) =

{
C(0), if 0 6 b 6 (1− ε)π∗ and
H2(b)− b

1−εH2(ε), if (1− ε)π∗ 6 b 6 1− ε,
(11)

with C(0) the unconstrained capacity [6] of this channel which
is given by

C(0) = log2

(
1− ε 1

1−ε + ε
ε

1−ε

)
(12)

and which is achieved using a Bernouilli input distribution of
parameter

π∗ =
ε

ε
1−ε

1 + (1− ε)ε ε
1−ε

. (13)

The three examples show that the more stringent the energy
rate constraint is, the more the transmitter needs to adapt its
optimal strategy and switch over to using the most energetic
symbol.

B. Gaussian Memoryless Channel
The results in [5] extend directly to memoryless, continuous

alphabet channels. In the memoryless Gaussian channel with
EH, at each channel use t ∈ {1, . . . , n}, if Xt denotes the real
symbols sent by the transmitter, the receiver observes the real
channel output

Yt = h1Xt + Zt, (14)

and the EH observes

St = h2Xt +Qt, (15)

with h1 and h2 constant non-negative channel coefficients
satisfying the L2-norm condition: ‖h‖2 6 1, with h ,
(h1, h2)T to ensure the principle of conservation of energy. The
noise sequences Zt and Qt are identically distributed standard
real Gaussian variables. The output energy function for this
channel is given by ω(s) , s2 and the input sequence {Xt}
satisfies an average input power constraint

1

n

n∑
t=1

E
[
X2
t

]
6 P, (16)

with P the average transmit power of the transmitter in energy-
units per channel use. The channel is fully described by the
signal to noise ratios (SNRs) defined as SNRi , h2iP , for
i ∈ {1, 2}, given the normalization over the noise powers.

In the memoryless Gaussian channel the alphabets are con-
tinuous. Nonetheless, information and energy transmissions
can be described similarly to the DMC (where the finite input
and output alphabets are replaced by R). The achievability,
the information-energy capacity region, and the information
capacity function can be defined similarly to the DMC when
taking into account the average input power constraint P .

The information capacity of the Gaussian channel without
minimum energy rate constraint is C(0, P ) = 1

2 log2(1 +
SNR1) and the maximum energy rate which can be achieved
at the input of the EH is BThresh , 1 + SNR2.

For any 0 6 b 6 1+SNR2, the information-energy capacity
function is

C(b, P ) = max
X:E[X2]≤P and E[S2]>b

I(X;Y ). (17)

Following similar steps as in [5] and [7], it can be shown
that

C(b, P ) =
1

2
log (1 + SNR1) , (18)

which equals the capacity of the Gaussian channel without EH
under average input-power constraint P , achieved using zero-
mean Gaussian inputs with variance P . Thus in this case for
any feasible energy rate 0 6 b 6 1 + SNR2 the information
optimal strategy is unchanged.

In the Gaussian channel with peak power constraint, de-
pending on the value of the amplitude constraint a trade-
off between the information and energy rates may be ob-
served (See [5] and [7]).

III. MULTI-USER SIMULTANEOUS ENERGY AND
INFORMATION TRANMISSION

Unlike point-to-point setups, multi-user SEIT requires gen-
erally additional transmitter cooperation/coordination to in-
crease the energy rate at the input of the EH. In a network in
which one single transmitter simultaneously transmits energy
to an EH and information to a receiver. If this transmitter
is required to deliver an energy rate that is less than what
it is able to deliver by only transmitting information, it is
able to fulfill the task independently of the behavior of the
other transmitters since it can use all its power budget to
maximize its information transmission rate and it is still is
able to meet the energy rate constraint. Alternatively, when
the requested energy rate is higher than what it is able
to deliver by only transmitting information, its behavior is
totally dependent on the behavior of the other transmitters.
In this case, the minimum energy rate constraint drastically
affects the way that the transmitters interact with each other.
More critical scenarios are the case in which the requested
energy rate is less than what all transmitters are able to
deliver by simultaneously transmitting information using all
the available individual power budgets. In these cases, none
of them can unilaterally ensure reliable energy transmission
at the requested rate. Hence, transmitters must engage in a
mechanism through which an energy rate that is higher than
the energy delivered by exclusively transmitting information-
carrying signals is ensured at the EH. This suggests for
instance, the use of power splits in which the transmitted
symbols have an information-carrying and an energy-carrying
components. The latter typically consists in signals that are
known at all devices and can be constructed such that the
energy captured at the EH is maximized. Moreover, the
information-energy trade-off takes different facets depending
on whether or not the network is centralized. In the former,
there exists a central controller that determines an operating
point and indicates to each transmitter and its corresponding
receiver(s) the appropriate transmit-receive configuration to
achieve such a point. In the latter, each network component
is considered to be autonomous and seeks to determine its
own transmit-receive configuration in order to maximize its
individual benefit. Clearly, the operating points of the network
are significantly different depending on the degree of control
over all devices. That is, in a centralized network, all achiev-
able information-energy rates are feasible operating points as
the base-station can impose a particular operating point via a
signaling system. However, in a fully decentralized network,
only stable operating points are feasible, as each device tunes



its transmit-receive configuration aiming to maximizing its
own individual performance.

