
HAL Id: hal-01276767
https://hal.science/hal-01276767v1

Submitted on 20 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Geometric Consensus: A General Purpose Point
Pattern-Based Tracking Algorithm

Liming Yang, Jean-Marie Normand, Guillaume Moreau

To cite this version:
Liming Yang, Jean-Marie Normand, Guillaume Moreau. Local Geometric Consensus: A General
Purpose Point Pattern-Based Tracking Algorithm. IEEE Transactions on Visualization and Computer
Graphics, 2015, 21 (11), pp.1299 - 1308. �10.1109/TVCG.2015.2459897�. �hal-01276767�

https://hal.science/hal-01276767v1
https://hal.archives-ouvertes.fr

To appear in an IEEE VGTC sponsored conference proceedings

Local Geometric Consensus: a general purpose point
pattern-based tracking algorithm

Liming Yang, Jean-Marie Normand, and Guillaume Moreau

Abstract—We present a method which can quickly and robustly match 2D and 3D point patterns based on their sole spatial distri-
bution, but it can also handle other cues if available. This method can be easily adapted to many transformations such as similarity
transformations in 2D/3D, and affine and perspective transformations in 2D. It is based on local geometric consensus among several
local matchings and a refinement scheme. We provide two implementations of this general scheme, one for the 2D homography
case (which can be used for marker or image tracking) and one for the 3D similarity case. We demonstrate the robustness and
speed performance of our proposal on both synthetic and real images and show that our method can be used to augment any
(textured/textureless) planar objects but also 3D objects.

Index Terms—Augmented reality, Tracking, Point-pattern matching, Pose computation.

1 INTRODUCTION

Object tracking is the corner stone of vision based augmented reality
(AR) and “tracking by matching keypoints” techniques have proven
successful in recent years. However, most of the methods only work
with local feature descriptors based on textures, such as SIFT [12],
SURF [2], BRIEF [4] etc. Nevertheless, tracking only based on points
spatial layout without using any texture information offers other im-
portant benefits. Most of all, it allows for tracking models that are
textureless or which textures may vary, e.g. augmented maps [29].
Besides, as pure points can be retrieved from standard textured images
with the help of feature point detection, this kind of method could also
be used to “augment everything” [24].

In this paper, we focus on the pure point pattern tracking problem,
more specifically on “tracking by matching” (as opposed to “track-
ing by tracking” [24]) since the former can more easily recover from
tracking failure and ensures that there is no “drift” during tracking. In
other words, tracking by matching consists of performing matchings
at 20 - 30Hz and compute camera pose from those matchings.

We reformulate the matching problem as follows: consider having
M model point sets (P1, P2, · · · , PM), each point set Pi containing uni-
formly randomly distributed mi points in d = (2,3) dimensions. Let
T : Rd →Rd be a geometric transformation on d dimensions of which
we only know its type (similarity, homography, etc.). Let Q be a set
of observed scene points, some of which belong to T (P′i) where P′i is
a subset of Pi in which each point may have undergone a small trans-
lation (i.e. jitter). Other points of Q are extra points, i.e. acquisition
noise. Our objective is to find Pi amongst the M known model point
sets and to determine the transformation T between Pi and Q.

The difficulty of the pure point pattern matching (PPM) over tra-
ditional texture-based keypoint matching is that the available infor-
mation for matching is extremely limited: only the geometrical dis-
tribution of points. Moreover, due to the presence of jitter, the only
usable information becomes biased. Given the poorness of the qual-
ity of the information, robust matching algorithms are generally time
consuming. This is the reason why PPM algorithms in the literature
are either fast but not robust against point jitter [15], or robust but not
fast enough [29] for tracking purposes in complex AR applications.

Our main contribution is a general algorithm for pure point pattern
matching under any transformation in 2D or 3D in a fast and reliable
way. The main purpose of this work is not to compete with exist-
ing texture-based tracking algorithms but rather to address a problem
where current methods would fail or require a lot of preprocessing,
which may include:

• Liming Yang, Jean-Marie Normand and Guillaume Moreau are with Ecole
Centrale de Nantes, UMR CNRS 1563 AAU, France. E-mails:
firstname.lastname@ec-nantes.fr.

• Model-based augmentation with little texture information (e.g.
CAD drawings)

• Augmenting different paper maps with GIS [29]

• Industrial environments in which placing textures (or classical
black and white markers) may be an issue

• Registering 3D models acquired in different lighting conditions

• Robust initial pose estimation for edge-based tracking.

The remainder of this paper is organized as follows: Section 2
presents related works and the differences between our approach and
the existing literature. Section 3 describes the general framework
which can be easily adapted to many different transformations. Then,
detailed implementations for the two most frequently used transfor-
mations (i.e. 2D perspective and 3D similarity) are presented in Sec-
tion 4. Section 5 gives the evaluation results of the method for the 2D
homography case with synthetic point sets and tests with 3D similar-
ity model registration. Section 6 presents two applications using our
method while Section 7 motivates some choices before concluding.

2 RELATED WORKS

There exist numerous methods to solve PPM problems, many of them
being general methods that can be used with various transformations.
In this section, we first focus on some typical general methods before
moving to some specific methods that relate to our goal: tracking.

General methods can be divided into two categories, direct methods
and iterative ones. Geometric Hashing (GH) [28] is a classical direct
method. It uses subsets of points to construct coordinate bases, cal-
culate other points’ coordinates under such bases and then vote for
each basis. The basis which receives the highest number of votes
gives the final result. GH is robust against extra/missing points and
point jitter but its major drawback is the huge computational complex-
ity in O(nb), where b− 1 is the number of points needed to form a
basis [28]. Generalized Hough Transformation [1] or pose cluster-
ing [16] are computationally intensive when the dimensions of the pa-
rameter space increase. Branch and bound algorithms [14] recursively
compute parametric sub-spaces and calculate the upper/lower bounds
for each sub-space to improve performance. RANSAC [7] is another
direct approach for PPM. First one subset of correspondences is ran-
domly chosen among all possible point correspondences in order to
estimate a first “hypothesis” of the transformation. Then other corre-
spondences are used to check whether this hypothesis is valid. The
“hypothesis” that gives rise to the highest number of inliers is chosen
as final output. RANSAC is an efficient method when the inlier ratio
(in the sense of correspondence) is higher than 50%. However, when
applied to pure PPM problems, since the number of all combinations
(p ∈ P,q ∈ Q) is very large, RANSAC can hardly work. If a point

1

correspondence reliability metrics is available, PROSAC [5] can be an
efficient method for PPM.

Iterative methods have also been developed. ICP [3] assigns to each
model point its nearest neighbor in the scene point set and minimizes
the sum of correspondence distances in each iteration until a threshold
is reached. Robust point matching [8] uses a soft assignment method
to iteratively find correspondences instead of only relying on the near-
est neighbors in each step. Inspired by image correlations, Tsin et
al. [23] developed the Kernel Correlation method, which defines a cost
function to describe the registration of two point sets and finds the reg-
istration by minimizing the cost function.

