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TIMELIKE HILBERT AND FUNK GEOMETRIES

ATHANASE PAPADOPOULOS AND SUMIO YAMADA

Abstract. A timelike space is a Hausdorff topological space equipped
with a partial order relation < and a distance function ρ satisfying a
collection of axioms including a set of compatibility conditions between
the partial order relation and the distance function. The distance func-
tion is defined only on a subset of the product of the space with itself
that contains the diagonal, namely, ρ(x, y) is defined if and only if x < y

or x = y. Distances between pairs of distinct points in a triple x, y, z,
whenever these distances are defined, satisfy the so-called time inequal-

ity, which is a reverse triangle inequality ρ(x, y) + ρ(y, z) ≤ ρ(z, y).
In the 1960s, Herbert Busemann developed an axiomatic theory of

timelike spaces and of locally timelike spaces. His motivation comes
from the geometry underlying the theory of relativity, and he tried to
adapt to this setting his geometric theory of metric spaces, namely, his
theory of G-spaces (geodesic spaces). The classical example he considers
is the n-dimensional Lorentzian space. Two other interesting classes of
examples of timelike spaces he introduced are the timelike analogues of
the Funk and Hilbert geometries. In this paper, we investigate these two
geometries, and in doing this, we introduce variants of them, in partic-
ular the timelike relative Funk and Hilbert geometries, in the Euclidean
and spherical settings. We describe the Finsler infinitesimal structure
of each of these geometries (with an appropriate notion of Finsler struc-
ture) and we display the interactions among the Euclidean and timelike
spherical geometries. In particular, we characterize the de Sitter geom-
etry as a special case of a timelike spherical Hilbert geometry.

The final version of this paper will appear in Differential

Geometry and its Applications

Keywords.— Timelike space; timelike Hilbert geometry; timelike Funk
geometry; time inequality; exterior convex geometry; Busemann geom-
etry.
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1. Introduction

A timelike space is a Hausdorff topological space Ω equipped with a partial
order relation < and a distance function ρ which plays the role of a metric.
The distance ρ(x, y) is defined only for pairs (x, y) ∈ Ω×Ω satisfying x ≤ y
(that is, either x = y ot x < y) and it satisfies the following three axioms:

(1) ρ(x, x) = 0 for every x in Ω;
(2) ρ(x, y) > 0 for every x and y in Ω such that x < y;
(3) ρ(x, y)+ρ(y, z) ≤ ρ(x, z) for all triples of points x, y, z in Ω satisfying

x < y < z.

The last property is a reversed triangle inequality. It is called the time
inequality. The distance function is asymmetric in the sense that ρ(x, y) is
not necessarily equal to ρ(y, x). (In general, if ρ(y, x) is defined, ρ(x, y) is
not defined unless x = y.)

The notion of timelike space was introduced by Herbert Busemann in
his memoir Timelike spaces [7]. The distance function ρ and the partial
order relation < satisfy an additional set of axioms including compatibility
conditions with respect to each other. For instance, it is required that
every neighborhood of a point q in Ω contains points x and y satisfying
x < q < y. This axiom and others, which are complex and numerous, are
stated precisely in the memoir [7] by Busemann. Even though they are not
made explicit in the present paper, in all the cases considered here, they will
be satisfied. As a matter of fact, in the present paper, the topological space
Ω will always be a subset of the Euclidean space Rn, the sphere Sn or the
hyperbolic space Hn.

The theories of timelike spaces, timelike G-spaces, locally timelike spaces
and locally timelike G-spaces were initiated by Busemann as analogues of
his geometric theories of metric spaces and of G-spaces that he developed
in his book [5] and in other papers and monographs. The motivation for
the study of timelike spaces comes from the geometry underlying the phys-
ical theory of relativity. The classical example is the (3 + 1)-dimensional
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Minkowski space-time, which Busemann generalized, in his paper [7], to
the case of general timelike distance functions on finite-dimensional vector
spaces which become, under a terminology that we use, timelike Minkowski
spaces. As other interesting examples of timelike spaces, Busemann intro-
duced timelike analogues of the Funk and Hilbert geometries. In the present
paper, we investigate several closely interrelated geometries, to which we
give the names of timelike Euclidean Funk geometry, timelike Euclidean rel-
ative Funk geometry, timelike Euclidean Hilbert geometry, timelike hyper-
bolic Funk geometry, timelike spherical relative Funk geometry, and timelike
spherical Hilbert geometry. We establish results concerning their geodesics,
their convexity properties and their infinitesimal structure. We show in par-
ticular that they are timelike Finsler spaces. This means that the distance
between two points is defined at the infinitesimal level by a timelike norm,
that is, there exists a timelike Minkowski structure on the tangent space at
each point of our space Ω such that the distance between two points is the
supremum of the set of lengths of piecewise C1 paths joining them, where
the length of a piecewise C1 path is defined using the timelike norms on
vector spaces. We also give a description of the usual de Sitter space as a
special case of a timelike spherical Hilbert geometry.

Busemann’s interest, as well as the authors’ in the subject, stem from
Hilbert’s Fourth Problem [15] where Hilbert proposed a systematic study of
metrics defined on subsets of the Euclidean space whose geodesics coincide
with the Euclidean line segments. The best known, and most important
example of such a metric space is the Beltrami-Klein model of the hyperbolic
plane. The hyperbolic geometry in that context is very much hinged with
convex Euclidean geometry. The aim of the current investigation is to revisit
the aspect of convex geometry in the exterior region of convex sets in the
constant curvature spaces. This naturally produces timelike geometries as
exemplified by the de Sitter geometry.

In what follows, we will set up a collection of necessary tools to capture the
geometry of the exterior region of convex sets, and consequently reformulate
the basis of timelike geometry in a way inspired from Busemann’s approach
in [7], although we differ from him at several points.

To end this introduction, let us note that geometries like timelike geome-
try, in which there are naturally defined cones representing the future, where
ordered triples of points satisfy the reverse triangle inequality, and where a
particular example is the geometry of the exterior of the hyperbolic disc, are
topics that date back to the turn of the twentieth century; cf. Poincaré’s
paper [22] which contains a germ of the idea, and the more explicit paper by
Eduard Study [24]. One may also mention the work of A. D. Alexandrov and
his school on chronogeometry, see e.g. [1, 2], where axiomatic approaches
to the geometry of Minkowski space have been investigated. Busemann’s
doctoral student J. Beem also worked on the subject [3, 4]. More recently,
the subject of timelike geometry (without the name) has become the object
of extensive research among low-dimensional geometers and topologists, see
e.g. the works [9, 11] and the surveys [10, 23]. In all these references though,
the geometry is associated with conics (or quadrics) in projective space, and
not to more general convex sets as in Busemann’s timelike geometry. We
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also refer to the recent work of Minguzzi [13]. The passage from a conic to a
general convex set is comparable to the passage from hyperbolic geometry to
the more general Hilbert geometry. For an exposition of Busemann’s theory
of timelike spaces, the reader may also refer to [20].

2. The timelike Euclidean Funk geometry

We first introduce some preliminary notions and establish some basic
facts. With few exceptions, we shall use Busemann’s notation in [7], and we
first recall it.

Let K be a convex hypersurface in Rn, that is, the boundary of an open
(possibly unbounded) convex set I ⊂ Rn. If K is not a hyperplane, it
bounds a unique open convex set I, namely, the unique convex connected
component of Rn \K. If K is a hyperplane, the two connected components
of Rn \K are both convex (they are open half-spaces of Rn), and in this case
we make a choice of one of them. We call the open convex set I associated
with K the interior of K. We denote the closure K ∪ I of I by K.

Let P be the set of supporting hyperplanes of K, that is, the hyperplanes
π having nonempty intersection with K and such that the open convex set
I is contained in one of the two connected components of Rn \ π.

We let P be the set of hyperplanes in Rn that do not intersect the open
convex set I. We have P ⊃ P.

To every element π ∈ P, we let H+
π be the open half-space bounded by

the hyperplane π and containing I, and H−
π the open half-space bounded

by π and not containing I. We have:

I = ∩π∈PH
+
π = ∩π∈PH

+
π .

We set

Ω = Rn \K.

Then, we also have

Ω = ∪π∈PH
−
π .

For p in Ω, we denote by P(p) the set of hyperplanes π ∈ P that separate
the open convex set I from p. In other words, we have

(1) P(p) = {π ∈ P | p ∈ H−
π }.

We also introduce the set of supporting hyperplanes separating p from I,

(2) P(p) = P(p) ∩ P.

We define P̃(p) to be the set of supporting hyperplanes containing p.

Definition 2.1 (Order relation). We introduce a partial order relation be-
tween points of Ω. For any two distinct points p and q in Ω, we write

p < q

if the following three properties are satisfied:

(1) The Euclidean ray R(p, q) from p through q intersects the hypersur-
face K;

(2) R(p, q) does not belong to a supporting hyperplane of K;
(3) the closed Euclidean segment [p, q] does not interesect K.
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When p < q, we say that q lies in the future of p and that p lies in the
past of q (see Figure 1). We write p ≤ q if either p < q or p = q.

p

I
+(p): the future of p

I
−(p): the past of p

Figure 1. The future and the past of a point p

We denote by Ω< (resp. Ω≤) the set of ordered pairs (p, q) in Ω × Ω
satisfying p < q (resp. p ≤ q). The set Ω< is disjoint from the diagonal set
{(x, x) | x ∈ Ω} ⊂ Ω×Ω.

We define the following sets that encode properties of timelike geometry.

Definition 2.2 (The future set of a point). For p in Ω, its future set, which
we denote by I

+(p) ⊂ Ω, is the set of points q ∈ Ω that satisfy p < q.

For every point p in Ω, its future set I
+(p) is nonempty, open and con-

nected.

Definition 2.3 (The future set of p in K). For p in Ω, its future set in K,
which we denote by K(p), is the set of k ∈ K such that the open Euclidean
segment ]p, k[ is not contained in any supporting hyperplane of K, and
]p, k[∩K = ∅.

Hence the future set of p is the union of the open line segments ]p, k[
where k ∈ K(p):

I
+(p) = ∪k∈K(p)]p, k[.

Let

P(p)c = P \ P(p)

where P(p) is as before the set of hyperplanes that separate the open convex
set I from p. Hence, for any element π in P(p)c, p either belongs to the
hyperplane π or to the open half-space H+

π containing I.
The following three observations are easy to prove:

• Every closed Euclidean segment [p, k] for k ∈ K(p) lies in H+
π for all

π in P(p)c.

• The intersection ∩π∈P(p)cH
+
π is the closure of the convex hull ofK∪p.

• We have the following description of the the future set I+(p) of p:

I
+(p) = Int

(
∩π∈P(p)cH

+
π

)
\K,

where Int( ) denotes the interior of a set.
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Definition 2.4 (The future cone of a point). We call the set

∪k∈K(p){p+ tv | t > 0, p + λv = k for some λ > 0 and k ∈ K(p)}

the future cone of p, and denote it by C
+(p).

Ths future cone of a point is an open subset of Rn. The future set I+(p)
of p is naturally a subset of the future cone C

+(p) of p.

Definition 2.5 (The past set of a point). For p ∈ Ω, the past set of p,
denoted by I

−(p), is the set of points q in Ω such that p is in the future of
q.

Equivalently, I−(p) is the set

Int
(
∪k∈K(p) {p− tv | t > 0, p + λv = k for some λ > 0 and k ∈ K(p)}

)
.

It is also an open subset of Rn. It has a natural cone structure, and hence
we also call this set the past cone of p.

The set I−(p) is also characterized by the following:

(3) I
−(p) = Int

(
∩π∈P(p)H

−
π

)
,

since each ray {p− tv} of the set I−(p) lies entirely in H−
π for all π in P(p).

We have
I−(p) = ∩π∈P(p)H

−
π .

The sets I−(p) and C+(p) are both closed convex cones with common
apex p. The boundary cones of these sets are unions of rays, each contained
in a supporting hyperplane of K containing p, that is, an element of P̃(p).

The following proposition makes a relation between the partial order re-
lation < and the past cones:

Proposition 2.6. For any two points p and q in Ω, we have

p < q ⇔ I−(p) ⊂ I
−(q).

Proof. As the first step towards proving that p < q ⇒ I−(p) ⊂ I
−(q), we

show the following.

Lemma 2.7. For any two points p and q in Ω, we have

p < q ⇒ P(p) ⊃ P(q).

Proof of the lemma. Suppose p < q. We claim that every π ∈ P(q) is an
element of P(p). Indeed, R(p, q) intersects K at a point k ∈ K(p), k ∈ H+

π ,
q ∈ H−

π . Therefore, π intersects R(p, q) at a unique point in ]q, k[, so p ∈ H−
π

and π ∈ P(p). This proves Lemma 2.7.
�

We continue the proof of Proposition 2.6.
The inclusion P(p) ⊃ P(q) implies

∩π∈P(p)H
−
π ⊂ ∩π∈P(q)H

−
π ,

hence I−(p) ⊂ I−(q).

In order to complete the proof of p < q ⇒ I−(p) ⊂ I
−(q), it remains

to show that any point in ∂I−(p) lies in I
−(q). We resort to the following

general geometric fact.
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Lemma 2.8. Suppose that two closed convex cones C1 and C2 in Rn with
respective apices p1 and p2 are nested: C1 ⊂ C2. We also assume p1 6= p2.
Then, if a point x ∈ ∂C1 distinct from p1 lies in ∂C2, then p1 also lies in
∂C2.

Proof of the lemma. As p1 ∈ C2, the only thing to be checked is that p1
does not lie in the interior of the closed cone C2. However this cannot be
the case, since by definition p ∈ I

−(q). �

By applying the lemma to the situation where C1 = I−(p) and C2 =

I−(q), and x being a point in ∂I−(p), we conclude that if ∂I−(p) 6⊂ I
−(q),

then p lies in the boundary cone ∂I−(q). However, this cannot be the

case, since then [p, q] ⊂ ∂I−(q), which in turn implies that R(p, q) lies in a

supporting hyperplane of P̃(q), contradicting the hypothesis p < q.

