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Abstract – Over the past several decades, induction machine condition monitoring have received 
increasing attention from researchers and engineers. Several induction machine faults detection 
techniques have been proposed that are based on vibration, temperature, and currents/power 
monitoring, etc. Motor current signature analysis is a cost-effective method, which has been 
widely investigated. Specifically, it has been demonstrated that mechanical and electrical 
induction machine faults can be effectively diagnosed using stator currents demodulation. 
Therefore, this paper proposes to investigate the use of demodulation techniques for bearing faults 
detection and diagnosis based on stator currents analysis. If stator currents are assumed to be 
mono-component signals, the demodulation techniques include the synchronous demodulator, the 
Hilbert transform, the Teager energy operator, the Concordia transform, the maximum likelihood 
approach and the principal component analysis. For a multi-component signal, further 
preprocessing techniques are required such as the Empirical Mode Decomposition (EMD) or the 
Ensemble EMD (EEMD). The studied demodulation techniques are demonstrated for bearing 
faults diagnosis using simulation data, issued from a coupled electromagnetic circuits approach-
based simulation tool, and experiments on a 0.75kW induction machine test bed. Copyright © 
2015 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
MCSA  = Motor Current Signature Analysis; 
MMF  = MagnetoMotive Force; 
PCA  = Principal Component Analysis; 
IA   = Instantaneous Amplitude; 
IF   = Instantaneous Frequency; 
EMD  = Empirical Mode Decomposition; 
EEMD  = Ensemble EMD; 
IMF   = Intrinsic Mode Function; 
HHT  = Hilbert-Huang Transform; 
SD   = Synchronous Demodulator; 
HT   = Hilbert Transform; 
FT   = Fourier Transform; 
FFT   = Fast Fourier Transform; 
DESA  = Discrete Energy Separation Algorithm; 
TEO  = Teager Energy Operator; 
CT   = Concordia Transform; 
MLE  = Maximum Likelihood Estimation; 
CMC  = Coupled Magnetic Circuits. 

I. Introduction 
Induction machine is widely used in industrial 

applications thanks to its reliability, ruggedness and low 
cost. Unfortunately, several faults can occur, which may 
lead to process failure and damage to humans and 
surrounding equipment. Consequently, it is mandatory to 
implement a condition-based maintenance. It consists of 

three main steps: data acquisition, data processing, and 
decision-making. Most of the methods for induction 
machine monitoring could be classified into several 
categories: vibration monitoring, torque monitoring, 
temperature monitoring, oil/debris analysis, acoustic 
emission monitoring, optical fiber monitoring, and 
current/power monitoring [1-6]. MCSA has several 
advantages since it is a non-invasive technique that 
avoids the use of extra sensors [6-9]. Moreover, the stator 
currents are usually measured for other purposes such as 
control and protection. Hence, most of the recent 
research topics on induction machine faults detection 
have been directed toward electrical monitoring with 
special emphasis on stator current processing [10-13]. 

Several studies have been focused on induction 
machine faults effect over the stator currents. In fact, in 
[14-15], the authors have presented an analytical 
approach to model the impact of the mechanical and 
bearing faults. This approach is based on traditional 
MMF and permeance wave approach for the airgap 
magnetic flux density computation [16]. This study has 
demonstrated that a healthy induction machine already 
contains a great number of spectral components due to its 
supply voltage, rotor slotting and possible iron saturation. 
Moreover, any mechanical faults may lead to eccentricity 
and load oscillation faults. The eccentricity fault causes 
amplitude modulation and load oscillation leads to 
frequency modulation of the stator currents. The 
modulation frequency depends on the operating 



conditions of the machine and the fault severity. Besides, 
the stator currents can be frequency and/or amplitude 
modulated and this modulation is correlated with the 
defected components of the bearing [17]. 

Generally speaking, the current is sinusoidally 
frequency and/or amplitude modulated when a fault 
occurs. Based on this signal modeling approach, it seems 
that the most adapted tools to extract a fault indicator are 
demodulation techniques. Hence, current demodulation 
has been investigated for faults detection and diagnosis. 
Typical examples include broken rotor bars [18-22], 
gearbox faults [23] and bearing faults [7], [14], [17], 
[24]. In order to perform currents demodulation, several 
authors have employed classical demodulation 
techniques such as the synchronous demodulator [22], 
[25-26], the Hilbert transform [18-20], [22], [27], time-
frequency distributions [14], [17], [28-30] or adaptive 
tracking of sine waves [31]. Joint IA-IF estimation based 
on the Concordia transform is investigated in [7], [21], 
[32]. One advantage of this transform relies on its low 
computational cost; however, its domain of validity is 
restricted to balanced three-phase systems. In [7], a 
technique based on PCA is presented for joint IA-IF 
estimation. Moreover, the Teager-Kaiser energy operator 
has been investigated in [33] for faults detection in 
induction machine with broken rotor bars, mixed 
eccentricity, and single-point bearing faults based on 
stator currents. 

For multi-component and non-stationary stator 
currents, a filtering stage is required if the modes are 
separable [34]. Otherwise, techniques such as EMD and 
EEMD are required in order to extract mono-component 
signals (called IMFs) from the stator currents [35-36]. 
The HHT is then used in order to compute the time-
frequency representation of the IMFs [37]. Finally, fault 
detection criteria are computed in order to reveal the 
IMFs impacted by the fault and measure the fault 
severity. 

In this paper, demodulation techniques are presented 
and demonstrated for bearing faults detection in 
induction machine. Indeed, these approaches are 
compared for instantaneous amplitude and phase 
computation, and fault severity tracking [38]. The 
advantages and drawbacks of each technique are 
highlighted on simulated and experimental data. The 
contribution of this paper is threefold. First, we present a 
widely used demodulation techniques for fault detection. 
Then, we provide a performance comparison based on 
simulation and experimental data. Finally, we propose a 
fault detection criterion that allows measuring the fault 
severity. 