In AR, RANSAC-like methods are often used in conjunction with
texture-based key point algorithm, which can often greatly reduce the
number of possible correspondences. Other general point registration
methods, being not initially designed for tracking purpose, prove to be
practically unusable for AR because of their computation cost.

Herling et al. proposed the Universal Feature Tracking [9] (UFT)
method for tracking 3D point sets. They first generate 2D point pat-
terns of the 3D point set in different virtual camera poses. During the
initialization, the 2D pattern which matches best the scene point set is
selected. Then the real camera pose is calculated by iteratively find-
ing an accurate transformation between the selected 2D pattern and
the scene point set. Tracking is done with previous frame informa-
tion. Theoretically their method could work with real 3D point data
but only planar objects are used in their experiments. Moreover the
method also has constraints related to object occlusion as well as the
camera-object distance.

As to the special case of 2D homography, LLAH [15] uses local
geometry instead of whole point sets to achieve real time tracking. It
constructs surface-ratios to create index tables for each point by using
their nearest neighbors so that points can be efficiently matched. AR
applications are developed by using this method such as Random Dot
Markers (RDM) [25], augmenting city maps [26], and general planar
objects [24]. However, this method is sensitive to extra/missing points
within the point pattern as well as to point jitter, as shown in [29] and
later in this paper (cf. Section 5.1).

Our previous work, RRDM [29], also uses surface-ratios in points’
neighborhoods. Since it constructs a more robust descriptor, to over-
come problems encountered by LLAH, augmenting unprepared maps
with GIS data becomes possible. Unfortunately, time complexity of
this method is quadratic. When the point set becomes large, real-time
tracking is impossible, as described in the map experiment of [29].

Our proposal is inspired by the work of [28, 15, 29, 7]. We rely
on Geometric Hashing (GH) to be robust against noise, work on local
point sets to speed up the process and geometric consensus between
neighbor point sets ensures a termination with reduced computations.
Even though the refiner (Section 3.4) of Local Geometric Consensus
(LGC) remains similar to the recovery phase of [29], LGC has the
following advantages compared to the state of the art:

• It is much faster than GH, RDM and RRDM

• It is more robust than RDM and RRDM

• It handles several models, unlike RRDM (unclear for UFT)

• It handles any known transformation, unlike RRDM and UFT

• It deals with large occlusion, does not restrict the distance to
objects nor needs previous frames information unlike UFT

• It can handle much lower inlier ratios than RANSAC

• It has more use cases than texture-based tracking techniques.

3 GENERAL ALGORITHM

Our algorithm takes several model point sets P1, P2, · · · , PM , a query
scene point set Q and the type of transformation as inputs. The output
is the matched model number i and the transformation T between Pi
and Q, with T belonging to the given transformation type (cf. Fig. 1).

The core idea is based on the consensus of local geometry: corre-
spondences information between two small subsets of Pi and Q is used
as an indication to find their neighboring subsets’ correspondences,

p2-patch

Generator

p1-patch p1-patchp2-patch

P1,P2,…,PM

Q

Type of T

Pi, T : Q≈T(Pi)

η, k, Nlarge, Nmax

model 1 (P1) model 2 (P2)

Fig. 1. Input and outputs of our algorithm. η , k, Nlarge and Nmax are the
parameters of the algorithm.

thus all the other correspondences between the two sets can be found.
The very first correspondences information between two subsets is
found by geometric hashing, in which local coordinate systems, be-
ing invariant to local transformations, are constructed to perform the
matching.

Some important definitions and a brief description of LGC are given
in Section 3.1 while the next sections will give detailed explanations.

3.1 Definitions and brief description of the algorithm
The algorithm works with local geometric features. By assuming that
points are randomly distributed, the relative positions between points
in a local point set is very characteristic (demonstrated in [15]). For
each model point p or scene point q, p (or q) and its k nearest neighbors
(k being a parameter of the algorithm) are used as a local geometric
feature, we call it p-patch (resp. q-patch). Two patches (p-patch, q-
patch) with known point correspondences is called a paired-patch (p,
q) (cf. Fig 2). With the point correspondences, one can also find the
transformation of the paired-patch. As some transformations (such
as homographies) are not linear, according to Taylor expansion (cf.
Section 7.2), they can be approximated by other linear ones (such as
affinities) in a small local area. A local transformation TL is used in
local patches as a linear approximation of T .

●

●
●

●
p0 p1

p2

p3=X1(p1-p0)+X2(p2-p0)+p0

X1

X2

●

●

●

●
p0

p1

p2

X1

X2

p

qp’
q’

Fig. 2. An example of a paired-patch (p,q) with k = 6. p and its 6 nearest
neighbors are in red. q and its 6 nearest neighbors are in blue. Black
lines with arrows represent correspondences of the paired-patch. Note
that not all points have a correspondence due to missing/extra points.

Let mi be the number of points in model Pi and Vi be the space en-
closed by Pi’s convex hull. Then ρi =

d
√

mi/Vi is the point density
of Pi, where d is the number of dimension of point sets. As a conse-
quence, li = ρ

−1
i is a measure of inter-point distance. Without losing

generality, we assume that all point sets are normalized beforehand so
that the center of mass of each point set is at origin and li = l is now
the same for all models. We assume also that the jitter follows an un-
correlated multivariate normal distribution with mean 0 and variance
σ = lη for all models, where η is a parameter of our algorithm called
jitter factor. From now on, all point sets are normalized ones unless
otherwise stated.

Our algorithm is composed of three modules: hypotheses generator,
hypotheses validator, and results refiner (cf. Fig. 4). M containers are
used to store correspondences coming from each model respectively.

The hypotheses generator is a two-stage procedure: offline regis-
tration (cf. Fig. 3) and online generation. During the offline stage,
every model patch is registered in the generator. During the online
stage, a scene point q is randomly chosen and the q-patch is fed to
the hypotheses generator to build several paired-patches. These gen-
erated paired-patches are called “hypotheses” in the following. The
validator takes each hypothesis as input and verifies them. If a hypoth-
esis is valid, the validator produces a list of correspondences and adds

2

To appear in an IEEE VGTC sponsored conference proceedings

them to one of the containers. The “generation-validation” process is
looped until either one of the two following conditions is satisfied: (1)
one container has more than Nlarge correspondences or (2) Nmax scene
points have been sent to the generator. We explain these conditions
and their values in Section 3.5. Finally, the result refiner finds and im-
proves the final result with the largest correspondences set among M
containers (cf. Fig. 4). Note that only the hypotheses generator needs
to work on all models whereas the hypotheses validator and the result
refiner only use the scene point set Q and the model Pi from which
model points of the input hypothesis come.

