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STATIONARY MEASURES AND PHASE TRANSITION FOR A CLASS OF

PROBABILISTIC CELLULAR AUTOMATA

Paolo Dai Pra1, Pierre-Yves Louis2 and Sylvie Rœlly3, 4

Abstract. We discuss various properties of Probabilistic Cellular Automata, such as the structure
of the set of stationary measures and multiplicity of stationary measures (or phase transition) for
reversible models.
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1. Introduction

Probabilistic Cellular Automata (PCA) are discrete-time Markov chains on a product space SΛ (configuration
space) whose transition probability is a product measure. In this paper, S is assumed to be a finite set (spin

space), and Λ (set of sites) a subset, finite or infinite, of ZZd. The fact that the transition probability P (dσ|σ′),
σ, σ′ ∈ SΛ, is a product measure means that all spins {σi : i ∈ Λ} are simultaneously and independently
updated (parallel updating). This transition mechanism differs from the one in the most common Gibbs samplers
(e.g. [3, 8]), where only one site is updated at each time step (sequential updating).

Several properties of PCA’s, mainly of general and qualitative nature, have been investigated ( [5,7,14,18,23]).
As far as we know, however, sharper properties like e.g. rate of convergence to equilibrium or use of parallel
dynamics in perfect sampling, have not yet been investigated. PCA’s are hard to analyze mainly for the following
reason. Suppose Λ is a finite subset of ZZd, and let µ be a given probability on SΛ. To fix ideas, we may think
of µ as a finite volume Gibbs measure for a given interaction and assigned boundary conditions. It is simple
to construct Markov chains on SΛ with sequential updating which have µ as reversible measure. Transition
probabilities are given in simple form in terms of µ, and reversibility immediately implies that µ is an stationary
measure for the dynamics. Quite differently, for a given µ, there is no general recipe to construct a PCA for

which µ is stationary. In particular, there exists Gibbs measures on SZZ2

such that no PCA admits them as
stationary measures (Theorem 4.2 in [5]).

Despite of this descouraging starting point, other aspects of PCA’s make them interesting stochastic models,
and motivate further investigation.
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(1) For simulation and sampling, PCA’s are natural stochastic algorithms for parallel computing. At least
in some simple models (see Section 3) it is interesting to evaluate their performance versus algorithms
with sequential updating. This will be the subject of a forthcoming paper.

(2) In opposition to dynamics with sequential updating, it is simple to define PCA’s in infinite volume
without passing to continuous time. One may try to study, for instance, convergence to equlibrium in
infinite volume, or in finite volume uniformly in the volume size. Although some perturbative methods
are available (see [20] Chapter 7, [17,18]), a theory corresponding the one in ( [21]) in continuous time,
is yet to be developed.

(3) PCA’s that are reversible with respect to a Gibbs measure µ have been completely characterized in [11].
In particular it has been shown that only a small class of Gibbs measures may be reversible for a PCA.
For such PCA’s one can investigate metastable behavior. A first step in this direction is done in [2].

The present paper is a small step toward a better understanding of PCA’s. Our objective is first to present
some links between the sets of reversible, resp. stationary, resp. Gibbs measures for general PCA’s. We then
illustrate these results on a particular class of reversible PCA’s already introduced in [2].

More precisely it was proved in [11] that for PCA’s possessing a reversible Gibbs measure w.r.t. a potential
Φ, all reversible measures are gibbsian w.r.t the same potential. We prove a similar statement on the set of
stationary measures : For a general PCA, if one shift invariant stationary measure is Gibbsian for a potential
Φ, then all shift invariant stationary measures are Gibbsian w.r.t. the same potential Φ (see Proposition 2.2).
This induce that for a class of local, shift invariant, non-degenerated, reversible PCA the reversible measures
coincide with the Gibbsian stationary ones (Remark 3.1).

Applying this general statements to the class of PCA’s considered in [2], one can do explicit a stationary
measure which is in fact Gibbsian w.r.t. a certain potential Φ we write down (cf Proposition 3.2); we show that,
for sufficiently small values of the temperature parameter, phase transition occurs, that is there are several Gibbs
measures w.r.t. Φ. At least in certain cases, existence of phase transition would follow from general expansion
arguments, like Pirogov-Sinai theory. We have preferred here, however, to use “softer” contour arguments.
The understanding of the right notion of contour for a specific model is in any case useful in many respects
(percolation, block dynamics,. . . ).

However, unlike what happens with sequential updating, not all these Gibbs measures need to be stationary
for the infinite volume PCA, the non-stationary ones being periodic with period two. To conclude, we exhibit
a Gibbs measure which is not stationary for the associated PCA.

2. Shift invariant Probabilistic Cellular Automata

Let S be a finite set. For σ ∈ SZZd

, σ = (σi)i∈ZZd , and Λ ⊂ ZZd, we let σΛ ∈ SΛ its restriction to Λ. Sometimes,
when no confusion arises, we omit the index Λ in σΛ.

