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ANALYTIC COMBINATORICS OF CHORD AND HYPERCHORD

DIAGRAMS WITH k CROSSINGS

VINCENT PILAUD AND JUANJO RUÉ

Abstract. Using methods from Analytic Combinatorics, we study the families of perfect
matchings, partitions, chord diagrams, and hyperchord diagrams on a disk with a prescribed

number of crossings. For each family, we express the generating function of the configurations

with exactly k crossings as a rational function of the generating function of crossing-free config-
urations. Using these expressions, we study the singular behavior of these generating functions

and derive asymptotic results on the counting sequences of the configurations with precisely k

crossings. Limiting distributions and random generators are also studied.

Keywords. Quasi-Planar Configurations – Chord Diagrams – Analytic Combinatorics –

Generating Functions

MSC Classes. 05A15 – 05A16 – 05C30 – 05C10

1. Introduction

1.1. Nearly-planar chord diagrams. Let V be a set of n labeled points on the unit circle. A
chord diagram on V is a set of chords between points of V . We say that two chords cross when
their relative interior intersect. The crossing graph of a chord diagram is the graph with a vertex
for each chord and an edge between any two crossing chords.

The enumeration properties of crossing-free (or planar) chord diagrams have been widely stud-
ied in the literature, see in particular the results of P. Flajolet and M. Noy in [6]. From the work
of J. Touchard [21] and J. Riordan [19], we know a remarkable explicit formula for the distribu-
tion of crossings among all perfect matchings, which was exploited in [7] to derive, among other
parameters, the limit distribution of the number of crossings for matchings with many chords.

A more recent trend studies chord diagrams with some but restricted crossings. The several
ways to restrict their crossings lead to various interesting notions of nearly-planar chord diagrams.
Among others, it is interesting to study chord diagrams

(1) with at most k crossings, or
(2) with no (k + 2)-crossing (meaning k + 2 pairwise crossing edges), or
(3) where each chord crosses at most k other chords, or
(4) which become crossing-free when removing at most k well-chosen chords.

Note that these conditions are natural restrictions on the crossing graphs of the chord dia-
grams. Namely, the corresponding crossing graphs have respectively (1) at most k edges, (2) no
(k + 2)-clique, (3) vertex degree at most k, and (4) a vertex cover of size k. For k = 0, all these
conditions coincide and lead to crossing-free chord diagrams. Other natural restrictions on their
crossing graphs can lead to other interesting notions of nearly-planar chord diagrams.

Families of (k + 2)-crossing-free chord diagrams have been studied in recent literature. On the
one hand, (k+ 2)-crossing-free matchings (as well as their (k+ 2)-nesting-free counterparts) were
enumerated in [4]. On the other hand, maximal (k + 2)-crossing-free chord diagrams, also called
(k + 1)-triangulations, were introduced in [2], studied in [15, 18], and enumerated in [12, 20],
among others. As far as we know, Conditions (1), (3) and (4), as well as other natural notions of
nearly-planar chord diagrams, still remain to be studied in details. We focus in this paper on the
Analytic Combinatorics of chord configurations under Condition (1).
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2 VINCENT PILAUD AND JUANJO RUÉ

1.2. Rationality of generating functions. In this paper, we study enumeration and asymptotic
properties for different families of configurations: chord diagrams, hyperchord diagrams (even
with restricted hyperchord sizes), perfect matchings, partitions (even with restricted block sizes).
Examples of these configurations are represented in Figure 1.

matching partition chord conf. hyperchord conf.

Figure 1. The four families of (hyper)chord configurations studied in this paper.
Their cores are highlighted in bold red.

Let C denote one of these families of configurations. For enumeration purposes, we consider
the configurations of C combinatorially: in each configuration we insert a root between two con-
secutive vertices, and we consider two rooted configurations C and C ′ of C as equivalent if there
is a continuous bijective automorphism of the circle which sends the root, the vertices, and the
(hyper)chords of C to that of C ′. We focus on three parameters of the configurations of C: their
number n of vertices, their number m of (hyper)chords, and their number k of crossings. Note that
for hyperchord diagrams and partitions, we count all crossings involving two chords contained in
two distinct hyperchords. Moreover, we can assume that no three chords cross at the same point,
so that there is no ambiguity on whether or not we count crossings with multiplicity. We denote
by C(n,m, k) the set of configurations in C with n vertices, m (hyper)chords and k crossings, and
we let

C(x, y, z) :=
∑

n,m,k∈N
|C(n,m, k)|xnymzk

denote the generating function of C, and

Ck(x, y) :=
∑
n,m∈N

|C(n,m, k)|xnym = [zk] C(x, y, z)

denote the generating function of the configurations in C with precisely k crossings. Our first
result concerns the rationality of the latter generating function.

Theorem 1.1. The generating function Ck(x, y) of configurations in C with exactly k crossings
is a rational function of the generating function C0(x, y) of planar configurations in C and of the
variables x and y.

The idea behind this result is to confine crossings of the configurations of C to finite subcon-
figurations. Namely, we define the core configuration C? of a configuration C ∈ C to be the
subconfiguration formed by all (hyper)chords of C containing at least one crossing. The key
observation is that

(i) there are only finitely many core configurations with k crossings, and
(ii) all configurations of C with k crossings can be constructed from their core configuration

inserting crossing-free subconfigurations in the remaining regions.

This translates in the language of generating functions to a rational expression of Ck(x, y) in terms
of C0(x, y) and its successive derivatives with respect to x, which in turn are rational in C0(x, y)
and the variables x and y. For certain families mentioned above, the dependence in y can even be
eliminated, obtaining rational functions in C0(x, y) and x .
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Similar decomposition ideas were used for example by E. Wright in his study of graphs with
fixed excess [22, 23], or more recently by G. Chapuy, M. Marcus, G. Schaeffer in their enumeration
of unicellular maps on surfaces [3].

Note that Theorem 1.1 extends a specific result of M. Bóna [1] who proved that the generating
function of the partitions with k crossings is a rational function of the generating function of
the Catalan numbers. We note that his method was slightly different. The advantage of our
decomposition scheme is to be sufficiently elementary and general to apply to the different families
of configurations mentioned above.

1.3. Asymptotic analysis and random generation. From the rational expression of the gen-
erating function Ck(x, y) in terms of C0(x, y), we can extract the asymptotic behavior of config-
urations in C with k crossings.

Theorem 1.2. For k ≥ 1, the number of configurations in C with k crossings and n vertices is

[xn] Ck(x, 1) =
n→∞

Λnα ρ−n (1 + o(1)),

for certain constants Λ, α, ρ ∈ R depending on the family C and on the parameter k. See Table 1.

family constant Λ exponent α singularity ρ−1 Prop.

matchings1

√
2 (2k − 3)!!

4k−1 k! Γ
(
k − 1

2

) k − 3

2
2 2.11

partitions2 (2k − 3)!!

23k−1 k! Γ
(
k − 1

2

) k − 3

2
4 2.21

chord
diagrams

(
−2 + 3

√
2
)3k√−140 + 99

√
2 (2k − 3)!!

23k+1 (3− 4
√

2)k−1 k! Γ(k − 1
2 )

k − 3

2
6 + 4

√
2 3.9

hyperchord
diagrams2,3 ' 1.0343k 0.003655 (2k − 3)!!

0.03078k−1 k! Γ(k − 1
2 )

k − 3

2
' 64.97 3.15

Table 1. The values of Λ, α and ρ in the asymptoptic estimate of Theorem 1.2
for different families of chord diagrams.

Theorem 1.2 and Table 1 already raise the following remarks:

(i) The position of the singularity of the generating function Ck(x, y) always arises from that of
the corresponding planar family C0(x, y). The values of these singularities are very easy to
compute for matchings and partitions, but more involved for chord and hyperchord diagrams
and for partitions or diagrams with restricted block sizes.

(ii) Although the exponent α seems to always equal k− 3
2 as in Table 1, this is not true in general.

This exponent is dictated by the number of core configurations in C maximizing a certain
functional (see Sections 2.4, 2.6, 3.4, and 3.7). Families of configurations with restricted
block sizes can have different exponents, see Sections 2.6 and 3.7.

(iii) Although Theorem 1.2 seems generic, the different families of configurations studied in this
paper require different techniques for their asymptotic analysis. Certain methods used for
the analysis are elementary, but some other are more complicated machinery borrowed from
Analytic Combinatorics [9].

As another relevant application of the rational expression of the generating function Ck(x, y)
from Theorem 1.1, we obtain random generation schemes for the configurations in C with precisely
k crossings, using the methods developed in [5].

1The asymptotic estimate for the number of matchings with n vertices is obviously only valid when n is even.
2For partitions with restricted block sizes and for hyperchord diagrams with restricted hyperchord sizes, the values

of Λ, α and ρ are more involved. We refer to Propositions 2.20 and 3.21 for precise statements.
3The expression of ρ−1 and Λ for hyperchord diagrams is obtained from approximations of roots of polynomials,

and approximate evaluations of analytic functions. Details can be found in Propositions 3.13 and 3.15.
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1.4. Overview. The paper is organized as follows. In Section 2, we study in full details the case
of perfect matchings with k crossings, since we believe that their analysis already illustrates the
method and its ramifications, while remaining technically elementary. We define core matchings
in Sections 2.1, obtain an expression of the generating function of matchings with k crossings in
Section 2.2, study its asymptotic behavior in Sections 2.3 and 2.4, and discuss random generation
of matchings with k crossings in Section 2.5. We extend these results to partitions (even with
restricted block sizes) in Section 2.6.

In Section 3, we apply the same method to deal with chord diagrams and hyperchord diagrams
(even with restricted hyperchord sizes). Although we apply a similar decomposition, the results
and analysis are slightly more technical, in particular since the generating functions of crossing-free
chord and hyperchord diagrams are not as simple as for matchings and partitions.

Throughout this paper, we use language and basic results of Analytic Combinatorics. We refer
to the book of P. Flajolet and R. Sedgewick [9] for a detailed presentation of this area. We also
mention that a longer preliminary version of the present paper, with more emphasis on examples
and computational issues can be found in [17].

2. Perfect matchings and partitions

In this section, we consider the family M of perfect matchings with endpoints on the unit
circle. Each perfect matching M ofM is rooted: we mark (with the symbol 4) an arc of the circle
between two endpoints of M , or equivalently, we label the vertices of M counterclockwise starting
just after the mark4. Although it is equivalent to considering matchings of [n], the representation
on the disk suits better for the presentation of our results.

Let M(n, k) denote the set of matchings in M with n vertices and k crossings. We denote by

M(x, z) :=
∑
n,k∈N

|M(n, k)|xnzk

the generating function ofM where x encodes the number of vertices and z the number of crossings.
Observe that we do not encode here the number of chords since it is just half of the number of
vertices. We want to study the generating function

Mk(x) := [zk] M(x, z)

of perfect matchings with exactly k crossings.