The implication p < q ⇐ I−(p) ⊂ I
−(q) is immediate. As the apex p of

the closed convex cone I−(p) lies in I
−(q), p lies in the past of q.

�

Corollary 2.9. For any two points p and q in Ω, we have

p < q ⇒ P(p) ⊃ P(q).

Proof. Let p < q. By Lemma 2.7, P(p) ⊃ P(q). It follows that P(p) =
(P(p) ∩ P) ⊃ (P(q) ∩ P) = P(q). �

Note that the strict inclusion in Corollary 2.9 cannot be expected, as
observed from the following example in R2:

K = {(x, y) | y = |x|}, p = (0,−2) < q = (0,−1)

where we have P(p) = P(q) = {planesofequationy = mx with |m| ≤ 1}.

Corollary 2.10. Let p, q, r be three points in Ω. If p < q and q < r, then
p < r.

Proof. Proposition 2.6 gives:

p < q and q < r ⇔ I−(p) ⊂ I
−(q) ⊂ I−(q) ⊂ I

−(r)

which implies

I−(p) ⊂ I
−(r),

which in turn says that p < r by applying Proposition 2.6. �

Lemma 2.11. If p < q then P(p)c ⊂ P(q)c,

Proof. By Corollary 2.10, p < q implies I
+(q) ⊂ I

+(p), therefore I+(q) ⊂

I+(p). Then the lemma follows from the equality I+(p) ∪K = ∩π∈P(p)cH
+
π

and the corresponding equality for q. �

We have the following result, analogous to Proposition 2.6:

Proposition 2.12. We have the equivalence:

p < q ⇔ I
+(p) ⊃ I+(q).
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Proof. First note that for p < q, we have
(
∂I+(p) \K

)
∩
(
∂I+(q) \K

)
= ∅.

This follows from the fact that any element of ∂I+(q) \K is in the future
of p. From this, the direct implication follows. The reverse implication is
easy. �

Now we define the timelike Funk distance F (p, q) on the subset Ω≤ of
Ω× Ω.

Definition 2.13 (The timelike Funk distance). The function F (p, q) on
pairs of distinct points p, q in Ω satisfying p < q is given by the formula

F (p, q) = log
d(p, b(p, q))

d(q, b(p, q))

where b(p, q) is the first intersection point of the ray R(p, q) with K. Here,
d(· , ·) denotes the Euclidean distance.

Note that the value of F (p, q) is strictly positive.
We extend the definition of F (p, q) to the case where p = q, setting in

this case F (p, q) = 0.

Let p and q be two points in Ω such that p < q. Let π0 be a support-
ing hyperplane to K at b(p, q). For x in Rn, let Ππ0(x) be the foot of
the Euclidean perpendicular from the point x onto that hyperplane. In
other words, Ππ0 : Rn → π0 is the Euclidean nearest point projection
map. From the similarity of the Euclidean triangles △(p,Ππ0(p), b(p, q))
and △(q,Ππ0(q), b(p, q)), we have

log
d(p, b(p, q))

d(q, b(p, q))
= log

d(p, π0)

d(q, π0)
.

Using the convexity of K, we now give a variational characterization of
the quantity F (p, q).

For any unit vector ξ in Rn and for any π ∈ P(p), we set

T (p, ξ, π) = π ∩ {p+ tξ | t > 0}

if this intersection is non-empty.
For p < q in Rn, consider the vector ξ = ξpq = q−p

‖q−p‖ where the norm is

the Euclidean one.
We then have T (p, ξpq, πb(p,q)) = b(p, q) ∈ R(p, q) ∩K.
In the case where π ∈ P(q) is not a supporting hyperplane of K at b(p, q),

the point T (p, ξpq, π) lies outside K and, again by the similarity of the Eu-
clidean triangles △(p,Ππ(p), T (p, ξpq, π)) and △(q,Ππ(q), T (p, ξpq, π)), we
get

d(p, π)

d(q, π)
=

d(p, T (p, ξpq, π))

d(q, T (p, ξpq, π))
.

Note that as π varies in P(q), the farthest point from p on the ray R(p, q)
of the form T (p, ξpq, π) is b(p, q), and this occurs when π supports K at
b(p, q). This in turn says that a hyperplane πb(p,q) which supports K at
b(p, q) minimizes the ratio

d(p, T (p, ξpq, π))

d(q, T (p, ξpq, π))
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among all the elements of P(q). Thus we obtain

Proposition 2.14.

F (p, q) = inf
π∈P(q)

log
d(p, π)

d(q, π)
.

Remark 2.15. There is an analogous formula for the classical (non-timelike)
Funk metric, where the infimum in the above formula is replaced by the
supremum (see [25] Theorem 1.)

Remark 2.16. The set I+(p) of future points of a point p, that is, the set
of points q satisfying p < q, reminds us of the cone of future points of some
point p in the ambient space of the physically possible trajectories of this
point in the case of Minkowski space-time, that is, in the geometric setting
of space-time for the theory of (special) relativity. The restriction of the
distance function to the cone comes from the fact that a material particle
travels at a speed which is less than the speed of light. The set of points
on the rays starting at p that are on the boundary ∂I+(p) of the future
region I

+(p) becomes an analogue of the “light cone” of space-time (again
using the language of relativity). In our definition of timelike geometry, the
points in the light cone are excluded and we will postpone further discussion
of light cones till §15.

We shall prove that the function F (p, q) satisfies the reverse triangle in-
equality, which we call in this context, after Busemann, the time inequality.
This inequality holds for triples of points p, q and r in Ω, satisfying p < q < r:

Proposition 2.17 (Time inequality). For any three points p, q and r in Ω,
satisfying p < q < r, we have

F (p, q) + F (q, r) ≤ F (p, r).

Proof. We use the formula given by Proposition 2.14 for the timelike Funk
distance. We have, from P(q) ⊃ P(r) (Corollary 2.9):

F (p, q) + F (q, r) = inf
π∈P(q)

log
d(p, π)

d(q, π)
+ inf

π∈P(r)
log

d(q, π)

d(r, π)

≤ inf
π∈P(r)

log
d(p, π)

d(q, π)
+ inf

π∈P(r)
log

d(q, π)

d(r, π)

≤ inf
π∈P(r)

(
log

d(p, π)

d(q, π)
+ log

d(q, π)

d(r, π)

)

= inf
π∈P(r)

log
d(p, π)

d(r, π)

= F (p, r).

�

In the rest of this section, we study geodesics and spheres in timelike Funk
geometries.

First we consider geodesics for the timelike Funk distance. We start with
the definition of a geodesic. This definition is the same as in an ordinary
metric spaces, except that some care has to be taken so that the distances
we need to deal with are always defined.
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A geodesic is a path σ : J → Ω, where J may be an arbitrary interval of
R, such that for every pair t1 ≤ t2 in J we have σ(t1) ≤ σ(t2) and for every
triple t1 ≤ t2 ≤ t3 in J we have

F (σ(t1), σ(t2)) + F (σ(t2), σ(t3)) = F (σ(t1), σ(t3)).

It follows easily from the definition that for any p < q, the Euclidean
segment [p, q] joining p to q is the image of a geodesic. This means that
the distance function F satisfies Hilbert’s Fourth Problem [15] when this
problem is generalized in an appropriate way to include timelike spaces. (We
recall that one form of this problem asks for a characterization of metrics
on subsets of Euclidean space such that the Euclidean lines are geodesics for
this metric.) In particular, the time inequality becomes an equality when p,
q and r satisfying p < q < r are collinear in the Euclidean sense.

It is important to note that whenever we use geodesics in timelike spaces,
it is understood that these geodesics are equipped with a natural orientation.
Traversed in the reverse sense, they are not geodesics.

Let us make an observation which concerns the non-uniqueness of geodesics
and the case of equality in the time inequality. Assume that the boundary
of the convex hypersurface K contains a Euclidean segment s. Take three
points p, q, r in Ω such that P (p, q) and P (q, r) intersect s (Figure 2). Then,

p

q

r

s

Figure 2. The broken segment pqr is a geodesic

using the Euclidean intercept theorem, we have

F (p, r) = F (p, q) + F (q, r).

Applying the same reasoning to an arbitrary ordered triple on the broken
Euclidean segment [p, q] ∪ [q, r], we easily see that this segment is an F -
geodesic. More generally, by the same argument, we see that any arc in Ω
monotonically heading toward the segment s (that is, the Euclidean distance
from a point on this arc and the segment s is decreasing) and such that any
ray joining two consecutive points on the arc hits the segment s is the image
of an F -geodesic.

We deduce the following:

Proposition 2.18. A timelike Funk geometry F defined on a set Ω≤ asso-
ciated with a convex hypersurface K in Rn satisfies the following properties:
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(1) The Euclidean segments in Ω that are of the form [p, q], where p < q
are in Ω, are F -geodesics.

(2) Let p ∈ Ω and b ∈ K(p). Then the semi-open Euclidean segment
[p, b[ from p to b, equipped with the metric induced from the timelike
Funk distance, is isometric to a Euclidean ray.

(3) The Euclidean segments in (1) are the unique F -geodesic segments
if and only if the convex set I is strictly convex.

The proof is the same as that of the equivalence between (1) and (2) in
Corollary 8.7 of [17], up to reversing some of the inequalities (i.e. replacing
the triangle inequality by the time inequality), therefore we do not include
it here.

After the geodesics, we consider spheres.

Definition 2.19 (Future spheres). At each point p of Ω, given a real number
r > 0, the future sphere of radius r centered at p is the set of points in Ω
that are in the future of p and situated at F -distance r from this point.

Proposition 2.20. At each point p of Ω and for each r > 0, the future
sphere of center p and radius r is a piece of a convex hypersurface that is
affinely equivalent to K(p), the future of p in K.

The proof is analogous to that of Proposition 8.11 of [16], and we do not
repeat it here.

We next show a useful monotonicity result for a pair of timelike Funk
geometries.

Given our open convex set I with associated Funk distance F , we let

Î ⊃ I be another open convex set containing I and F̂ (p, q) the associated
timelike distance defined on the appropriate set of pairs (p, q).

Proposition 2.21. For all p and q in the domains of definition of both

distances F and F̂ (that is, for pairs (p, q) satisfying p < q with respect to

both convex sets I and Î), we have

F̂ (p, q) ≥ F (p, q).

Proof. Using the notation of Definition 2.13, we have

F (p, q) = log
d(p, b(p, q))

d(q, b(p, q))
.

With similar notation, we have

d̂(p, q) = log
d(p, b̂(p, q))

d(q, b̂(p, q))
.

Since Î ⊃ I, we have d(p, b̂(p, q)) = d(p, b(p, q)) + x and d(q, b̂(p, q)) =
d(q, b(p, q)) + x for some x ≥ 0. The result follows from the fact that the
function defined for x ≥ 0 by

x 7→
a− x

b− x
,

where b < a are two constants, is increasing. �
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3. Timelike Minkowski spaces

Consider a finite-dimensional vector space, which we identify without loss
of generality with Rn. We introduce on this space a timelike norm function
which we also call a timelike Minkowski functional, in analogy with the usual
Minkowski functional (or norm function) defined in the non-timelike case.
To be more precise, we start with the following definition (cf. [7] § 5).

Definition 3.1 (Timelike Minkowski functional). A timelike Minkowski
functional is a function f satisfying the following:

(1) f is defined on C∪{O}, where C ⊂ Rn is a proper open convex cone
of apex the origin O ∈ Rn, that is, an open convex subset invariant
by the action of the positive reals R>0. (The fact that C is proper
means that it possesses a supporting hyperplane which intersects it
only at the apex.)

(2) f(O) = 0.
(3) f(x) > 0 for all x in C.
(4) f(λx) = λf(x) for all x in C and λ > 0.
(5) f ((1− t)x+ ty) > (1 − t)f(x) + tf(y) for all x, y ∈ C and for all

0 < t < 1.

We shall say that C ⊂ Rn is the cone associated with the timelike Minkowski
functional f .

Note that since −f is a convex function, it is continuous.
The unit sphere B of such a timelike norm function f is the set of vectors

x in C satisfying f(x) = 1. In general, B is a piece of a hypersurface in
Rn which is concave when viewed from the origin O (see Figure 3). Our
definition allows the possibility that B is asymptotic to the boundary of the
cone C. The unit sphere B is called the indicatrix of f .

O

B

Figure 3. The indicatrix B in the tangent space to a point in Ω.

The reason of the adjective timelike in the above definition is that in the
Lorentzian setting, the Minkowski norm measures the lengths of vectors in
the time cone, which is the part of space-time where material particles move.
In particular, there is a timelike Minkowski functional f for the standard
Minkowski space-time R3,1, equipped with the Minkowski metric

ds2 = −dx20 + dx21 + dx22 + dx23.

It is given by

f(x) =
√

−(−x20 + x21 + x22 + x23)



TIMELIKE FUNK AND HILBERT GEOMETRIES 13

and it is defined for vectors x in R4 satisfying −x20 + x21 + x22 + x23 < 0 or
x = 0.

4. Timelike Finsler structures

Definition 4.1 (Timelike Finsler structure). A timelike Finsler structure on
a differentiable manifold M is a family of functions {fp}p∈M , where for each
p ∈ M , fp is a timelike Minkowski functional defined on the tangent space
TpM of M at p. In particular, in the tangent space at each point p in M ,
there is a cone Cp associated to fp which plays the role of the cone C ∪ {O}
associated in Definition 3.1 to a general timelike Minkowski functional. We
assume that fp together with its associated cone Cp depend continuously on
the point p.

We shall sometimes use the notation f(p, x) instead of fp(x) for the
Minkowski functional.

In the situations considered in this paper, the differentiable manifold M
will be generally an open subset of either a Euclidean space Rn or a sphere
Sn. (In some rare cases, it will be a subset of a hyperbolic space Hn.)

We say that a piecewise C1 curve σ : [0, 1] → M , t 7→ σ(t) is timelike if
at each time t ∈ J the tangent vector σ′(t) (if this tangent vector exists)
is an element of the cone Cσ(t) ⊂ Tσ(t)M . At the points t ∈ J where σ is

not C1, there are two naturally defined tangent vectors and we assume that
both are in Cσ(t).