The time complexity of the method is about O(m+n), where m =

∑
M
i=1 mi is the number of total model points, and n is the number of

scene points. It will be explained in each of the following sections.

p2-patch

Generator

p1-patch p1-patchp2-patch

P1,P2,…,PM

Q

Type of T

Pi, T : Q≈T(Pi)

η, k

model 1 (P1) model 2 (P2)

Fig. 3. General schema for offline registration: p-patches are created
for each point in all models and are registered into the generator.

get pi

Generator

Validator

terminated ?

pi-patch

dual-patches

correspondences

correspondences
containor

Y

Refiner

N

matching result

Get q

Generator

Validator

finished?

q-patch

hypothesis: paired-patch (p,q)

correspondences

one correspondence container for each model

Y

Refiner

N

matching result

container 1 container 2 container M...

largest list

Fig. 4. General schema for online matching: Generator (Section 3.2)
is a geometric hashing module. Validator (Section 3.3) validates the
input hypothesis and creates a list of correspondences from it. Refiner
(Section 3.4) computes the final result.

3.2 Hypotheses generator
The hypotheses generator is basically a geometric hashing module.
During the offline registration, each p-patch (i.e. a set of k+1 points)
is registered into a hash table with its model number. During online
generation, the input q-patch is considered as a query set and the corre-
sponding p-patches that may belong to different models are retrieved.

We chose to use geometric hashing because it can drastically re-
duce the search space, it works well with moderate point jitter and in
the presence of extra/missing points, and it can deal with many dif-
ferent types of transformations. By restricting it to local patches, the
number of points in each p-patch is very small so the matching can be
processed very quickly.

Geometric hashing uses a local basis. Let f (TL) be the de-
gree of freedom of the linear transformation TL. By using b =
f loor(f (TL)/d)+ 1 non-degenerated points, one can construct a lo-
cal affine right-hand basis B as follows: let the first point be the origin
of the local basis, each following point defines the direction of one
axis for the local basis. Then the last point’s position can be uniquely
expressed by a geometric descriptor X, which is a D = bd− f (TL) di-
mensional vector and represents the last point coordinates in B. The
local basis is constructed so that X is invariant to transformation TL. If
XBi represents X in Bi basis formed by b points, we have:

XB1 = XB2 ⇔∃!TL s.t. B2 = TL(B1) (1)

where ∃! represents the unique existential quantification operator
meaning “there is one and only one”.

Jitter can influence the value of X as well. If the geometric descrip-
tor of basis B is X, and if B′ giving rise to a geometric descriptor X′
is a jittered version of B, then X′ is a random variable. Since TL is a
linear transformation, we can analytically find Σ = (Σ1,Σ2, ...,ΣD) so
that X ′i ∼ N(Xi,Σ

2
i) when the variance of jitter σ is comparably small

to inter-point distances l. Note that for simplicity, Σ is not a covariance
matrix but a vector of length D. As a consequence we say that B and
B′ with descriptors X and X′ respectively, are matched under jittered
conditions if equation (2) is satisfied:

|Xi−X ′i | ≤ 2Σi (2)

Given b points, there are many ways to construct a basis. For a p-
patch, we choose p as the first point (i.e. the origin), other points are
chosen so that X lies in a bounded region RX = {X : |Xi| ≤ 1,1 ≤ i ≤
D}. This region is uniformly partitioned into 100D bins (meaning that
[-1,1] in each dimension is equally divided in 100 segments) to serve
as hash entries. To avoid inefficient record in the hash table, Σ̃i is used
instead of Σi in Alg. 1, with Σ̃i = max(Σi,0.05).

Algorithm 1 Offline p-patch registration for model Pi

for B ∈ {All combination of b points in p-patch containing p} do
Compute geometric descriptor X and its variance Σ

Register (model number i, B) into all bins that intersect X±2Σ̃

end for

The generation step begins by creating a list of (p j-patch, q-patch).
They are called pre-hypotheses since points correspondences are un-
known in these two patches. Each pre-hypothesis has a local voting ta-
ble for their neighbor point correspondences. Then the voting schema
detailed in Alg. 2 is applied. Finally, point correspondences are esti-
mated from voting results, thus giving rise to hypotheses.

Since the generator is a multi-model geometric hashing module,
the matching complexity for each q-patch is roughly O(m(k + 1)b),
where m is the total number of model points, k is the number of nearest
neighbors used and b is the number of points in B, which only depends
on the transformation type.

3.3 Hypotheses validator
The core work of the validator is to check whether the local transfor-
mation TL of an input hypothesis is an approximation of T . If a paired-
patch contains point correspondences of the real transformation, it
is an in-paired-patch and its local transformation is a good approx-
imation of T . Local transformations of two neighboring in-paired-
patches should be similar as they are both approximations of T in
the same neighborhood. Such a relationship cannot be established for
out-paired-patches. We use this consensus between neighbor paired-
patches’ transformations to validate hypotheses. Obviously, the more

3

Algorithm 2 Online hypotheses generation with q-patch
Input: Scene point q
Output: A list of hypotheses: hypo
Create (p j-patch, q-patch) pre-hypotheses for all p j ∈ Pi, i = 1..M
for all B∗ ∈ {q-patch} do

Find geometric descriptor X
for all (model number i, B) in the hash bin which covers X do

Let p = the origin point of B
Cast one vote for each correspondence (p′, q′) between B∗ and
B in the local voting table of (p-patch, q-patch)

end for
end for
for all pre-hypotheses (p j-patch, q-patch) do

if Find correspondences with voting results then
Calculate local transformation TL
hypo← paired-patch(p j,q)

end if
end for

paired-patches share the consensus with TL, the more likely TL is an
approximation of T . The measurement of consensus is TL-dependent,
it is addressed in concrete implementations, cf. Section 4.

The idea of consensus between neighboring paired-patches was first
seen in RRDM [29], however our approach is different. In RRDM,
transformations of neighboring paired-patches are first estimated in-
dependently before being compared, which consumes a lot of time.
Furthermore, with large noise, point correspondences can hardly be
found independently between model patches and scene patches. In
this method, if the transformation of one paired-patch is found, we
use it as an initial guess to estimate transformations of its neighbor-
ing paired-patches. This allows us to improve the possibility and the
speed of finding similar transformations between neighboring paired-
patches. This method, by relying on the consensus and on a proper
termination criterion Nlarge, can almost find a correct estimation of T ,
which will be further improved by the refiner.

Alg. 3 describes the validator module. Recall that a paired-patch
contains correspondences between two patches, thus it can be seen as
a small correspondence list as well. The validator takes an hypothe-
sis paired-patch (p0,q0) as input, finds its neighboring paired-patches
having a similar local transformation and adds them to supporterlist.
Then it does the same thing with these new added paired-patches. This
process continues until no paired-patch can be added anymore. The
resulting supporterlist is a list of correspondences which are located
in the same subregion and share the same transformation T . If the
local transformation TL of the input hypothesis is considered a good
approximation of T , supporterlist is registered into the i-th container, i
being the model number of point p0. If the i-th container is not empty,
supporterlist and the stored list are merged to give the largest corre-
spondences list sharing the same T .