The remainder of the paper is organized as follows. 
Section II presents demodulation techniques used for 
stator currents processing and section III focuses on the 
performance of these techniques on simulated data for 
bearing faults detection through stator current analysis. 
Finally, section IV provides some experimental results 
for bearing faults detection and section V concludes this 
paper. 

II. Demodulation Techniques 
Mono-component signal is a sinusoid possibly 

modulated in amplitude and/or frequency, whereas a multi-
component signal is a one, which is composed of a sum of 
amplitude and/or frequency modulated sinusoids. Let us 
consider a (noisy) mono-component signal defined as 

 
𝑥[𝑛]   =   𝑎[𝑛]   cos 𝜙[𝑛] +   𝑏[𝑛]               (1) 

 
where 𝑎[𝑛]   >   0    and 𝜙[𝑛] correspond to the 
instantaneous amplitude and phase, respectively. The 
component 𝑏[𝑛] corresponds to the noise component. 

From a statistical viewpoint, the goal of a 
demodulation technique is to estimate 𝑎[𝑛] and 𝜙[𝑛] 
from 𝑥[𝑛]. In order to achieve this goal, most of the 
demodulation techniques rely on the scheme presented in 
Fig. 1. First, the direct and quadrature components, 
which are given by 𝑦![𝑛]   =   𝑎[𝑛]   cos 𝜙[𝑛]  and 
𝑦![𝑛]   =   𝑎 𝑛 sin 𝜙[𝑛] , are estimated from 𝑥[𝑛]. Then, 
the analytic signal, 𝑧[𝑛], is constructed from the direct 
and quadrature components using the following formula 
𝑧[𝑛]   =   𝑦![𝑛]   +   𝑗𝑦![𝑛]   =   𝑎[𝑛]𝑒!"[!], where 𝑗 is the 
imaginary unit. Finally, the instantaneous amplitude and 
phase is estimated from the analytic signal as 

 
𝑎[𝑛]   =    𝑧[𝑛]

𝜙[𝑛]   =   𝑎𝑟𝑔 𝑧[𝑛]                            (2)  

 
where .   and 𝑎𝑟𝑔 .  correspond to the modulus and 
argument, respectively. Finally the instantaneous 
frequency, which is defined as the derivative of the 
instantaneous phase divided by 2𝜋, can be estimated 
using a backward finite difference as 

 
𝑓 𝑛 = !!

!!
𝜙 𝑛 − 𝜙[𝑛 − 1]                      (3) 

 
where 𝐹!  corresponds to the sampling rate. Within this 
general methodology, it should be mentioned that the most 
challenging step relies on the estimation of the direct and 
quadrature components. This section reviews the most 
common techniques for estimating these two components. 

II.1. Mono-Dimensional Techniques 

This section presents the most common demodulation 
techniques designed for mono-dimensional signals. 
These techniques assume that only one phase stator 
current 𝑥[𝑛] is available to estimate the direct and 
quadrature components. 

 

 
Fig. 1. Analytical signal estimation 

where |.| and arg{.} corresponds to the modulus and argument, respectively. Finally the Instantaneous

Frequency, which is defined as the derivative of the Instantaneous Phase divided by 2⇡, can be

estimated using a backward finite di↵erence as

b
f [n] =

F

s

2⇡
(�[n]� �[n� 1]) (3)

where F

s

corresponds to the sampling rate.

Within this general methodology, it should be mentioned that the most challenging step relies

on the estimation of the direct and quadrature components. This section reviews the most common

techniques for estimating these two components.60

Signal

In-phase and

Quadrature

Components

Estimation

y1[n]

y2[n] ⇥

j

+
z[n] |.|

arg{.}

a[n]

�[n]

Figure 1: Analytical signal estimation.

2.1. Mono-Dimensional Techniques

This section presents the most common demodulation techniques designed for mono-dimensional

signals. These techniques assume that only one phase stator current x[n] is available to estimate the

direct and quadrature components.

2.1.1. Synchronous demodulator65

Let us consider that the instantaneous phase is given by: �[n] = 2⇡f0n/Fs

+ '[n] where f0

corresponds to the carrier frequency and '[n] is an unknown modulating signal. The Synchronous

Demodulator (SD) estimates the a[n] and '[n] (not �[n] directly) assuming that the carrier frequency

is known.

The SD is illustrated by Fig. 2. First, the incoming signal, x[n], is multiplied by the reference70

signals cos(2⇡f0n/Fs

) and sin(2⇡f0n/Fs

). After the multiplication stage, the output signal contains a

baseband signal, which corresponds to the direct or quadrature component, and some high-frequency

oscillations. In order to remove the high-frequency oscillations, a low-pass filter with a cut-o↵ fre-

quency close to f0 Hz is used. For grid connected induction machine, the carrier frequency is broadly

equal to 50Hz or 60Hz.75
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II.1.1. Synchronous demodulator 
Let us consider that the instantaneous phase is given 

by:  𝜙 𝑛 =   2𝜋𝑓!𝑛 𝐹! + 𝜑[𝑛], where 𝑓! corresponds to 
the carrier frequency and 𝜑[𝑛] is an unknown modulating 
signal. The SD estimates the 𝑎[𝑛] and 𝜑[𝑛] (not 𝜙 𝑛  
directly) assuming that the carrier frequency is known. 

Figure 2 illustrates the SD. First, the incoming signal, 
𝑥[𝑛], is multiplied by the reference signals 
cos(2𝜋𝑓!𝑛 𝐹!) and sin(2𝜋𝑓!𝑛 𝐹!). After the 
multiplication stage, the output signal contains a baseband 
signal, which corresponds to the direct or quadrature 
component, and some high-frequency oscillations. In 
order to remove the high-frequency oscillations, a low-
pass filter with a cut-off frequency close to 𝑓! is used. 
For grid connected induction machine, the carrier 
frequency is broadly equal to 50 or 60Hz. 