A time-homogeneous Markov chain on SΛ is determined, in law, by its transition probabilities PΛ(dσ|η).
If PΛ(dσ|η) is a product measure, as a probability measure on SΛ, then we say that the Markov chain is a
Probabilistic Cellular Automaton. More explicitely

PΛ(dσ|η) = ⊗i∈ΛPi(dσi|η),

and

Pi(σi = s|η) ≡ pi(s|η), s ∈ S. (1)

In the case Λ = ZZd, we omit the index Λ in PΛ(dσ|η). In this case, we say that a PCA is shift invariant if, for

every i ∈ ZZd, s ∈ S, η ∈ SZZd

, we have

pi(s|η) = p0(s|θiη),

where θi is the shift in ZZd: (θiη)j = ηi+j for every j ∈ ZZd. A shift invariant PCA is said to be local if, for each
s ∈ S, the map η → p0(s|η) is local, i.e. it depends on a finite number of components of η.
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From now on, all PCA’s we consider in this paper satisfy the non degeneration condition :

p0(s|η) > 0, ∀s ∈ S, η ∈ SZZd

.

This means that we are dealing with dynamics which can not contain a deterministic component.
In this paper we are mostly interested in stationary measures for PCA’s. For this purpose we recall the

notion of Gibbs measure on SZZd

. A shift invariant potential Φ is a family {ΦΛ : Λ ⊂ ZZd, |Λ| < +∞} of maps
ΦΛ : SΛ → IR with the properties

i. For all i ∈ ZZd, Λ ⊂ ZZd finite:

ΦΛ+i = ΦΛ ◦ θi.

ii.
∑

Λ∋0

‖ΦΛ‖∞ < +∞.

Here and later |Λ| denotes the cardinality of Λ. Letting HΛ(σ) =
∑

A∩Λ6=∅ ΦA(σ) and choosing τ ∈ SZZd

, also

write Hτ
Λ(σΛ) = HΛ(σΛτΛc), where σΛτΛc is the element of SZZd

which coincides with σ on Λ and with τ on Λc.
The finite volume Gibbs measure on SΛ with boundary condition τ is given by

µτ
Λ(σΛ) =

exp [−Hτ
Λ(σΛ)]

Zτ
Λ

,

where Zτ
Λ is the normalization factor. A probability measure µ on SZZd

is said to be Gibbsian for the potential

Φ, and we write µ ∈ G(Φ) if for every Λ ⊂ ZZd finite and σ ∈ SZZd

µ({η : ηΛ = σΛ}|ηΛc = τΛc) = µτ
Λ(σΛ)

for µ-a.e. τ . If µ is shift-invariant, i.e. µ ◦ θi = µ for all i ∈ ZZd, then we write µ ∈ Gs(Φ). More generally, we

let P (resp. Ps) be the set of probability measures (resp. shift-invariant probability measures) on SZZd

.

Given Λ ⊂ ZZd, we denote by FΛ the σ-field on SZZd

generated by the projection σ → σΛ. For ν ∈ P , πΛν is
the restriction of ν to FΛ. We will use, for ν, µ ∈ P , the notion of local relative entropy:

hΛ(ν|µ) =
∑

σΛ

πΛν(σΛ) log
πΛν(σΛ)

πΛµ(σΛ)
(2)

with Λ ⊂ ZZd finite, and of specific relative entropy

h(ν|µ) = lim sup
Λ↑ZZd

1

|Λ|
hΛ(ν|µ) (3)

where in the limit above Λ varies over hypercubes centered in the origin. It is easily seen that 0 ≤ h(ν|µ) ≤ +∞.
In the case of µ ∈ Gs(Φ) for a potential Φ, in (2) πΛµ(σΛ) can be replaced by µτ

Λ(σΛ), for an arbitrary τ , without
changing the limit in (3). Moreover, for µ ∈ Gs(Φ) and ν ∈ Ps, the limsup in (3) is actually a limit. In this case
the Gibbs variational principle states that, for ν ∈ Ps, h(ν|µ) = 0 if and only if ν ∈ Gs(Φ); so h(ν|µ) represents
a notion of (pseudo-) distance of ν from Gs(Φ).

We now define a corresponding notion of specific relative entropy for transition probabilities, that will be

used to measure distance between two dynamics. Let P (dσ|η) and Q(dσ|η) two transition probabilities on SZZd

,
and ν ∈ P . We define

Hν(P |Q) = lim sup
Λ↑ZZd

1

|Λ|

∫

hΛ(P (·|η)|Q(·|η))ν(dη).
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Clearly Hν(P |Q) ≥ 0. By conditioning to σ the joint law Qν(dσ, dη) ≡ P (dσ|η)ν(dη) we obtain the backward

transition probability, that we denote by P̂ν(dη|σ). We also let Pν(dσ) be given by

Pν(A) =

∫

P (A|η)ν(dη)

for A ⊂ SZZd

measurable. If Pν = ν we say that ν is stationary for P (dσ|η).
Our first result concerns the entropy production for a PCA (cf. [4]). The corresponding result in continuous

time has appeared in [9].