Algorithm 3 Validator
Input: One hypothesis: paired-patch (p0,q0)
Output: A list of correspondences: supporterlist
supporterlist = {(p0,q0)}
for each (p,q) ∈ supporterlist do

TL = local transformation of paired-patch (p,q)
for all (p′,q′) ∈ paired-patch (p,q) do

Build paired-patch (p′,q′) and estimate its local transforma-
tion T ′L based on TL (cf. ? for details)
if TL ' T ′L then

supporterlist← supporterlist ∪{(p′,q′)}
end if

end for
end for

Step (?) of Alg. 3 finds point correspondences between p’-patch and
T−1

L (q’-patch) using nearest neighbors. These correspondences lead

to an estimation of the local transformation T ′L and are used to create a
paired-patch (p′,q′).

Time complexity of the validator depends on the number of input
hypotheses. It is proportional to the number of model points m and to
Nmax. So the time complexity is about O(mNmax).

3.4 Result refiner
After loops of “generator-validator”, many correspondences are filled
into containers. If the i-th container has the most correspondences,
then model Pi is considered to be found. The refiner takes the corre-
spondence list in i-th container as input, noted as sl. It works on the
scene point set Q and the model point set Pi to find the transformation
T . The overall refining process is similar to RRDM [29], but Delaunay
triangulations and a threshold dt are used to improve its performance.

First of all, Delaunay triangulations are generated for both point
sets, so that each point is connected with its mesh neighbors by the
Delaunay mesh (preferred to nearest neighbors, cf. Section 7.1). From
sl, a transformation T can be estimated. Then we try to find matching
points for all mesh neighbors of points in sl. When a new matching
is found, the new correspondence is added to sl. With these corre-
spondences, the transformation can be better estimated. This process
continues until sl stops growing. Note that at the end of Alg. 4, T
is the transformation between normalized Pi and Q. However, since
point correspondence between original sets can be derived from sl, it
is very easy to calculate the transformation between them.

Algorithm 4 Refiner
Input: Largest correspondence list: sl
Output: Transformation: T
repeat

Estimate T using sl
for all (p,q) ∈ sl do

Add all mesh neighbors of q in potentialComers
Add all mesh neighbors of p in tmpSet
In Q, find nearest neighbors of each T (p j), p j ∈ tmpSet
Add these nearest neighbors into potentialComers
for all q′ ∈ potentialComers do

if ∃p′ ∈ Pi : |p′−T−1(q′)| ≤ dt then
sl = sl∪{(p′,q′)}

end if
end for

end for
Estimate T using new sl
Erase (p,q) ∈ sl if |p−T−1(q)|> 3σ

until sl stops growing
Return: T

In Alg. 4, dt is a threshold which describes how far could a projected
scene point T−1(q′) be away from its model corresponding point. This
value can vary according to the position of q′. Let C be the convex
hull of scene points in sl. If q′ is inside the region enclosed by C, we
can take roughly dt = 2σ thanks to Gaussian distribution. When q′ is
outside the region, the farther it is from the region, the larger dt will
be (cf. Fig. 5). Assuming o is the center of C and C intersects oq′ at
qC, we then take dt = 2 oq′

oqC
σ .

The number of iterations in the outside loop is linear to n (i.e. the
number of points in Q) in the worst case. Thus the time complexity is
about O(n).

3.5 Parameters
All parameters used in the algorithm will be discussed here so that
they can be more easily adjusted according to special use.

3.5.1 k and η

k defines the size of local patches, the bigger it is, the more robust the
algorithm is against extra/missing points. Since our method is based
on Geometric Hashing, the efficiency related to k in the generator is
O(kb), where b is the number of points in a basis B (cf. Sec. 3.2).

4

To appear in an IEEE VGTC sponsored conference proceedings

Fig. 5. An illustration before the refiner module: model points (in red)
are projected into the scene. Scene points are in blue, correspondences
in sl are in black. The convex hull of scene points in the correspondence
list C is represented by a green polygon, o being its center. The farther a
correspondence is from C, the bigger is the distance between the model
point and the scene point.

η = σ/l is the jitter factor. The larger it is, the more robust the
algorithm is against acquisition noise. But η also impacts the genera-
tor efficiency at about O(ηD), where D is the dimension of geometric
descriptor (cf. Sec. 3.2). We found that η ≈ 10% is the limit for the
jittered point pattern matching problem since beyond that value, pre-
cise transformation is difficult to obtain even with pre-known point
correspondences (cf. Fig 9). Fortunately, we found η = 5% - 7% to
be sufficient for many applications.

3.5.2 Nlarge termination rule
The first termination condition on Nlarge means that we are almost sure
to have found the model so there is no need to test more hypotheses.
A good choice should give very few false alerts. Given a model
Pi and the scene Q, let us consider those two random events E0 and E1:

E0 = Q is a random set. (i.e. Q does not come from Pi)
E1 = ∃Nlarge correspondences in a local region agreeing on T
Reducing false alerts means reducing the probability of E0 knowing

E1, i.e. P(E0|E1). We can show that P(E0|E1) ≈ 0 with a very small
Nlarge. In a conservative estimation (see Section 9 for demonstration)
where one has 104 models to track and each model has 106 points,
P(E0|E1) is smaller than 10−6 with Nlarge = 20. However, this result
cannot guarantee that the method can achieve an accurate estimation
of T when a model is present, because the refiner may find false inliers.

3.5.3 Nmax termination rules
The second condition on Nmax says that we are almost sure that no
model exists for the point set Q. This is a direct inspiration from
RANSAC. If Q has t inliers, an in-paired-patch has a probability of
p1 chance to be proposed to the validator and a probability of p2 to
pass the validation phase, then the probability (λ) of no result from
the validator after trying N image points is:

λ = (1− t
n

p1 p2)
N (3)

So, if we want λ < λmax, we have:

Nmax =
log(λmax)

log(1− t
n p1 p2)

(4)

From our experiences, p1 can be small in very noisy situations but
p2 is very large, let us say p1 = 0.2 and p2 = 0.7. In a scene with
50% inliers, we have Nmax = 41 with λmax = 0.05. So no matter how
large the point set in the scene, one needs only to do at most 41 simple
geometric hashing queries with k+ 1 points. In all our experiments,
Nmax is set to be 45. When scene set contains more outliers, one can
adjust Nmax to a more proper value according to equation (4).

4 SPECIFIC IMPLEMENTATIONS

In this section, we present the detailed implementation of the algo-
rithm for 2D homography and 3D similarity. 2D homography is used
to match coplanar point sets (markers) while 3D similarity matching
is very useful for model registration. Given the general algorithm, one
needs three more pieces of information for a detailed implementation:
(a) How to construct the b-basis and compute the geometric descriptor
(b) How to measure the similarity between TLs. (c) How to find TL or
T with known point correspondences. We detail them for both cases.