II.1.2. Hilbert transform 
The Hilbert transform is a commonly used technique 

in signal processing for estimating the direct and 
quadrature signals. The estimation of the direct and 
quadrature components is illustrated in Fig. 3. The 
quadrature component is obtained using HT. For discrete 
signals, the HT is given by [40, Section 12.4] 

 

𝑦!! = ℎ 𝑛 −𝑚 𝑥[𝑛]!
!!!!                     (4) 

 
where the impulse response ℎ[𝑛] is equal to 

 

ℎ 𝑛 =
!
!
  
!"#! !  !

!
!

, 𝑛 ≠ 0
0,                                  𝑛 = 0

                        (5) 

 
It should be mentioned that the estimation of the 

quadrature component is not always possible. 
Specifically, the Bedrosian theorem has shown that this 
component can be estimated if and only if the spectra of 
the 𝑎[𝑛] and cos(𝜙 𝑛 ) are disjoint [41] (see Fig. 4). 

The Hilbert transform can also be computed for a real 
valued 𝑁-point discrete time signal efficiently using the 
FFT algorithm [42]. 

 II.1.3. Energy separation algorithm 
Compared to the previous techniques, the discrete 

energy separation algorithm (DESA) estimates the 
instantaneous amplitude and frequency directly from the 
incoming signal, 𝑥[𝑛] [43]. 

 

 
 

Fig. 2. Synchronous demodulator [39]. 

 
 

Fig. 3. Hilbert-based demodulation [39]. 
 

 
 

Fig. 4. Illustration of the Bedrosian theorem conditions. 
 

This algorithm is based on the discrete Teager energy 
operator (TEO), which is given by [44] 

 
Ψ 𝑥 𝑛 = 𝑥! 𝑛 − 𝑥 𝑛 + 1 𝑥[𝑛 − 1]             (6) 

 
It is shown in [43] that the instantaneous amplitude and 
frequency can be estimated by 

 

𝑎 𝑛 ≈ ! ! !

!! !!! ! ! !![!!!]
!  ! ! !

!

𝑓 𝑛 ≈ !
!!
𝑎𝑟𝑐𝑜𝑠 1 − ! ! ! !![!!!]

!  ! ! !

           (7) 

 
The discrete energy separation algorithm exhibits 

interesting property since it is less computationally 
demanding and has better time resolution than other 
demodulation techniques. The main drawback of this 
operator is its high-sensitivity to noise or to model 
mismatch. Moreover, it assumes that the estimated IF 
does not vary too fast or too greatly compared to the 
carrier frequency [44]. 

II.2. Multi-Dimensional Techniques 

Multi-dimensional demodulation techniques exploit 
the three-phase structure of the stator current signals. 
Under general conditions, the three-phase currents can be 
modeled as 

 
𝑥! 𝑛 = 𝑑!𝑎 𝑛 cos 𝜙 𝑛 − 2𝑘𝜋 3 + 𝜓! + 𝑏! [𝑛]  (8) 

 
where 𝑑!  and  𝜓!  corresponds to amplitude and phase 
unbalance, respectively, and 𝑘   =   0, 1, 2. 

Within the general framework, Fig. 5 describes a 
multi-dimensional demodulation technique. The 
estimation of the direct and quadrature component is 
obtained from a linear transform of the three phase 
signals. Mathematically, this linear transform can be 
expressed under a matrix form as follows 
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2.1.2. Hilbert transform

The Hilbert transform (HT) is a commonly used technique in signal processing for estimating the

direct and quadrature signals. The estimation of the direct and quadrature components is illustrated

in Fig. 3. The quadrature component is obtained using Hilbert transform. For discrete signals, the

Hilbert transform is given by [39, Section 12.4]
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2.1.3. Energy separation algorithm

As compared to previous techniques, the Discrete Energy Separation Algorithm (DESA) estimates

the Instantaneous Amplitude and Frequency directly from the incoming signal, x[n][42]. This algo-

rithm is based on the discrete Teager energy operator (TEO), which is given by [43]

 (x[n]) = x

2[n]� x[n+ 1]x[n� 1] (6)

It is shown in [43] that the Instantaneous Amplitude and Frequency can be estimated by

a[n] ⇡
vuut

 [x[n]]

1�
⇣
1�  [x[n]�x[n�1]]

2 [x[n]]

⌘2 (7a)

f [n] ⇡ 1

2⇡
arcos

✓
1�  [x[n]� x[n� 1]]

2 [x[n]]

◆
(7b)

The Discrete Energy Separation Algorithm exhibits interesting property since it is less computa-

tionally demanding and has better time resolution than other demodulation techniques. The main

drawback of this operator is its high-sensitivity to noise or to model mismatch. Moreover, it assumes85

that the estimated IF does not vary too fast or too greatly compared to the carrier frequency [43].

2.2. Multi-Dimensional Techniques

Multi-dimensional demodulation techniques exploit the three-phase structure of current signals.

Under general conditions, the three-phase currents can be modeled as
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where 𝑯 is a 2×3  matrix. The choice of the matrix 𝑯 
depends on the balance assumption. In the following, we 
present several structures for 𝑯. 

II.2.1. Concordia transform approach 

The Concordia transform (CT) is a linear transform 
that extracts two orthogonal components from the three-
phase stator currents. The matrix 𝑯 for Concordia 
transform is defined as 

 

𝑯! = !
!

!
!

!!
!

!!
!

0 !
!

!!
!