Example 2.1. The generating function of crossing-free perfect matchings satisfies the functional
equation M0(x) = 1 + x2 M0(x)

2
, leading to the expression

M0(x) =
1−
√

1− 4x2

2x2
=
∑
m∈N

1

m+ 1

(
2m

m

)
x2m =

∑
m∈N

Cm x
2m,

where Cm := 1
m+1

(
2m
m

)
denotes the mth Catalan number. The asymptotic behavior of the number

of crossing-free perfect matchings is thus given by

[x2m] M0(x) = Cm =
m→∞

1

Γ
(

1
2

) n− 3
2 4n (1 + o(1)) =

1√
π
n−

3
2 4n (1 + o(1)).

The goal of this paper is to go beyond crossing-free objects. We thus assume that k ≥ 1.

2.1. Core matchings. Let M be a perfect matching with some crossings. Our goal is to isolate
the contribution of the chords involved in crossings from that of the chords with no crossings.

Definition 2.2. A core matching is a perfect matching where each chord is involved in a crossing.
It is a k-core matching if it has exactly k crossings. The core M? of a perfect matching M is the
submatching of M formed by all its chords involved in at least one crossing.

Let K be a core matching. We let n(K) denote its number of vertices and k(K) denote
its number of crossings. We call regions of K the connected components of the complement
of K in the unit disk. A region has i boundary arcs if its intersection with the unit circle has i
connected arcs. We let ni(K) denote the number of regions of K with i boundary arcs, and we
set n(K) := (ni(K))i∈[k]. Note that n(K) =

∑
i ini(K).
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Since a crossing only involves 2 chords, a k-core matching can have at most 2k chords. This
immediately implies the following crucial observation.

Lemma 2.3. There are only finitely many k-core matchings.

The k-core matchings will play a central role in the analysis of the generating function Mk(x).
Hence, we encapsulate the enumerative information of these objects into a formal polynomial in
several variables.

Definition 2.4. We encode the finite list of all possible k-core matchings K and their parame-
ters n(K) and n(K) := (ni(K))i∈[k] in the k-core matching polynomial

KMk(x) := KMk(x1, . . . , xk) :=
∑

K k-core
matching

xn(K)

n(K)
:=

∑
K k-core
matching

1

n(K)

∏
i∈[k]

xi
ni(K).

For later use, we also denote by

KM(x, z) :=
∑
K core

matching

xn(K)zk(K)

n(K)
=
∑
k∈N

KMk(x) zk

the generating function of all core matchings. Note that each core is weighted by the inverse of
its number of vertices, both in KMk(x) and KM(x, z).

2.2. Generating function of matchings with k crossings. In this section, we express the
generating function Mk(x) of matchings with k crossings as a rational function of the generating
function M0(x) of crossing-free matchings, using the k-core matching polynomial KMk(x).

We study perfect matchings with k crossings focussing on their k-cores. For this, we consider
the following weaker notion of rooting of perfect matchings. We say that a perfect matching with k
crossings is weakly rooted if we have marked an arc between two consecutive vertices of its k-core.
Note that a rooted perfect matching is automatically weakly rooted (the weak root marks the
arc of the k-core containing the root of the matching), while a weakly rooted perfect matching
corresponds to several rooted perfect matchings. To overtake this technical problem, we use the
following immediate rerooting argument.

Lemma 2.5. Let K be a k-core with n(K) vertices. The number MK(n) of rooted perfect match-
ings on n vertices with core K and the number M̄K(n) of weakly rooted matchings on n vertices
with core K are related by n(K)MK(n) = nM̄K(n).

Observe now that we can construct any perfect matching with k crossings by inserting crossing-
free submatchings in the regions left by its k-core. From the k-core matching polynomial KMk(x),
we can therefore derive the following expression of the generating function Mk(x) of the perfect
matchings with k crossings.

Proposition 2.6. For any k ≥ 1, the generating function Mk(x) of the perfect matchings with k
crossings is given by

Mk(x) = x
d

dx
KMk

(
xi ←

xi

(i− 1)!

di−1

dxi−1

(
xi−1M0(x)

))
.

In particular, Mk(x) is a rational function of M0(x) and x.

Proof. Consider a rooted crossing-free perfect matching M . We say that M is i-marked if we
have placed i − 1 additional marks between consecutive vertices of M . Note that we can place
more than one mark between two consecutive vertices. Since we have

(
n+i−1
i−1

)
possible ways to

place these (i− 1) additional marks, the generating function of the i-marked crossing-free perfect
matchings is given by

1

(i− 1)!

di−1

dxi−1

(
xi−1M0(x)

)
.

Consider now a weakly rooted perfect matching M with k ≥ 1 crossings. We decompose this
matching into several submatchings as follows. On the one hand, the core M? contains all crossings
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of M . This core is rooted by the root of M . On the other hand, each region R of M? contains a
(possibly empty) crossing-free submatching MR. We root this submatching MR as follows:

(i) if the root of M points out of the region R, then MR is just rooted by the root of M ;
(ii) otherwise, MR is rooted on the first boundary arc of M? before the root of M in clockwise

direction.

Moreover, we place additional marks on the remaining boundary arcs of the complement of R in the
unit disk. We thus obtain a rooted i-marked crossing-free submatching MR in each region R of M?

with i boundary arcs. Reciprocally, we can reconstruct the weakly rooted perfect matching M
from its rooted core M? and its rooted i-marked crossing-free submatchings MR.

By this bijection, we thus obtain the generating function of weakly rooted perfect matchings
with k crossings. From this generating function, and by application of Lemma 2.5, we derive the
generating function Mk(x) of rooted perfect matchings with k crossings:

Mk(x) =
∑

K k-core
matching

x

n(K)

d

dx
xn(K)

∏
i≥1

(
1

(i− 1)!

di−1

dxi−1

(
xi−1M0(x)

))ni(K)

= x
d

dx

∑
K k-core
matching

1

n(K)

∏
i≥1

(
xi

(i− 1)!

di−1

dxi−1

(
xi−1M0(x)

))ni(K)

(1)

= x
d

dx
KMk

(
xi ←

xi

(i− 1)!

di−1

dxi−1

(
xi−1M0(x)

))
.

Since M0(x) is given by

M0(x) =
1−
√

1− 4x2

2x2

and satisfies the functional equation

M0(x) = 1 + x2 M0(x)
2
,

its derivative is rational in M0(x) and x. By induction, all its successive derivatives, and therefore
Mk(x), are also rational in M0(x) and x. �

Example 2.7. From the 1-core polynomial KM1(x) = 1
4 x1

4, we obtain the generating function
for matchings with a single crossing

M1(x) =
x4 M0(x)

4

1− 2x2 M0(x)
=

(
1−
√

1− 4x2
)4

16x4
√

1− 4x2
= x4 + 6x6 + 28x8 + 120x10 + 495x12 + 2002x14 . . .

These coefficients are indexed as Sequence A002694 in the Sloane’s On-Line Encyclopedia of
Integer Sequences [16].

2.3. Maximal core matchings. Before establishing asymptotic formulas of the number of per-
fect matchings with k crossings in Section 2.4, we need to introduce and characterize here certain
k-core matchings that we call maximal.

Example 2.8. Figure 2 illustrates the first few examples of a family of k-core matchings with
nk(K) = 1. Note that, except the first one, these k-core matchings can be rooted in four different
(meaning non-equivalent) positions.

Figure 2. Maximal core matchings (unrooted).
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Lemma 2.9. The following assertions are equivalent for an (unrooted) k-core matching K:

(i) K is one of the k-core matchings presented in Figure 2.
(ii) n1(K) = 3k, nk(K) = 1 and ni(K) = 0 for all other values of i (here, k ≥ 2).

(iii) K maximizes n1(K) among all possible k-core matchings (here, k ≥ 3).
(iv) K maximizes the potential function φ(K) :=

∑
i>1(2i−3)ni(K) among all k-core matchings.

We call maximal a k-core matching satisfying these conditions.

Proof. Assume that k ≥ 2. The implication (i) =⇒ (ii) is immediate. For the reverse implication,
observe that if a region R of K has k boundary arcs, then K has at least, and thus precisely, one
crossing between any two consecutive boundary arcs of R. This implies that K is one of the k-core
matchings presented in Figure 2.

We now prove that (ii) ⇐⇒ (iii) when k ≥ 3. Observe that n1(K) = 4 = 3 k(K) + 1 for the
unique 1-core matching K, and that n1(K) = 6 = 3 k(K) for any 2-core matching K. Given any
core matching K with k ≥ 3 crossings, we now prove by induction on the number of connected
components of K that n1(K) ≤ 3k, with equality if and only if K satisfies the conditions of (ii). If
the crossing graph of K is connected, we have n1(K) ≤ 2(k+1) < 3k. Otherwise, we split the unit
disk along a region of K with r > 2 boundary arcs, and we obtain r core matchings K1, . . . ,Kr.
Observe that

k(K) =
∑
j∈[r]

k(Kj) and n(K) =
∑
j∈[r]

n(Kj),

where the second equality can be refined to

n1(K) =
∑
j∈[r]

(
n1(Kj)−1

)
, nr(K) = 1+

∑
j∈[r]

nr(K), and ni(K) =
∑
j∈[r]

ni(K) for i /∈ {1, r}.

Let s denote the number of core matchings Kj with k(Kj) > 1. For these cores Kj , we have
n1(Kj) ≤ 3k(Kj) by induction hypothesis (and by our previous observation on the special case
of 2-core matchings). For the other cores Kj , with k(Kj) = 1, we have n1(Kj) = 4 = 3 k(Kj) + 1
as observed earlier. Therefore, we obtain

n1(K) =
∑
j∈[r]

(
n1(Kj)− 1

)
≤
(∑
j∈[r]

3k(Kj)

)
− s = 3k(K)− s ≤ 3k(K),

with equality if and only if s = 0. The latter condition is clearly equivalent to (ii).
Using a similar method, we finally prove that (ii) ⇐⇒ (iv) when k ≥ 2. Namely, given a core

matching K with k ≥ 2 crossings, we prove by induction on the number of connected components
of K that φ(K) ≤ 2k − 3, with equality if and only if K satisfies the conditions of (ii). If K is
connected, then ni(K) = 0 for all i > 1, and φ(K) = 0 < 2k− 3. Otherwise, we split the unit disk
along a region of K with r > 2 boundary arcs, and we obtain r core matchings K1, . . . ,Kr. Let s
denote the number of core matchings Kj with k(Kj) > 1. Up to relabeling, we can assume that
K1,K2, . . . ,Ks are the cores Kj with more than 1 crossing. By induction hypothesis, we have for
all j ∈ [s], ∑

i>1

(2i− 3)ni(Kj) ≤ 2k(Kj)− 3,

and therefore ∑
j∈[s]

∑
i>1

(2i− 3)ni(Kj) ≤ 2
∑
j∈[s]

k(Kj)− 3s.