Proposition 2.1. Suppose µ is a stationary measure for a shift invariant, local PCA with transition probability
P (dσ|η). If µ is also a shift invariant Gibbs measure w.r.t. a certain potential Φ ( µ ∈ Gs(Φ)), then, for any
shift invariant measure ν,

h(ν|µ)− h(Pν|µ) = Hν(P̂ν |P̂µ).

In particular, if ν ∈ Gs(Φ), then Pν ∈ Gs(Φ), that is the set of shift-invariant Gibbs measures w.r.t. the potential
Φ is stable under the action of this PCA dynamics.

Proof. Let Λ be a finite subset of ZZd, and consider

PΛ(σ|η) =
∏

i∈Λ

pi(σi|η).

This expression depends on the restriction of η to a neighborhood of Λ, that we denote by Λ.
Consider now the measure Qν(dσ, dη) defined above. For A,B ⊂ ZZd with A finite, we denote by Qν(σA|ηB)

the restriction to the σ-field generated by the projection (σ, η) → σA of the measure Q conditioned to the
σ-field generated by the projection (σ, η) → ηB. So, e.g., PΛ(σ|η) = Qν(σΛ|ηZZd) ≡ Qν(σΛ|η), independently of

ν. Similarly, Q̂ν(ηA|σB) denotes the time-reversed conditioning, so that

πΛP̂ν(ηΛ|σ) = Q̂ν(ηΛ|σ). (4)

For C ⊂ ZZd we will also use conditionings of the form

Q̂(ηA|σB , ηC),

with the obvious meaning.
A simple computation, using the fact that Pµ = µ, yields

hΛ(ν|µ) − hΛ(Pν|µ) =

=
∑

σΛ

πΛ(Pν)(σΛ)
∑

η
Λ

Q̂ν(ηΛ|σΛ) log
Q̂ν(ηΛ|σΛ)

Q̂µ(ηΛ|σΛ)

= EQ

[

log
Q̂ν(ηΛ|σΛ)

Q̂µ(ηΛ|σΛ)

]

.

Since

h(ν|µ) − h(Pν|µ) = lim
Λ↑ZZd

1

|Λ|
[hΛ(ν|µ) − hΛ(Pν|µ)],

then the conclusion follows provided we show (see (4))

lim
Λ↑ZZd

1

|Λ|
EQ

[

log
Q̂ν(ηΛ|σΛ)

Q̂ν(ηΛ|σ)

]

= 0 (5)
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and

lim
Λ↑ZZd

1

|Λ|
EQ

[

log
Q̂µ(ηΛ|σΛ)

Q̂µ(ηΛ|σ)

]

= 0. (6)

Note that (6) is a special case of (5).

Let now λ⊗ be the probability measure on SZZd

obtained by taking the infinite product of the uniform measure
λ in S. We denote by λ⊗(σΛ) the projection of λ⊗ on FΛ. Let also {i1, . . . , i|Λ|} be the lexicographic ordering

of the elements of Λ; define Λk = {i1, . . . , ik} for 1 ≤ k ≤ |Λ|, and Λ0 = ∅. By the chain rule for conditional
measures

log
Q̂(ηΛ|σΛ)

λ⊗(ηΛ)
=

|Λ|
∑

k=1

log
Q̂(ηik |σΛ, ηΛk−1

)

λ(ηik )
. (7)

Moreover, by shift invariance of Q

EQ

[

log
Q̂(ηik |σΛ, ηΛk−1

)

λ(ηik )

]

= EQ



log
Q̂(η0|σθ−ik

Λ, ηθ−ik
Λk−1

)

λ(η0)



 . (8)

Let ZZd
− = {i ∈ ZZd : i ≺ 0}, where “≺” is the lexicographic order. By the Shannon-Breiman-McMillan Theorem

( [1]), for every ǫ > 0 there are A ⊂ ZZd, B ⊂ ZZd
− finite such that if A ⊂ V and B ⊂ W ⊂ ZZd

− then

∣

∣

∣

∣

∣

EQ

[

log
Q̂(η0|σV , ηW )

λ(η0)

]

− EQ

[

log
Q̂(η0|σA, ηB)

λ(η0)

]∣

∣

∣

∣

∣

< ǫ. (9)

Note that, if we take Λ large enough and ik ∈ Λ is far enough from the boundary of Λ, then A ⊂ θ−ikΛ, and
B ⊂ θ−ikΛk−1. For the other values of ik ∈ Λ,

EQ



log
Q̂(η0|σθ−ik

Λ, ηθ−ik
Λk−1

)

λ(η0)



 ≤ log |S|,

which is the upper bound for the entropy of any probability measure is S with respect to λ. Summing all up

lim
Λ↑ZZd

1

|Λ|
EQ

[

log
Q̂(ηΛ|σΛ)

λ⊗(ηΛ)

]

= EQ

[

log
Q̂(η0|σZZd , ηZZd

−

)

λ(η0)

]

. (10)

Exactly in the same way one shows that

lim
Λ↑ZZd

1

|Λ|
EQ

[

log
Q̂(ηΛ|σ)

λ⊗(ηΛ)

]

= EQ

[

log
Q̂(η0|σZZd , ηZZd

−

)

λ(η0)

]

. (11)

Thus (10) and (11) establish (5).