To understand the optimal behavior of SEIT in a multi-
user network, an important scenario to look at is the multi-
access channel (MAC) with an EH. From an information
theoretic viewpoint, the information-energy trade-off was stud-
ied by Fouladgar et al. [8] in the discrete memoryless two-
user MAC. Recently, Belhadj Amor et al. [9], [10] studied
SEIT in the centralized Gaussian MAC (G-MAC) with and
without channel-output feedback [9], [10] as well as in the
decentralized G-MAC [11].

A. Gaussian Multi-Access Channel
In the channel model described in section II-B, the single

transmitter is replaced by two transmitters 1 and 2 that wish
to send two independent messages M1 and M2 to the single
receiver at rates R1 and R2. This channel model is called two-
user memoryless Gaussian multiple access channel (G-MAC)
with an EH. Transmitter i has an input power constraint Pi and
channel coefficients h1i and h2i to the receiver and the EH,
respectively. These channel coefficients satisfy the L2-norm
condition: ∀j ∈ {1, 2}, ‖hj‖2 6 1, with hj , (hj1, hj2)T

in order to meet the energy conservation principle and SNRji,
with ∀(i, j) ∈ {1, 2}2 are defined as: SNRji , |hji|2Pi.
Encoding, decoding, probability of error, probability of energy
outage, and achievability can be defined analogously to the
Gaussian point-to-point channel when taking into account the
considerations described above. The maximum energy rate
which can be achieved at the input of the EH is BThresh ,
1 + SNR21 + SNR22 + 2

√
SNR21SNR22. In the sequel, let

b ∈ [0, 1 + SNR21 + SNR22 + 2
√

SNR21SNR22] be the
minimum energy rate required at the input of the EH.

B. Centralized SEIT in G-MAC
In a centralized G-MAC, the fundamental limits of the

information-energy trade-off are fully characterized by the
information-energy capacity region with a minimum energy
rate constraint b, i.e., the closure of all achievable information-
energy rate triplets (R1, R2, B), is described by the following
theorem.

Theorem 2 (Information-Energy Capacity Region with Min-
imum Energy Rate b (Theorem 1 in [11])). The information-
energy capacity region Eb(SNR11,SNR12,SNR21,SNR22) of
the G-MAC with minimum energy rate constraint b is given
by the set of all non-negative information-energy rate triplets
(R1, R2, B) that satisfy

R1 61

2
log2 (1 + β1SNR11) , (19a)

R2 61

2
log2 (1 + β2SNR12) , (19b)

R1 +R26
1

2
log2

(
1 + β1SNR11 + β2SNR12

)
, (19c)

b6 B 61 + SNR21 + SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22, (19d)

with (β1, β2) ∈ [0, 1]
2.

The terms β1 and β2 in (19) might be interpreted as the
fractions of power that transmitter 1 and transmitter 2 allo-
cate for information transmission, respectively. The remaining
fraction of power (1 − βi) is allocated by transmitter i for

exclusively transmitting energy to the EH by sending common
randomness known non-causally to all terminals. For any
(R1, R2, B), whenever the energy rate B is smaller than the
energy rate required to guarantee reliable communications at
the information rates R1 and R2, the energy rate constraint
is vacuous since it is always satisfied and each transmitter
can exclusively use its available power budget to increase its
information rate, i.e, β1 = β2 = 1. Alternatively, when the
energy rate B is higher than what is strictly necessary to guar-
antee reliable communication, the transmitters face a trade-off
between information and energy rates. Often, increasing the
energy rate implies decreasing the information rates and vice-
versa.

C. Decentralized SEIT in G-MAC
In a decentralized G-MAC, the aim of transmitter i, for

i ∈ {1, 2}, is to autonomously choose its transmit configu-
ration si in order to maximize its information rate Ri, while
guaranteeing a minimum energy rate b at the EH. The receiver
is assumed to adopt a fixed decoding strategy that is known
in advance by both transmitters. The choice of the transmit
configuration of each transmitter is subject to the choice of the
other transmitter as both of them must guarantee the minimum
energy constraint; and at the same time, depending on the
decoding scheme at the receiver, the information-carrying
signal of one transmitter is interference to the other transmitter.

The competitive interaction of the two transmitters and the
receiver in the decentralized G-MAC with minimum energy
constraint b can be modeled by the following game in normal
form: G(b) =

(
K, {Ak}k∈K , {uk}k∈K

)
, where b is a param-

eter of the game, the set K = {1, 2} is the set of players
(transmitters 1 and 2), and the sets A1 and A2 are their sets
of actions. An action si ∈ Ai of a player i ∈ K is basically
its transmit configuration. The utility function of transmitter i
is ui : A1 ×A2 → R+ and it is defined as

ui(s1, s2) =

{
Ri(s1, s2), if P

(n)
error < ε and P (n)

outage < δ
−1, otherwise,

(20)

where ε > 0 and δ > 0 are arbitrarily small numbers
and Ri(s1, s2) (written as Ri for simplicity) denotes an
information rate achievable with the configurations s1 and s2.
Note that there might exist several transmit configurations that
achieve the same triplet (R1, R2, B) and distinction is made
only when needed.