For the core matching K, we therefore obtain

φ(K) =
∑
i>1

(2i− 3)ni(K) = (2r − 3) +
∑
j∈[s]

∑
i>1

(2i− 3)ni(Kj)

≤ (2r − 3) + 2
∑
j∈[s]

k(Kj)− 3s = 2

(
r − s+

∑
j∈[s]

k(Kj)

)
− 3− s

= 2 k(K)− 3− s ≤ 2 k(K)− 3,

with equality if and only if s = 0, i.e. if and only if K satisfies the conditions of (ii) �
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2.4. Asymptotic analysis. We now describe the asymptotic behavior of the number of perfect
matchings with k ≥ 1 crossings. We start with the asymptotics of perfect matchings with a single
crossing, which can be worked out from the explicit expression obtained in Example 2.7.

Example 2.10. Setting X+ :=
√

1− 2x and X− :=
√

1 + 2x, we rewrite the expression of the
generating function M1(x) obtained in Example 2.7 as

M1(x) =
(1−X+X−)4

16x4X+X−
.

Direct expansions around the singularities x = ± 1
2 of X+ and X− give

M1(x) =
x∼ 1

2

1√
2
X+
−1 +O (1) and M1(x) =

x∼− 1
2

1√
2
X−
−1 +O (1) .

Applying the Transfer Theorem for singularity analysis [8, 9], we obtain:

[xn] M1(x) =
n→∞

1√
2 Γ
(

1
2

) n− 1
2 (2n + (−2)n)(1 + o(1)),

Writing this expression for n = 2m, we get the final estimate

[x2m] M1(x) =
m→∞

1

Γ
(

1
2

) m− 1
2 4m (1 + o(1)).

The analysis is more involved for general values of k. The method consists in studying the
asymptotic behavior of M0(x) and of all its derivatives around their minimal singularities, and
to exploit the rational expression of Mk(x) in terms of M0(x) and x given in Proposition 2.6.
Along the way, we naturally study which k-cores have the main asymptotic contributions. In fact,
the potential function studied in Section 2.3 will naturally show up in the analysis, and the main
contribution to the number of perfect matchings with k crossings and n vertices will asymptotically
arise from the maximal k-core matchings (observe that in the special case k = 1, the unique 1-core
is maximal). We obtain the following asymptotic estimates.

Proposition 2.11. For any k ≥ 1, the number of perfect matchings with k crossings and n = 2m
vertices is

[x2m] Mk(x) =
m→∞

(2k − 3)!!

2k−1 k! Γ
(
k − 1

2

) mk− 3
2 4m (1 + o(1)),

where (2k − 3)!! := (2k − 3) · (2k − 5) · · · 3 · 1.

Proof. The result follows from Example 2.10 when k = 1. We can thus assume that k ≥ 2.
We first study the asymptotic behavior of M0(x) and of all its derivatives around their minimal
singularities. The generating function M0(x) defines an analytic function around the origin. Its
dominant singularities are located at x = ± 1

2 . Denoting by X+ :=
√

1− 2x and X− :=
√

1 + 2x,

the Puiseux’s expansions of M0(x) around x = 1
2 and x = − 1

2 are

M0(x) =
x∼ 1

2

2− 2
√

2X+ +O
(
X+

2
)

and M0(x) =
x∼− 1

2

2− 2
√

2X− +O
(
X−

2
)
,

valid in a domain dented at x = 1/2 and x = −1/2, respectively (see [9]). Consequently,

d

dx
M0(x) =

x∼ 1
2

2
√

2X+
−1 +O(1) and

d

dx
M0(x) =

x∼− 1
2

−2
√

2X−
−1 +O(1),

and for i > 1, the ith derivative of M0(x) has singular expansion around x = ± 1
2

di

dxi
M0(x) =

x∼ 1
2

2
√

2 (2i− 3)!!X+
1−2i +O

(
X+

2−2i
)
,

di

dxi
M0(x) =

x∼− 1
2

(−1)i 2
√

2 (2i− 3)!!X−
1−2i +O

(
X−

2−2i
)
,

where (2i − 3)!! := (2i − 3) · (2i − 5) · · · 3 · 1. These expansions are also valid in a dented domain
at x = 1

2 and x = − 1
2 , respectively.
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We now exploit the expression of the generating function Mk(x) given by Equation (1) in the
proof of Proposition 2.6. The dominant singularities of Mk(x) are located at x = ± 1

2 . We provide

the full analysis around x = 1
2 , the computation for x = − 1

2 being similar. For conciseness in the
following expressions, we set by convention (−1)!! = 1. We therefore obtain:

Mk(x) = x
d

dx

∑
K k-core
matching

1

n(K)

∏
i≥1

(
xi

(i− 1)!

di−1

dxi−1

(
xi−1M0(x)

))ni(K)

=
x∼ 1

2

1

2

d

dx

∑
K k-core
matching

1

n(K)

∏
i≥1

(
1

22i−1 (i− 1)!

di−1

dxi−1
M0(x)

)ni(K)

=
x∼ 1

2

1

2

d

dx

∑
K k-core
matching

1

n(K)

∏
i>1

(
−
√

2 (2i− 5)!!

4i−1 (i− 1)!
X+

3−2i +O
(
X+

4−2i
))ni(K)

=
x∼ 1

2

1

2

d

dx

∑
K k-core
matching

1

n(K)

∏
i>1

(
−
√

2 (2i− 5)!!

4i−1 (i− 1)!

)ni(K)

X+
−φ(K) +O

(
X+
−φ(K)+1

)

=
x∼ 1

2

1

2

∑
K k-core
matching

−φ(K)

n(K)

∏
i>1

(
−
√

2 (2i− 5)!!

4i−1 (i− 1)!

)ni(K)

X+
−φ(K)−2 +O

(
X+
−φ(K)−1

)
,

where φ(K) :=
∑
i>1(2i− 3)ni(K) denotes the potential function studied in Section 2.3. Observe

that in order to obtain the third equality, we used the fact that k > 1, and thus, that there exists
k-cores K such that ni(K) 6= 0 when i > 1. Combining Lemma 2.9 with the Transfer Theorem
for singularity analysis [8, 9], we conclude that the main contribution in the asymptotic of the
previous sum arises from maximal k-cores, as they maximize the value 2+φ(K). There are exactly
four maximal k-cores with n1(K) = 3k, nk(K) = 1, n(K) = 4k, and φ(K) = 2k − 3. Hence,

[xn] Mk(x) =
x∼ 1

2

[xn]
1

2

∑
K k-core
matching

−φ(K)

n(K)

∏
i>1

(
−
√

2 (2i− 5)!!

4i−1 (i− 1)!

)ni(K)

X+
−φ(K)−2 +O

(
X+
−φ(K)−1

)

=
x∼ 1

2

2
√

2 (2k − 3)!!

4k k!
[xn]

√
1− 2x

1−2k
+O

(
(1− 2x)1−k)

=
n→∞

2
√

2 (2k − 3)!!

4k k! Γ
(
k − 1

2

) nk− 3
2 2n (1 + o(1)),

where the last equality is obtained by an application of the Transfer Theorem for singularity
analysis [8, 9].

Finally, we obtain the stated result by adding together the expression obtained when studying
Mk(x) around x = 1

2 and x = − 1
2 . In fact, one can check that the asymptotic estimate of

[xn] Mk(x) around x = − 1
2 is the same but with an additional multiplicative constant (−1)n.

Consequently, the contribution is equal to 0 when n is odd and the estimate in the statement
when n = 2m is even. �

2.5. Random generation. The composition scheme presented in Proposition 2.6 can also be
exploited in order to provide Boltzmann samplers for random generation of perfect matchings
with k crossings. Throughout this section we consider a positive real number θ < 1

2 , which acts
as a “control-parameter” for the random sampler (see [5] for further details).

The Boltzmann sampler works in three steps:

(i) We first decide which is the core of our random object.
(ii) Once this core is chosen, we complete the matching by means of non-crossing (and possibly

marked) matchings.
(iii) Finally, we place the root of the resulting perfect matching with k crossings.



10 VINCENT PILAUD AND JUANJO RUÉ
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Figure 3. Probabilities of appearance of the different 3-core matchings.

We start with the choice of the k-core. For each k-core K, let MK(x) denote the generating
function of matchings with k crossings and whose k-core is K, where x marks as usual the number
of vertices. Note that this generating function is computed as in Proposition 2.6, using only the
contribution of the k-core K. Therefore, we have

Mk(x) =
∑

K k-core
matching

MK(x) .

This sum defines a probability distribution in the following way: once fixed the parameter θ, let

pK =
MK(θ)

Mk(θ)
.

This set of values defines a Bernoulli distribution {pK}K k-core
matching

, which can be easily simulated.

Remark 2.12. As it has been pointed out in Section 2.4, the main contribution to the enumeration
of perfect matchings with k crossings, when the number of vertices is large enough, arises from
the ones whose k-core is maximal. Consequently, when θ is close enough to 1

2 , the first step in the
random sampling would provide a maximal core with high probability. To illustrate this fact, we
have represented in Figure 3 the probability of each possible 3-core for a random perfect matching
with 3 crossings.

Once we have fixed the core of the random matching, we continue in the second step filling in
its regions with crossing-free perfect matchings. For this purpose it is necessary to start having
a procedure to generate crossing-free perfect matchings, namely ΓM0(θ). As M0(θ) satisfies the

recurrence relation M0(θ) = 1 + θ2M0(θ)
2
, a Boltzmann sampler ΓM0(θ) can be defined in the

following way. Let p = 1
ΓM0(θ)

. Then, using the language of [5],

ΓM0(θ) := Bern(p) −→ ∅ | (ΓM0(θ) , • − • , ΓM0(θ)),

where • − • means that the Boltzmann sampler is generating a single chord (or equivalently, two
vertices in the border of the circle). This Boltzmann sampler is defined when θ < 1

2 , in which
case the defined branching process is subcritical. In such situation the algorithm stops in finite
expected time, see [5].
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Once this random sampler is performed, we can deal with a term of the form di−1

dxi−1x
i−1M0(θ).

Indeed, once a random crossing-free perfect matching ΓM0(θ) of size n(ΓM0(θ)) is generated,
there exist (

n(ΓM0(θ)) + i− 1

i− 1

)
i-marked crossing-free perfect matching arising from ΓM0(θ). Hence, with uniform probability
we can choose one of these i-marked crossing-free perfect matchings. As this argument follows
for each choice of i, and KMK(x) is a polynomial, we can combine the generator of i-marked
crossing-free diagrams with the Boltzmann sampler for the cartesian product of combinatorial

classes (recall that we need to provide the substitution xi ← xi

(i−1)!
di−1

dxi−1

(
xi−1M0(x)

)
).

Finally, we need to apply the root operator, which can be done by means of similar arguments
as in the case of i-marked crossing-free diagrams.

Concerning the statistics of the random variable N corresponding to the size of the element
generated by means of the previous random sampler, as it is shown in [5], the expected value E[N ]
and the variance Var[N ] of the random variable N satisfy

E[N ] = θ
M′

k(θ)

Mk(θ)
and Var[N ] =

θ2(M′′
k(θ) Mk(θ)− θM′

k(θ)
2
) + θM′

k(θ)

Mk(θ)
2 .

Hence, when θ tends to 1
2 , the expected value of the generated element tends to infinity, and

the variance for the expected size also diverges. Consequently, the random variable N is not
concentrated around its expected value.