4.1 2D homography
A 2D homography is basically a perspective transformation, and each
point has only two coordinates. So T belongs to 2D perspective trans-
formation and TL belongs to 2D affine transformations.

(a) b-basis is ordered as (p0, p1, p2, p3) so that ∆p0 p1 p2 has the
largest surface among all triangles containing p0, −−→p0 p1×−−→p0 p2 > 0.
This gives us a local right-hand basis and |X1|, |X2| ≤ 1 (cf. Fig. 6),
same as in [11].

●

● ●

●p0 p1

p2 p3=X1(p1-p0)+X2(p2-p0)+p0

X1

X2

●

●

●
p0

p1
X1

X2

p

qp’
q’

Fig. 6. Local b-basis (p0, p1, p2, p3) for 2D homography. p0 is the origin.
x̂i are axis of the local coordinate system.

Thus, if p(i) stands for the i-th coordinate of point p:(
X1
X2

)
= A

(
p(1)3
p(2)3

)

A = (ai j) =

(
p(1)1 − p(1)0 p(1)2 − p(1)0
p(2)1 − p(2)0 p(2)2 − p(2)0

)−1

(
Σ1
Σ2

)
= ((X1 +X2−1)2 +X2

1 +X2
2 +1)σ

(
a2

11 +a2
12

a2
21 +a2

22

)
(5)

(b) 2D affinity is a 2× 3 matrix. The left 2× 2 square matrix can
have a singular decomposition, where a rotation θ and two scale fac-
tors α(1),α(2) can be retrieved. By using the result from [29], we say
two affine transformation are similar if the difference of their rotation
is less than 10◦ and the ratio of each scaling is less than 1.3.

(c) With known point correspondences, TL can be found by the
least square method while T can be found in various ways including
OpenCV’s findHomography method.

4.2 3D similarity
Similarity is a linear transformation itself, so TL = T .

(a) b-basis is ordered as (p0, p1, p2) so that ‖−−→p0 p1‖ ≥ |−−→p0 p2‖. −−→p0 p2
defines the positive direction of second axis of this local basis (cf.
Fig. 7). Thus the coordinates of p2 are:

X1 =
−−→p0 p2 ·−−→p0 p1

‖−−→p0 p1‖2 ,X2 =
√

(‖−−→p0 p2‖/‖−−→p0 p1‖)2−X2
1 ,X3 = 0 (6)

It is easy to verify that |X1|, |X2| ≤ 1 and thus the variance:

Σ1 = Σ2 =

√
‖−−→p0 p1‖2 +‖−−→p0 p2‖2 +‖−−→p1 p2‖2

‖−−→p0 p1‖2 ,Σ3 = 0 (7)

(b) A 3D similarity can be decomposed into a rotation matrix R and
a scale α . R can be represented as a quaternion q. We say two simi-
larities are equal if the difference of rotation is less than 10◦ measured
by Φ3 mentioned in [10] and the ratio of scales is less than 1.3, that is:

5

●

● ●

●p0 p1

p2 p3=X1(p1-p0)+X2(p2-p0)+p0

X1

X2

●

●

●
p0

p1
X1

X2

p

qp’
q’

Fig. 7. Local b-basis (p0, p1, p2) for 3D similarity. p0 is the origin. x̂i
are axis of the local coordinate system, with x̂i ⊥ x̂ j, (i 6= j). Xi are the
coordinates of p2 under this local coordinate system, with X3 ≡ 0.

2arccos(‖q0 ·q1‖)≤ 10◦,max(|α1

α2
|, |α2

α1
|)≤ 1.3 (8)

(c) We use the method from [27] to estimate the similarity T with
known point correspondences.

5 RESULTS ON SYNTHETIC POINT SETS

In this section, we present results obtained under different conditions.
Section 5.1 focuses on performance in noisy conditions. While this
first section takes the 2D homography transformation as a basis and
performs extensive tests, Sections 5.2 and 5.3 show that the algorithm
has the potential to work well in 3D and can benefit from additional
information. All experiments are performed on a PC with an Intel
Xeon E3 1240@3.40GHz CPU and 16GB of RAM.

5.1 Speed and robustness study
The performance of our method is compared with other methods using
synthetic data. In the graphs, RDM stands for Uchiyama’s Random
Dot Markers [25] (original implementation is used), RRDM for our
previous work [29], LGC for our current proposal and GH for tradi-
tional Geometric Hashing [28]. Default parameters of these methods
are used. The homography transformation is set to a 30◦ perspec-
tive transform unless stated otherwise. Fig. 8 to Fig. 13 present sin-
gle model matching, i.e. the scene set Q is matched against only one
model set P, while Fig. 14 shows multi-model matching. We use for-
mula (14) in [29] to judge whether reprojections are precise.

We first investigate the performance with different number of points
in the model set. Fig. 8 first shows the result in an ideal condition,
that is without jitter, extra or missing points and then the result with
β = 15% extra points and η = 3%. The second case is more realistic
and can be seen as a simulation of a real scene. As shown in the figures,
GH is too slow to provide results for more than 60 points. RRDM has
a clear quadratic behavior. RDM works well in the ideal condition but
finds too few precise results in the second case. LGC achieves the best
performance with a linear behavior.

Fig. 9 shows results of robustness studies. We increase the jitter
factor η to study robustness to acquisition noise which can be due
to image processing artifacts, camera calibration errors, etc. Here,
we stick to point sets containing 100 points with no extra or missing
points. Clearly, RDM can handle some noise, but is outperformed by
both RRDM and LGC. LGC is the fastest and most robust. KPC rep-
resents results directly found with pre-Known Point Correspondences,
which can be seen as the result obtained using ground-truth point cor-
respondences. Note that η = 10% is about the limit of obtaining a
precise matching even with ground-truth point correspondences for jit-
tered point pattern matching. LGC sometimes outperforms KPC (cf.
η = 7% and 8%), because LGC does not keep correspondences when
the reprojection distance between the scene and the model points is
greater than 3σ (cf. Alg. 4). Thus LGC may use less noisy point cor-
respondences than KPC thus leading to a more accurate homography.

Then, we present results with extra points (such as outliers that
could be detected by image processing techniques) in Fig. 10, results
with randomly removed points (which simulates underdetections) in
Fig. 11, results when points in a region are masked (i.e. occlusion) in

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of points in model set P (m)

RDM RRDM LGC GH

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of points in model set P (m)

RDM RRDM LGC GH

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Number of points in model set P (m)

RDM RRDM LGC GH

Fig. 8. Speed experiment. Top: Ideal conditions without jitter nor ex-
tra/missing points. Reprojections for all methods are 100% precise. Bot-
tom: β=15%, η=3%, missing=0%, occlusion=0%.