Next result shows that the measures in Ps for which the entropy production is zero are exactly those in
Gs(Φ). This result goes back to [10], where it has been proved for reversible systems in continuous time. The
assumption of reversibility has been dropped in [12]. In discrete-time, the proof for a special class of reversible
PCA is given in [11], Proposition 1. In the generality given here, the first proof was contained (but unpublished)
in one of the authors’ PhD Thesis ( [4]). Later, a proof using general entropy arguments was given in [19]. In
this paper we have preferred to emphasize the fact that the following result comes from the precise entropy
production formula presented in Proposition 2.1.
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Proposition 2.2. Under the same assumptions of Proposition 2.1, suppose ν ∈ Ps is such that

h(ν|µ) = h(Pν|µ) (12)

(in particular, this happens when ν is stationary). Then ν ∈ Gs(Φ).

Proof. By what seen in Proposition 2.1, (12) amounts to

Hν(P̂ν |P̂µ) = 0. (13)

We now adapt a classical argument for Gibbs measures (see e.g. [22], Th. 7.4). Let V be a fixed hypercube
and, for k > 0,

∂kV = {i ∈ V c : dist(i, V ) ≤ k},

where dist(·) is the Euclidean distance. Take, now, a hypercube Λm,k that is obtained as disjoint union of md

translates of V ∪ ∂kV , say

Λm,k = ∪md

i=1Wi,k,

where Wi,k = Ti(V ∪∂kV ), and Ti is a suitable translation. We also write Vi = TiV . Defining, for i ∈ {1, . . . ,md}

Bi,k = Wi,k \ Vi

we have (we use the notations introduced in the proof of Proposition 2.1)

log
Q̂ν(ηΛm,k

|σ)

Q̂µ(ηΛm,k
|σ)

=
md

∑

i=1

log
Q̂ν(ηVi

|ηBi,k
, σ)

Q̂µ(ηVi
|ηBi,k

, σ)
+ log

Q̂ν(ηB1,k
|σ)

Q̂µ(ηB1,k
|σ)

.

By positivity of relative entropy:

EQ

[

log
Q̂ν(ηB1,k

|σ)

Q̂µ(ηB1,k
|σ)

]

≥ 0

so that

EQ

[

log
Q̂ν(ηΛm,k

|σ)

Q̂µ(ηΛm,k
|σ)

]

≥
md

∑

i=1

EQ

[

log
Q̂ν(ηVi

|ηBi,k
, σ)

Q̂µ(ηVi
|ηBi,k

, σ)

]

. (14)

By translation invariance of Q:

EQ

[

log
Q̂ν(ηVi

|ηBi,k
, σ)

Q̂µ(ηVi
|ηBi,k

, σ)

]

= EQ

[

log
Q̂ν(ηV |ηT−1

i
Bi,k

, σ)

Q̂µ(ηV |ηT−1

i
Bi,k

, σ)

]

. (15)

Moreover, since Bi,k ↑ V c
i as k ↑ +∞, using again the Shannon-Breiman-McMillan Theorem, for each ǫ > 0 we

can choose k large enough so that

∣

∣

∣

∣

∣

EQ

[

log
Q̂ν(ηV |ηT−1

i
Bi,k

, σ)

Q̂µ(ηV |ηT−1

i
Bi,k

, σ)

]

− EQ

[

log
Q̂ν(ηV |ηV c , σ)

Q̂µ(ηV |ηV c , σ)

]
∣

∣

∣

∣

∣

≤ ǫ. (16)

Summing up (14), (15) and (16), we get

1

md
EQ

[

log
Q̂ν(ηΛm,k

|σ)

Q̂µ(ηΛm,k
|σ)

]

≥ EQ

[

log
Q̂ν(ηV |ηV c , σ)

Q̂µ(ηV |ηV c , σ)

]

− ǫ. (17)
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But md is proportional to |Λm,k|, so, by (13)

lim
m→+∞

1

md
EQ

[

log
Q̂ν(ηΛm,k

|σ)

Q̂µ(ηΛm,k
|σ)

]

= 0.