Example 2.13. For perfect matchings with 3 crossings, the expectation E[N ] and the vari-
ance Var[N ] are given by

θ 0.40 0.45 0.465 0.475 0.48 0.4999
E[N ] 17.31 30.66 41.78 56.42 69.14 12508.22√
Var[N ] 7.69 44.44 109.44 249.83 427.32 0.7406 · 108

2.6. Extension to partitions. We close this section by extending our results from perfect match-
ings to partitions. We now consider the family P of partitions of point sets on the unit circle. As
before, the partitions are rooted by a mark on an arc between two vertices. A crossing between
two blocks U, V of a partition P is a pair of crossing chords u1u2 and v1v2 where u1, u2 ∈ U
and v1, v2 ∈ V . We count crossings with multiplicity: two blocks U, V cross as many times as the
number of such pairs of crossing chords among U and V .

For a non-empty subset S of N∗ :=N r {0}, we denote by PS the family of partitions of point
sets on the unit circle, where the cardinality of each block belongs to the set S. For example,
matchings are partitions where all blocks have size 2, i.e. M = P{2}. Observe that depending
on S and k, it is possible that no partition of PS has exactly k crossings. For example, since two
triangles can have either 0, 4, or 6 crossings, there is no 3-uniform partition (i.e. with S = {3})
with an odd number of crossings.

Applying the same method as in Section 2.2, we obtain an expression of the generating func-
tion PS

k (x, y) of partitions of PS with k crossings in terms of the corresponding k-core partition
polynomial

KPS
k (x, y) :=

∑
K k-core

partition of PS

xn(K)ym(K)

n(K)
.

We say that S ⊂ N∗ is ultimately periodic if it can be written as

S = AS ∪
⋃
b∈BS

{b+ upS | u ∈ N}

for two finite subsets AS , BS ⊂ N∗ and a period pS ∈ N∗.
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Proposition 2.14. For any k ≥ 1, the generating function PS
k (x, y) of partitions with k crossings

and where the size of each block belongs to S is given by

PS
k (x, y) = x

d

dx
KPS

k

(
xi ←

xi

(i− 1)!

di−1

dxi−1

(
xi−1PS

0 (x, y)
)
, y

)
.

If S is finite or ultimately periodic, then PS
k (x, y) is a rational function of PS

0 (x, y) and x.

Proof. The proof is again similar to that of Proposition 2.6, replacing matchings by partitions
of PS . Again, the difference lies in proving that the successive derivatives of PS

0 (x, y) and the
variable y are all rational functions of PS

0 (x, y) and x. Splitting a crossing-free partition of PS
with respect to its block containing its first vertex, we obtain the functional equation

PS
0 (x, y) = 1 + y

∑
s∈S

xs PS
0 (x, y)

s
.

If S is finite or ultimately periodic, we write S = AS ∪
⋃
b∈BS {b+ upS | u ∈ N} for finite sub-

sets AS , BS ⊂ N∗ and a period pS ∈ N∗, and we can write∑
s∈S

ts = AS(t) +
BS(t)

1− tpS
,

where AS(t) :=
∑
a∈AS t

a and BS(t) :=
∑
b∈BS t

b. We thus obtain that

(PS
0 (x, y)− 1− y AS(xPS

0 (x, y)))(1− xpS PS
0 (x, y)

pS )− y BS(xPS
0 (x, y)) = 0

and y =
(PS

0 (x, y)− 1)
(
1− xpS PS

0 (x, y)
pS
)

AS(xPS
0 (x, y))

(
1− xpS PS

0 (x, y)
pS
)

+BS(xPS
0 (x, y))

.

Derivating the former functional equation ensures that the successive derivatives of PS
0 (x, y) are

all rational functions of PS
0 (x, y) and the variables x and y. The latter equation ensures that y

itself is rational in PS
0 (x, y) and x, thus concluding the proof. �

From the expression of PS
k (x, y) given in Proposition 2.14, we can extract asymptotic estimates

for the number of partitions with k crossings and where the size of each block belongs to S. The
difficulty here lies in two distinct aspects:

(i) estimate the minimal singularity ρS and describe the singular behavior around ρS of the
generating function PS

0 (x, 1) of crossing-free partitions of PS , and
(ii) characterize which k-core partitions of PS have the main contribution to the asymptotic.

The first point is discussed in details below in Proposition 2.17. In contrast, we are able to
handle the second point only for particular cases. The following constants will be needed in
Propositions 2.17 and 2.20.

Definition 2.15. Given a non-empty subset S of N∗ different from the singleton {1}, we define τS
to be the unique positive real number such that∑

s∈S
(s− 1)τS

s = 1.

We furthermore define the constants ρS, αS and βS to be

ρS :=
τS∑

s∈S sτS
s
, αS := 1 +

∑
s∈S

τS
s, and βS :=

√√√√ 2
(∑

s∈S sτS
s
)3∑

s∈S s(s− 1)τSs
.

Remark 2.16. Observe that τS is indeed well-defined, unique and belongs to ]0, 1]. Indeed the
function τ 7→

∑
s∈S(s−1)τs is strictly increasing, evaluates to 0 when τ = 0, and is either a power

series with radius of convergence 1 (if S is infinite), or a polynomial which evaluates at least to 1
when τ = 1 (if S is finite). Observe also that

ρS =
τS

1 +
∑
s∈S τS

s
and αS =

τS
ρS
,

and that these two constants are both positive.
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These constants naturally appear in the proof of the following statement, which describes the
singular behavior of PS

0 (x, 1) and the asymptotic of its coefficients.

Proposition 2.17. For any non-empty subset S of N∗ different from the singleton {1}, the gen-
erating function PS

0 (x, 1) satisfies

PS
0 (x, 1) =

x∼ρS
αS − βS

√
1− x

ρS
+O

(
1− x

ρS

)
,

in a domain dented at x = ρS, for the constants ρS, αS and βS described in Definition 2.15.
Therefore, its coefficients satisfy

[xn] PS
0 (x, 1) =

n→∞
gcd(S)|n

gcd(S)βS
2
√
π

n−
3
2 ρS

−n (1 + o(1))

for n multiple of gcd(S), while [xn] PS
0 (x, 1) = 0 if n is not a multiple of gcd(S).

Proof. We apply the theorem of A. Meir and J. Moon [14] on the singular behavior of generating
functions defined by a smooth implicit-function schema. As already observed, the generating
function PS

0 (x, 1) satisfies the functional equation

PS
0 (x, 1) = 1 +

∑
s∈S

xs PS
0 (x, 1)

s
.

If we set

W(x) := PS
0 (x, 1)− 1 and G(x,w) :=

∑
s∈S

xs(w + 1)s,

then we obtain a smooth implicit-function schema W(x) = G(x,W(x)). Indeed, if we fix

u := ρS =
τS∑

s∈S sτS
s

and v :=αS − 1 =
τS
ρS
− 1 =

∑
s∈S

τS
s,

we observe that

G(u, v) =
∑
s∈S

us(v + 1)s =
∑
s∈S

ρS
s

(
τS
ρS

)s
=
∑
s∈S

τS
s = v and

Gw(u, v) =
∑
s∈S

sus(v + 1)s−1 =
∑
s∈S

sρS
s

(
τS
ρS

)s−1

=
ρS
τS

∑
s∈S

sτS
s = 1.

The statement is therefore a direct application of A. Meir and J. Moon’s Theorem [14]. �

Example 2.18. Let q ≥ 2. Consider q-uniform partitions, for which S = {q}. We have

τ{q} =

(
1

q − 1

) 1
q

, ρ{q} =
q − 1

q

(
1

q − 1

) 1
q

, α{q} =
q

q − 1
, and β{q} =

√
2q2

(q − 1)3
.

Therefore, the asymptotic behavior of the number of q-uniform non-crossing partitions with qm
vertices is given by

[xqm] P
{q}
0 (x, 1) =

m→∞

√
q

2π(q − 1)3
m−

3
2

(
qq

(q − 1)q−1

)m
(1 + o(1)).

Example 2.19. Let q ≥ 1. Consider q-multiple partitions, for which S = qN∗. Since∑
n≥1

(qn− 1)xqn =
∑
n≥1

qn xqn −
∑
n≥1

xqn =
q xq

(1− xq)2
− xq

1− xq
= 1 +

(q + 1)xq − 1

(1− xq)2
,

we obtain

τqN∗ =

(
1

q + 1

) 1
q

, ρqN∗ =
q

q + 1

(
1

q + 1

) 1
q

, αqN∗ =
q + 1

q
, and βqN∗ =

√
2 (q + 1)

q2
.
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Therefore, the asymptotic behavior of the number of q-uniform non-crossing partitions with qm
vertices is given by

[xqm] PqN∗

0 (x, 1) =
m→∞

√
q + 1

2πq3
m−

3
2

(
(q + 1)q+1

qq

)m
(1 + o(1)).

From the singular behavior of PS
0 (x, 1), and using the composition scheme of Proposition 2.14,

we can now extract asymptotic estimates for the number of partitions of PS with k crossings.

Proposition 2.20. Let k ≥ 1, let S be a non-empty subset of N∗ different from the singleton {1},
let τS, ρS, αS and βS be the constants described in Definition 2.15, and let Φ(k, S) denote the
maximum value of the potential function

φ(K) :=
∑
i>1

(2i− 3)ni(K)

over all k-core partitions of PS. There is a constant ΛS such that the number of partitions with k
crossings, n vertices, and where the size of each block belongs to S is

[xn] PS
k (x, 1) =

n→∞
gcd(S)|n

ΛS n
Φ(k,S)

2 ρS
−n (1 + o(1)),

for n multiple of gcd(S), while [xn] PS
k (x, 1) = 0 if n is not a multiple of gcd(S). More precisely,

the constant ΛS can be expressed as

ΛS :=
gcd(S) Φ(k, S)

2 Γ
(Φ(k,S)

2 + 1
) ∑

K

τS
n1(K)

n(K)

∏
i>1

(
ρS

i βS (2i− 5)!!

2i−1 (i− 1)!

)ni(K)

,

where we sum over the k-core partitions K of PS which maximize the potential function φ(K).

Proof. We exploit the composition scheme obtained in Proposition 2.14 and the description of
the singular behavior of PS

0 (x, 1) obtained in Proposition 2.17. In the same lines as the proof of
Proposition 2.11, we obtain

PS
k (x, 1) =

x∼ρS

1

2

∑
K k-core

partition of PS

φ(K) τS
n1(K)

n(K)

∏
i>1

(
ρS

i βS (2i− 5)!!

2i−1 (i− 1)!