                     (10) 

 
For balanced systems (𝑑!   =   𝑑!   =   𝑑!   =   1 and 

𝜓! =   0), the CT leads to the least-square estimator of 
the direct and quadrature components [7], [32], [45]. The 
main drawback of CT relies on the balance assumption 
since systems are rarely balanced in abnormal operating 
conditions. 

II.2.2. Maximum likelihood approach 

The maximum likelihood estimation (MLE) is a 
powerful statistical technique for estimating unknown 
parameters. More precisely, this technique has the 
property to be optimal in the sense that it attains the 
Cramer-Rao bounds under some conditions [46]. 
Recently, the (deterministic) maximum likelihood has 
been derived for the estimation of the direct and 
quadrature components for three-phase systems with 
amplitude unbalance only (𝑑!   = 1   and 𝜓! =   0) [47]. 
For systems with amplitude unbalance, the maximum 
likelihood technique leads to the following matrix 

 

𝑯! = !
ℳ

𝑑!
! +   𝑑!

! −𝑑!𝑑!
! −𝑑!𝑑!

!

!!!!!!!

!
!!
!
𝑑!

! + 2 !!!
!
𝑑!

! + 2
(11) 

 
where ℳ = 𝑑!

! +   𝑑!
! +   𝑑!

!𝑑!
!
. 

In practice, it should be noted that the unbalance 
parameters 𝑑!  are unknown and must be replaced by 
their estimates. In [47], it has been shown that the 
estimate of the unbalance parameters 𝑑!  can be simply 
obtained from the eigenvector associated with the 
smallest eigenvalue of the samples covariance matrix 𝑹, 
which is defined as 

 

𝑹 =
𝑟!! 𝑟!" 𝑟!"
𝑟!" 𝑟!! 𝑟!"
𝑟!" 𝑟!" 𝑟!!

                         (12) 

 
where 

 

𝑟!" =
!
!

𝑥![𝑛]𝑥![𝑛]!!!
!!!                           (13) 

II.2.3. Principal component analysis approach 

Principal component analysis (PCA) is a statistical 
tool that transforms a number of signals into a small 
number of uncorrelated components called the principal 
components. The PCA is based on the eigenvalues 
decomposition of the sample covariance matrix, 𝑹 (see 
(12)). Specifically, two principal components are 
obtained by setting 

 
𝑯! =   𝛽  𝚲

!!
!   𝐒!                              (14) 

 
where 𝚲 is diagonal matrix containing the two largest 
eigenvalues of 𝑹, 𝐒 is a semi-unitary matrix containing 
the associated eigenvectors, (. )!   corresponds to the 
matrix transpose, and 

 

𝛽 = !!!!!!!!!!!
!

                              (15) 

 
Under the assumptions that 𝜙 𝑛  is uniformly 

distributed in [0;   2𝜋] and that 𝑎[𝑛] and 𝜙 𝑛  are 
independent, the two principal components correspond to 
the direct and quadrature components up to a constant 
phase indetermination [7]. Note that the constant phase 
indetermination is not an issue for the estimation of the 
instantaneous frequency since the latter is based on a 
phase difference (see (3)). In other words, the phase 
indetermination does not affect the estimation of the 
instantaneous amplitude and the instantaneous frequency. 

As opposed to other multidimensional techniques, the 
PCA-based technique is less restrictive since it holds 
whatever the balance assumption, which is an interesting 
property for fault detection in electrical machines. 

II.3. Induction Machine Faults Detection based on 
Demodulation Techniques 

The previously discussed demodulation techniques 
allow extracting the IA and IF from mono-component 
signals. Depending on the signal characteristics, Fig. 6 
gives the demodulation technique to be applied for 
induction machines monitoring based on stator currents 
processing. Especially, in the case of multi-component 
signals, a filtering step is required in order to separate 
modes. In the case where the modes cannot be separated 
using filtering, more sophisticated techniques are 
required such as EMD and EEMD. After demodulation, 
the analytic signal and the corresponding IA and IF must 
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Figure 5: Multidimensional-based demodulation.

where H is a 2 ⇥ 3 matrix. The choice of the matrix H depends on the balance assumption. In the
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For balanced system (d0 = d1 = d2 = 1 and  
k

= 0), the CT leads to the least-square estimator

of the direct and quadrature components [44, 31, 7]. The main drawback of CT relies on the balance

assumption since systems are rarely balanced in abnormal operating conditions.

2.2.2. Maximum likelihood approach95

The Maximum Likelihood Estimation (MLE) is a powerful statistical technique for the estimation

of unknown parameters. More precisely, this technique has the property to be optimal in the sense

that it attains the Cramèr-Rao bounds under some conditions [45]. Recently, the (deterministic)

Maximum Likelihood has been derived for the estimation of the direct and quadrature components

for three-phase systems with amplitude unbalance only (d0 = 1 and  
k

= 0) [46]. For systems with100

amplitude unbalance, the Maximum Likelihood technique leads to the following matrix

HM =
1

d

2
1 + d

2
2 + d

2
1d

2
2

2

4d
2
1 + d

2
2 �d1d

2
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2
1d2
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2
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2
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2
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3
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3

5 (11)

In practise, it should be noted that the unbalance parameters d
k

are unknown and must be replaced

by their estimates. In [46], it has been shown that the estimate of the unbalance parameters d
k

can be

simply obtained from the eigenvector associated with the smallest eigenvalue of the samples covariance

matrix bR, which is defined as

bR =

2

6664

r00 r01 r02

r01 r11 r12

r02 r12 r22

3

7775
. (12)
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be appropriately analyzed to assess the fault severity. 
Several papers have proposed to monitor the deviation of 
the analytic signal from a circle in the complex plane 
[53-54]. This approach holds when the stator current is 
amplitude modulated but is not appropriate when the 
stator current is frequency modulated since the fault only 
affects the rotational speed in the complex plane [7]. 
Hence, the variance of the IA, 𝑎[𝑛] and the IF, 𝑓[𝑛] are 
used as fault detection criteria. In fact, these criteria are 
related to the modulation indexes, which are proportional 
to the fault severity [7]. The proposed criteria 
mathematical formulation is given by (16). 