Thus, since ǫ is arbitrary, (17) yields

EQ

[

log
Q̂ν(ηV |ηV c , σ)

Q̂µ(ηV |ηV c , σ)

]

= 0

that, by elementary properties of relative entropy, implies

Q̂ν(ηV |ηV c , σ) = Q̂µ(ηV |ηV c , σ) Q − a.s. (18)

At this point we use Proposition 3.2 in [13], which implies that if (18) holds for a µ ∈ Gs(Φ), then ν(ηV |ηV c) =
µ(ηV |ηV c) a.s. and then ν ∈ Gs(Φ) too. This completes the proof.

3. A class of reversible dynamics

In this section we introduce a class of reversible PCA’s we will be dealing with in the rest of the paper, and
give some general results on their stationary measures, resp. reversible measures. Let us remember that a PCA
P is called reversible if there exists at least one probability measure µ such that the Markov process with initial
law µ and dynamics P is reversible.

We choose S = {−1, 1} as spin space. Consider a function k : ZZd → IR that is of finite range, i.e. there

exists R > 0 such that k(i) = 0 for |i| > R, and symmetric, i.e. k(i) = k(−i) for every i ∈ ZZd (this last

assumption being necessary to assure the reversibility of the PCA, cf [11]). Moreover, let τ ∈ {−1, 1}ZZ
d

be

a fixed configuration, that will play the role of boundary condition. For Λ ⊂ ZZd, we define the transition
probability P τ

Λ(dσ|η) = ⊗i∈ΛP
τ
i (dσi|η) by

P τ
i (σi = s|η) = pi(s|η̃) =

1

2



1 + s tanh(β
∑

i∈ZZd

k(i− j)η̃j + βh),



 (19)

where η̃ = ηΛτΛc ; h ∈ IR, β > 0 are given parameters. According to [11], this particular form of pi is indeed

the most general one for a shift invariant non degenerate local PCA on {−1, 1}ZZ
d

.
In the case Λ is a hypercube, we can also consider periodic boundary conditions. The associated transition

probability is denoted by P per
Λ . In general, when Λ is finite, we write P τ

Λ(σ|η) in place of P τ
Λ({σ}|η). In the

case Λ = ZZd, the boundary condition τ plays no role, and will be omitted.
In the rest of this section we establish some simple facts about stationary measures for these PCA’s.

Proposition 3.1. Let Λ ⊂ ZZd finite, and τ ∈ {−1, 1}ZZ
d

. Then the finite volume PCA with transition probability
P τ
Λ(σ|η) has a unique stationary measure ντΛ given by

ντΛ(σ) =
1

W τ
Λ

∏

i∈Λ

eβhσi cosh



β
∑

j∈ZZd

k(i− j)σ̃j + βh



 eβσi

∑
j∈Λc k(i−j)τj ,

where, as before, σ̃ = σΛτΛc , and W τ
Λ is the normalization. Moreover, ντΛ is reversible for P τ

Λ.
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Proof. It is clear that P τ
Λ(σ|η) > 0 ∀ σ, η, so that the Markov chain with transition probability P τ

Λ has a unique
stationary measure. Thus, we only have to show that ντΛ is reversible, i.e.

P τ
Λ(σ|η)ν

τ
Λ(η) ≡ P τ

Λ(η|σ)ν
τ
Λ(σ). (20)

Observe that, since σi ∈ {−1, 1}, P τ
Λ may be written in the form

P τ
Λ(σ|η) =

∏

i∈Λ

eβσi(
∑

j
k(i−j)η̃j+h)

2 cosh
(

β
∑

j k(i− j)η̃j + βh
) .

Thus (20) amounts to

∑

i∈Λ

∑

j∈ZZd

σiη̃jk(i− j) +
∑

i∈Λ

∑

j 6∈Λ

ηiτjk(i− j) =
∑

i∈Λ

∑

j∈ZZd

ηiσ̃jk(i − j) +
∑

i∈Λ

∑

j 6∈Λ

σiτjk(i− j)

which is easily checked.

The above result on stationary measures for PCA’s in finite volume, has an immediate consequence in infinite
volume.

Proposition 3.2. Let τ be any fixed boundary condition, and µ be any limit point of ντΛ as Λ ↑ ZZd. Then µ
is reversible for the infinite volume PCA defined in (19), and µ is Gibbsian for the shift-invariant potential Φ
given by

Φ{i}(σi) = −βhσi

ΦUi
(σUi

) = − log cosh
[

β
∑

j k(i− j)σj + βh
]

ΦΛ(σΛ) = 0 otherwise,

(21)

where Ui = {j : k(i− j) 6= 0}, that is finite by assumption.