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Jitter factor η(%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Jitter factor η(%)

RDM RRDM LGC KPC

Fig. 9. Jitter experiment (model P contains 100 points). β=0%, miss-
ing=0%, occlusion=0%.

6

To appear in an IEEE VGTC sponsored conference proceedings

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Percentage of added points (%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Percentage of added points (%)

RDM RRDM LGC

Fig. 10. Extra points experiment (model P con-
tains 100 points). η=3%, missing=0%, occlu-
sion=0%.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Percentage of removed points (%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Percentage of removed points (%)

RDM RRDM LGC

Fig. 11. Random missing points experiment
(model P contains 100 points). β=0%, η=3%,
occlusion=0%.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Percentage of occlusion (%)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Percentage of occlusion (%)

RDM RRDM LGC

Fig. 12. Occlusion experiment (model P con-
tains 100 points). β=0%, η=3%, missing=0%,
perspective=30◦.

Fig. 12 and results with respect to the perspective angle of the camera
in Fig. 13. In every case LGC is the fastest and the most robust.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Perspective angle (deg.)

RDM RRDM LGC

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

P
re

c
is

e
 r

e
p
ro

je
c
ti

o
n
 (

%
)

Perspective angle (deg.)

RDM RRDM LGH

Fig. 13. Perspective experiment (model P contains 100 points). β=0%,
η=3%, missing=0%, occlusion=0%.

At last, Fig. 14 shows the discriminative capabilities of both RDM
and LGC (RRDM works for only one model). RDM is a bit faster
when no jitter occurs while both techniques fully discriminate be-
tween several models. RDM fails to retrieve the correct model as soon
as jitter is involved. LGC can almost always retrieve the correct one
whereas its capability to find an accurate transformation remains the
same as in the jitter experiment (Fig. 9).

As a conclusion to this theoretical study, our proposal outperforms
GH, RDM and our previous work RRDM for both robustness and
speed, showing a quasi-linear computation time, whatever the con-
ditions. It has also a great discriminative capability even with large
jitter. Next we show that LGC can also be applied to 3D transforms.

5.2 Test: 3D model registration
Most 3D models are composed of 3D points, forming small surfaces
which represent their envelope. We show in this section that our

Table 1. Registration results

Instance ID 1 2 3 4 5
Key point size 485 485 479 488 491
Inliers found 459 455 447 457 439

Rotation difference (◦) 0.10 0.06 0.00 0.10 0.10
Scale difference (%) 0.09 0.04 0.05 0.05 0.09

method implemented in 3D, allows for registering models undergo-
ing similarity transformations. Since, 3D models are often made of
dense point clouds which may contain thousands or millions of points,
it is almost impossible to register such amount of points directly. In
order to reduce the number of points that need to be matched, we use
3D interest point detectors on the 2 models to be matched to find geo-
metrical keypoints which are fed to our algorithm to find the similar-
ity transformation between them. We only use point coordinates for
matching, neither color information nor normal direction is used.

For illustration purpose, we use the famous Stanford Bunny with
Zhong’s Intrinsic Shape Signatures [30] (ISS) since it has a good
repeatability[22, 6]. η is set to 3%. We first create the model point
set with ISS key points: for the 35947 Bunny points, we obtain 480
keypoints. Then, random similarity transformations are applied on the
bunny model to create 5 instances for matching. Results of registration
are listed in Table 1. We can conclude that LGC has a potential to be
also used for 3D similarities estimation.

5.3 Test: LGC with additional information
So far, we have only considered pure point matching problems where
each point is indistinguishable from another. However, points may
have their own properties including color or local feature in textures.
We show here that such properties can be used in our algorithm.

Some traditional feature point matching methods (e.g. SIFT, SURF
or BRIEF) are based on these different properties of points. They first
find rough correspondences by using point properties before applying
RANSAC-like methods. Since such methods need high inlier ratios,
the rough correspondences should contain a lot of inliers. This implies
that point properties should be discriminant enough, which results in
high dimensional descriptors. We show that using our method instead
of RANSAC greatly reduces the descriptors’ dimension.

In our experiment we use ORB [19]. Since its descriptor is com-
posed of a bit sequence generated from random pixel comparisons, it
is very easy to get lower dimension descriptors from the original ones.
Image points are no longer fed to the generator randomly but accord-
ing to their nearest Hamming distances to model points. Let the length

7

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Number of models

RDM LGC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

T
ra

c
k
in

g
 t

im
e
 (

m
s
)

Jitter factor η(%)

RDM LGC

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

G
o
o
d
 m

o
d
e
l
fo

u
n
d
 (

%
)

Jitter factor η(%)

RDM LGC

Fig. 14. Discrimination performance. Top: with different number of mod-
els. Each model contains 100 points. Bottom: with different jitter factor.
50 models are used with 100 points in each model. Full boxes stand for
success, empty boxes for good model found with wrong transform.

of the descriptor in bits be LORB. In the generator, we do not process
(p j-patch, q-patch) which Hamming distance is larger than LORB/2 in
Alg. 2, thus reducing the number of false hypotheses. The condition
in Alg. 4 is also relaxed to find more corresponding points: we add
(p′,q′) to the solution list if the Hamming distance between p′ and q′

is less than LORB/3 and if |p′−T−1(q′)| ≤ 3dt . We use these values
for illustration purpose, they are not optimized.

The original 32 bytes ORB are chopped to have lower dimensional
descriptors which are used to compare our method with USAC [18].
Results are presented in Fig. 15 where we can see that LGC works
with much smaller descriptors than USAC.

6 APPLICATIONS

6.1 Tracking ordinary planar objects
Corners in real textured images are assumed to be randomly dis-
tributed. As demonstrated in [24], these corners can be used for track-
ing. We compare our method with RDM and SURF in this section
on real planar targets. However, our purpose is not to compete with
textural-based trackers in these situations. SURF serves as a refer-
ence. We aim at illustrating the flexibility of our approach to deal with
traditional targets and showing its robustness on real targets.

We use the OpenCV “goodFeaturesToTrack” method [21] as in-
terest point detector in this experiment which performs at about
10ms/frame. maxCorners and minDistance parameters are selected in
favor of RDM according to [24] (qualityLevel=0.13 and blockSize=12
for stable point detection). All remaining parameters are set to their
default values. As to SURF, a FLANN based matcher in OpenCV is
used to build a library of descriptors for tracking.

We use a Logitech C270 camera with resolution set to 640× 480.

��

���

����

����

����

�� �� �� �� �� ���

��
��
���

��
���

��
��
��

�������������������������

���� ����

��

��

��

��

��

��

�� �� �� �� �� ���

��
��
���

���
��
���

���
��
���
��
�

�������������������������

���� ����

��

���

����

����

����

�� �� �� �� �� ���

��
��
���

��
���

��
��
��

�������������������������

���� ����

��

��

��

��

��

��

�� �� �� �� �� ���

��
��
���

���
��
���

���
��
���
��
�

�������������������������

���� ����

Fig. 15. Graf series and results. Top: graf figures. Bottom left: result for
image pair (left, middle). Bottom right: result for image pair (left, right).