)ni(K)

X−φ(K)−2 +O
(
X−φ(K)−1

)
,

where X :=
√

1− x
ρS

. This expansion is valid in a domain dented at X = ρS . The asymptotic

behavior of this sum is therefore guided by the k-core partitions K of PS which maximize the
potential φ(K). Finally, the asymptotic of [xn] PS

k (x, 1) is obtained combining the contributions

of all the singularities
{
ρS · ξ

∣∣ ξ ∈ C, ξgcd(S) = 1
}

of the function PS
k (x, 1). �

Given an arbitrary subset S of N∗, it is in general difficult to describe the k-core partitions
of PS which maximize the corresponding potential φ. The reader is invited to work out examples
with uniform partitions (i.e. S = {q}, see Example 2.18) or multiple partitions (i.e. S = qN∗, see
Example 2.19). Details can be found in [17, Examples 2.33 and 2.35]. We just mention here the
case of all partitions with no limitation on the size of the blocks (i.e. S = N∗).

Proposition 2.21. For any k ≥ 1, the number of partitions with k crossings and n vertices is

[xn] Pk(x, 1) =
n→∞

(2k − 3)!!

23k−1 k! Γ
(
k − 1

2

) nk− 3
2 4n (1 + o(1)).

3. Chord and hyperchord diagrams

In this section, we consider the family D of all chord diagrams on the unit circle. Remember
that a chord diagram is given by a set of vertices on the unit circle, and a set of chords between
them. In particular, we allow isolated vertices, as well as several chord incident to the same vertex,
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but not multiple chords with the same two endpoints. We let D(n,m, k) denote the set of chord
diagrams in D with n vertices, m chords, and k crossings. We define the generating functions

D(x, y, z) :=
∑

n,m,k∈N
|D(n,m, k)|xnymzk and Dk(x, y) := [zk] D(x, y, z),

of chord diagrams, and chord diagrams with k crossings, respectively.

Remark 3.1. We insist on the fact that we allow here for isolated vertices in chord diagrams.
However, it is essentially equivalent to enumerate chord diagrams or chord configurations (meaning
chord diagrams with no isolated vertices). Indeed, their generating functions are related by

C(x, y, z) =
1

1 + x
D

(
x

1 + x
, y, z

)
and Ck(x, y) =

1

1 + x
Dk

(
x

1 + x
, y

)
.

3.1. Warming up: crossing-free chord diagrams. The generating function D0(x, y) of crossing-
free chord diagrams was studied in [6]. We repeat here their analysis since we will use similar
decomposition schemes later for our extension to hyperchord diagrams.

Proposition 3.2 ([6, Equation (22)]). The generating function D0(x, y) of crossing-free chord
diagrams satisfies the functional equation

(2) yD0(x, y)
2

+
(
x2(1 + y)− x(1 + 2y)− 2y

)
D0(x, y) + x(1 + 2y) + y = 0.

Proof. Consider first a connected crossing-free chord diagram C. By connected we mean here that
C is connected as a graph. Call principal the chords of C incident to its first vertex (the first after
its root). These principal chords split C into smaller crossing-free chord diagrams:

(i) the first (before the first principal chord) and last (after the last principal chord) subdiagrams
are both connected chord diagrams,

(ii) each subdiagram inbetween two principal chords consists either in a connected diagram (but
not a single vertex), or in two connected diagrams.

This leads to the following functional equation on the generating function CD0(x, y) of connected
crossing-free chord diagrams:

(3) CD0(x, y) = x

1 +
yCD0(x, y)

2

x− y
(
CD0(x, y)− x+ CD0(x, y)

2
)
 ,

which can be rewritten as

(4) yCD0(x, y)
3

+ yCD0(x, y)
2 − x(1 + 2y) CD0(x, y) + x2(1 + y) = 0.

Finally, since a crossing-free chord diagram can be decomposed into connected crossing-free chord
diagrams, we have

(5) D0(x, y) = 1 + CD0(xD0(x, y) , y) .

Using this equation to eliminate CD0(x, y) in Equation (4) leads to the desired formula after
straightforward simplifications. �

From the implicit expression of Equation (2), we easily derive the following statement.

Proposition 3.3. All derivatives di

dxiD0(x, y) are rational functions in D0(x, y) and x.

As we are also interested in asymptotic estimates, we proceed to study the singular behavior
of D0(x, y). As it is proved in [6], the generating function D0(x, y) has a unique square-root
singularity when y varies around y = 1:

(6) D0(x, y) =
y∼1

x∼ρ(y)

d0(y)− d1(y)

√
1− x

ρ(y)
+O

(
1− x

ρ(y)

)
,
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uniformly with respect to y for y in a small neighborhood of 1, and with d0(y), d1(y) and ρ(y)
analytic at y = 1. In fact, when y = 1 we obtain the singular expansion

D0(x, 1) =
x∼ρ(1)

−1 + 3

√
2

2
− 1

2

√
−140 + 99

√
2

√
1− x

ρ(1)
+O

(
1− x

ρ(1)

)
,

with ρ(1) := ρ = 3
2 −
√

2 ' 0.08578. This is valid in a domain dented at x = ρ. In particular,

Equation (6) shows that the singular behavior of di

dxiD0(x, y) in a neighborhood of x = ρ(y) is of
the form

di

dxi
D0(x, y) =

y∼1
x∼ρ(y)

d1(y) (2i− 3)!!

ρ(y)i 2i

(
1− x

ρ(y)

) 1
2−i

+O

((
1− x

ρ(y)

)1−i
)
,

where we use again the convention that (−1)!! = 1 in order to simplify formulas when i = 1. This
singular expansion will be exploited later in order to get both asymptotic estimates and the limit
law for the number of vertices when fixing the number of crossings. Finally, we also need the
following values, which appear in [6, Table 5],

(7) − ρ′(1)

ρ(1)
=

1

2
+

√
2

2
and − ρ′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2

=
1

4
+

√
2

8
.

3.2. Core diagrams. We now consider chord diagrams with k crossings. As in the previous
section, we study them focussing on their cores.

Definition 3.4. A core diagram is a chord diagram where each chord is involved in a crossing.
It is a k-core diagram if it has exactly k crossings. The core D? of a chord diagram D is the
subdiagram of D formed by all its chords involved in at least one crossing.

Let K be a core diagram. We let n(K) denote its number of vertices, m(K) denote its number of
chords, and k(K) denote its number of crossings. We call regions of K the connected components
of the complement of K in the unit disk. A region has i boundary arcs and j peaks if its intersection
with the unit circle has i connected arcs and j isolated points. We let ni,j(K) denote the number
of regions of K with i boundary arcs and j peaks, and we set n(K) := (ni,j(K))i,j∈[k]. Note
that n(K) =

∑
i,j ini,j(K).

Since a crossing only involves two chords, a k-core diagram can have at most 2k chords. This
immediately implies the following crucial lemma.

Lemma 3.5. There are only finitely many k-core diagrams.

Definition 3.6. We encode the finite list of all possible k-core diagrams K and their parame-
ters n(K), m(K), and n(K) := (ni,j(K))i,j∈[k] in the k-core diagram polynomial

KDk(x, y) := KDk(xi,j , y) :=
∑

K k-core
diagram

xn(K)ym(K)

n(K)
:=

∑
K k-core
diagram

1

n(K)

∏
i,j≥0

xi,j
ni,j(K) ym(K).

3.3. Generating function of chord diagrams with k crossings. In this section, we express
the generating function Dk(x, y) of chord diagrams with k crossings as a rational function of
the generating function D0(x, y) of crossing-free diagrams, using the k-core diagram polyno-
mial KDk(x, y) defined in the previous section.

First, we say that a chord diagram D is weakly rooted if we have marked an arc between two
consecutive vertices of its core K?. Again, we have the following rerooting lemma.

Lemma 3.7. For any core diagram K, the number DK(n,m) of rooted chord diagrams with n
vertices, m chords, and core K and the number D̄K(n,m) of weakly rooted chord diagrams with n
vertices, m chords, and core K are related by n(K)DK(n,m) = nD̄K(n,m).

As for matchings, we can now construct any chord diagram with k crossings by inserting
crossing-free subdiagrams in the regions left by its k-core. We can therefore derive the following
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expression for the generating function Dk(x, y) of diagrams with k crossings, in terms of the gen-
erating function D0(x, y) of crossing-free diagrams, of the k-core diagram polynomial KDk(x, y),
and of the polynomials

Dn
0 (y) := [xn] D0(x, y) and D≤p0 (x, y) :=

∑
n≤p

Dn
0 (y)xn =

∑
n≤p
m≥0

|D(n,m, 0)|xnym.

Proposition 3.8. For any k ≥ 1, the generating function Dk(x, y) of chord diagrams with k
crossings is given by

Dk(x, y) = x
d

dx
KDk

(
x0,j ←

Dj
0(y)

xj
, xi,j ←

xi

(i− 1)!

di−1

dxi−1

D0(x, y)−D≤i+j0 (x, y)

xi+j+1
, y

)
.

In particular, Dk(x, y) is a rational function of D0(x, y) and x.

Proof. Consider a rooted crossing-free chord diagram D, whose vertices are labeled from 1 to n
clockwise starting from the root. Let j := (j1, . . . , ji) be a list of i positive integers whose sum is j.
We say that D is j-marked if we have marked i vertices of D, including the first vertex labeled 1,
in such a way that there is at least jk + 1 vertices between the kth and (k + 1)th marked vertices,
for any k ∈ [i]. More precisely, if we mark the vertices labeled by 1 = α1 < · · · < αi and set by
convention αi+1 = n + 1, then we require that αk+1 − αk > jk + 1 for any k ∈ [i]. Note that
if D has less than 2i+ j vertices, then it cannot be j-marked. Otherwise, if D has at least 2i+ j
vertices, we have

(
n−i−j−1
i−1

)
ways to place these i marks. Therefore, the generating function of the

rooted j-marked crossing-free chord diagrams is given by

x2i+j

(i− 1)!

di−1

dxi−1

D0(x, y)−D≤i+j0 (x, y)

xi+j+1
.

Consider now a weakly rooted chord diagram D with k crossings. We decompose this diagram
into several subdiagrams as follows. On the one hand, the core D? contains all crossings of D. This
core is rooted by the root of D. On the other hand, each region R of D? contains a crossing-free
subdiagram DR. We root this subdiagram DR as follows:

(i) if the root of D points out of R, then DR is just rooted by the root of D;
(ii) otherwise, DR is rooted on the first boundary arc of D? before the root of D in clockwise

direction.

Moreover, we mark the first vertex of each boundary arc of R. Note that we do not mark the
peaks. Thus, if the region R has i boundary arcs, and if the kth and (k + 1)th boundary arcs
of R are separated by jk peaks, then we obtain in this region R of D? a rooted (j1, . . . , ji)-marked
crossing-free subdiagram DR. Observe that their is a difference of behavior between

(i) the regions R with no boundary arcs and only j peaks, which are filled in by a crossing-free
chord diagram DR on precisely j vertices, and

(ii) the regions R with at least one boundary arc, whose corresponding chord diagram DR can
have arbitrarily many additional vertices.

Reciprocally we can reconstruct the chord diagram D from its rooted core D? and its rooted
and marked crossing-free subdiagrams DR. We thus obtain that the generating function Dk(x, y)
from the k-core diagram polynomial KDk(x, y) by replacing a region with i 6= 0 boundary arcs
and j peaks by

xi

(i− 1)!

di−1

dxi−1

D0(x, y)−D≤i+j0 (x, y)

xi+j+1
,

and a region with no boundary arcs but j peaks by Dj
0(y) /xj . This is precisely the formula stated

in the proposition.