 
𝐶! =

!
!

(𝑎 𝑛 −𝑚(𝑎 𝑛 ))!!!!
!!!

𝐶! =
!
!

(𝑓 𝑛 −𝑚(𝑓 𝑛 ))!!!!
!!!

                     (16) 

 
Where 𝑚(𝑋) denotes the mean of time series 𝑋.  

Algorithm 1 summarizes the proposed approach for 
fault detection in induction machine based on 
demodulation techniques. This algorithm will be used in 
the following for bearing faults detection in induction 
machines using simulated data and experimental signals. 

 

Algorithm 1: Stator currents demodulation for faults detection in 
induction machine. 

 

 

Require: Signal samples 𝒙[𝑛]. 
1. Estimation of the in-phase and quadrature components 

using appropriate demodulation technique as described in 
Fig. 6, 

2. Computation of the analytic signal, 
3. Estimation of the instantaneous amplitude, 𝑎[𝑛], and 

instantaneous frequency, 𝑓[𝑛] using (2) and (3), 
4. Computation of the fault detection criteria; 𝐶! and 𝐶! in 

(16), 
5. Return 𝑎 𝑛 (𝑛 = 0,… ,𝑁 − 1),  𝑓 𝑛 (𝑛 = 0,… ,𝑁 − 1), 

𝐶! and 𝐶!. 
 

III. Simulation Results 
This section reports on the performance of the 

demodulation techniques for induction machine bearing 
faults detection. The induction machine modeling 
approach is briefly presented. Then, the bearing fault is 
emulated in order to demonstrate the interest of the 
above-presented approaches. 
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(a) Synchronous demodulator-based demodulation.
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(b) Hilbert transform-based demodulation.
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(c) Teager energy operator-based demodulation.

Fig. 7 . Stator current monodimensional demodulation for bearing fault detection.



III.1. Induction Machine Modeling under Faults Briefly 

An induction machine is considered as a highly 
symmetrical electromagnetic system. Any fault will 
therefore induce a certain degree of asymmetry [55]. The 
coupled magnetic circuits (CMC) approach combined 
with the arbitrary reference frames theory has been 
chosen for induction machines modeling [56]. 

The computation of the matrices containing all 
magnetizing, leakage, and mutual inductances is the key 
to a successful simulation of the squirrel cage induction 
machine. In the following, all the relevant inductances 
matrices are calculated using the winding function 
method [56]. The expression of the inductance matrix of 
the induction machine can be extracted from the flux or 
from the magnetic energy stored on the airgap. 

In order to emulate the induction machine faults, the 
harmonic contents of the stator current can be calculated 
satisfactory using a linear model of the machine [56], [58]. 
All the parameters are calculated from the actual 
geometry and winding layout of the machines rather than 
from transformed or equivalent variables. In this context, 
a Matlab-based tool of faulty induction machines has 
been developed to generate a fault database.  

It has been demonstrated in [15], [60] that single-point 
bearings faults induce mechanical eccentricities, but also 
load-torque variations. Hence, in the carried-out 
simulations, bearing faults are emulated by generating 
only one sort of physical phenomena: rotating 
eccentricities at bearing characteristic fault frequency 𝑓!. 

III.2. Simulation Results 

In this section, a 4kW induction machine operating 
under nominal load condition has been simulated. Two 
machines have been considered: a healthy machine and a 
faulty one affected by mixed eccentricity. For these 
machines, the stator current signals have been recorded 
during 10seconds with a 1kHz-sampling rate. The 
simulation results for the estimation of the IA and IF 
using the demodulation techniques is given by Fig. 7 for 
mono-dimensional techniques and Fig. 8 for multi-
dimensional approaches. 

The main conclusion that may be drawn from this 
figures is that the demodulation techniques allow to 
highlight the presence of the emulated fault. Moreover, 
this fault introduces both a sinusoidal frequency and 
amplitude modulation in the stator current. 

Several simulations have been performed in order to 
prove the interest of the demodulation techniques for fault 
detection and severity measurement. Increasing the 
eccentricity degree increases the fault severity. Figure 9 
gives the variation of the proposed fault detection criteria 
with respect to fault severity. It shows that the proposed 
fault detection algorithm allows measuring the fault 
severity. In fact, the fault detection criteria increase with 
respect to the fault severity. These simulation results 
demonstrate the interest of the proposed algorithm for faults 
detection in induction machines. These preliminary results 
are validated in the following using experimental data. 

 

 
 

(a) Synchronous demodulator-based demodulation.       (b) Hilbert transform-based demodulation.      (c) Teager energy operator-based demodulation. 
 

Fig. 7. Stator current mono-dimensional demodulation for bearing fault detection. 
 

 
 

   (a) Concordia transform-based demodulation.             (b) Maximum likelihood approach-based                 (c) Principal component analysis-based 
                                                                                demodulation: d0 = 1, d1 = 1.0193, and d2 = 1.0162.                             demodulation. 

 
Fig. 8. Stator current multi-dimensional demodulation for bearing fault detection. 
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(b) Hilbert transform-based demodula-

tion.
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(c) Teager energy operator-based de-

modulation.

Figure 7: Stator current monodimensional demodulation for bearing fault detection.
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(a) Concordia Transform-based de-

modulation.