Proof. Note that the finite volume Gibbs measure for Φ is

µτ
Λ(σ) =

1

Zτ
Λ

∏

i:dist(i,Λ)≤R

cosh



β
∑

j

k(i− j)σ̃j + βh



 eβhσi ,

that differs from ντΛ only for boundary terms (and for the renormalization constant). The fact that the limit of
ντΛ is Gibbsian for Φ follows therefore from general facts on Gibbs measures ( [6]). The reversibility of µ for the

infinite volume PCA is obtained as follows. Let f : {−1, 1}ZZ
d

× {−1, 1}ZZ
d

→ IR be a function which is local in
both variables. For Λ large enough, reversibility of ντΛ yields

∑

σ,τ

P τ
Λ(σ|η)ν

τ
Λ(η)f(σ, η) =

∑

σ,τ

P τ
Λ(η|σ)ν

τ
Λ(σ)f(σ, η). (22)

Note that, for Λ large enough, the boundary condition τ in P τ
Λ does not play any role in (22). Thus, letting

Λ ↑ ZZd in (22) obtaining
∫

P (dσ|η)µ(dη)f(σ, η) =

∫

P (dη|σ)µ(dσ)f(σ, η), (23)

that establishes reversibility of µ.
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Instead of fixed boundary conditions, one can choose periodic boundary conditions. In this case, the finite
volume measure defined by

νperΛ (σ) =
1

W per
Λ

∏

i∈Λ

cosh



β
∑

j∈ZZd

k(i − j)σ̃j + βh



 eβhσi

where σ̃ is the periodic continuation of σ, is the unique stationary reversible measure for P per
Λ . Remark that,

in opposition to fixed boundary conditions, we now have that νperΛ = µper
Λ , which means that the finite volume

stationary measure for the finite volume PCA is equal to the local specification of the associated Gibbs measure.
Moreover, the following result gives a complete description of the links between the set of reversible measures

for the PCA P (which will be denoted by R), the set of stationary ones denoted by S, the set G(Φ) of Gibbs
measures with respect to the potential Φ defined by (21), and their respective intersections with the set of
shift-invariant measures : Rs, Ss, Gs(Φ).

Proposition 3.3. The reversible measures for the PCA P defined in (19) are exactly those Gibbs measures
w.r.t. Φ given in (21) which are also stationary :

R = S ∩ G(Φ). (24)

Moreover, the subset of shift invariant reversible measures is equal to the set of shift invariant stationary
measures :

Rs = Ss. (25)

Proof. The proof of the first assertion is based on the following proposition proved in [11] :
Let P be a non degenerate local reversible PCA. Each reversible measure µ for P is Gibbs w.r.t. a certain

potential ΦP . Reciprocally, any Gibbs measure w.r.t. ΦP is either a reversible measure for P or periodic of
period two.

Since obviously R ⊂ S, the abovementioned proposition implies R ⊂ S ∩ G(Φ). For the reciprocal inclusion,
since stationary measures can not be 2-periodic, a stationary Gibbsian measure is necessarely a reversible one.

To prove the second assertion, note that by Proposition 3.2 and Remark 3, Ss ∩ Gs(Φ) ∋ µper . Thus
Proposition 2.2 applies, that is : Ss ⊂ Gs(Φ). On the other hand, from the first assertion: Rs = Ss ∩ Gs(Φ).
Then Rs = Ss.

Remark 3.1. The proof of Proposition 3.3 doesn’t use the specific form of the PCA P . So equalities (24) and
(25) hold as soon as Proposition 2.2 and the abovementioned result of [11] apply, that is for the general class of

local, shift invariant, non degenerate reversible PCA dynamics on SZZd

for any S finite.

4. Phase transition

In this section we show that for some reversible PCA it is indeed the case that not all Gibbs measures for
the potential in (21) are stationary. We treat those PCA defined in (19) for which k(i) = 0 for |i| > 1 (id est
R=1), h = 0 and d = 2. Besides β, there are three parameters in the game: k(0), k(e1) and k(e2), where e1, e2
are the basis vectors in IR2. The first result concernes the existence of phase transition for the potential Φ.

Proposition 4.1. Assume k(e1) 6= 0, k(e2) 6= 0. Then there exists βc ∈ (0,+∞) such that for β > βc

|G(Φ)| > 1.

Proof. We divide the proof into different cases, depending on the signes of k(0), k(e1), k(e2). Note that the
transformation k(·) → −k(·) leaves invariant the potential Φ.
Case 1: k(0) ≥ 0, k(e1) > 0, k(e2) > 0.

For a given square Λ ⊂ ZZ2, let Clm(Λ) = {i ∈ ZZd : dist(i,Λ) ≤ m}. Consider a fixed configuration

σ ∈ {−1,+1}ZZ
2

such that σi ≡ +1 for i 6∈ Λ ( σΛc ≡ +1). Moreover let ZZ2
∗ = ZZ2 + (1/2, 1/2). We recall
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the classical notion of Peierls contour associated to σ. We say that the segment joining two nearest neighbors
a, b ∈ ZZ2

∗ is marked if this segment separates two nearest neighbors i, j ∈ ZZ2 for which σiσj = −1. Marked
segments form a finite family of closed, non self-intersecting, piecewise linear curves, that we call Peierls contours.
Each segment of a contour γ separates two nearest neighbors whose spins have different signes (they necessarily
belong to Cl1(Λ)). If i, j are nearest neighbors separated by γ and σi = −1 we write i ∈ ∂−γ and j ∈ ∂+γ.
We call the union of the sets of sites ∂−γ and ∂+γ the boundary of the contour γ. For each i ∈ Λ for which
σi = −1, there is a minimal Peierls contour γ around i, i.e. such that i is in the interior of the closed curve γ.