The fundamental limits of SEIT in the decentralized G-
MAC are fully characterized the η-Nash equilibrium [12] (η-
NE) information-energy region, with η > 0 arbitrarily small.
This region corresponds to the set of information-energy rate
triplets (R1, R2, B) that are achievable and stable in the G-
MAC where stability is considered in the sense of Nash [12].
More specifically, an action profile (a transmit configuration)
(s∗1, s

∗
2) is an η-NE, if none of the transmitters can increase

its own information rate by more than η bits per channel use
by changing its own transmit configuration and keeping the
average error probability and the energy outage probability
arbitrarily close to zero.

Let the set D(b) be defined as follows:

D(b) =
{

(β1, β2) ∈ [0, 1]2 :√
(1− β1)(1− β2) =

(b− (1 + SNR21 + SNR22))
+

2
√

SNR21SNR22

}
.(21)



The η-NE information-energy region of the game G(b) when
the receiver uses single-user decoding (SUD), denoted by
NSUD(b), is described by the following theorem.

Theorem 3 (η-NE Information-Energy Region of the Game
G(b) with SUD (Theorem 2 in [11])). The set NSUD(b) is
defined as follows:

NSUD(b) =
{

(R1, R2, B) ∈ R3
+ : (β1, β2) ∈ D(b) and

R1 =
1

2
log2

(
1 +

β1SNR11

1 + β2SNR12

)
, (22a)

R2 =
1

2
log2

(
1 +

β2SNR12

1 + β1SNR11

)
, (22b)

b 6 B 6 1 + SNR21 + SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22.
}

(22c)

Let SIC(i→ j) denote the case in which the receiver
uses successive interference cancellation (SIC) with decoding
order: transmitter i before transmitter j, with i ∈ {1, 2}. In
this case, the η-NE information-energy region of the game
G(b), denoted by NSIC(i→j)(b), is described by the following
theorem.

Theorem 4 (η-NE Information-Energy Region of the Game
G(b) with SIC (Theorem 3 in [11])). The set NSIC(i→j)(b) is
defined as follows:

NSIC(i→j)(b) =
{

(R1, R2, B) ∈ R3
+ : (β1, β2) ∈ D(b) and

Ri =
1

2
log2

(
1 +

βiSNR1i

1 + βjSNR1j

)
, (23a)

Rj =
1

2
log2 (1 + βjSNR1j) , (23b)

b 6 B 6 1 + SNR21 + SNR22

+2
√

(1− β1)SNR21(1− β2)SNR22.
}

(23c)

Fig. 1 shows the projection of the regions described in
Theorem 3 and Theorem 4 as well as the convex hull of these
regions for a symmetric G-MAC with SNR11 = SNR12 =
SNR21 = SNR22 = 10 (EH and receiver are co-located). Note
that for all b 6 1 + SNR21 + SNR22, both transmitters use the
whole available power for information transmission (see the
figure on the left). Alternatively, when b > 1+SNR21+SNR22,
both transmitters use the minimum energy needed to make the
energy-outage probability arbitrarily close to zero and seek for
the largest possible information transmission rates (See the
figure on the right).

IV. DISCUSSION

In point-to-point channels, depending on the channel model,
the trade-off between information and energy rates is not
always observed (e.g., Gaussian channel with peak power
constraint[5], [7]).

In G-MACs, SEIT induces additional transmitter cooper-
ation to meet the energy rate constraints. This cooperation
is usually not natural especially when the transmitters do
not share common information and are not co-located. In
this sense, it seems likely that providing additional means
of cooperation would result in a significant performance
enhancement of SEIT. From this standpoint, exploring the
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Fig. 1. Projection of the sets NSUD(b) and NSIC(i→j)(b) over the R1-
R2 plane for different values of b. The information capacity region is also
plotted as a reference (white region inside solid lines) for SNR11 = SNR12 =
SNR21 = SNR22 = 10. The blue region is the convex hull of NSUD(b) ∪
NSIC(1→2)(b) ∪NSIC(2→1)(b).

benefits induced by cooperation techniques such as channel-
output feedback and conferencing in SEIT for the two-user
G-MAC is really promising, especially in terms of energy
transmission. Recently, Belhadj Amor et al. have shown that
channel-output feedback can provide a multiplicative factor
to the energy rate without any decrease on the information
rates [9]. This surprising result is mainly due to the additional
correlation that can be induced among the signals of all the
transmitters via feedback in order to increase the energy that
can be collected at a given EH. This reasoning applies also to
other multi-user setups such as the broadcast and interference
channels.
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