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
10.2

10.3

10.4

10.5

10.6

10.7

10.8

Time [s]

In
st

an
ta

ne
ou

s 
am

pl
itu

de

 

 

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
49

49.5

50

50.5

51

Time [s]

In
st

an
ta

ne
ou

s 
fre

qu
en

cy

healthy machine
bearing fault

(b) Maximum Likelihood Approach-

based demodulation: d0 = 1, d1 =

1.0193 and d2 =1.0162
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(c) Principal Component Analysis-

based demodulation.

Figure 8: Stator current multidimensional demodulation for bearing fault detection.

over the machine eccentricity and/or load variations. In the carried-out simulations, bearing faults

are emulated by generating rotating eccentricities at bearing characteristic fault frequency f

c

which

leads to periodical changes in the induction machine inductances [14, 59].

In this section, a 4-kW induction machine operating under nominal load condition have been155

simulated. Two machines have been considered: a healthy machine and a faulty one a↵ected by a

(static, dynamic and mixed) eccentricity. For these machines, the stator current signals have been

recorded during 10 seconds with a 1 kHz sampling rate. For the sake of brevity, we chose to only

present the mixed eccentricity results. The simulation results for the estimation of the IA and IF

using the demodulation techniques are given by Fig. 7 for mono-dimensional techniques and Fig. 8160

for multi-dimensional approaches.

The main conclusion that may be drawn from this figures is that the demodulation techniques

allow to highlight the presence of the emulated fault. Moreover, this fault introduces both a sinusoidal
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(b) Hilbert transform-based demodula-

tion.
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based demodulation: d0 = 1, d1 =

1.0193 and d2 =1.0162
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Figure 8: Stator current multidimensional demodulation for bearing fault detection.

over the machine eccentricity and/or load variations. In the carried-out simulations, bearing faults

are emulated by generating rotating eccentricities at bearing characteristic fault frequency f

c

which

leads to periodical changes in the induction machine inductances [14, 59].

In this section, a 4-kW induction machine operating under nominal load condition have been155

simulated. Two machines have been considered: a healthy machine and a faulty one a↵ected by a

(static, dynamic and mixed) eccentricity. For these machines, the stator current signals have been

recorded during 10 seconds with a 1 kHz sampling rate. For the sake of brevity, we chose to only

present the mixed eccentricity results. The simulation results for the estimation of the IA and IF

using the demodulation techniques are given by Fig. 7 for mono-dimensional techniques and Fig. 8160

for multi-dimensional approaches.

The main conclusion that may be drawn from this figures is that the demodulation techniques

allow to highlight the presence of the emulated fault. Moreover, this fault introduces both a sinusoidal
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Fig. 9. Fault detection criteria with respect to fault severity; S1: 5% 
eccentricity, S2: 10% eccentricity, S3: 15% eccentricity, S4: 20% 

eccentricity. 

IV. Experimental Results 
The above signal processing methods are tested on 

experimental data recorded from an induction machine 
with bearing faults. 

IV.1. Experimental Setup Description 

This section illustrates the behavior of the proposed 
techniques for faults detection in induction machine 
experimental signals collected from a test rig illustrated 
by Fig. 10. The machine under test is a 230/400 V, 
0.75kW, three-phase induction motor with 𝑝   =   1    and 
2780rpm rated speed. The induction machine has two 
6204.2 ZR type bearings (single row and deep groove 
ball bearings) with the following parameters: outside 
diameter is 47 mm, inside diameter is 20 mm, and pitch 
diameter D is 31.85mm. Bearings have 8 balls with an 
approximate diameter d of 12 mm and a contact angle of 
0°. Figure 11 gives the bearing structure and the main 
dimensions. Bearing faults are obtained by simply 
drilling holes in different parts [61]. The measured 
quantities for off-line bearing fault detection were the 
line-currents. Data acquisition is performed by a 24 bits 
acquisition card with 10 kHz sampling frequency. 

 
 

(a) Schematic view of the test rig. 
 

 
 

(b) Photos of the test rig mechanical part. 
 

Fig. 10. Test rig. 
 

 
 

Fig. 11. Bearing structure with main dimensions. 
 

These stator currents have been acquired and stored for 
further processing using the proposed methods on 
Matlab. For all the experiments, the stator fundamental 
frequency was almost equal to 𝑓! =   50  𝐻𝑧. 

A healthy and a faulty single-phase stator current data 
collected from the experimental setup are shown in Fig. 
12. Figure 12(a) gives a single-phase stator current data 
waveform corresponding to a healthy and faulty state of 
the motor under 50% load condition. This figure shows 
that the stator currents are not exactly sinusoidal due to 
space harmonics. These space harmonics are visible on 
the stator current spectrum depicted in Fig. 12(b). 
Moreover, the stator current signal is a multi-component 
signal due to the presence of these supply frequency 
harmonics. In order to obtain an approximation of mono-
component signal, the current is band pass filtered with 
upper and lower cut-off frequencies equal to 80Hz and 
20Hz and down-sampled to 200Hz. Then, the 
demodulation techniques are used to compute the 
analytical signal. Finally, the IA and IF are computed in 
order to reveal the presence of a bearing fault. 
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Figure 9: Fault detection criteria with respect to fault severity; S1: 5% eccentricity, S2: 10% eccentricity, S3: 15%

eccentricity, S4: 20% eccentricity.

frequency and amplitude modulation in the stator current. Several simulations have been performed

in order to prove the interest of demodulation techniques for fault detection and severity measurement.165

The fault severity is increased by increasing the eccentricity degree.

The variation of the proposed fault detection criteria with respect to fault severity is given by

Fig.9.

Figure 9 shows that the proposed fault detection algorithm allows to measure the fault severity.

In fact, the fault detection criteria increase with respect to the fault severity. These simulation results170

demonstrate the interest of the proposed algorithm for faults detection in induction machines. These

preliminary results are validated in the following using experimental data.