Definition 4.2 (The partial order relation). If p and q are two points in
M , we write p ≺ q, and we say that q is in the ≺-future of p, if there exists
a timelike piecewise C1 curve σ : [0, 1] → M joining p to q.

We define the length of a piecewise C1 timelike curve σ : [0, 1] → M by
the Lebesgue integral

Length(σ) =

∫ 1

0
fσ(t)(σ

′(t)) dt.

We then define a function δ on pairs of points (p, q) satisfying p ≺ q by
setting

(4) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ :
[0, 1] → M satisfying σ(0) = p and σ(1) = q. We shall show that δ defines
a timelike distance function.

It is easy to see from the definition of δ that it satisfies the timelike
inequality, once we show the following

Lemma 4.3. For any pair p and q satisfying p ≺ q, we have δ(p, q) < ∞.

Proof. To see that the supremum in (4) is finite, we introduce a reference
metric on a chart of the manifold modelled on the Minkowski space-time
(Rn,−c2dt2 + dx21 + · · · + dx2n−1) as follows. Let (U, φ) be a local chart on
M containing a point p so that φ(U) is an open subset of Rn with φ(p) = 0.
As φ : U → φ(U) is a diffeomorphism, each open cone Cp in TpM on which
the Minkowski functional fp : Cp → R is defined is mapped onto a proper
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convex cone Cφ(p) in Rn by the linear map dφp. Hence we have a field of
proper cones {Cx}x∈φ(U). By the continuity of dφp in p, there exists an

open neighborhood V ⊂ U of p so that on V there is a field of supporting
hypersurfaces of {Cx}x∈V : {πx ⊂ TxR

n} with all the hyperplanes {πx}x∈V
sharing the same normal vector in Rn.

We now introduce a Minkowski metric gc = −c2dt2 + dx21 + · · · + dx2n−1

on V ⊂ Rn where the constant c (the “speed of light”) will be determined
below. The x1x2 . . . xn−1-plane is identified with πx for each x ∈ V . We also
consider B1(x) ⊂ TxR

n, the set of future directed timelike vectors v with
−1 < gc(v, v) ≤ 0. Then we can choose the constant c > 0 sufficiently large
so that

(1) the light cone {v ∈ TxR
n | gc(v, v) < 0} properly contains Cx at each

x ∈ V ;
(2) each gc-unit vector v in ∂B1(x) ∩ Cx, which is identified with a

tangent vector w = (dφx)
−1v in Tφ−1(x)M , has norm fφ−1(x)(w) < 1.

So far, we have defined an auxiliary norm fM
q : Cq → R for any q ∈ φ−1(V )

with fM
q (v) > fq(v). We denote the distance with respect to the Minkowski

metric gc by dc. Note that the condition (1) ensures that a timelike curve in
M with respect to the family of norms fq is also timelike for the auxiliary
family of norms fM

q .

Now given a timelike C1-curve σ : [a, b] → φ−1(V ) ⊂ M through p = σ(0),
we have the following length comparison

∫ b

a

fσ(t)(σ
′(t)) dt <

∫ b

a

fM
σ(t)(σ

′(t)) dt

with the auxiliary length bounded above,
∫ b

a

fM
σ(t)(σ

′(t)) dt < dc(φ(σ(a)), φ(σ(b))) < ∞,

as the line segment [φ(σ(a)), φ(σ(b))] is the length maximizing timelike curve
in the Minkowski space-time (Rn,−c2dt2 + dx21 + · · · + dx2n−1). �

It follows that the timelike distance function δ defines a timelike structure
on the space M� of pairs of points (x, y) in M × M satisfying x � y.
This timelike structure is the analogue of the so-called intrinsic metric in
the classical (non-timelike) case. We call δ the timelike intrinsic distance
associated with the timelike Finsler structure.

5. The timelike Finsler structure of the timelike Funk

distance

In this section, we show that the timelike Funk distance F associated
with a convex hypersurface K in Rn is timelike Finsler in the sense defined
in §4. In other words, we show that on the tangent space at each point of
Ω = Rn \K, there is a timelike Minkowski functional (which we also call a
timelike norm) which makes this space a timelike Minkowski space, such that
the timelike Funk distance F (p, q) between two points p and q is obtained by
integrating this timelike norm on tangent vectors along piecewise C1 paths
joining p to q and taking the supremum of the lengths of such paths. The
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paths considered are restricted to those where the tangent vector at each
point of Ω belongs to the domain of the timelike Minkowski functional.

For every point p in Ω≤ associated with a convex hypersurface K, there is
a timelike Minkowski functional fF (p, v) defined on the subset of the tangent
space TpΩ of Ω at p consisting of the non-zero vectors v satisfying

p+ tv ∈ I
+(p) for some t > 0

where, as before, I+(p) is the future of p. We denote by C+(p) ⊂ TpΩ the
set of vectors v that satisfy this property or are the zero vector. We define
the function fF (p, v) for p ∈ Ω and v ∈ C+(p) by the following formula:

(5) fF (p, v) = inf
π∈P(p)

〈v, ηπ〉

d(p, π)

for v ∈ C+(p) where P(p) is as before the set of supporting hyperplanes to K
separating p from the interior of K and where for each hyperplane π in P(p),
ηπ is the unit tangent vector at p perpendicular to π and pointing toward π.
We also define fF (p, 0) = 0 for all p in Ω. We shall show that this defines a
timelike Minkowski functional and that this functional is associated with a
timelike Finsler geometry underlying the timelike Funk distance F .

By elementary geometric arguments (see [25] for a detailed discussion in
the non-timelike case which can be adapted to the present setting) it is
shown that

(6) fF (p, v) =
‖v‖

inf{t | p+ t v
‖v‖ ∈ K}

for any nonzero vector v ∈ C+(p).
Note that the quantity inf{t | p + t v

‖v‖ ∈ K} in the denominator is the

Euclidean length of the line segment from p to the point where the ray
p + tv hits the convex set K for the first time. A simpler way to write the
functional defined in (5) is:

(7) fF (p, v) = sup{t : p+ v/t ∈ K}.

We have the following;

Proposition 5.1. The functional fF (p, v) defined on the open cone C+(p)
in TpΩ ∼= Rn satisfies all the properties required by a timelike Minkowski
functional.

Proof. It is easy to check the properties required by Definition 3.1. Note
that the last property in this definition, namely, the concavity of the linear
functional fF on the tangent space TpR

n, follows from the fact that fF is
an infimum over P(p) of linear (and in particular concave) functionals, and
such an infimum is concave. �

As in §4, we say that a piecewise C1 curve σ : [0, 1] → Ω, t 7→ σ(t), defined
on an interval [0, 1] of R, is timelike if for each t ∈ [0, 1] the tangent vector
σ′(t) is an element of the cone C+(σ(t)) ⊂ Tσ(t)Ω.

If p and q are two points in Ω, we write p ≺ q, and we say that q is in
the ≺-future of p, if there exists a timelike piecewise C1 curve σ : [0, 1] → Ω
joining p to q.
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Proposition 5.2. The two partial order relations < and ≺ defined on Ω
coincide; namely, for any two points p and q in Ω, we have

p < q ⇔ p ≺ q.

Proof. The implication p < q ⇒ p ≺ q follows from that fact that for p < q,
the parameterized curve

σ(t) = p+
q − p

‖q − p‖
t

for t ∈ [0, 1] is a C1 timelike curve from p to q.
The reverse implication, p < q ⇐ p ≺ q, follows from the following lemma:

Lemma 5.3. Assume that p and q in Ω satisfy p < q. Then, for an arbitrary
piecewise C1 timelike curve σ : [0, 1] → Ω with σ(0) = p and σ(1) = q, we
have

σ(t) ∈ I
+(p)

for all t in [0, 1].

Proof of Lemma 5.3. The path σ, being timelike, starts at the point p with
a right derivative at p pointing strictly inside the cone C(p). This implies
that the point σ(t) is strictly inside the set I+(p) for any sufficiently small
t.

If the image of σ is not completely contained in I
+(p), then there is a

smallest t0 > 0 in [0, 1] such that σ(t0) is on the boundary of set I+(p). Let
p0 = σ(t0) and assume σ is differentiable at t0. Then the tangent vector
to f(σ) at t0 is a vector at p0 which is either contained in the boundary of
I
+(p) or points outside this I

+(p). But this contradicts the fact that the
tangent vector to f(σ) at p0 is in Cp0 .

If σ is not differentiable at t0, then (since this curve is piecewise C1) there
are two tangent vectors at this point, and the same argument applied to one
of these vectors gives the same contradiction.

Thus, the image of σ is completely contained in I
+(p), which proves the

lemma.
�

We continue the proof of Proposition 5.2. For p and q in Ω satisfying p ≺ q,
we let σ : [0, 1] → Ω be an arbitrary piecewise C1 timelike curve satisfying
σ(0) = p and σ(1) = q. From Lemma 5.3, we have σ(1) = q ∈ I

+(p),
therefore p < q. This finishes the proof of Proposition 5.2. �

As we did in §4, we denote by δ the timelike intrinsic distance function
associated with this timelike Finsler structure, namely,

(8) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ :
[0, 1] → Ω satisfying σ(0) = p and σ(1) = q. Like in Lemma 4.3, it is seen
that the intrinsic distance δ(p, q) for p < q is finite.

Thus, the domain of definition of the set Ω< associated with the partial
order < for the timelike Funk distance F 2

1 and the domain of definition Ω≺

for the timelike Finsler distance function δ21 coincide. Furthermore, we shall
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prove the equality δ(p, q) = F (p, q) for any pair p < q in Ω<. We state this
as follows:

Theorem 5.4. The value of the timelike Finsler distance δ(p, q) for a pair
(p, q) ∈ Ω≤ coincides with F (p, q). That is, we have

F (p, q) = δ(p, q).

In other words, we have the following

Theorem 5.5. The timelike Funk geometry is a timelike Finsler structure
defined by the Minkowski functional fF (p, v).

The timelike Minkowski functional fF (p, v) which underlies a timelike
Funk geometry has a property which makes that metric the tautological
Finsler structure associated with the hypersurface K (or the convex body
I). The term “tautological” is due to the fact that the indicatrix of the
timelike Minkowski functional at p ∈ Ω, that is, the set

Ind(p) = {v ∈ C+(p) ⊂ TpΩ | fF (p, v) = 1},

is affinely equivalent to the part of K that is “visible from the point p”,
that is, the relative interior (with respect to the topology of K) of the

intersection of that hypersurface with I+(p), the closure in Rn of the subset
I
+(p). This property is the timelike analogue of a property of the indicatrix

of the classical Funk metric which makes it tautological, as noticed in the
paper [16].

We also note that with this identification, given a pair of points p, q
with p < q, there always exists a distance-realizing (length-maximizing)
F -geodesic from p to q, namely, the Euclidean segment [p, q].

Proof of Theorem 5.4. For any pair (p, q) ∈ (Ω × Ω) satisfying p < q, we
consider the map

(9) σ : [0, 1] → Rn

parametrizing the Euclidean segment [p, q] proportionally to arc-length t
with σ(0) = p, σ(1) = q. Then we have

∫ 1

0
fF (σ(t), σ

′(t)) dt = log
d(p, b(p, q))

d(q, b(p, q))
= F (p, q),

since
d

dt
log

d(p, b(p, q))

d(σ(t), b(p, q))
= fF (σ(t), σ

′(t)).

By taking the supremum over the set of all paths from p to q, we obtain the
inequality

(10) δ(p, q) ≥ F (p, q).

Before continuing the proof of Theorem 5.4, we show a useful monotonicity
property of the intrinsic distance.

Let Î ⊃ I be an open convex set containing the convex subset I of §2 and

let K̂ be its bounding hypersurface. Let F̂ be the associated timelike Funk

metric, f
F̂
its associated timelike Minkowski functional, and δ̂ the associated

intrinsic distance. (Note that the domains of definition of f
F̂
and δ̂ contain

those of fF and δ respectively.) We have the following:
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Lemma 5.6. For (p, q) in the domains of definition of both intrinsic dis-

tances δ and δ̂, we have

δ̂(p, q) ≥ δ(p, q).

Proof. The timelike Minkowski functionals fF and f
F̂

satisfy the following
inequality

f
F̂
(x, v) ≥ fF (x, v)

whenever the quantities involved are defined concurrently. This follows from
the definition of the Minkowski functional:

(11) fF (p, v) =
‖v‖

inf{t | p+ t v
‖v‖ ∈ K}

for any nonzero vector v in both domains of definition, as K̂ is closer to
p than K. Hence by integrating each functional along an admissible path

(note that admissible paths for δ are also admissible paths for δ̂) and taking
the supremum over these paths, we obtain

δ̂(p, q) ≥ δ(p, q).

�

Proof of Theorem 5.4 continued.— Suppose that we have a convex hyper-
surface K bounding an open convex set I, and for each (p, q) ∈ Ω<, let

Î = H+
πb(p,q)

,

where H+
πb(p,q)

is the open half-space bounded by a hyperplane πb(p,q) sup-

porting K at b(p, q) and containing I. The open set Î is equipped with its

intrinsic distance δ̂. Applying Lemma 5.6 to this setting where a convex set

Î contains I, we obtain δ̂ ≥ δ.

For the open half-space Î = H+
πb(p,q)

, the values of F (p, q), F̂ (p, q) and

δ̂(p, q) all coincide. Indeed, under the hypothesis Î = H+
πb(p,q)

, the set P

of supporting hyperplanes consists of the single element πb(p,q), and the line
segment σ from p to q defined in (9) is a length-maximizing path, since every

timelike path for Î is F̂ -geodesic.
Combining the above observations, we have

(12) F (p, q) = F̂ (p, q) = δ̂(p, q) ≥ δ(p, q) ≥ F (p, q)

and the equality δ(p, q) = F (p, q) follows. �

We end this section by the following convexity property on the timelike
Funk distance associated with a strictly convex hypersurface K:

Theorem 5.7. Assume that K is strictly convex. For any point x in Ω and
M > 0, the set of points

SM (x) = {p ∈ Ω | p < x and F (p, x) > M}

is a convex subset of Ω = Rn \K.
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Proof. Since K is strictly convex, any F -geodesic is a Euclidean segment.
Given p1 and p2 in SK(x), parameterize the Euclidean segment [p1, p2] with
an affine parameter t ∈ [0, 1] by s(t), with s(0) = p1 and s(1) = p2. We shall
show that the function t 7→ F (s(t), x) is concave.