The rationality of this function thus follows from Proposition 3.3, since Dj
0(x, y) and D≤j0 (x, y)

are both polynomials in x and y, and y can be eliminated as in the proof of Proposition 3.3. �
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3.4. Asymptotic analysis. Similarly to our asymptotic analysis in Section 2.4, we can obtain
asymptotic results for the number of chord diagrams with k crossings.

Proposition 3.9. For any k ≥ 1, the number of chord diagrams with k crossings and n vertices is

[xn] Dk(x, 1) =
n→∞

d0(1)3k d1(1) (2k − 3)!!

(2ρ)k−1 k! Γ(k − 1
2 )

nk−
3
2 ρ−n (1 + o(1)),

where

ρ−1 = 6 + 4
√

2, d0(1) = −1 + 3

√
2

2
, and d1(1) =

1

2

√
−140 + 99

√
2.

Proof. We apply singularity analysis on the composition scheme given by Proposition 3.8. In our
analysis, it is more convenient to express the k-core diagram polynomial KDk(x, 1) as

KDk(x, 1) =
∑

K k-core
diagram

1

n(K)

∏
j≥0

x0,j
n0,j(K)

∏
i≥1
j≥0

xi,j
ni,j(K).

The resulting expression for Dk(x, 1) is

x
d

dx

∑
K k-core
diagram

1

n(K)

∏
j≥0

(
Dj

0(1)

xj

)n0,j(K) ∏
i≥1
j≥0

(
xi

(i− 1)!

di−1

dxi−1

D0(x, 1)−D≤i+j0 (x, 1)

xi+j+1

)ni,j(K)

.

Analyzing this function around x = ρ boils down to analyzing the generating function

ρ
d

dx

∑
K k-core
diagram

1

n(K)

∏
j≥0

(
Dj

0(1)

ρj

)n0,j(K) ∏
i≥1
j≥0

(
1

ρj+1 (i− 1)!

di−1

dxi−1
D0(x, 1)

)ni,j(K)

.

Observe that we forget the terms of the form D≤i+j0 (x, 1) as they are polynomials in x, and thus
analytic functions around x = ρ. In order to simplify the expressions, we set

ξ(K) :=
1

n(K)

∏
j≥0

(
Dj

0(1)

ρj

)n0,j(K) ∏
i≥1
j≥0

(
1

ρj+1 (i− 1)!

)ni,j(K)

.

Let X :=
√

1− x
ρ . Developing D0(x, 1) using its Puiseux’s expansion (6) around x = ρ we obtain

Dk(x, 1) =
x∼ρ

ρ
d

dx

∑
K k-core
diagram

ξ(K)
∏
i≥1
j≥0

(
di−1

dxi−1
D0(x, 1)

)ni,j(K)

=
x∼ρ

ρ
d

dx

∑
K k-core
diagram

ξ(K)
∏
i≥1
j≥0

(
di−1

dxi−1

(
d0(1) + d1(1)X +O

(
X2
) ))ni,j(K)

=
x∼ρ

ρ
d

dx

∑
K k-core
diagram

ξ(K)
∏
j≥0

d0(1)n1,j(K)
∏
i>1
j≥0

(
d1(1) (2i− 5)!!

2i−1 ρi−1
X3−2i +O

(
X4−2i

))ni,j(K)

=
x∼ρ

ρ
d

dx

∑
K k-core
diagram

ζ(K)X−ψ(K) +O
(
X−ψ(K)+1

)

=
x∼ρ

ρ
∑

K k-core
diagram

−ζ(K)ψ(K)X−ψ(K)−2 +O
(
X−ψ(K)−1

)
,
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where

ζ(K) :=
1

n(K)

∏
j≥0

(
Dj

0(1)

ρj

)n0,j(K)

d0(1)n1,j(K)
∏
i>1
j≥0

(
d1(1) (2i− 5)!!

2i−1 ρi+j (i− 1)!

)ni,j(K)

,

and ψ(K) :=
∑
i>1
j≥0

(2i− 3)ni,j(K).

Following the same lines as in Section 2.4, the main contribution to the asymptotic arise from the
k-core diagrams which maximizes ψ(K). These k-core diagrams satisfy nk,0(K) = 1, n1,0(K) = 3k
and ni,j(K) = 0 for all (i, j) 6= (k, 0), (1, 0). Consequently ψ(K) = 2k − 3. Therefore,

Dk(x, 1) =
x∼ρ

d0(1)3k d1(1) (2k − 3)!!

(2ρ)k−1 k!
X1−2k +O

(
X2−2k

)
,

and we conclude applying the Transfer Theorem for singularity analysis [8, 9]. �

Finally, with the same techniques, we can also compute the limiting distribution of the number
of edges in a k-chord diagram with n vertices, chosen uniformly at random.

Theorem 3.10. The number of edges in a chord diagram with k crossings and n vertices, chosen
uniformly at random, follows a normal distribution with expectation µn and variance σn, where

µn =

(
1

2
+

√
2

2

)
n (1 + o(1)) and σn =

(
1

4
+

√
2

8

)
n (1 + o(1)).

Proof. Direct application of the Quasi-Powers Theorem [11], by means of the values computed
in Equation (7). The main contribution on the analysis arises from maximal k-core diagrams.
Observe that the constants defining the expectation and the variance are exactly the same as in
the planar configurations. �

3.5. Random generation. In this section, we provide random generators for the combinatorial
family of chord diagrams with a given number of crossings, using the methodology of Bolzmann
samplers. We proceed in three steps, obtaining random generators for:

(i) connected crossing-free chord diagrams,
(ii) all crossing-free chord diagrams,
(iii) chord diagrams with precisely k crossings.

Once we have a Boltzmann sampler for crossing-free chord diagrams, the design of a random gen-
erator for chord diagrams with precisely k crossings follows exactly the same lines as in Section 2.5.
In this section, we therefore only discuss Steps (i) and (ii) above.

We first describe a Bolzmann sampler for connected crossing-free chord diagrams. It is conve-
nient to write Equation (3) (with y = 1) in the form

CD0(x, 1) = x

(
1 +

CD0(x, 1)
2

x

∞∑
r=0

(
CD0(x, 1)− x+ CD0(x, 1)

2

x

)r)
.

The smallest singularity of CD0(x, 1) is located at ρ0 ' 0.09623. For r ≥ 0, write

CDr
0(x) =

CD0(x, 1)
2

x

(
CD0(x, 1)− x+ CD0(x, 1)

2

x

)r
and fix θ ∈ (0, ρ0). Observe that the combinatorial class associated to CDr

0(x) can be defined
by means of cartesian products and unions of connected crossing-free chord diagrams, hence the
Boltzmann sampler ΓCDr

0(θ) is immediately defined from ΓCD0(θ). Let

pr(θ) :=
CDr

0(θ)

CD0(θ, 1)
and p−1(θ) :=

θ

CD0(θ, 1)
.
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Then P (θ) := {pr(θ)}r≥−1 defines a discrete probability distribution. Now we can define the Boltz-
mann sampler ΓCD0(θ) by

ΓCD0(θ) :=P (θ) −→ ΓCDr
0(θ) .

As it happened in the perfect matching situation, the branching process defined with this Boltz-
mann sampler is subcritical, hence the algorithm finishes in expected finite time.

We now describe a random sampler for general crossing-free chord diagrams. For this, we
analyze Equation (5), which describes the counting formula for general chord diagrams by means
of a composition scheme with the generating function associated to connected chord diagrams.
The Boltzmann sampler in this situation is reminiscent to the L-substitution that appears in [10].

Fix θ′ ∈ (0, 3
2 −
√

2) (recall that the smallest singularity of D0(θ) is located at ρ = 3
2 −
√

2), and
define

qs(θ
′) := θ′sD0(θ′)

s−1
[xs] CDs

0(x) and p−1(θ) :=
1

D0(θ′)
.

Then Q(θ′) := {qs(θ′)}s≥−1 defines a discrete probability distribution and we can apply the same
argument as in the case of connected objects. Once more, the choice of a parameter smaller than
the smallest singularity ensures that the algorithm finishes with an expected finite time. Observe
that in the second Boltzmann sampler, a choice of a connected chord diagram is needed. This is
performed using a rejection process over the Boltzmann sampler for connected chord diagrams.

3.6. Extension to hyperchord diagrams. As from matchings to partitions, we can extend
the results of this section from chord diagrams to hyperchord diagrams. We start here with al
hyperchord diagrams and extend our results to hyperchord diagrams with restricted block sizes
later in Section 3.7. A hyperchord is the convex hull of finitely many points of the unit circle. Given
a point set V on the circle, a hyperchord diagram on V is a set of hyperchords with vertices in V .
Note that we allow isolated vertices in hyperchord diagrams. As for partitions, a crossing between
two hyperchords U, V is a pair of crossing chords u1u2 and v1v2, with u1, u2 ∈ U and v1, v2 ∈ V .
We consider the family H of hyperchord diagrams, and we let H(n,m, k) be the set of hyperchord
diagrams with n vertices, m hyperchords, and k crossings, counted with multiplicities. We set

H(x, y, z) :=
∑
n,m,k

|H(n,m, k)|xnymzk and Hk(x, y) := [zk] H(x, y, z).

As for chord diagrams, our first step is to study the generating function H0(x, y) of crossing-free
hyperchord diagrams. We extend here the analysis of P. Flajolet and M. Noy for chord diagrams [6]
that we presented in Section 3.1. Note that two non-crossing hyperchords U, V can share at most
two vertices. Moreover, if U and V share two vertices, then they lie on opposite sides of the chord
joining them, and we say that U, V are kissing hyperchords.

Proposition 3.11. The generating function H0(x, y) of crossing-free hyperchord diagrams satis-
fies the functional equation

(8) p3(x, y) H0(x, y)
3

+ p2(x, y) H0(x, y)
2

+ p1(x, y) H0(x, y) + p0(x, y) = 0,

where

p0(x, y) := − 2x2 − x+ 2x y3 + y2 + x2 y4 − 7x2 y − 7x2 y2 − x2 y3 − 3x y,

p1(x, y) := − 2x3 − 2x3 y4 − 8x3 y + 2x− 3 y2 − 12x3 y2 − 8x3 y3

+ 6x y − x2 y4 + x2 + 4x2 y + 4x2 y2 − 4x y3,

p2(x, y) :=x2 y3 + x2 + 3x2 y2 − x− 3x y + 2x y3 + 3x2 y + 3 y2,

p3(x, y) := − y2.

Proof. The proof is similar to that of Proposition 3.2. We first consider connected crossing-free
hyperchord diagrams, with generating function CH0(x, y). We decompose them according to
their principal hyperchords (those incident to the first vertex, and with at least two vertices).
If a connected hyperchord diagram is neither an isolated vertex, nor a single hyperchord with a
single vertex, then it has at least one principal hyperchord. Its principal hyperchords can then be
grouped into clusters such that
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(i) the principal hyperchords in a given cluster form a sequence of kissing hyperchords, and
(ii) principal hyperchords of distinct clusters share only the first vertex of the diagram.