4. Experimental Results

The above signal processing methods are tested on experimental data recorded from an induction

machine with bearing faults.175

4.1. Experimental Setup Description

This section illustrates the behavior of the proposed techniques for faults detection in induction

machine with experimental signals. The machine under test is a 230/400 V, 0.75-kW, three-phase

induction motor with p = 1 and 2780 rpm rated speed. The induction machine has two 6204.2 ZR type

bearings (single row and deep groove ball bearings) with the following parameters: outside diameter180

is 47 mm, inside diameter is 20 mm, and pitch diameter D is 31.85 mm. Bearings have 8 balls with

an approximate diameter d of 12 mm and a contact angle of 0 �. Figure 10 gives the bearing structure

and the main dimensions.
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and the main dimensions.
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In order to study the load influence, the induction machine was operated with various load levels ranging from 0 W to
400 W.

The measured quantities for off-line bearing fault detection were the line-currents. For all the experiments, the stator
fundamental frequency was equal to f s ¼ 50 Hz. All the signals were acquired at a 10 kHz sampling frequency by a data
acquisition card and processed using Matlab"simulinks. As the information relative to the bearing faults is mostly
contained in the low frequency content, these signals were down-sampled at a 600 Hz sampling rate.

5.2.2. Fault detection results
In presence of bearing faults, it has been shown in [40] that the fault characteristic frequencies are given by:

f kðΩÞ ¼ jf s7kf cj (kAZ). In [41], it has been demonstrated that depending on the bearing fault effect on the induction

Fig. 10. Bearing structure with main dimensions ((α) outer race deterioration, (β) inner race deterioration, (γ) cage deterioration, δ ball deterioration). (a)
Geometry of a rolling-element bearing. (b) Artificially deteriorated bearing.

Table 4
Theoretical values of bearing faults frequencies.

Bearing fault Fault related frequency Theoretical values (Hz)

Cage defect
f c ¼

f r
2

1"
d
D

cos αð Þ
! "

[14.4, 27.077]

Ball defect
f bd ¼

D
d
f r 1"

d2

D2 cos 2 αð Þ

 !
[105.5, 119.47]

Inner raceway
f id ¼

nf r
2

1þ
d
D

cos αð Þ
! "

[154.04, 255.1]

Outer raceway
f od ¼

nf r
2

1"
d
D

cos αð Þ
! "

[115.5, 216.6]

Fig. 11. Test rig scheme.
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Figure 11: A healthy and faulty (Bearing cage fault) phase motor current data collected from the experimental setup.

Bearing faults are obtained by simply drilling holes in di↵erent parts [60]. The measured quantities

for o↵-line bearing fault detection were the line-currents. Data acquisition is performed by a 24 bits185

acquisition card with 10 kHz sampling frequency. These stator currents have been acquired and stored

for further processing using the proposed methods on Matlab R�. For all the experiments, the stator

fundamental frequency was almost equal to f

s

= 50 Hz.

A healthy and a faulty single phase stator current data collected from the experimental setup

are shown in Fig. 11. A single phase stator current data waveform corresponding to a healthy and190

faulty state of the motor under 50% load condition are given by Fig. 11(a). This figure shows that

the stator currents are not exactly sinusoidal due to space harmonics. These space harmonics are

visible on the stator current spectrum depicted in Fig. 11(b). Moreover, the stator current signal is a

multi-component signal due to the presence of these supply frequency harmonics. In order to obtain

an approximation of a mono-component signal, the current is bandpass filtered with upper and lower195

cut-o↵ frequencies equal to 80 Hz and 20 Hz and down-sampled to 200 Hz. Then, the demodulation
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The IA and IF estimates based on mono-dimensional 
techniques are given by Fig. 13. From this figure, it can be 
deduced that the stator current is frequency modulated and 
the fault severity may be measured by computing the IF 
variance. Moreover, the mono-dimensional techniques 
perform well and exhibit the existence of the frequency 
modulation when a bearing fault exists. Regarding the SD, 

the modulation on the instantaneous amplitude can be 
explained by the low-pass filtering stage, which introduces 
oscillations. These oscillations are not responsible of the 
fault but are a result of the filtering stage. Even if the HT 
allows revealing the frequency modulation and 
subsequently the presence of the fault, it suffers from 
border effects (not visible on the figure because we give a 
zoom of the original figure). These border effects may lead 
to false conclusions on the health state of the bearing. 

IV.2.1. Multi-dimensional techniques 

The multi-dimensional techniques performances are 
depicted in Fig. 14. As expected the stator current is 
frequency modulated when the bearing fault occurs. The 
CT based demodulation technique is easy to implement, 
but it is more appropriate for balanced systems. Indeed, the 
CT may lead to incorrect results for the unbalanced case. 
The MLE-based technique exhibits the property of being 
suited for unbalanced three-phase stator currents. It gives 
good results for amplitude unbalance since it gives the 
amplitude unbalance parameters estimates. However, 
MLE-based approach is not appropriate for phase 
unbalance. As opposed to CT, the PCA leads to a better IA 
and IF estimation whatever the balance assumption [7]. 

IV.3. Summary on Demodulation Techniques 

The IA and IF have been used in order to compute the 
fault detection criteria. Figure 15 gives the simulation 
results for several bearing faults severity. As expected, the 
IF variance increases as the fault severity increases. The 
IA does not change significantly, which means that the 
bearing fault introduces a frequency modulation, which 
can be highlighted by the variance of the instantaneous 
frequency. This result is in accordance with the theoretical 
study and the experimental validation in [15]. 

It must be emphasized that these techniques require a 
preprocessing step in order to obtain a mono-component 
signals. In fact, in the case where the signal cannot be 
assumed to be mono-component, more sophisticated 
techniques are required in order to extract the mono-
component signals from the original one. 
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(a) Synchronous demodulator-based

demodulation.
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(b) Hilbert transform-based demodula-

tion.
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(c) Teager energy operator-based de-

modulation.