By Proposition 2.14, we have

F (s(t), x) = inf
π∈P(x)

log
d(s(t), π)

d(x, π)
.

Fix a supporting hyperplane π in P. Then

d

dt
log

d(s(t), π)

d(x, π)
=

〈−νπ(s(t)), ṡ(t)〉

d(s(t), π)

and
d2

dt2
log

d(s(t), π)

d(x, π)
= −

〈−νπ(s(t)), ṡ(t)〉
2

d(s(t), π)2
≤ 0,

where νπ(x) is the unit vector at x perpendicular to the hypersurface π
oriented toward π. In particular −νπ is the gradient vector of the function

d(x, π). The sign of the second derivative says that log d(s(t),π)
d(x,π) is concave in

t for each π ∈ P. By taking the infimum over π ∈ P, the resulting function
F (s(t), x) is concave in t.

This implies that the super-level set SK(x) of the Funk distance F (·, x)
is convex. �

As an analogous situation in special relativity, the super-level set of
the past-directed temporal distance measured from a fixed point in the
Minkowski space-time Rn,1 is convex. For example, the set below the past-
directed hyperboloid: S1(0) = {(x0, x1) ∈ R1,1 | − x20 + x21 < −1, x0 < 0}
is convex.

6. The timelike Euclidean relative Funk geometry

Let K1 and K2 be two disjoint convex hypersurfaces in Rn that bound
convex sets I1 and I2 respectively, with K1 = K1 ∪ I1 and K2 = K2 ∪ I2
being the closures of I1 and I2 respectively.

A timelike Euclidean relative Funk geometry is associated with the ordered
pair K1,K2. Its underlying space is the subset Ω of Rn, as pictured in Figure
4, defined as the union

Ω = ∪]a1, a2[,

the union being over the intervals ]a1, a2[⊂ Rn such that a1 ∈ K1, a2 ∈ K2,
]a1, a2[∩(K1 ∪K2) = ∅ and such that there is no supporting hyperplane π
to K1 or to K2 containing ]a1, a2[.

We let K2
1 ⊂ K2 be the set of points k2 ∈ K2 such that there exists a

point k1 ∈ K1 with ]k1, k2[∩(K1 ∪ K2) = ∅. We shall say that K2
1 is the

subset of K2 facing K1.
In the rest of this section, the pair K1,K2 is always understood to be

an ordered pair, even if the notation we use does not reflect this fact. For
reasons that will become apparent soon, K1 represents the past, and K2 the
future. We shall also say that K2 is the future of K1.



20 ATHANASE PAPADOPOULOS AND SUMIO YAMADA

��

��

��

��

The space � of the relative Funk metric

Figure 4. The space underlying the relative Funk metric

Definition 6.1 (Order relation and relative future). With the above no-
tation, for p and q in Ω, we write p < q if there exists an open Euclidean
segment ]a1, a2[⊂ Ω with ai ∈ Ki such that the four points a1, p, q, a2 are
collinear in that order, and such that ]a1, a2[ is not contained in any sup-
porting hyperplane of K1 or of K2.

If p < q then we say that q lies in the future of p, and that p lies in the
past of q.

We write p ≤ q if either p < q or p = q.
We denote by Ω< (resp. Ω≤) the set of ordered pairs (p, q) in Ω × Ω

satisfying p < q (resp. p ≤ q). The set Ω< is disjoint from the diagonal set
{(x, x) | x ∈ Ω} ⊂ Ω×Ω.

��

��
��

��

The relative future of �

�

Figure 5. Relative future of p

For every point p in Ω, its relative future set I
+
2 (p) is nonempty, open

and connected. Note that this set also depends on K1 even though we do
not include this information in the notation in order to make it lighter.

We shall sometimes use the word “future” instead of the expression “rel-
ative future” if the context is clear.

Definition 6.2 (The relative future in K2 of a point). For p in Ω, we
consider the following subset of K2:

K2
1 (p) = {a2 ∈ K2 such that ∃a1 ∈ K1 with p ∈]a1, a2[⊂ Ω}

and we say that K2
1 (p) is the relative future of p in K2.

Definition 6.3. For p in Ω, we denote by I
+
2 (p) the set of all points q ∈ Ω

which are in the relative future of p, and we call this set the relative future
of p.
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Figure 6. K̃2 is the boundary of the closure of Ĩ2

The relative future of p is represented in Figure 5.
In order to formulate the bases of the relative Funk geometry, we introduce

the following notation.

• P̃2 is the set of supporting hyperplanes to K2 at points in K2
1 .

• iH+
π is the open half-space, bounded by a hyperplane π, and containing

the convex set Ii.
iH−

π is the complementary half-space, namely, the open
half-space bounded by π, not containing Ii.

• Ĩ2 = ∩2H+
π where π varies in P̃2. This is an open convex subset of Rn

and it contains I2 = ∩2H+
π where the union is over π varying in P2.

• K̃2 is the boundary of the closure of Ĩ2. (Ĩ2 are represented in Figure
6.)

• K̃2 = K̃2 ∪ Ĩ2.

• P̃2(p) is the set of hyperplanes in Rn separating p from Ĩ2.

For every element π ∈ P̃2,
2H+

π is the open half-space bounded by the

hyperplane π and containing Ĩ2, and
2H−

π the open half-space bounded by

π and not containing Ĩ2. We have:

Ĩ2 = ∩
π∈P̃2

2H+
π = ∩

π∈P̃2

2H+
π

and

(13) P̃2(p) = {π ∈ P̃2 | p ∈ 2H−
π }.

Definition 6.4 (The relative past of a point). For p ∈ Ω, the relative past
of p, denoted by I2

−(p), is the set of points q in Ω such that p is in the
relative future of q.

The set I+2 (p) is an open subset of Rn. It is characterized by the following:

(14) I
+
2 (p) = Int

(
{(∩

π∈P̃2
c
(p)

2H+
π ) \ K̃2} ∩ {∩

π∈P̃1(p)
1H−

π }
)

where, as before, Int( ) denotes the interior of a set. We recall that we are
using the notation

Int{∩
π∈P̃2(p)c

2H+
π ) \ K̃2}

for the future set for the non-relative Funk geometry, namely when there is

only one convex set I2 ahead. Also note that the set Int{∩
π∈P̃1(p)

1H−
π } is

the past set of p for the non-relative backward Funk geometry, namely when
there is only one convex set I1 ahead.
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Proposition 6.5. We have the equivalences:

p < q ⇐⇒ P̃2
c
(p)∪P̃1(p) ( P̃2

c
(q)∪P̃1(q) ⇐⇒ P̃2(p)∪P̃1

c
(p) ) P̃2(q)∪P̃1

c
(q).

Proof. Suppose p < q. We claim that every π ∈ P̃2
c
(p)∪ P̃1(p) is an element

of P̃2
c
(q) ∪ P̃1(q). This follows from the two inclusions P̃2

c
(p) ( P̃2

c
(q) and

P̃1(p) ( P̃1(q). The first inclusion follows from the fact that the ray from p

through q hits the open convex set Ĩ2, and the second follows from the fact

that the ray from q through p hits Ĩ1.

To see the strict inclusion when p < q, choose a hyperplane in P̃2
c
(q) ∪

P̃1(q) intersecting ]p, q[. Such a hyperplane is not in P̃2
c
(p) ∪ P̃1(p).

Next suppose P̃2
c
(p)∪P̃1(p) ( P̃2

c
(q)∪P̃1(q). Then the following inclusion

I
+
2 (p) ) I

+
2 (q)

follows from the characterization (14) of I−2 (x).
Hence p is in the past of q, and thus p < q.
The second inclusion is simply the inclusion induced by taking the com-

plements of the first inclusion. �

We introduce the notation

P12(p) = P̃2(p) ∪ P̃1
c
(p).

Thus the statement of the proposition above becomes

p < q ⇐⇒ P12(p) ) P12(q).

P̃2(p) is the set of supporting hyperplanes to K̃2 so that

P̃2(p) = P12(p) ∩ P̃2

P̃2(p) is the set of supporting hyperplanes to K2 at the points of K2
1 (p),

the future set of p in K2
1 . We note that a supporting hyperplane π to Ĩ2

that contains p does not belong to P̃2(p).

Corollary 6.6. For any two points p and q in Ω, we have

p < q ⇒ P̃2(p) ⊃ P̃2(q).

Proof. This follows from the fact that P̃2(p) = (P12(p)∩P̃2) ⊃ (P12(q)∩P̃2) =

P̃2(q). �

In Corollary 6.6, the strict inclusion cannot be expected, as can be seen

from the following example in R2 where we have P̃2(p) = P̃2(q):
K1 is the line with equation {y = −3}, bounding the convex half-space

{y < −3};
K2 is the convex curve in R2 which is the union of the rays {y = x, y > 0}

and {y = −x, y > 0}, p = (0,−2) and q = (0,−1).

Corollary 6.7. Let p, q, r be three points in Ω. If p < q and q < r, then
p < r.

Proof. This follows from Proposition 6.5 which gives:

p < q and q < r ⇔ P12(p) ) P12(q) ) P12(r).

�
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Now we can define the timelike relative Funk distance F 2
1 (p, q) on the

subset Ω≤ of Ω× Ω.

Definition 6.8 (The timelike relative Funk distance). The timelike relative
Funk distance F 2

1 (p, q) is first defined on pairs of distinct points p, q in Ω
satisfying p < q by the formula

F 2
1 (p, q) = log

d(p, b(p, q))

d(q, b(p, q))

where b(p, q) is the first intersection point of the ray R(p, q) with K2. As
before, d(· , ·) denotes the Euclidean distance.

Note that the value of F 2
1 (p, q) is strictly positive for any pair p, q satis-

fying p < q.
We extend the definition of F 2

1 (p, q) to the case where p = q, setting in
this case F 2

1 (p, q) = 0.

Using the convexity of K̃2, we now give a variational characterization of
the quantity F 2

1 (p, q).
Let p and q be two points in Ω such that p < q. Let π0 be a supporting

hyperplane to K2 at b(p, q). For x in Rn, let Ππ0(x) be the foot of the
Euclidean perpendicular from the point x onto that hyperplane.

From the similarity of the two Euclidean triangles △(p,Ππ0(p), b(p, q))
and △(q,Ππ0(q), b(p, q)), we have

log
d(p, b(p, q))

d(q, b(p, q))
= log

d(p, π0)

d(q, π0)
.

For any unit vector ξ in Rn and for any π ∈ P(p), we set

T (p, ξ, π) = π ∩ {p+ tξ | t > 0}

if this intersection is non-empty.
For p < q in Rn, consider the vector ξ = ξpq = q−p

‖q−p‖ where the norm is,

as before, the Euclidean one.
We then have T (p, ξpq, πb(p,q)) = b(p, q) ∈ R(p, q) ∩K2.

In the case where π ∈ P̃2(q) is not a supporting hyperplane of K̃2 at b(p, q),

the point T (p, ξpq, π) lies outside K̃2 and, again by the similarity of the
Euclidean triangles△(p,Ππ(p), T (p, ξpq, π)) and△(q,Ππ(q), T (p, ξpq, π)), we
get

d(p, π)

d(q, π)
=

d(p, T (p, ξpq, π))

d(q, T (p, ξpq, π))
.

As π varies in P̃2(q), the farthest point from p on the ray R(p, q) of the

form T (p, ξpq, π) is b(p, q), and this occurs when π supports K̃2 at b(p, q).

This in turn says that a hyperplane πb(p,q) which supports K̃2 at b(p, q)
minimizes the ratio

d(p, T (p, ξpq, π))

d(q, T (p, ξpq, π))

among all the elements of P̃2(q) and thus we obtain
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Proposition 6.9. For all p < q, we have

log F 2
1 (p, q) = inf

π∈P̃2(q)
log

d(p, π)

d(q, π)
.

Note that the statement is much similar to that of Proposition 2.14. The
similarity illustrates that the relative timelike Funk geometry is a restriction
of the timelike Funk geometry.

The fact that the function F 2
1 (p, q) satisfies the time inequality follows

from an argument similar to the one used in proving Proposition 2.17, in
the light of Corollary 6.6.

Proposition 6.10 (Time inequality). For any three points p, q and r in Ω,
satisfying p < q < r, we have

F 2
1 (p, q) + F 2

1 (q, r) ≤ F 2
1 (p, r).

The following proposition is an analogue of Proposition 2.18 that concerns
(non-relative) timelike Funk geometries, and it is proved in the same way:

Proposition 6.11 (Geodesics). A timelike relative Funk geometry F 2
1 de-

fined on a set Ω≤ associated with two disjoint convex hypersurfaces K1 and
K2 in Rn satisfies the following:

(1) The Euclidean segments in Ω that are of the form [p, q] where p < q
are F 2

1 -geodesics.
(2) Any Euclidean segment [p, b) from a point p in Ω to a point b in ∂K,

equipped with the metric induced from the timelike distance F 2
1 , is

isometric to a Euclidean ray.
(3) The Euclidean segments in (1) are the unique F 2

1 -geodesic segments
if and only if the pair (K1,K2) satisfies the following property: there
is no nonempty open Euclidean segment contained in the subset K2

1
of points in K2 facing K1.

7. The timelike Finsler structure of the timelike Euclidean

relative Funk distance

In this section, as in §6, Ω is the space underlying the timelike Funk
geometry associated with two disjoint convex hypersurface K1 and K2 in
Rn. We show that the timelike Euclidean relative Funk distance associated
with K1 and K2 is timelike Finsler.