Note that each cluster is either a single chord, or can be considered as a sequence of r kissing
principal hyperchords of size at least 3, whose r + 1 principal boundary chords may or not be
principal hyperchords of the diagram. It remains to fill in the gaps left by the principal hyperchords
in the hyperchord diagram:

(i) the first (before the first cluster), and the last (after the last cluster) gaps contain connected
crossing-free hyperchord diagrams,

(ii) each gap between two consecutive clusters, as well as each gap between two consecutive ver-
tices of a principal hyperchord, contains either a connected crossing-free hyperchord diagram
with at least two vertices, or two disconnected crossing-free hyperchord diagrams.

This decomposition directly translates to the functional equation

CH0(x, y) = x (1 + y) +
gCH0(x, y)

2

x (1 + y) (1− f g)
,

where

f :=
CH0(x, y)

2
+ CH0(x, y)− x (1 + y)

x2 (1 + y)2
and g :=x y (1 + y) +

x2 y (1 + y)4 f

1− x (1 + y) f − x y (1 + y)2 f
.

Finally, since a crossing-free hyperchord diagram can be decomposed into connected crossing-free
hyperchord diagrams, we have

(9) H0(x, y) = 1 + CH0(xH0(x, y), y) .

Eliminating CH0(x, y) from these equations leads to the desired formula after simplifications. �

Remark 3.12. If we forget the variable y which encodes the number of hyperchords, and if we
forbid isolated vertices in hyperchord diagrams, the resulting generating function

H̃0(x) :=
1

1 + x
H0

(
x

1 + x
, 1

)
satisfies the functional equation

(1 + x)5 H̃0(x)
3 − (1 + x)2(9x2 + 4x+ 3) H̃0(x)

2
+ (23x3 − 7x2 + 5x+ 3) H̃0(x) + (17x2 − 1) = 0.

It was already obtained by M. Klazar in [13] with a slightly different decomposition scheme.

The next proposition studies the asymptotic behaviour of H0(x, y) around y = 1. Observe
that we cannot apply A. Meir and J. Moon’s smooth implicit-function Theorem [14] since the
coefficients in Equation (8) are not all positive. We can use instead the fact that H0(x, y) is an
algebraic function. Another technique, by means of more elaborated arguments, will be presented
in the context of Subsection 3.7, which covers this proposition.

Proposition 3.13. The smallest singularity of the generating function H0(x, 1) of crossing-free
hyperchord diagrams is located at the smallest real root ρ ' 0.015391 of the polynomial

R(x) := 256x4 − 768x3 + 736x2 − 336x+ 5,

Moreover, when y varies uniformly in a small neighborhood of 1, the singular expansion of H0(x, y)
is

H0(x, y) =
y∼1

h0(y)− h1(y)

√
1− x

ρ(y)
+O

(
1 +

x

ρ(y)

)
,

valid in a domain dented at ρ(y) (for each choice of y), where h0(y), h1(y) and ρ(y) are analytic
functions around y = 1, with

ρ(1) = ρ ' 0.015391, h0(1) ' 1.034518 and h1(1) ' 0.00365515.
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Proof. We use the methodology of [9, Section VII.7]. We write Equation (8) in the form P (x, y,H0(x, y)) =
0, where P (x, y, z) is a polynomial with integer coefficients.

We first study the problem when y = 1. It is clear that H0(x, 1) is analytic at x = 0. Conse-
quently, according to [9, Lemma VII.4], H0(x, 1) can be analytically continued along any simple
path emanating from the origin that does not cross any point of the set in which both P (x, 1, z)
and d

dz P (x, 1, z) vanish. This set is discrete and, by means of Elimination Theory for algebraic
functions (in this case, eliminating variable z), can be written as the set of roots of

R(x) := 256x4 − 768x3 + 736x2 − 336x+ 5.

By Pringsheim’s Theorem the dominant singularity of H0(x, 1) (if exists) is a real positive number.
Additionally, R(x) has two real roots, one which is smaller than 1 and another with is greater than
1. Hence, we conclude that the smallest singularity of H0(x, 1) is the smallest root ρ ' 0.015391
of the polynomial R(x). In particular H0(ρ, 1) satisfies the equation P (ρ, 1,H0(ρ, 1)) = 0, and is
approximately equal to H0(ρ, 1) = h0(1) ' 1.034518.

We now proceed to study the nature of H0(x, 1) around x = ρ. As H0(x, 1) is algebraic,
we can develop it around its smallest singularity using its Puiseux expansion, and exploiting the
so-called Newton Polygon Method. See [9, Page 498]. With this purpose, write U := 1 − x

ρ , and

H0(x, 1) = H0(ρ, 1) + cUα (1 + o(1)). By means of indeterminate coefficients we find the correct

value of α: developing the relation P (ρ (1 − U 1
α ), 1,H0(ρ, 1) + cUα) = 0 we obtain that α = 1

2 .
Once we know this, by indeterminate coefficients on the expression P (ρ, 1,H0(ρ, 1)) = 0 we obtain
that h1(1) ' 0.00365515.

Finally, we continue analyzing H0(x, y) when y moves in a small neighbourhood around y = 1.
Using the same arguments, for a fixed value of y close to 1, the smallest singularity ρ(y) of H0(x, y)
satisfies that R(ρ(y), y) = 0, with

R(x, y) = (1 + 4 y + 10 y2 + 4 y3 + y4)

+ (−6− 40 y − 142 y2 − 304 y3 − 390 y4 − 296 y5 − 130 y6 − 32 y7 − 4 y8)x

+ (13 + 100 y + 360 y2 + 748 y3 + 922 y4 + 636 y5 + 192 y6 − 12 y7 − 15 y8)x2

+ (−12− 96 y − 336 y2 − 672 y3 − 840 y4 − 672 y5 − 336 y6 − 96 y7 − 12 y8)x3

+ (4 + 32 y + 112 y2 + 224 y3 + 280 y4 + 224 y5 + 112 y6 + 32 y7 + 4 y8)x4.

As the coefficients (which depend on y) of R(x, y) do not vanish at y = 1, we conclude that ρ(y)
is an analytic function in a neighbourhood of y = 1, and that the singularity type is invariably of
square root type. �

The analysis carried out in Proposition 3.13 can be exploited in order to obtain the limit
distribution for the number of hyperchords in a crossing-free hyperchord diagram of prescribed
size uniformly choosen at random. For each y in a neighbourhood of 1 the singular expansion
of H0(x, y) is of square-root type, hence by the Quasi-Powers Theorem [11], the limiting law is
normally distributed. We can compute the expectation and the variance from polynomial R(x, y)
in Proposition 3.13: as R(ρ(y), y) = 0 by iterated derivations with respect to y we obtain closed
formulas of both ρ′(y) and ρ′′(y) in terms of y, ρ(y) (and ρ′(y) in the case of ρ′′(y)). Writing
y = 1 we get approximate values: these computations give ρ′(1) ' −0.031243 and ρ′′(1) '
0.080456, hence the expectation and the variance for this limiting distribution are µn (1 + o(1))
and σ2 n (1 + o(1)), where

µ = −ρ
′(1)

ρ(1)
' 2.029890 and σ2 = −ρ

′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2

' 0.923054.

Now that we have obtained the asymptotic behavior of crossing-free hyperchord diagrams, we
can proceed to the study of hyperchord diagrams with k crossings. Using a similar method as in
Section 2.2, we obtain the following expression of the generating function Hk(x, y) of hyperchord
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diagrams with k crossings, in terms of the k-core hyperchord diagram polynomial

KHk(x, y) := KHk(xi,j , y) :=
∑

K k-core
hyperchord

diagram

xn(K)ym(K)

n(K)
:=

∑
K k-core

hyperchord
diagram

1

n(K)

∏
i,j≥0

xi,j
ni,j(K) ym(K),

and of the polynomials

Hn
0 (y) := [xn] H0(x, y) and H≤p0 (x, y) :=

∑
n≤p

Hn
0 (y)xn =

∑
n≤p
m≥0

|H(n,m, 0)|xnym.

Proposition 3.14. For any k ≥ 1, the generating function Hk(x, y) of the hyperchord diagrams
with k crossings is given by

Hk(x, y) = x
d

dx
KHk

(
x0,j ←

Hj
0(y)

xj
, xi,j ←

xi

(i− 1)!

di−1

dxi−1

H0(x, y)−H≤i+j0 (x, y)

xi+j+1
, y

)
.

In particular, Hk(x, y) is a rational function of the generating function H0(x, y) and of the vari-
ables x and y.

Note that, contrarily to the cases of matchings, partitions and diagrams, we cannot anymore
eliminate y in the expression of Proposition 3.11.

Finally, using the expression of the generating function Hk(x, y) given by Proposition 3.14, we
can derive the asymptotic behavior of the number of hyperchord diagrams with k crossings. The
analysis is identical to that of the proof of Proposition 3.9.

Proposition 3.15. For any k ≥ 1, the number of hyperchord diagrams with k crossings and n
vertices is

[xn] Dk(x, 1) =
n→∞

h0(1)3k h1(1) (2k − 3)!!

(2ρ)k−1 k! Γ(k − 1
2 )

nk−
3
2 ρ−n (1 + o(1)),

where ρ ' 0.015391 is the smallest real root of R(x) := 256x4 − 768x3 + 736x2 − 336x+ 5, and
where h0(1) ' 1.034518 and h1(1) ' 0.00365515 (see also Proposition 3.13).

3.7. Extension to hyperchord diagrams with restricted block sizes. As for partition, we
conclude this section with hyperchord diagrams where we restrict the sizes of the hyperchords. For
a non-empty subset S of N∗ :=Nr{0}, we denote by HS the family of hyperchord diagrams, where
the cardinality of each hyperchord belongs to S. For example, chord diagrams are hyperchord
diagrams where each hyperchord has size 2, i.e. D = H{2}. We consider here the generating
function HS

k (x, y) of hyperchord diagrams of HS with k crossings.
Once again, our first step is to compute the generating function HS

0 (x, y) of crossing-free hy-
perchord diagrams of HS . Adapting the decomposition scheme described in the proof of Proposi-
tion 3.11, we obtain the following statement.

Proposition 3.16. The generating function CHS
0 (x, y) of connected crossing-free hyperchord di-

agrams of HS satisfies the functional equation:

CHS
0 (x, y) = x (1 + δ1 y) +

gCHS
0 (x, y)

2

x (1 + δ1 y) (1− f g)
,

where

f :=
CHS

0 (x, y)
2

+ CHS
0 (x, y)− x (1 + δ1 y)

x2 (1 + δ1 y)2

g := δ2 x y (1 + δ1 y) +
x (1 + δ1 y) (1 + δ2 y)h

1− h
,

and h := y (1 + δ2 y)
∑

s∈Sr{1,2}

(
x (1 + δ1 y) f

)s−2
,
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and where δ1 = 0 if 1 /∈ S and δ1 = 1 otherwise, and similarly δ2 = 0 if 2 /∈ S and δ2 = 1
otherwise In turn, the generating function HS

0 (x, y) of crossing-free hyperchord diagrams of HS
can be expressed from CHS

0 (x, y) as

(10) HS
0 (x, y) = 1 + CHS

0

(
xHS

0 (x, y), y
)
.