This notion of minimal contour is the one used for the Ising model. Here we have to modify it as follows.
Two Peierls contours γ, γ′ are called adjacent if their boundaries have a common point. We say that two Peierls
contours γ, γ′ communicates if they belong to a sequence of Peierls contours γ1, . . . , γn such that for all k, γk
and γk+1 are adjacent. The relation of communicating is an equivalence relation. We call simply contour the
union of the Peierls contours in an equivalence class. The minimal contour around i with σi = −1 is the one
formed by the equivalence class which contains the minimal Peierls contour around i. The boundary (∂+ or
∂−) of a contour is simply the union of the boundaries of the Peierls contours that form it (see Fig. 4).

Let now µ+
Λ be the finite volume Gibbs measure with + boundary condition, that we write as follows:

µ+
Λ(σ) =

1

ZZ+
Λ

∏

i∈Cl1(Λ)

cosh(β
∑

j k(i − j)σ+
j )

cosh(β
∑

j k(i− j))
with σ+ = σΛ(+1)Λc .

We have modified the normalization for later convenience. A given σ+ ∈ {−1,+1}ZZ
2

corresponds, as described
above, to a collection of contours Γ = {c1, . . . , cm}. Each contour ci is a union of Peierls contours. Peierls
contours belonging to different ci’s do not communicate. We can write:

µ+
Λ(σ) =

1

ZZ+
Λ

m
∏

k=1

F (ck),

where

F (ck) =
∏

i∈∂ck

cosh(β
∑

j k(i− j)σj)

cosh(β
∑

j k(i − j))

and ∂ck = ∂+ck ∪ ∂−ck. Observing that if σ0 = −1 then there is a contour around 0, we have:

µ+
Λ(σ0 = −1) =

1

ZZ+
Λ

∑

c1 around 0

F (c1)
∑

Γ∋c1

F (Γ \ c1),

where, for Γ = c1 ∪ c2 ∪ · · · ∪ cm, we let F (Γ \ c1) =
∏m

k=2 F (ck). Note that, if Γ is a contour, Γ \ c1 is also a
contour, that corresponds to the configuration obtained by flipping all the spins −1 inside c1 in the configuration
associated to Γ. It follows that

∑

Γ∋c1

F (Γ \ c1) ≤ Z+
Λ ≡

∑

Γ

F (Γ),

and therefore
µ+
Λ(σ0 = −1) ≤

∑

c1 around 0

F (c1). (26)

Now note that if c1 is a contour and i ∈ ∂c1, then the spins σi, σi±e1 , σi±e2 do not have the same sign, so that

cosh(β
∑

j k(i− j)σj)

cosh(β
∑

j k(i − j))
≤

cosh(βA)

cosh(βB)
,

where B =
∑

j k(j), A is the maximum value of |
∑

j k(i− j)σj)| for σ such that σ0, σ±e1 , σ±e2 do not have the

same sign, and therefore A < B. Thus, we have to compare for a contour c1, the cardinal of its boundary |∂c1|
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Figure 1. Example of a configuration σ on Cl2(Λ) such that σ0 = −1 and σΛc ≡ +1. Draw-
ing of its corresponding contours : γ1 is the minimal Peierls contour around the origin ;
(γ1 ∪ γ2 ∪ γ3 ∪ γ4) is the minimal contour around the origin (i.e. the equivalence class of γ1) ;
{γ5, γ6}, {γ7}, {γ8, γ9, γ10}, {γ11}, {γ12} are the other equivalence classes.

with its length denoted by l(c1). But remark that to any point of ∂c1 correspond at most 4 marked segments
on c1. So, l(c1) ≤ 4|∂c1|, and we have

F (c1) ≤

[

cosh(βA)

cosh(βB)

]|∂c1|

≤

[

cosh(βA)

cosh(βB)

]l(c1)/4

.
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On the other hand, for a given length l, it is easily checked that the number of contours around 0 of length l is
bounded by l33l−1. Thus, by (26),

µ+
Λ(σ0 = −1) ≤

∑

l≥0

l33l−1

[

cosh(βA)

cosh(βB)

]l/4

that goes to zero as β ↑ +∞. Thus, taking β large enough and letting L ↑ ZZd in µ+
Λ , we construct a Gibbs

measure µ for which µ+(σ0 = −1) < 1/2. Simmetrically, taking minus boundary conditions, we obtain a Gibbs
measure µ− for which µ−(σ0 = −1) > 1/2, and this proves phase transition.
Case 2: k(0) < 0, k(e1) > 0, k(e2) > 0.