With every point p in Ω, we shall associate a timelike Minkowski functional
fF 2

1
(p, v) defined on the subset of the tangent space TpΩ of Ω at p consisting

of the non-zero vectors v satisfying

(15) p+ tv ∈ I
+
2 (p) for some t > 0

where I
+
2 (p) is as before the future of p.

We denote by C+
2 (p) ⊂ TpΩ the set of vectors v that satisfy Property (15)

or are the zero vector. We define the function fF 2
1
(p, v) for p ∈ Ω and for

any nonzero vector v ∈ C+
2 (p) by the following formula:

(16) fF 2
1
(p, v) = inf

π∈P̃2(p)

〈v, ηπ〉

d(p, π)
,
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where for each plane π in P̃2(p), ηπ is the unit tangent vector at p perpen-
dicular to π and pointing toward π. We define fF 2

1
(p, 0) = 0 if v = 0. We

shall show that this defines a timelike Minkowski functional on the tangent
space of Ω at p and that this functional is associated with a timelike Finsler
geometry underlying the relative timelike Euclidean Funk distance F 2

1 .
In the same way as for the Finsler structure of the timelike Euclidean

(non-relative) Funk geometry (see Equations (6) and (7)), we have, for every
nonzero vector v ∈ C+(p):

(17) fF 2
1
(p, v) =

‖v‖

inf
[
t | p+ t v

‖v‖ ∈ K̃2

] = sup{τ : p+ v/τ ∈ K̃2}.

The following can be easily checked.

Proposition 7.1. The functional fF 2
1
(p, v) defined on the open cone C+

2 (p)

in TpΩ ∼= Rn satisfies all the properties required in Definition 3.1 by a time-
like Minkowski functional.

Now we repeat the argument in §5, to set up a timelike space using the
Finsler structure. We say that a piecewise C1 curve σ : [0, 1] → Rn, t 7→ σ(t)
is timelike if at each time t ∈ [0, 1] the tangent vector σ′(t) is an element of
the cone C+

2 (σ(t)) ⊂ Tσ(t)R
n. We shall follow the same scheme as in §4 to

show that the timelike Euclidean relative Funk distance is Finsler.

Definition 7.2 (The partial order relation). Suppose that p and q are two
points in Rn. We write p ≺ q, and we say that q is in the ≺-future of p, if
there exists a timelike piecewise C1 curve σ : [0, 1] → Rn joining p to q.

Proposition 7.3. The two order relations < and ≺ coincide, namely, for
any two points p and q in Ω, we have

p < q ⇔ p ≺ q.

The proof is the same as that of Proposition 5.2 except that I+(p) needs
to be replaced by I

+
2 (p).

Similarly to what we did in §5, we denote by δ21 the timelike intrinsic
distance function associated with this timelike Finsler structure:

(18) δ21(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ :
[0, 1] → Ω satisfying σ(0) = p and σ(1) = q. By a proof similar to that of
Lemma 4.3, the intrinsic distance δ(p, q) for p < q is finite.

Thus, the domain of definition Ω< defined with the partial order < for the
timelike Funk distance F 2

1 and the domain of definition Ω≺ for the timelike
distance function δ21 coincide. We shall prove the equality δ21(p, q) = F 2

1 (p, q)
for any pair p < q in Ω≤. We state this as follows:

Theorem 7.4. The value of the timelike distance δ21(p, q) for a pair (p, q) ∈
Ω≤ coincides with F 2

1 (p, q). That is, we have

F 2
1 (p, q) = δ21(p, q).

In other words, we have the following
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Theorem 7.5. The relative timelike Funk geometry is a timelike Finsler
structure with associated Minkowski functional fF 2

1
(p, v).

Note that with this identification F 2
1 = δ21 , given a pair of points p, q

satisfying p < q, there always exists a distance-realizing (length-maximizing)
geodesic from p to q, since the Euclidean segment [p, q] is an F 2

1 -geodesic.

Proof of Theorem 7.4. The proof is similar to the one of Theorem 5.4: Given
a pair (p, q) with p < q, consider the geodesic ray R(p, q) from p through q
and let b(p, q) ∈ K2

1 be the first intersection point of this ray with the convex

set K̃2. Parameterize proportionally to arc-length the Euclidean segment
[p, q] by a path σ(t) with parameter t in [0, 1], with σ(0) = p, σ(1) = q. Then
we have

∫ 1

0
fF 2

1
(σ(t), σ′(t)) dt = log

d(p, b(p, q))

d(q, b(p, q))
= F 2

1 (p, q),

since
d

dt
log

d(p, b(p, q))

d(σ(t), b(p, q))
= fF 2

1
(σ(t), σ′(t)).

Taking the supremum over the set of paths from p to q, we obtain the
inequality

δ21(p, q) ≥ F 2
1 (p, q).

We need to show a monotonicity lemma similar to Lemma 5.6 for the
intrinsic distance δ21 .

Let Î2 ⊃ I2 be an open convex set containing I2, let K̂2 be its bounding

hypersurface, P̂ 2
1 the timelike Minkowski functional associated with the pair

(I1, Î2) and δ̂21 the associated intrinsic distance. (Note that the domains of

definition of P̂ 2
1 and δ̂21 contain those of fF 2

1
and δ21 respectively.)

Lemma 7.6. For (p, q) in the domains of definition of both intrinsic dis-

tances δ21 and δ̂21, we have

δ̂21(p, q) ≥ δ21(p, q).

The proof is, with an adaptation of the notation, the same as that of
Lemma 5.6.
Proof of Theorem 7.4 continued.— For (p, q) ∈ Ω<, let

Î2 = H+
πb(p,q)

,

where H+
πb(p,q)

is the open half-space bounded by a hyperplane πb(p,q) sup-

porting K2
1 at b(p, q) and containing Ĩ2. The open set Î is equipped with

its intrinsic distance δ̂. We now apply Lemma 5.6 to this setting where a

convex set Î2 contains I2, and obtain δ̂21 ≥ δ21 .

For the open half-space Î2 = H+
πb(p,q)

, the values of F 2
1 (p, q), F̂

2
1 (p, q) and

δ̂21(p, q) all coincide. Indeed, under the hypothesis Î2 = H+
πb(p,q)

, the set

P̃2 of supporting hyperplanes consists of the single element πb(p,q), and the
Euclidean segment σ from p to q is length-maximizing, since every timelike

path for Î2 is F̂ 2
1 -geodesic.
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By combining the above observations, we have

F 2
1 (p, q) = F̂ 2

1 (p, q) = δ̂21(p, q) ≥ δ21(p, q) ≥ F 2
1 (p, q)

and the equality δ21(p, q) = F 2
1 (p, q) follows. �

8. The timelike Euclidean relative reverse Funk geometry and

its Finsler structure

We continue using the notation of §6 and §7 associated with two convex
subsets K1 and K2 of Rn.

Definition 8.1. The timelike Euclidean relative reverse Funk geometry is

the function F 2
1 defined for p and q in Ω satisfying p < q by

(19) F 2
1 (p, q) = F 1

2 (q, p)

where F 1
2 (q, p) is the timelike Euclidean relative Funk metric associated with

the pair (K2,K1), that is, here, the convex set K1 represents the future and
the convex set K2 represents the past, and where p lies in the future of q

relatively to this ordered pair. (In particular, the domain of definition of F 2
1

is equal to the domain of definition of F 2
1 .)

With the notation introduced in §7, we have:

(20) q ∈ I
+
2 (p) ⇔ p ∈ I

+
1 (q).

For every point p in Ω, we have a timelike Minkowski functional fF 1
2
(p, v)

defined on the subset of the tangent space TpΩ of Ω at p consisting of the
non-zero vectors v satisfying

p+ tv ∈ I
+
1 (p) for some t > 0.

We denote by C+
1 (p) ⊂ TpΩ the union of tangent vectors v that satisfy this

property or are the zero vector. From the definition, there is a symmetry
between C1(p) and C2(p) in the sense that

v ∈ C1(p) ⇔ −v ∈ C2(p).

This follows from the equivalence (20) remarked above.
We define the function fF 1

2
(p, v) for p ∈ Ω and for any nonzero v ∈ C+

1 (p)

by the following formula:

(21) fF 1
2
(p, v) = inf

π∈P̃1(p)

〈v, ηπ〉

d(p, π)

where for each hyperplane π in P̃1(p), ηπ is the unit tangent vector at p
perpendicular to π (with respect to the underlying Euclidean metric) and
pointing toward π.

We extend the definition by setting fF 2
1
(p, 0) = 0 when v = 0.

In the same way as for the geometries that were considered previously,
this defines a timelike Minkowski functional, and this functional is associated
with a timelike Finsler geometry underlying the timelike Funk distance F 1

2 .
We shall use the following definition in §9:
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Definition 8.2. The timelike Minkowski functional f
F 1
2
(p, v) for the time-

like Euclidean relative reverse Funk geometry F 2
1 is the function

f
F 1
2
(p, v) = fF 1

2
(p,−v).

for v ∈ C+
2 (p)(= −C+

1 (p)).

9. The timelike Euclidean Hilbert geometry

We continue using the notation introduced in §6: I1 and I2 are two disjoint
open (possibly unbounded) convex sets in Rn bounded by disjoint convex
hypersurfaces K1 and K2 respectively and K1 = K1 ∪ I1 and K2 = K2 ∪ I2.
The latter are the closures of I1 and I2 respectively.

We shall define the timelike Euclidean Hilbert geometryH(p, q) associated
with the ordered pair K1,K2. Its underlying space Ω is the same as the one
of the timelike Euclidean relatively Funk geometry defined in §6, that is, Ω is
the union in Rn of the open segments of the form ]a1, a2[ such that a1 ∈ K1,
a2 ∈ K2 satisfying ]a1, a2[∩(K1 ∪K2) = ∅ for i = 1, 2 and for which there is
no supporting hyperplane π to K1 or to K2 with ]a1, a2[⊂ π.

Referring to §6, we shall use the two timelike relative Funk metrics, F 2
1

and F 1
2 , both defined on Ω, but we shall always consider K1 as representing

the past and K2 the future, except if the contrary is explicitly specified.
In particular, the partial order relation on Ω that underlies the timelike

Hilbert geometry H(p, q) is the same as the one associated with the relative
Euclidean Funk metric with respect to the pair K1,K2 as an ordered pair.
The relative future and relative past of a point p in Ω are defined accordingly,
as in Definitions 6.1 and 6.4.

Definition 9.1 (Timelike Euclidean Hilbert geometry). The timelike Eu-
clidean Hilbert distance is defined on ordered pairs (p, q) ∈ Ω satisfying
p < q by

H(p, q) =
1

2
(F 2

1 (p, q) + F 2
1 (p, q)).

The definition is extended to the case where p = q by setting H(p, q) = 0.

Even though this definition of H depends on the ordered pair K1,K2, it
is clear that its values are independent of the order. For that reason, we
choose the notation H.

The fact that the timelike Hilbert geometry satisfies the time inequality
follows from the definition of the timelike Hilbert geometry as a sum of two
timelike relative Funk geometries that both satisfy the time inequality.

The timelike Hilbert geometry satisfies some properties which follow from
those of a timelike Funk geometry. In particular, we have the following:

Proposition 9.2. (a) In a timelike Hilbert geometry H associated with an
ordered pair of convex hypersurfaces K1,K2, the Euclidean segments of the
form ]a1, a2[ such that

(1) a1 ∈ K1 and a2 ∈ K2;
(2) ]a1, a2[ is not contained in any supporting hyperplane to K1 or to

K2;
(3) the open segment ]a1, a2[ is in the complement Ω of K1 ∪K2
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are H-geodesics. Furthermore, each such geodesic is isometric to the real
line. (We recall that, as it is always the case in timelike spaces, it is under-
stood that the segments ]a1, a2[ are oriented from a1 to a2. Traversed in the
reverse sense, they are not geodesics.)

(b) The following two properties are equivalent:

(1) the oriented Euclidean segments contained in the segments of the
form ]a1, a2[ satisfying the above three properties are the unique H-
geodesics;

(2) there are no segments ]a1, a2[ satisfying the above three properties,
with a1 in the interior of an open nonempty Euclidean segment J1 ⊂
K1 and a2 in the interior of an open nonempty segment J2 ⊂ K2,
with J1 and J2 coplanar.

The proof is an adaptation of that of the non-timelike Hilbert metric (cf.
[5] or [16]), and we omit it.

We now express the timelike Hilbert distance using the cross ratio, as in
the usual (non-timelike) Hilbert geometry.

Recall that if a, b, c, d are four distinct points lying in that order on a
Euclidean line, their cross ratio [a, b, c, d] is defined by

(22) [a, b, c, d] =
|b− d|

|c− d|

|c− a|

|b− a|
.

The following proposition follows easily from the definition of the cross
ratio and the timelike Euclidean Hilbert distance:

Proposition 9.3. For any two points p and q in Ω satisfying p < q, their
timelike Euclidean Hilbert distance is also given by

H(p, q) =
1

2
log[a1, p, q, a2]

where a1 and a2 satisfy [a1, a2] ∩Ki = ai for i = 1, 2.

With this form of the definition of the timelike Euclidean Hilbert geome-
try, we see that the projective transformations of Rn that preserve (setwise)
each of the two convex sets I1 and I2 are isometries for the timelike Hilbert
distance.

We point out two 2-dimensional examples of timelike Hilbert geometries.
Higher-dimensional analogues also hold.

Example 9.4 (The strip). Let Ω be a region contained by two parallel lines
in the plane R2 = {(x, y)}, namely, Ω is the complement of two half-spaces
H1 = {y ≤ −1},H2 = {y ≥ 1}. Then any timelike curve is a geodesic for
the timelike Hilbert geometry. In this setting, a curve is timelike if at each
point the tangent vectors are not horizontal.

Consider the nearest point projection Π : Ω → (−1, 1) onto the interval
(-1,1) of the y-axis. Then the Hilbert distance H(p, q) for p < q is equal to
H(−1,1)(Π(p),Π(q)) where

H(−1,1)(a, b) =
1

2
log

a− 1

b− 1

b+ 1

a+ 1
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is the Hilbert distance for the interval. This metric is sometimes called the
“one-dimensional hyperbolic metric” as this is the Klein-Beltrami model of
the hyperbolic space H1. Notice that Ω is concave as well as convex in R2.