Although we cannot find a nice closed formula for HS
0 (x, y) in general, the situation is simpler

for the following examples.

Example 3.17. Let q ≥ 3. Consider q-uniform hyperchord diagrams, for which S = {q}. The gen-
erating function of connected crossing-free q-uniform hyperchord diagrams satisfies the functional
equation

(CH
{q}
0 (x, y)− x)xq−1 − yCH

{q}
0 (x, y)

(
CH

{q}
0 (x, y)

2
+ CH

{q}
0 (x, y)− x

)q−1
= 0

and therefore we get(
H
{q}
0 (x, y)− 1− xH

{q}
0 (x, y)

)
xq−1 − y

(
H
{q}
0 (x, y)− 1

) (
H
{q}
0 (x, y)− 1− x

)q−1
= 0

Rephrasing the arguments of Proposition 3.13 we can conclude that CH
{q}
0 (x, 1) has a unique

smallest real singularity and its singular behaviour is of square-root type in a domain dented at
its singular point.

Finally, we observe that the situation is even simpler when q ∈ {1, 2}. Indeed, we clearly

have H
{1}
0 (x, y) = 1

1−x(1+y) when S = {1}, and we obtain Equation (2) when applying Proposi-

tion 3.16 for S = {2}.

Example 3.18. Let q ≥ 3. Consider q-multiple hyperchord diagrams, for which S = qN∗. The
generating function of connected crossing-free q-multiple hyperchord diagrams satisfies the func-
tional equation

(CHqN∗

0 (x, y)− x)xq −
(
CHqN∗

0 (x, y)
2

+ CHqN∗

0 (x, y)− x
)q−2

Pq(CHqN∗

0 (x, y) , x, y) = 0,

where Pq(C, x, y) is the polynomial of degree 5 given by

Pq(C, x, y) = C5 +(−x+2)C4 +(xy−4x+1)C3 +x(2x+y−3)C2 +2x2(−y+2)C+x3(−2+y).

The cases q = 1 and q = 2 are similar and left to the reader.

We now analyze the singular behavior of crossing-free hyperchord diagrams in HS . In this case,
the argument is somehow indirect.

Proposition 3.19. Let S be a non-empty subset of N∗ different from the singleton {1}. The
univariate generating function HS

0 (x, 1) of crossing-free hyperchord diagrams of HS has a unique
smallest singularity ρS, and a square-root type singular expansion

HS
0 (x, 1) =

x∼ρS
αS − βS

√
1− x

ρS
+O

(
1− x

ρS

)
in a domain dented at x = ρS.

Proof. We start proving that CHS
0 (x, 1) diverges at a finite value of x = %S . Consider an ele-

ment q ≥ 2 of S. Let %{q} be the (unique) smallest singularity of CH
{q}
0 (x, 1). As discussed in

Example 3.17, the generating function CH
{q}
0 (x, 1) has a square-root type singularity at x = %{q},

hence d
dxCH

{q}
0

(
%{q}, 1

)
diverges. Next, observe that

[xn] CHS
0 (x, 1) ≥ [xn] CH

{q}
0 (x, 1)

for all values of n, because all q-uniform hyperchord diagram are hyperchord diagrams of HS .
Consequently,

[xn]
d

dx
CHS

0 (x, 1) ≥ [xn]
d

dx
CH

{q}
0 (x, 1)

for all values of n. Finally, as both functions are analytic at x = 0, there exists a real value %S ≤
%{q} such that d

dxCHS
0 (%S , 1) diverges when x tends to %S as x grows from 0. In particular, %S



ANALYTIC COMBINATORICS OF CHORD AND HYPERCHORD DIAGRAMS WITH k CROSSINGS 25

must be the dominant singularity of CHS
0 (x, 1) (observe that we do not assure that the singularity

is of square root-type, only that the derivative diverges at that point).
We continue analyzing the singular development of HS

0 (x, 1) around its smallest singularity.
Observe that Equation (10) can be written in the form χ(xHS

0 (x, 1)) = x, where

χ(u) =
u

1 + CHS
0 (u, 1)

is the functional inverse of xHS
0 (x, 1). Let ρS be the dominant singularity of xHS

0 (x, 1) (and hence
the dominant singularity of HS

0 (x, 1)). Write τS = ρSHS
0 (ρS , 1). In particular, ρS satisfies that

ρS = χ(τS). Developing the relation χ′(τS) = 0, we obtain that

(11) 1 + CHS
0 (τS , 1) = τS

d

dx
CHS

0 (τS , 1) .

As CHS
0 (x, 1) is analytic at x = 0 and diverges at x = %S , Equation (11) has a solution τS < %S .

We have then that χ has a branch point at u = τS , and by the Inverse Function Theorem HS
0 (x, 1)

ceases to be analytic at x = ρS . Finally, we conclude that xH0(x, 1) has a square root type
singular behaviour around x = ρS . �

In this particular setting, ρS is a computable constant that can be calculated (with a desired
precision) in the following way. Observe that both CHS

0 (x, 1) and d
dxCHS

0 (x, 1) are analytic
functions at x = τS . Hence we can obtain approximations for τS by truncating conveniently the
Taylor expansions of CHS

0 (x, 1) and d
dxCHS

0 (x, 1) in Equation (11). In fact, one needs to consider
a lot of Taylor coefficients in order to obtain a good estimate of τS , because experimentally the
position of the solution of Equation (11) is very close to the singularity of CHS

0 (x, 1).
Once an approximation of τS is computed, we obtain a good approximation of both ρS and αS

using the relation ρS = χ(τS) and τS = ρSH0(ρS , 1) = ρSαS . Finally, an approximation for βS
can be obtained using indeterminate coefficients on the relation χ(xHS

0 (x, 1)) = x.
We have applied this method to approximate the constants τS , ρS , ρS

−1, αS , and βS for
both q-uniform hyperchord diagrams (i.e. S = {q}, see Example 3.17) and q-multiple hyperchord
diagrams (i.e. S = qN∗, see Example 3.18), for 3 ≤ q ≤ 7. The results are shown in Table 2.

S τS ρS ρS
−1 αS βS

q-
u

n
if

or
m

{3} 0.16648974 0.14078101 7.10323062 1.18261501 0.04374341

{4} 0.29124158 0.22185941 4.50735894 1.31273036 0.08298341

{5} 0.38048526 0.27126972 3.68636788 1.40260866 0.10797005

{6} 0.44765569 0.30473450 3.28154504 1.46900231 0.12399216

{7} 0.50026001 0.32902575 3.03927574 1.52042812 0.13445024

q-
m

u
lt

ip
le

3N∗ 0.16334708 0.13864031 7.21290960 1.17820771 0.03365135

4N∗ 0.28781764 0.22003286 4.54477579 1.30806666 0.05948498

5N∗ 0.37742727 0.26987181 3.70546302 1.39854280 0.07361482

6N∗ 0.44503426 0.30365836 3.29317462 1.46557553 0.08138694

7N∗ 0.49802658 0.32817932 3.04711459 1.51754407 0.08564296

Table 2. Approximate values of the constants τS , ρS , ρS
−1, αS , and βS for the

families of q-uniform and q-multiple hyperchord diagrams, for 3 ≤ q ≤ 7.

Observe that the growth constant for q-uniform hyperchord diagrams is just slightly smaller
than the growth constants of the corresponding q-multiple hyperchord diagrams.

We have now obtained the complete asymptotic behavior of crossing-free hyperchord diagrams
inHS and we can therefore proceed to study hyperchord diagrams ofHS with precisely k crossings.
Applying once more the same method as in Section 2.2, we obtain an expression of the generating
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function HS
k (x, y) of hyperchord diagrams of HS with k crossings in terms of the corresponding

k-core hyperchord diagram polynomial

KHS
k (x, y) :=

∑
K k-core

hyperchord

diagram of HS

xn(K) ym(K)

n(K)
,

and of the polynomials

H
S |n
0 (y) := [xn] HS

0 (x, y) and H
S | ≤p
0 (x, y) :=

∑
n≤p

H
S |n
0 (y)xn.

Proposition 3.20. For any k ≥ 1, the generating function HS
k (x, y) of the hyperchord diagrams

with k crossings and where the size of each hyperchord belongs to S is given by

HS
k (x, y) = x

d

dx
KHS

k

(
x0,j ←

H
S | j
0 (y)

xj
, xi,j ←

xi

(i− 1)!

di−1

dxi−1

HS
0 (x, y)−H

S | ≤i+j
0 (x, y)

xi+j+1
, y

)
.

In particular, HS
k (x, y) is a rational function of the generating function HS

0 (x, y) and of the vari-
ables x and y.

Using this composition scheme and the singular behavior of HS
0 (x, 1) described in Proposi-

tion 3.19, computations similar to that of the proof of Proposition 3.9 lead to the following as-
ymptotic result.

Proposition 3.21. Let k ≥ 1 and let S be a non-empty subset of N∗ different from the single-
ton {1}. Let ρS be the smallest singularity and αS , βS be the coefficients of the asymptotic expan-
sion of the generating function HS

0 (x, 1) around ρS, as defined in Proposition 3.19. Let Ψ(k, S)
denote the maximum value of the potential function

ψ(K) :=
∑
i>1
j≥0

(2i− 3)ni,j(K)

over all k-core hyperchord diagrams of HS. There is a constant ΛS such that the number of
hyperchord diagrams with k crossings, n vertices, and where the size of each block belongs to S is

[xn] HS
k (x, 1) =

n→∞
gcd(S)|n

ΛS n
Ψ(k,S)

2 ρS
−n (1 + o(1)),

for n multiple of gcd(S), while [xn] HS
k (x, 1) = 0 if n is not a multiple of gcd(S). More precisely,

the constant ΛS can be expressed as

ΛS :=
gcd(S) ρS Ψ(k, S)

Γ
(Φ(k,S)

2 + 1
) ∑

K

1

n(K)

∏
j≥0

(
D
S | j
0 (1)

ρSj

)n0,j(K)

α
n1,j(K)
S

∏
i>1
j≥0

(
βS (2i− 5)!!

2i−1 ρSi+j (i− 1)!

)ni,j(K)

,

where we sum over the k-core hyperchord diagrams K of HS which maximize the potential func-
tion ψ(K).

Remark 3.22. As for the partitions PS , we observe that the exponent Ψ(k,S)
2 in the polynomial

growth of [xn] HS
k (x, 1) is not a constant of the class, but really depends on the value of both S

and k. The reader is invited to work out examples of q-uniform and q-multiple hyperchord diagrams
to get convinced that this exponent can have an unexpected behavior.

Acknowlegdments

This paper started while the first author visited ICMAT in Madrid in May 2012 and continued
during a visit of the second author at Laboratoire d’Informatique, École Polytechnique in Paris in
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