The experiment is as follows: first eight different coplanar objects (cf.
Fig. 16) pass individually in front of the camera. The same top view
of each object is registered using three algorithms (RDM, LGC and
SURF). Then, each object is tracked by the three algorithms separately.

Similar experiments are repeated twice for a total of 1753 frames
and visual assessments are provided for all estimated homographies.
Both SURF and LGC match at about 15-18 ms/frame while RDM
matches at around 50 ms/frame. Fig. 16 shows a summary of the re-
sults for each model during tracking. LGC outperforms RDM in all
cases. Although SURF performs better than LGC in general, it works
badly on crossword and random dot since these two models contain
less textures. As RDM can be used for “augmenting everything”, we
claim our method is a better alternative to RDM for this purpose.

6.2 Augmenting engineering drawings

Engineering drawings are largely used in mechanical engineering and
architectural design. They are different from ordinary texture-rich
models because they are most of the time 2D representations that con-
tain only geometric information (such as straight lines and circles) of
3D CAD models. Traditional texture-based key point tracking meth-
ods cannot deal with such cases. Fig. 17 presents results of augment-
ing engineering drawings with their 3D models. We extract in real-
time the intersections of the drawing which are mapped to previously
created model point sets.

7 DISCUSSION

In this section, we discuss some aspects of the algorithm.

7.1 Neighbors

We use nearest neighbors to create local patches but use mesh neigh-
bors in the refiner. We tried to use the same type of neighbors in the
algorithm but neither performs better. Although mesh neighbors are
more robust against perspective distortions [13], they are very sensitive
to extra/missing points, leading to a less robust generator. On the other
hand, when points are gathered into two or more local groups, nearest
neighbors may give rise to “important edges” in the resulting network
(cf. Fig. 18). If these edges disappear due to extra/missing points, two
subregions are disconnected. Thus by visiting nearest neighbors in the
refiner, inliers are often confined to a small subregion, which gives an
imprecise estimation of the transformation.

8

To appear in an IEEE VGTC sponsored conference proceedings

��

���

���

���

���

����

��������

��������������

��������

������
�������������

��������

����������

�������
�������������

��
��
���

��
��
��
���
���

�

������

��� ��� ����

Fig. 16. Top: models used for experiments. Bottom: Tracking results:
Solid bars stand for correct matching, empty bars for false matching.

Fig. 17. Augmenting CAD drawings of a ragum, an apartment and a
kart (see supplemental video).

Fig. 18. Delaunay mesh neighbors (left) and nearest neighbors (right)
of the same point set. Neighboring points (black dots) are connected
by a black edge. Mesh neighbors connect points better than nearest
neighbors, the latter giving rise to four “important edges” in red.

7.2 Transformation T

Theoretically, the algorithm works with any transformation T , but
some conditions on point sets have to be satisfied.

We assume that T can be expanded by the Taylor theorem in the
neighborhood of u0:

T (u) = T (u0)+
∂T (u0)

∂u
∆u+

∂ 2T (u0 +λ∆u)
∂u2 (∆u)2 (9)

with ∆u = u−u0 and λ ∈ [0,1]. The first two terms on the right are
the linear local transformation TL(u) that we mentioned before, the
last term is a small quantity of the same order as (∆u)2.

If the difference between T (u) and TL(u) is not very important, the
last term can be easily managed by considering that it represents the
“jitter”. The difference can be expressed as:

‖T (u)−TL(u)‖ ≤ ‖
∂ 2T (u0 +λ∆u)

∂u2 ‖l2 (10)

‖ ∂ 2T (u0+λ∆u)
∂u2 ‖ depends only on transformation T , not on inter-point

distance l. So if the inter-point distance l is small enough, this quantity
can be smaller than 0.1l to be managed by the algorithm.

7.3 Repetitive structures

As our method relies on discriminating local geometric structures,
repetitive patterns are an issue. They impact both the “generator” and
the “validator” since they work on local patterns, but do not affect the
“refiner”. If the hypothesis (cf. Sec. 3.3) is generated inside a repeti-
tive pattern, the algorithm will probably give a false result; otherwise
both “generator” and “validator” have enough discriminant informa-
tion to estimate a true correspondence. As the generator selects scene
points randomly, the algorithm’s performance is roughly proportional
to the percentage of points in repetitive patterns. Our experiments
show that the algorithm fails with exclusively regular patterns such as
a chessboard, but can successfully handle small repetitive structures
inside a more global irregular one, indeed only 2 frames out of 317
fail in the “office design” case (cf. Fig. 19). In the latter example, we
rely on [17] to extract intersections and junctions.

Fig. 19. Impact of regular patterns. Left: chessboard, 165/165 repetitive
feature points. Right: office design, 26/109 repetitive feature points.
Blue points are detected while red points are projected model points.

8 CONCLUSION

In this paper, we have presented LGC, an algorithm based on Lo-
cal Geometric Consensus that can be used for several transformation
types, both in 2D and 3D. In its original version, it only uses the spatial
distribution of points that we can find in randomly distributed texture-
less point sets but it can also be adapted to textured images by using
local features information when available. Therefore, our algorithm
could be used to augment everything as claimed in [24]. We have
experimentally shown that LGC outperforms both RDM [24] and our
previous work [29] as far as robustness and speed are concerned. Even
though LGC handles small regular patterns, its performance degrades
while these patterns go larger. Further work will imply going beyond
those limitations and extensive testing of the 3D case.

9

9 APPENDIX

We want to find probability of false alert P(E0|E1) mentioned in Sec-
tion 3.5.2. According to Bayes’ theory, we have:

P(E0|E1) =
1

1+ P(E1|E0)P(E0)
P(E1|E0)P(E0)

(11)

To have a conservative estimation, we want to find the upper bound
of P(E0|E1), if this upper bound is small enough, it is less likely to
have false alerts. P(E1|E0) and P(E1|E0) are two events independent
of P(E0). So P(E0|E1) will be larger if P(E0) is smaller. P(E0) can
be seen as the probability that model Pi appears in the scene. When
there are more models to track, P(E0) will be smaller. Considering we
have 104 models to track, which is a huge number, the probability that
Pi appears in the scene is roughly 10−4. In equation (11), P(E1|E0) is
very large, say P(E1|E0)≈ 1. We have to find P(E1|E0).

Before solving P(E1|E0), let us consider a simpler question: in a
Nb random binary string where 1 appears at each bit with probability
pb, how long is the largest sequence containing only 1s? Schilling et
al. [20] show that the expectation and variance of Lb can be approxi-
mated by the following equations:

E(Lb) = log1/pb
(Nbqb) and Σ(Lb) =

π√
6ln(1/pb)

(12)

where qb = 1− pb. E(Lb) is proportional to logNb, it varies little
with the length of the sequence. Σ(Lb) is independent of Nb.