Figure 12: Mono-dimensional techniques.

techniques are used to compute the analytical signal. Finally, the IA and IF are computed in order

to reveal the presence of bearing fault.

4.2. Bearing Faults Detection Based on Demodulation Techniques

4.2.1. Mono-dimensional techniques200

The IA and IF estimates based on mono-dimensional techniques are given by Fig. 12. From this

figure, it can be deduced that the stator current is frequency modulated and the fault severity may

be measured by computing the IF variance. Moreover, the mono-dimensional techniques perform well

and exhibit the existence of the frequency modulation when a bearing fault exists. Regarding the

SD, the modulation on the instantaneous amplitude can be explained by the low-pass filtering stage,205

which introduces oscillations. These oscillations are not responsible of the fault but are a result of

the filtering stage. Even if the HT allows to reveal the frequency modulation and subsequently the

presence of the fault, it su↵ers from border e↵ects (not visible on the figure because we give a zoom

of the original figure). These border e↵ects may lead to false conclusions on the health state of the

bearing.210

4.2.2. Multi-dimensional techniques

The multi-dimensional techniques performance are depicted in Fig. 13. As expected the stator

current is frequency modulated when the bearing fault occurs. The CT based demodulation technique

is easy to implement, but it is more appropriate for balanced systems. Indeed, the CT may lead to

incorrect results for the unbalanced case. The MLE-based technique exhibits the property of being215

suited for unbalanced three-phase stator currents. It gives a good results for amplitude unbalance

since it gives the amplitude unbalance parameters estimates. However, MLE-based approach is not

14



 
 

   (a) Concordia transform-based demodulation.             (b) Maximum likelihood approach-based                 (c) Principal component analysis-based 
                                                                                demodulation: d0 = 1, d1 = 0.9849, and d2 = 1.0017.                             demodulation. 

 
Fig. 14. Multi-dimensional techniques. 

 

 
 

Fig. 15. Failure severity measurement for bearing fault detection using the proposed approach. 
 

The EMD and EEMD [52], [62-64] are the most used 
techniques for mono-component signals (IMFs) 
computation. 

The simulation results on experimental data are given 
in Fig. 16 where the HHT has been implemented using 
the G. Rilling’s subroutines for Matlab. These figures 
depict the 4 IMFs extracted from the original signals and 
the corresponding Hilbert Huang transform [37]. The 
first IMF is the fundamental frequency and the other 
IMFs are present in the case of healthy and faulty 
machine. However, there energy is not the same for the 
healthy machine and the faulty one. The computation of 
the variance of the second, third, and forth IMFs shows 
an increase of the energy of these components due the 
presence of the failure. These results shows that the EMD 
can be used to compute one IMF from the original signal 
and the energy of the residue can be used as a fault 
indicator. Afterwards, a threshold based decision-making 
technique may allow distinguishing a faulty machine 
from a healthy one. 

V. Conclusion 
In this paper, we have investigated the use of 

demodulation techniques for bearing faults detection in 

induction machines. Several approaches have been 
presented for stator currents processing. It has been 
proven that the computation of the IF and IA variances 
allows deriving a reliable fault indicator. The 
performance of the proposed techniques has been 
evaluated on simulation signals issued from a coupled 
magnetic circuits model of a squirrel cage induction 
machine. Finally, the usefulness of the proposed 
techniques has been demonstrated on actual induction 
machine with bearing faults. 

The investigated techniques should however be 
investigated and validated for other induction machine 
faults such as broken rotor bars, torque oscillation, stator 
short-circuit, etc. In addition, further investigations are 
required in order to demonstrate the interest of the 
demodulation techniques for variable frequency power 
supply and adjustable speed drives. 
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(b) Maximum Likelihood Approach-

based demodulation: d0 = 1, d1 =

0.9849 and d2 = 1.0017.
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(c) Principal Component Analysis-

based demodulation.

Figure 13: Multidimensional techniques.
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Figure 14: Failure severity criteria for bearing fault detection.

appropriate for phase unbalance. As opposed to CT, the PCA leads to a better IA and IF estimation

whatever the balance assumption [7].

4.3. Summary on Demodulation Techniques220

The IA and IF have been used in order to compute the fault detection criteria. The simulation

results for several bearing faults severity are given by Fig. 14. As expected, the IF variance increases

as the fault severity increases. The IA does not change significantly, which means that the bearing

fault introduces a frequency modulation, which can be highlighted by the variance of the instantaneous

frequency. This result is in accordance with the theoretical study and the experimental validation in225

[14].

It must be emphasized that these techniques require a pre-processing step in order to obtain

a mono-component signals. In fact, in the case where the signal can not be assumed to be mono-
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(b) Maximum Likelihood Approach-

based demodulation: d0 = 1, d1 =

0.9849 and d2 = 1.0017.
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(c) Principal Component Analysis-

based demodulation.

Figure 13: Multidimensional techniques.
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appropriate for phase unbalance. As opposed to CT, the PCA leads to a better IA and IF estimation

whatever the balance assumption [7].

4.3. Summary on Demodulation Techniques220

The IA and IF have been used in order to compute the fault detection criteria. The simulation

results for several bearing faults severity are given by Fig. 14. As expected, the IF variance increases

as the fault severity increases. The IA does not change significantly, which means that the bearing

fault introduces a frequency modulation, which can be highlighted by the variance of the instantaneous

frequency. This result is in accordance with the theoretical study and the experimental validation in225

[14].

It must be emphasized that these techniques require a pre-processing step in order to obtain

a mono-component signals. In fact, in the case where the signal can not be assumed to be mono-
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Fig. 16. EMD performances on experimental data. 
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