Define

k∗(i) =

{

k(i) for i 6= 0
−k(0) for i = 0,

and let Φ∗ be the associated potential. Consider also the map T : {−1, 1}ZZ
2

→ {−1, 1}ZZ
2

given by

(Tσ)i =

{

σi for i ∈ ZZ2
e

−σi for i ∈ ZZ2
o.

To stress dependence on the potential Φ we write µτ
Λ,Φ for µτ

Λ. It is easily seen that

µτ
Λ,Φ(σ) = µTτ

Λ,Φ∗(Tσ),

so that the map µ → µ ◦ T is a bijection between G(Φ) and G(Φ∗). The conclusion follows from the fact that
|G(Φ∗)| > 1, as seen in case 1.
Case 3: k(0) ≥ 0, k(e1) > 0, k(e2) < 0.

This case is treated as case 2, with the following choices:

k∗(i) =

{

k(i) for i 6= e2
−k(e2) for i = e2,

and

(Tσ)i =

{

σi for i = (x, y) with y even
−σi otherwise.

the proof is now completed.

Remark 4.1. The special case k(0) = 0 was already treated in [11] example 2 (for k(e1) = k(e2) = 1) , where
a remarkable relation with Ising model was pointed out. We recall here in some more generality the principal
steps of the argumentation :

let ZZ2
o = {(x, y) ∈ ZZ2 : x + y is odd}, ZZ2

e = ZZ2 \ ZZ2
o and, similarly, Λo = Λ ∩ ZZ2

o, Λe = Λ ∩ ZZ2
e. Note that

since k(0) = 0, σΛo
and σΛe

are independent under µτ
Λ, i.e. µτ

Λ = µτ
Λe

⊗ µτ
Λo

. Consider the following anisotropic

Ising model on {−1, 1}Λ:

ρτΛ(σ) =
1

N τ
Λ

exp

[

β
∑

i∈Λ

(k(e1)σiσ̃i+e1 + k(e2)σiσ̃i+e2 )

]

,
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where N τ
Λ is the normalization and σ̃ = σΛτΛc . Restricting this measure to the sites in Λe we obtain

πΛe
ρτΛ(σΛe

) =
∑

σΛo

ρτΛ(σ)

=
2

N τ
Λ

∏

i∈Λo

cosh



β
∑

j

k(i− j)σ̃j





= µτ
Λo
(σΛe

).

Therefore, phase transition for G(Φ) follows from phase transition for the Ising model:
since ρ−(σ0 = +1) < 1

2 < ρ+(σ0 = +1), the restrictions πΛe
ρ− and πΛe

ρ+ are different, and then

(µ+
ZZ2

o

= πΛe
ρ+) 6= (πΛe

ρ− = µ−
ZZ2

o

).

We now show that, in certain cases, there are elements in G(Φ) that are not stationary.

Proposition 4.2. Suppose k(0) ≤ 0, k(e1) < 0, k(e2) < 0, and let µ+ be the Gibbs mesure corresponding to
plus boundary conditions. Suppose β is large enough so that µ+ 6= µ−. Then µ+ is not stationary.

Proof. We first observe that the transformation k(·) → −k(·) do not change the elements of G(Φ), but it does

change the dynamics. We recall few basic notions on stochastic ordering. Given σ, η ∈ {−1, 1}ZZ
2

, we say

that σ ≤ η if σi ≤ ηi for every i ∈ ZZ2. Monotonicity of functions {−1, 1}ZZ
2

→ IR is defined with respect to

this partial order. Finally, for ν, µ probabilities on {−1, 1}ZZ
2

, we say that ν ≤ µ if
∫

fdν ≤
∫

fdµ for every
increasing f .

The key observation consists in the fact that, under our assumptions on k(·), the transition probability
P (dσ|η) is decreasing, i.e.

ν ≤ µ implies Pν ≥ Pµ.

This follows from the facts that p0(1|η) is decreasing in η, while p0(−1|η) is increasing in η (see [14] or [16]
for details). Let now µ0 be a limit point of the sequence νperΛ defined in Remark 3. By using the criterion

in [15], Th. II 2.9, it is easy to check that νperΛ ≤ ν+Λ for every Λ, and so µ0 ≤ µ+. Moreover, 0 = µ0(σ0 =
−1) < 1

2 < µ+(σ0 = −1). So µ0 6= µ+. On the other hand, by Proposition 3.2, µ0 is stationary. Therefore

Pµ+ ≤ Pµ0 = µ0 < µ+, which completes the proof.

: P.-Y. Louis thanks, for their kind hospitality, the Mathematics’ Departement of Padova University and the Interacting
Random Systems group of Weierstrass Institute for Applied Analysis and Stochastics in Berlin, where part of this work
was done.
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