Example 9.5 (The half-space). The half-space corresponds to the limiting
case of the strip discussed in Example 9.4 above, Ω = R×(−a, 1), as a → ∞.
Then the Hilbert timelike distance

H(−a,1)(p, q) =
1

2
log

Π(p)− 1

Π(q)− 1

Π(p) + a

Π(q) + a

converges to (half of) the timelike Funk distance

F (p, q) = log
Π(p)− 1

Π(q)− 1

which is the timelike Funk distance for the half-space R2 \ {y ≥ 1}. We will
come back to this example later.

Remark 9.6. Our approach to the timelike Euclidean Hilbert geometry,
based on the relative Euclidean Funk geometry, is different from that of
Busemann in [7]. In fact, Busemann, in §8 of his paper [7], works in the pro-
jective space, and the geometry which he obtains is a local timelike geometry
(the order relation is only locally defined). Thus, the Hilbert geometry he
obtains is locally timelike.

One important result that Busemann obtains (his Theorem (3) p. 47)
is that in the case where the convex sets K1 and K2 are strictly convex,
the isometry group of a locally timelike Hilbert geometry is the group of
restrictions of projective transformations of the ambient projective space
that preserve the given convex set.

Busemann then defines a timelike Funk geometry associated with a convex
hypersurface K contained in an affine space An using his locally timelike
Hilbert geometry, namely, it becomes the geometry associated with a pair
K1,K2 where K1 is the hyperplane at infinity RPn−1 in the projective space
RPn = An∪RPn−1. The set K1 is the collection of points which are “infinite
distance away” from any pair of points in An \K1, in the sense that for any
pair of points p, q with p < q (the order relation when K2 is the future

set), we have d(p,a1)
d(q,a2)

= 1. In that case, and using the notation of Definition

9.1, the Hilbert distance from p to q associated with the pair K1,K2 is just
the Funk distance from p to q associated with the convex set K2, up to a
constant.

10. The timelike Finsler structure of the timelike Hilbert

geometry

In this section, we show that the timelike Hilbert distance H(p, q) intro-
duced in §9 is a timelike Finsler metric, and we give its timelike Minkowski
functional.

We continue using the notation introduced in §7 for the Finsler structure
of the timelike Euclidean relative Funk distance.

Consider a point p in Ω so that the associated cone C+
2 (p) ⊂ Tp(Ω) (which,

we recall, is equal to the cone −C+
1 (p)) is nonempty. We denote by C(p)

the set C2(p) = −C1(p) ⊂ TpΩ. Following the notation of § 5 that concerns
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the infinitesimal Finsler metric associated with a timelike Funk geometry,
we define a linear functional on C(p) by the formula:

(23) fH(p, v) = fF 2
1
(p, v) + fF 1

2
(p,−v),

or, equivalently,

(24) fH(p, v) = fF 2
1
(p, v) + f

F 2
1
(p, v).

where fF 2
1
and f

F 2
1
are the timelike Minkowski norms on the tangent spaces

associated with the timelike relative Funk geometry and the timelike reverse
Funk geometry defined by K1 and K2.

Now we follow the outline used in §5, to set up a timelike space using
the Finsler structure fH . We say that a piecewise C1 curve σ : [0, 1] → Rn,
t 7→ σ(t) is timelike if at each time t ∈ [0, 1] the tangent vector σ′(t) is an
element of the cone C+

2 (σ(t)) ⊂ Tσ(t)R
n.

Definition 10.1 (The partial order relation). Suppose that p and q are two
points in Ω. We write p ≺ q, and we say that q is in the ≺-future of p, if
there exists a timelike piecewise C1 curve σ : [0, 1] → Rn joining p to q.

As in the situation studied in §5, the following holds in the present setting
as well, and the proof is the same as that of Proposition 5.2, with I

+(p)
replaced by I

+
2 (p).

Proposition 10.2. The two order relations < and ≺ coincide; namely, for
any two points p and q in M , we have

p < q ⇔ p ≺ q.

As in §4, we denote by δ the timelike intrinsic distance function associated
with this timelike Finsler structure:

(25) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ :
[0, 1] → Ω satisfying σ(0) = p and σ(1) = q. As in Lemma 4.3, we prove that
for all p < q, we have δ(p, q) < ∞. This implies that the domain of definition
Ω< associated with the partial order < for the timelike Hilbert distance H
and the domain of definition Ω≺ for the timelike distance function δ coincide.

Now we prove the equality δ(p, q) = F (p, q) for any pair (p, q) satisfying
p < q in Ω< = Ω≺. We state this as follows:

Theorem 10.3. The timelike Hilbert geometry has an underlying timelike
Finsler structure given by the Minkowski functional fH defined in (24).

Proof. Let (p, q) be an element in Ω<. In what follows, when we talk about
a Euclidean segment [p, q] joining p to q, it is understood that this segment
is oriented from p to q. We parametrize such a segment [p, q] by x(t),
0 ≤ t ≤ 1 and the same segment traversed in the opposite direction, [q, p],
by y(t) = x(1− t).

Recall that the Euclidean segment [p, q] is an F 2
1 -geodesic, and the Eu-

clidean segment [q, p], is an F 1
2 -geodesic. Thus, we have

F 2
1 (p, q) =

∫

[p,q]
fF 2

1
(x, x′)dx
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and

F 1
2 (q, p) =

∫

[q,p]
fF 1

2
(x, x′)dx.

Since the segment [q, p] is the interval [p, q] traversed in the opposite
direction, we have

∫

[q,p]
fF 1

2
(y, y′)dy =

∫

[p,q]
f
F 2
1
(x, x′)dx.

Thus, we obtain

(26) H(p, q) =

∫

[p,q]

(
fF 2

1
(x, x′) + f

F 2
1
(x, x′)

)
dx ≤ δ(p, q).

Furthermore, if γ is now an arbitrary path in the domain of definition of H
joining p to q, we have

(27)

∫

γ

fF 2
1
(x, x′)dx ≤

∫

[p,q]
fF 2

1
(x, x′)dx

and

(28)

∫

γ

f
F 2
1
(x, x′)dx ≤

∫

[p,q]
f
F 2
1
(x, x′)dx.

Adding (27) and (28), we get

(29)

∫

γ

fF 2
1
(x, x′)dx+

∫

γ

f
F 2
1
(x, x′)dx ≤

∫

[p,q]
fH(x, x′)dx = H(p, q).

This shows that H is timelike Finsler, with its timelike Minkowski func-
tional at each point x given by fH(p, v).

�

The timelike Finsler structure PH is well-behaved in the sense that the
linear functional

PH(p, ·) : C(p) → R

is a timelike Minkowski functional (in the sense of Definition 3.1) defined on
the open cone C(p) = C+

2 (p) = −C+
1 (p) in TpΩ.

11. The timelike spherical relative Funk geometry

In this section and in the rest of this paper, the ambient space Rn is
replaced by the sphere Sn. We equip Sn with its canonical metric for which
it becomes a Riemannian manifold of constant curvature 1 and of diameter
π. The shortest lines (geodesics) connecting two points of Sn are pieces
of great circles. Great circles have length 2π. We first discuss a few basic
notions concerning convexity on the sphere and we start with the definition:

Definition 11.1 (Convex subset). A convex subset of Sn is a subset I ⊂ Sn

such that I 6= Sn and such that for x and y in I, any shortest line joining
them is contained in I.
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It follows from this definition that I is contained in an open hemisphere
of Sn, that is, one of the two half-spaces bounded by a great hypersphere
π, that is, an (n − 1)-dimensional sphere totally geodesically embedded in
Sn. Also note that when Sn is realized as the unit sphere of Rn+1, then a
great hypersphere of Sn is the intersection of this sphere with a hyperplane
passing through the origin of the coordinates. Each great hypersphere π has
two poles.

Let j be the stereographic projection from the center of Sn, defined on the
hemisphere U containing the convex set I, onto the tangent plane TNSn ⊂
Rn+1 at the pole N of π belonging to U. The image j(I) of the convex set I
is thus regarded as a convex subset of Rn. This projection sends the great
circles of Sn to the lines in Rn, and the convexity properties of subsets of
Sn can be translated into convexity properties of their images by the map j.
In particular, a subset I of Sn is convex if and only if its image j(I) ⊂ Rn

is convex.
We have to introduce some terminology regarding the sphere Sn in order

to define the spherical Funk geometry. This is analogous to the terminology
we introduced in the Euclidean case.

A supporting hyperplane π to an open convex subset I of Sn is a great
hypersphere whose intersection with the closure I of I is nonempty and
such that I is contained in one of the two connected components of the
complement of π in Sn. We call this component H+

π and we call the other
component H−

π . Each open convex subset of the sphere has a supporting
hyperplane at each point of its boundary. In case we are given a collec-
tion Ii of convex sets, and when we talk about their respective supporting
hyperplanes and the connected components of the complements of these hy-
perplanes, then the upper left-side index of iH±

π denotes the relevant convex
set Ii.

In the rest of this section, I1 and I2 are open convex subsets of Sn whose
bounding convex hypersurfaces are called K1 and K2 respectively. We have
Ki = Ii ∪ Ki for i = 1, 2. We shall also say that a supporting hyperplane
to Ii is a supporting hyperplane to Ki or to Ki, depending on the subset of
the sphere that we want to stress on.

We shall always assume that the property expressed in the following def-
inition is satisfied by K1 and K2.

Definition 11.2. We say that the two hypersurfaces K1,K2 are in good
position if the following two properties are satisfied:

(1) K1 ∩K2 = ∅;
(2) For any great circle C such that C ∩ Ki 6= ∅ for i = 1, 2, the set

C \ (K1 ∪K2) is the union of two spherical segments of length < π.

Proposition 11.3. Assume K1,K2 are in good position. Then, the union
I1 ∪ I2 contains a pair of antipodal points, each of which belongs to one of
the sets I1, I2.

Proof. Take any great circle C on Sn intersecting the two convex setsK1 and
K2. By assumption, C intersects Sn \ (K1 ∪K2) in two spherical segments,
each of length < π. Consider one of these two segments and let k1 ∈ K2

and k2 ∈ K2 be its two boundary points. On the great circle C, moving
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monotonically k1 and k2 inside I1 and I2 respectively, we find, by continuity,
two points in I1 and I2 on C ∩ (I1 ∪ I2) whose distance is equal to π. This
proves the proposition. �

Let P1 and P2 be the sets of supporting hyperplanes to K1 and K2 respec-
tively, and let P1 and P2 be respectively the collections of great hyperspheres
that do not intersect the open convex sets I1 and I2. We have Pi ⊃ Pi. Then,
we have, for i = 1, 2,

Ii = ∩π∈Pi
H+

π = ∩π∈Pi
H+

π .

We let Ω be the union of the open segments ]a1, a2[∈ Sn such that a1 ∈ K1,
a2 ∈ K2 and with ]a1, a2[∩(K1 ∪K2) = ∅.

Proposition 11.4. We have

Ω = Sn \ (K1 ∪K2).

Proof. The inclusion Ω ⊂ Sn \ (K1 ∪K2) is clear from the definition of Ω.
Let P and N be two antipodal points in Sn contained respectively in I1 and
I2 (Proposition 11.3). Given a point p ∈ Sn \ (K1 ∪K2), consider a great
circle C through N and S containing p. This circle intersects Ω in two open
segments, one of which contains p. Let ]a1, a2[ be this segment. We may
assume without loss of generality that ai ∈ Ki for i = 1, 2. This shows that
p is in Ω. �

We now define a partial order relation on Ω.

Definition 11.5 (Partial order). For p and q in Ω, we write p < q, and we
say that q is in the future of p, or that p is in the past of q, if there exists
a segment [p, q] of a great circle C such that [p, q] joins p and q and such
that there exist two points a1 ∈ C ∩ K1 and a2 ∈ C ∩ K2 with the four
points a1, p, q, a2 lying in that order on C with ]a1, a2[⊂ Ω, and ]a1, a2[ not
contained in any supporting hyperplane to K1 or K2.

As usual, we write p ≤ q if p < q or p = q.
For any point p in Ω, we set P2(p) to be the set of great hyperspheres in

Sn separating p from I2.

Definition 11.6 (Future and past). Given a point p in Ω, we call the future
of p the set of points q in Ω such that p < q, and we denote this set by
I
+
2 (p), and the past of p the set of points q in Ω such that q < p, and we

denote this set by I
−
2 (p).

The set I
+
2 (p) is an open subset of Rn. It is also characterized by the

following:

(30) I
+
2 (p) = Int

(
{(∩π∈Pc

2(p)
2H+

π ) \K2} ∩ {∩π∈P1(p)
1H−

π }
)
.

Proposition 11.7. We have the equivalences:

p < q ⇐⇒ Pc
2(p)∪P1(p) ( Pc

2(q)∪P1(q) ⇐⇒ P2(p)∪P
c
1(p) ) P2(q)∪P

c
1(q).

We introduce the set P12(p) = P2(p) ∪ Pc
1(p). The second equivalence in

the above proposition becomes

p < q ⇐⇒ P12(p) ) P12(q).



TIMELIKE FUNK AND HILBERT GEOMETRIES 35

We let P2(p) be the set of supporting hyperplanes to K2 defined as

P2(p) = P12(p) ∩ P2

The set P2(p) is also the set of supporting hyperplanes to K2 at the points
of K2

1 (p), the future set of p in K2
1 .

We have the following:

Proposition 11.8 (Transitivity of the partial order relation). Let p, q and
r be three points in Ω satisfying p ≤ q and q ≤ r. Then we have p ≤ r.

Proof. The proof follows the same outline as Proposition 6.7. �

For each p ∈ Ω, we let P2(p) denote the union of the supporting hyper-
planes at K2 that separate p from I2.

The following proposition is now also proved using the methods intro-
duced previously.

Proposition 11.9. For any two points p and q in Ω, we have:

p < q ⇐⇒ P2(p) ⊃ P2(q).