Event E1|E0 and “the largest sequence containing only 1s in a ran-
dom binary string” have the same nature, since both of them describe
the possibility of several individual random events having the same
result being geometrically agglomerated. However, we do not have
exactly the same situation since all correspondences in this local re-
gion are not inliers. Equations (12) can only give a rough estimation.

For a given transformation T , a point correspondence is consid-
ered coherent with T if the scene point is projected within a 3σ radius
neighborhood of the model point (cf. Alg. 4). If the scene point has
a random position, the probability of the coherence is about (3σ/l)d .
Remember that l is the “inter-point” distance defined in Section 3.1.
We choose the limit of jittered point pattern matching, σ = 0.1l (cf.
Section 3.5). If at least every two correspondences contain one inlier
and d = 2, which is a conservative estimation, this results in pb ≈ 0.2.
Let Nb = 106 points, we have E(Lb)≈ 8.4 and Σ(Lb)≈ 0.8.

If the transformation T needs BT points as basis which gives us BT
“free” points in Nlarge, we have:

P(E1|E0) = P(Lb ≥ Nlarge−BT) (13)

Take as example a 2D homography (i.e. BT = 4), P(E1|E0) =
P(Lb ≥ E(Lb) + 9.5Σ(Lb)) � 10−10 by setting Nlarge = 20. Thus
P(E0|E1)≈ 10−6 and it is a conservative upper bound estimation.

REFERENCES

[1] D. H. Ballard. Generalizing the Hough transform to detect arbitrary
shapes. Pattern Recogn., 13(2):111–122, Jan. 1981.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust
Features (SURF). Comput. Vis. Image Underst., 110(3):346–359, June
2008.

[3] P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes.
IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256, Feb. 1992.

[4] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua.
BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Trans.
Pattern Anal. Mach. Intell., 34(7):1281–1298, July 2012.

[5] O. Chum and J. Matas. Matching with PROSAC - Progressive Sample
Consensus. In Proc. of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR ’05, pages 220–226,
2005.

[6] S. Filipe and L. A. Alexandre. A Comparative Evaluation of 3D Keypoint
Detectors in a RGB-D Object Dataset. In VISAPP 2014 - Proc. of the 9th
International Conference on Computer Vision Theory and Applications,
pages 476–483, 2014.

[7] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Commun. ACM, 24(6):381–395, June 1981.

[8] S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness. New al-
gorithms for 2D and 3D point matching: pose estimation and correspon-
dence. Pattern Recogn., 31(8):1019–1031, Aug. 1998.

[9] J. Herling and W. Broll. Random Model Variation for Universal Fea-
ture Tracking. In Proc. of the 18th ACM Symposium on Virtual Reality
Software and Technology, VRST ’12, pages 169–176, 2012.

[10] D. Q. Huynh. Metrics for 3D Rotations: Comparison and Analysis. J.
Math. Imaging Vis., 35(2):155–164, Oct. 2009.

[11] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Affine Invariant Model-
Based Object Recognition. IEEE Trans. Robot. Autom., 6(5):578–589,
Oct. 1990.

[12] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[13] P. McIlroy, S. Izadi, and A. Fitzgibbon. Kinectrack: Agile 6-DoF Track-
ing Using a Projected Dot Pattern. In Mixed and Augmented Reality (IS-
MAR), 2012 IEEE International Symposium on, pages 23–29, 2012.

[14] D. M. Mount, N. S. Netanyahu, and J. Le Moigne. Efficient algorithms
for robust feature matching. Pattern Recogn., 32(1):17–38, Jan. 1999.

[15] T. Nakai, K. Kise, and M. Iwamura. Use of Affine Invariants in Lo-
cally Likely Arrangement Hashing for Camera-based Document Image
Retrieval. In Proc. of the 7th International Conference on Document
Analysis Systems, DAS’06, pages 541–552, 2006.

[16] C. F. Olson. Efficient Pose Clustering Using a Randomized Algorithm.
Int. J. Comput. Vision, 23(2):131–147, June 1997.

[17] T.-A. Pham, M. Delalandre, S. Barrat, and J.-Y. Ramel. Accurate junction
detection and characterization in line-drawing images. Pattern Recogn.,
47(1):282–295, Jan. 2014.

[18] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm. USAC:
A Universal Framework for Random Sample Consensus. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):2022–2038, Aug. 2013.

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An Efficient
Alternative to SIFT or SURF. In Proc. of the 2011 IEEE International
Conference on Computer Vision, ICCV ’11, pages 2564–2571, 2011.

[20] M. F. Schilling. The surprising predictability of long runs. Math. Mag.,
85(2):141–149, Apr. 2012.

[21] J. Shi and C. Tomasi. Good Features to Track. In Proc. of the 1994
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’94, pages 593–600, June 1994.

[22] F. Tombari, S. Salti, and L. Di Stefano. Performance Evaluation of
3D Keypoint Detectors. Int. J. Comput. Vision, 102(1-3):198–220, Mar.
2013.

[23] Y. Tsin and T. Kanade. A Correlation-Based Approach to Robust Point
Set Registration. In Proc. of the 8th European Conference on Computer
Vision, ECCV 2004, pages 558–569, 2004.

[24] H. Uchiyama and E. Marchand. Toward Augmenting Everything: De-
tecting and Tracking Geometrical Features on Planar Objects. In Mixed
and Augmented Reality (ISMAR), 10th IEEE International Symposium
on, pages 17–25, 2011.

[25] H. Uchiyama and H. Saito. Random Dot Markers. In Proc. of the 2011
IEEE Virtual Reality Conference, VR ’11, pages 271–272, 2011.

[26] H. Uchiyama, H. Saito, M. Servières, and G. Moreau. Camera tracking
by online learning of keypoint arrangements using LLAH in augmented
reality applications. Virtual Real., 15(2-3):109–117, June 2011.

[27] S. Umeyama. Least-Squares Estimation of Transformation Parameters
Between Two Point Patterns. IEEE Trans. Pattern Anal. Mach. Intell.,
13(4):376–380, Apr. 1991.

[28] H. J. Wolfson and I. Rigoutsos. Geometric Hashing: An Overview. IEEE
Comput. Sci. Eng., 4(4):10–21, Oct. 1997.

[29] L. Yang, J.-M. Normand, and G. Moreau. Robust Random Dot Markers:
Towards Augmented Unprepared Maps with Pure Geographic Features.
In Proc. of the 20th ACM Symposium on Virtual Reality Software and
Technology, VRST ’14, pages 45–54, 2014.

[30] Y. Zhong. Intrinsic Shape Signatures: A Shape Descriptor for 3D Ob-
ject Recognition. In Proc. of the IEEE 12th International Conference on
Computer Vision Workshops (ICCV Workshops), pages 689–696, 2009.

10