We now define the timelike spherical relative Funk distance F 2
1 . Its domain

of definition is the subset Ω≤ of the product Ω×Ω consisting of pairs (p, q)
with p ≤ q. We are using the notation that we used in §6 in the context of
the timelike Euclidean relative Funk geometry, assuming that this will not
cause any confusion, since the present section and §6 are independent.

Definition 11.10 (The timelike spherical Hilbert geometry). We first define
F 2
1 on the subset Ω< of Ω × Ω consisting of pairs (p, q) with p < q by the

formula

F 2
1 (p, q) = log

sin d(p, b(p, q))

sin d(q, b(p, q))
,

and we then extend this definition to the pairs (p, p) in the diagonal of Ω×Ω
by setting F 2

1 (p, p) = 0 for any such pair. Here d is the usual spherical
distance function.

Proposition 11.11. The timelike spherical relative Funk distance is also
given by:

F 2
1 (p, q) = inf

π∈P2(q)
log

sin d(p, π)

sin d(q, π)
.

Proposition 11.12 (Time inequality). The function F 2
1 (p, q) satisfies the

timelike inequality:

F 2
1 (p, q) + F 2

1 (q, r) ≤ F 2
1 (p, r)

for any p, q, r in Ω such that p < q < r.
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Proof. Since P(q) ⊃ P(r) (Proposition 11.9), we have

F 2
1 (p, q) + F 2

1 (q, r) = inf
π∈P2(q)

log
sin d(p, π)

sin d(q, π)
+ inf

π∈P2(r)
log

sin d(q, π)

sin d(r, π)

≤ inf
π∈P2(r)

log
sin d(p, π)

sin d(q, π)
+ inf

π∈P2(r)
log

sin d(q, π)

sin d(r, π)

≤ inf
π∈P2(r)

(
log

sin d(p, π)

sin d(q, π)
+ log

sin d(q, π)

sin d(r, π)

)

= inf
π∈P2(r)

log
sin d(p, π)

sin d(r, π)

= F 2
1 (p, r).

�

The following proposition concerning the geodesics of a timelike spherical
relative Funk geometry is an analogue of Proposition 6.11 that concerns
the timelike Euclidean relative Funk geometries, and it is proved in the
same way. It will be useful in the next section, which concerns the Finsler
structure of such a geometry.

Proposition 11.13 (Geodesics). A timelike spherical relative Funk geome-
try F 2

1 defined on a set Ω≤ associated with two disjoint convex hypersurfaces
K1 and K2 in Sn satisfies the following:

(1) The spherical segments in Ω that are of the form [p, q] where p < q
are F 2

1 -geodesics.
(2) The spherical segments in (1) are the unique F 2

1 -geodesic segments
if and only if there is no nonempty open spherical segment contained
in the subset K2

1 of points in K2 facing K1.

12. The Finsler structure of the timelike spherical relative

Funk geometry

For every point p in Ω ⊂ Sn, we associate a timelike Minkowski functional
fF 1

2
(p, v) defined on the subset of the tangent space TpΩ of Ω at p consisting

of the zero-vector union the non-zero vectors v satisfying

(31) expp tv ∈ I
+
1 (p) for some t > 0,

where expp : TpS
n → Sn is the exponential map based at p. We denote by

C+
1 (p) ⊂ TpΩ the union of vectors v that satisfy the property (31) or are the

zero vector.
From the definition of the partial order relation p < q on Ω, the fact that

q lies in the future of p and p lies in the past of q are equivalent:

(32) q ∈ I
+
2 (p) ⇔ p ∈ I

+
1 (q).

Thus, there is a symmetry between C1(p) and C2(p) in the sense that

v ∈ C1(p) ⇔ −v ∈ C2(p).
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Definition 12.1 (Timelike Minkowski functional). We define the function
fF 2

1
(p, v) for p ∈ Ω and for any nonzero vector v ∈ C+

1 (p) by the following

formula:

(33) fF 2
1
(p, v) = inf

π∈P2(p)

〈v, ηπ〉

tan d(p, π)

where 〈·, ·〉 is the canonical Riemannian metric on Sn, and ηπ the unit tan-
gent vector at p perpendicular to π (with respect to the underlying Eu-
clidean metric) and pointing toward π. We extend the definition by setting
fF 2

1
(p, 0) = 0 when v = 0.

Note that due to the condition imposed in Definition 11.2 on the relative
position of K1 and K2, we have d(p, π) < π for each π ∈ P2(p), which in
turn makes the function fF 2

1
well-defined.

There is a timelike Minkowski functional fF 1
2
defined on C1(p) for the

timelike spherical relative Funk metric F 1
2 , obtained simply by interchanging

the indices 1 and 2 of fF 2
1
.

Definition 12.2 (Timelike reverse Minkowski functional). We define the
timelike Minkowski functional f

F 1
2
(p, v) for the timelike Euclidean relative

reverse Funk geometry F 2
1 by

f
F 1
2
(p, v) = fF 1

2
(p,−v),

for v ∈ C+
2 (p) = −C+

1 (p).

Thus the two timelike Minkowski functionals fF 1
2
and f

F 1
2
share the same

domain of definition in TpS
n. It is easy to check the following:

Proposition 12.3. The functionals fF 2
1
(p, v) and f

F 1
2
defined on the open

cone C+
2 (p) in TpΩ satisfy all the properties required by a timelike Minkowski

functional (Definition 3.1).

Repeating the arguments in §5, we set up a timelike space using the
Finsler structure. We say that a piecewise C1 curve σ : [0, 1] → Ω ⊂ Sn,
t 7→ σ(t), is timelike if at each time t ∈ [0, 1] the tangent vector σ′(t) is an
element of the cone C+

2 (σ(t)) ⊂ Tσ(t)Ω.

Definition 12.4 (The partial order relation). Suppose that p and q are two
points in Ω. We write p ≺ q, and we say that q is in the ≺-future of p, if
there exists a timelike piecewise C1 curve σ : [0, 1] → Ω joining p to q.

By following the outline of the corresponding results proved in §5, the
following holds in the present setting. (The proof is the same as that of
Proposition 5.2 except that I+(p) needs to be replaced by I

+
2 (p).)

Proposition 12.5. The two order relations < and ≺ coincide; namely, for
any two points p and q in Ω, we have

p < q ⇔ p ≺ q.

As we did in §4, we denote by δ21 the timelike intrinsic distance function
associated with this timelike Finsler structure:

(34) δ21(p, q) = sup
σ

Length(σ)
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where the supremum is taken over all the timelike piecewise C1 curves σ :
[0, 1] → Ω satisfying σ(0) = p and σ(1) = q. Again, following the general set
up of §4, we show, as in Lemma 4.3, that the intrinsic distance δ(p, q) for
p < q is finite. Finally, we obtain that the domain of definition Ω< defined
with the partial order < for the timelike Funk distance F 2

1 and the domain
of definition Ω≺ for the timelike distance function δ21 coincide. Furthermore,
we shall prove the equality δ21(p, q) = F 2

1 (p, q) for any pair p < q in Ω<. We
state this as follows:

Theorem 12.6. For a pair (p, q) ∈ Ω≤, we have

F 2
1 (p, q) = δ21(p, q).

In different words, we have the following useful form of Theorem 12.6:

Theorem 12.7. The timelike spherical relative Funk geometry F 2
1 is a time-

like Finsler structure with associated Minkowski functional fF 2
1
(p, v).

With the identification F 2
1 = δ21 , given a pair of points p, q with p < q,

there always exists a δ-distance-realizing (length-maximizing) geodesic from
p to q, since the spherical geodesic [p, q] is an F 2

1 -geodesic.

Proof of Theorem 12.6. The proof is similar to the proof of Theorem 5.4:
Given a pair (p, q) with p < q, consider the spherical geodesic ray R(p, q)
from p through q and let b(p, q) ∈ K2 be the first intersection point of this
ray with the convex set K2. Parameterize the geodesic segment [p, q] by
a path σ(t) having parameter t proportionally to arc-length, with σ(0) =
p, σ(1) = q. Then we have

∫ 1

0
fF 2

1
(σ(t), σ′(t)) dt = log

sin d(p, b(p, q))

sin d(q, b(p, q))
= F 2

1 (p, q),

since
d

dt
log

sin d(p, b(p, q))

sin d(σ(t), b(p, q))
= fF 2

1
(σ(t), σ′(t)).

Taking the supremum over the set of piecewise-C1 timelike paths from p to
q, we obtain the inequality

δ21(p, q) ≥ F 2
1 (p, q).

We now need a monotonicity lemma for the intrinsic distances.
We consider a pair of open convex set I1 and I2 bounded respectively by

the two disjoint convex hypersurfaces K1 and K2 which we assume as before
to be in good position (Definition 11.2). Let fF 2

1
: TΩ → R be the associated

timelike Minkowski functional, and δ21 the intrinsic distance induced by fF 2
1
.

Finally, let Î2 ⊃ I2 be another open convex set and K̂2 its bounding

hypersurface. We assume that K1 and K̂2 are also in good position. Let f
F̂ 2
1

be the timelike Minkowski functional of the timelike relative Funk distance
F̂ 2
1 associated with the pair (I1, Î2) and δ̂21 the associated intrinsic distance.

(Note here that the domains of definition of f
F̂ 2
1
and δ̂21 contain those of fF 2

1

and δ21 respectively.)
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Lemma 12.8. Suppose that (p, q) is in the domain of definition of both

timelike intrinsic distances δ21 and δ̂21. Then we have

δ̂21(p, q) ≥ δ21(p, q).

The proof is, with an adaptation of the notation, the same as that of
Lemma 5.6.
Proof of Theorem 12.6 continued.— For (p, q) ∈ Ω<, let

Î2 = H+
πb(p,q)

,

where H+
πb(p,q)

is the open hemisphere bounded by a hyperplane πb(p,q) sup-

porting K2 at b(p, q) and containing Ĩ2. The open set Î is equipped with

its intrinsic distance δ̂. We now apply Lemma 12.8 to this setting, where a

convex set Î2 contains I2, and obtain δ̂21 ≥ δ21 .

For the open hemisphere Î2 = H+
πb(p,q)

, the values of F 2
1 (p, q), F̂

2
1 (p, q) and

δ̂21(p, q) all coincide. Indeed the set P̂2 of supporting hyperplanes consists of
the single element πb(p,q), and the path σ from p to q is length-maximizing,

since every timelike path for Î2 is F̂ 2
1 -geodesic. This follows from the con-

siderations in §6.
By combining the above observations, we have

F 2
1 (p, q) = F̂ 2

1 (p, q) = δ̂21(p, q) ≥ δ21(p, q) ≥ F 2
1 (p, q)

and the equality δ21(p, q) = F 2
1 (p, q) follows. �

13. The timelike spherical Hilbert geometry

In this section, we continue using the notions and notation of §11: I1, I2
is an ordered pair of convex subsets of the sphere Sn whose boundaries are
convex hypersurfaces in Sn denoted by K1 and K2 respectively, satisfying
the conditions stated at the beginning of that section and with Ki = Ii∪Ki

for i = 1, 2. The subset Ω of Sn is defined as in §11, and the partial order
relation p < q for p and q in Ω is defined accordingly, K1 representing the
past and K2 the future.

We denote, as usual, the set of points (p, q) in Ω× Ω satisfying p < q by
Ω<. We also write p ≤ q when p < q or p = q.

F 2
1 is the timelike spherical Funk metric associated with the ordered pair

K1,K2. We showed that this is a timelike Finsler metric, and its associated
timelike Minkowski functional, denoted by fF 2

1
is defined for each point p in

Ω as in §12 on a subset of the tangent space TpΩ of Ω at p which is a cone
denoted by C+

2 (p).
As in the Euclidean case (see Definition 8.1), there is a timelike spherical

relative reverse Funk metric F 2
1 associated with the pair (K1,K2). For this,

we first consider the timelike spherical relative Funk metric F 1
2 associated

with the ordered pair (K2,K1), and we define the new function F 2
1 , whose

domain of definition is equal to the domain of definition of F 2
1 , by

F 2
1 (p, q) = F 1

2 (q, p).
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Definition 13.1 (Timelike spherical Hilbert metric). The timelike spherical
Hilbert metric H2

1 associated with the ordered pair K1,K2 is defined on the
set of ordered pairs (p, q) such that p < q in the setting where the convex
set K1 represents the past and the convex set K2 the future, by the formula

H(p, q) =
1

2
(F 2

1 (p, q) + F 2
1 (p, q)).

As usual, the definition is extended to the case where p = q by setting
H(p, q) = 0.

Unlike the situation studied in [19], there is no straightforward way of
defining a timelike Funk spherical metric,. One reason is that given two
distinct points in the complement of a convex subset of the sphere Sn, there
is no natural way of saying that one is in the future of the other (the great
circle through these points may intersect the convex set in two points).

We recall that given four points p1, p2, p3, p4 situated in that order on a
great circle on the sphere, their spherical cross ratio is defined by

[p1, p2, p3, p4] =
sin d(p2, p4) sin d(p3, p1)

sin d(p3, p4) sin d(p2, p1)
.

Its values are in R≥0 ∪ {∞}. The spherical cross ratio is a projectivity
invariant, cf. [19].

For any pair of points (p, q) in Ω<, let a1 ∈ K1 and a2 ∈ K2 be the
intersection points between the great circle through p and q and the two
hypersurfaces K1 and K2, so that a1, p, q, a2 lie on the arc of great circle
[a1, a2] ⊂ Ω in that order. With this notation, the timelike spherical Hilbert
distance associated with the pair (K1,K2) is also given by the following
equivalent form:

Proposition 13.2. Let p and q be two points in Ω satisfying p < q and let
[a1, a2] be the segment of great circle containing p and q with [a1, a2]∩Ki = ai
for i = 1, 2. Then, we have:

H(p, q) =
1

2
log[a1, p, q, a2].

Proposition 13.3 (Invariance). The timelike spherical Hilbert geometry
associated with the pair of convex sets K1,K2 ⊂ Sn is invariant by the
projective transformations of the sphere Sn that preserve setwise each of the
two convex sets K1,K2.

The timelike spherical Hilbert geometry H has an underlying timelike
Finsler structure which we describe in the next section. For that, we need
first to talk about H-geodesics. The following proposition is analogous to
Proposition 9.2 concerning the timelike Hilbert geometry.

Proposition 13.4. (a) In a timelike spherical Hilbert geometry H asso-
ciated with an ordered pair of convex hypersurfaces K1,K2, the spherical
segments of the form ]a1, a2[, equipped with their natural orientation from
a1 to a2 and satisfying the following three properties

(1) a1 ∈ K1 and a2 ∈ K2;
(2) ]a1, a2[ is not contained in any supporting hyperplane to K1 or to

K2;
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(3) the open spherical segment ]a1, a2[ is in the complement of K1 ∪K2

are H-geodesics. Each such geodesic (with its orientation) is isometric to
the real line.

(b) The oriented spherical segments contained in the segments of the form
[a1, a2] satisfying the properties (1-3) above are the unique H-geodesics if and
only if the following holds: There are no spherical segments [a1, a2] of the
above form with a1 in the interior of an open nonempty spherical segment
J1 ⊂ K1 and a2 in the interior of an open nonempty segment J2 ⊂ K2, with
J1 and J2 coplanar (contained in a 2-dimensional sphere).

The proof is an adaptation of that of the non-timelike spherical Hilbert
metric (Proposition 8.2 of [18]), and we omit it.

We end this section by a remark concerning the hyperbolic analogues of
our timelike spherical Hilbert geometry.

Remark 13.5 (Timelike hyperbolic Funk geometry and timelike hyperbolic
Hilbert geometry). Let us first recall that there is a Funk geometry associ-
ated with a convex hypersurface K in the hyperbolic space Hn. This was
studied by the authors in [19]. In the same way, one can define a timelike
Funk geometry associated with convex subsets of Hn. The pre-order p < q
is defined as in the case of the timelike Euclidean Funk geometry, and the
timelike distance from p to q, where p and q satisfy p < q, is given by the
formula

(35) F (p, q) = log
sinh d(p, b(p, q))

sinh d(q, b(p, q))

where b(p, q) is the point where the ray R(p, q) hits K for the first time, and
d is hyperbolic distance. Several properties of the hyperbolic (non-timelike)
Funk metric proved in [19] hold verbatim for this timelike hyperbolic Funk
geometry. In particular, we have a variational formulation of the timelike
hyperbolic Funk distance:

F (p, q) = inf
π∈P(p)

log
sinh d(p, π)

sinh d(q, π)
.

There is also a timelike hyperbolic Hilbert geometry, defined in a way
analogous to the timelike Hilbert geometry defined in §9, replacing, in the
definition, the distance by the hyperbolic sine of the distance, as we did in
the definition of the timelike hyperbolic metric in (35).

The hyperbolic segments are geodesics for the timelike hyperbolic Funk
and for the timelike hyperbolic Hilbert geometries.

14. The timelike Finsler structure of the timelike spherical

Hilbert geometry

We shall define a function fH(p, v) which will play the role of a timelike
Minkowski functional associated with the timelike spherical Hilbert geom-
etry H. It is defined on pairs (p, v) belonging to the tangent bundle of Ω,
where p ∈ Ω and v is a vector in the tangent space TpΩ which is either the
zero vector or a vector tangent to a segment of great circle starting at p
and pointing in the direction of a point in I

+(p). This function fH(p, v)
is defined by the same formula as the timelike Minkowski norm associated
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with the Finsler structure of the Euclidean Hilbert geometry (see formulae
(23) and (24)):

(36) fH(p, v) = fF 2
1
(p, v) + fF 1

2
(p,−v),

or, equivalently,

(37) fH(p, v) = fF 2
1
(p, v) + f

F 2
1
(p, v)

where fF 2
1
and f

F 2
1
are now the timelike Minkowski norms on the tangent

spaces associated with the timelike spherical relative Funk geometry and the
timelike reverse Funk geometry associated, as in §12. The convex hypersur-
faces K1 and K2 with the given order are implied by the notation.

Repeating the argument in §4, we set up a timelike distance function using
the Finsler structure fH . We say that a piecewise C1 curve σ : [0, 1] → Rn,
t 7→ σ(t) is timelike if at each time t ∈ J the tangent vector σ′(t) is an
element of the cone C+

2 (σ(t)) ⊂ Tσ(t)R
n.

Definition 14.1 (The partial order relation). Suppose that p and q are two
points in Rn. We write p ≺ q, and we say that q is in the ≺-future of p, if
there exists a timelike piecewise C1 curve σ : J → Ω joining p to q.

By following the outline in §4, we have the following in the present setting.
The proof is the same as that of Proposition 5.2 except that I+(p) needs to
be replaced by I

+
2 (p).

Proposition 14.2. The two order relations < and ≺ coincide; namely, for
any two points p and q in Ω, we have

p < q ⇔ p ≺ q.

In analogy with the previous settings considered, we now denote by δ
the timelike intrinsic distance function associated with this timelike Finsler
structure:

(38) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ :
[0, 1] → Ω satisfying σ(0) = p and σ(1) = q. Also, by the work done in
§4 (see Lemme 4.3), the intrinsic distance δ(p, q) for p < q is finite. The
domain of definition Ω< defined with the partial order < for the timelike
Hilbert distance H and the domain of definition Ω≺ for the timelike distance
function δ coincide.

The following theorem is then proved in the same way as Theorem 10.3,
replacing, in the proof, the Euclidean segments joining a pair p, q by the
spherical geodesic joining them:

Theorem 14.3. The timelike spherical Hilbert geometry has an underlying
timelike Finsler structure given by the Minkowski functional fH defined in
(37).
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15. Timelike spherical Hilbert geometry with antipodal

symmetry: Light cone and null vectors

We consider a notable case of a timelike spherical Hilbert metric, namely,
the case where the underlying two convex hypersurfaces K1 and K2 are
antipodal in Sn, that is, they satisfy K2 = −K1 where the minus sign
refers to the antipodal map x 7→ −x of Sn modeled in Rn+1. Note that
the antipodality condition guarantees that K1 and K2 are in good position
(Definition 11.2) on Sn.

In this geometry, the quotient space by the antipodal symmetry group
Z2 is identified with a timelike Hilbert geometry on an open subset of the
projective space RPn, in which K1 and K2 become a single convex hyper-
surface K under the quotient map Sn → RPn. This has been investigated
by Busemann [7]. We do not, however, consider the projective space here,
and exclusively treat the spherical setting with two convex sets K1 and K2.
(Working in the projective space, Busemann gets locally timelike spaces
instead of timelike spaces.)

In this setting, there is a doubling phenomenon for the rays emitted from
a point p ∈ Sn in the complement Ω of K1 ∪K2 where Ki = Ki ∪ Ii: if such
a ray intersects K2 at a point K+

2 (p) in the future, then it also does so at a
point K−

1 (p) in the past.
Let us recall that in the physics modeled by Minkowski geometry, the

fact that a curve in the light cone has zero length corresponds to the fact
that light travels along it at infinite speed. So far, we have carefully avoided
the issue of null vectors in timelike geometry. (This is our condition that
in the definition of relation p < q we do not allow the pair p, q to be on a
supporting line of the convex set.) We did so because there is no obvious
coherent general treatment of such vectors in the timelike Funk and Hilbert
geometries. However, this setting, where K1 and K2 are antipodally located
on Sn, is a particular situation worth being investigated in which null vectors
arise. The details are as follows.

A great circle intersecting K1 at two points a1, b1 also intersects K2 at
two antipodal points a2(= −b1)1, b2(= −a1). Now consider the situation
where a great circle C is a supporting line of K2 and let a2 be a point in
π∩K2. Then, this circle C is also a supporting line at a1, which is identified
with −a2. We consider a pair of points p, q on an arc of the great circle C in
Ω, and the timelike Hilbert distance H(p, q), which is the logarithm of the
spherical cross ratio of the quadruple (a1, p, q, a2) lying on the arc in that
order.

H(x, y) =
1

2
log

sin d(p, a2) sin d(q, a1)

sin d(q, a2) sin d(p, a1)

=
1

2
log

sin d(p, a2) sin(π − d(q, a2))

sin d(q, a2) sin(π − d(p, a2))
= 0.

Here we have used the fact that d(p, a1) = π− d(p, a2), as a1 is antipodal to
a2. As the choices of p and q on the great circle C are arbitrary, we conclude
that the (naturally extended) timelike Minkowski functional evaluated along
the supporting great circle to K1 and K2 = −K1 is zero.

In other words, given a point p in Ω, consider the cone Cone2(p) consisting
of great circles through p each of which is a supporting line of K2. These



44 ATHANASE PAPADOPOULOS AND SUMIO YAMADA

great circles are automatically elements of Cone1(p). Recall that the set of
vectors in TpΩ on which the Minkowski functional PH(p) is defined is equal
to C2(p). Then the tangent vectors in TpΩ which lie in the boundary of the
open cone C2(p) constitute the future-directed light cone at p with respect to
the timelike Minkowski functional for the timelike spherical Hilbert geometry
H. In this way, we see that null vectors in the timelike spherical Hilbert
geometry with antipodal symmetry naturally exist.

16. The de Sitter geometry as a timelike spherical Hilbert

geometry with antipodal symmety

In this last section we explain that the de Sitter space is a special case
of the timelike spherical Hilbert geometry with antipodal symmetry. In the
setting described in the preceding section, if we take K1 to be a small circle
of radius π/4 in Sn ⊂ Rn+1, then the resulting timelike Hilbert geometry is
isometric to the de Sitter metric restricted to the timelike vectors. We now
establish this isometry.

We first recall that the n-dimensional de Sitter space is the unit sphere
in the Minkowski space-time Rn,1, namely,

dSn−1,1 = {(x0, x1, . . . , xn) | − x20 +

n∑

i=1

x2i = 1} ⊂ Rn,1,

equipped with the so-called de Sitter metric, a Lorentzian metric of type
(n, 1) whose first fundamental form is induced from the ambient Minkowski
metric ds2 = −dx20+

∑n
i dx

2
i . It is diffeomorphic to Sn−1×R. The de Sitter

space dSn−1,1 is then an n-dimensional Lorentzian manifold, with global time
orientation where we take the future direction to be the globally defined non-
vanishing vector field ∂

∂x0
. Naturally this induces an order relation in the

sense that q lies in the future of p when there exists a piecewise C1 timelike
curve from p to q.

The intersection between the unit sphere dSn−1,1 and the x0x1-plane in
R is denoted by dS0,1 ⊂ R1,1. This is a totally geodesically embedded
submanifold and geometrically it is a hyperbola (see Figure 7) diffeomorphic
to S0 × R. By using an element of the orthogonal group SO(n, 1), any pair
(p, q), with q lying in the future of p in Sn,1 can be isometrically transposed to
a pair of points on dS0,1 so that the x0 coordinates of the points are positive.
Hence we may assume without loss of generality that p and q belong to a
connected component of the upper hemisphere U = {(x0, x1)| − x20 + x21 =
1, x0 > 0} of dS0,1 in R1,1.

We introduce a parameterization σ(t) of dS0,1, t ∈ R, so that

(x0, x1) = (sinh t, cosh t).

Note that t is an arc-length parameter for the de Sitter metric, as the tangent
vector to σ(t) = (sinh t, cosh t) has norm 1. Hence, for p = σ(t1) and
q = σ(t2) with t1 < t2, the de Sitter distance d(p, q) is equal to t2− t1. Here
the point q lies in the future of p in dSn−1,1.

We now project, as pictured in Figure 7, a part of the hyperboloid {(x0, x1)|−
x20 + x21 = 1, x0 > 0} onto the hyperplane {x0 = 1} along the rays from the
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Figure 7. Projection from the origin of the coordinates onto the
hyperplane at hight 1

origin of R1,1

(39) PdS : {−x20 + x21 = 1} → {x0 = 1}.

Let p̃ = (1, s̃1) and q̃ = (1, s̃2) be the images of p and q by this correspon-
dence, where s̃1 > s̃2. The asymptotic lines x0 = ±x1 of the hyperboloid
{−x20 + x21 = 1} are sent to the points (1, 1) and (1,−1). The cross ra-
tio of those four points defines the Hilbert geometry H for the convex set
I = {x0 > ±x1} in the projective space RP 1, and for a pair of points p̃ and
q̃ with p̃ < q̃, we have

H(p̃, q̃) =
1

2
log

s̃1 − 1

s̃2 − 1
·
s̃2 + 1

s̃1 + 1
.

By noting the equality

s̃i =
sinh ti
cosh ti

,

the Hilbert distance H(p̃, q̃) is equal to (t2 − t1). Hence we have shown that
d(p, q) = H(p̃, q̃) for p < q.

By post-composing the map PdS with the map P−1
S : {x0 = 1} → U where

U is the upper hemisphere {(x0, x1, . . . , xn) | x
2
0+

∑n
i=1 x

2
i = 1, x0 > 0}, the

geodesic through p and q in the de Sitter space is identified with a great circle
in the sphere, and the image of the map P−1

S ◦PdS of the northern half of the
de Sitter space is U \B where B is the northern cap bounded by the small
circle of radius π/4 (see Figure 7). This shows that the timelike geometry
of the de Sitter space is realized by the timelike Hilbert metric modeled on
the sphere. The maps PdS and PS are perspectivities, namely, they preserve
the cross ratio (see [19]). We conclude that the de Sitter distance is equal
to the timelike spherical Hilbert distance.

The quotient space of the de Sitter space is equipped with a locally timelike
Hilbert geometry, where the quotient is taken by the Z2 antipodal symmetry
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of Ω = Sn \ (K1 ∪ −K1), with K1 a small circle of radius π/4 in Sn. The
timelike Hilbert geometry thus defined is only local, as the space Ω = RPn \
K1 is not time-orientable. Namely consider the closed path from p ∈ Ω to
itself, along the circle at infinity of RPn. Traversing the loop then reverses
the orientation of the light cone (cf. Hawking-Ellis [12], Calabi-Marcus [8]).
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Athanase Papadopoulos, Université de Strasbourg and CNRS, 7 rue René
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