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TIMELIKE HILBERT AND FUNK GEOMETRIES

ATHANASE PAPADOPOULOS AND SUMIO YAMADA

Abstract. A timelike space is a Hausdorff topological space Ω equipped with
a partial order relation and a distance function satisfying a set of axioms
including certain compatibility conditions between these two objects. The
distance function is defined only on a certain subset (whose definition uses the
partial order) of the product of the space with itself that contains the diagonal.
Distances between triples of points, whenever they are defined, satisfy the so-
called time inequality, which is a reversed triangle inequality. In the 1960s,
Herbert Busemann developed an axiomatic theory of timelike spaces and of
locally timelike spaces. His motivation comes from the geometry underlying
the theory of relativity and the classical example he gives is the n-dimensional
Lorentzian spaces. Two other interesting classes of examples of timelike spaces
introduced by Busemann are the timelike analogues of the Funk and Hilbert
geometries. In this paper, we investigate these two geometries, and in doing
this, we introduce variants of them, we call timelike relative Hilbert geometries,
in the Euclidean and spherical settings. We display new interactions among the
Euclidean and spherical timelike geometries. In particular, we characterize the
de Sitter geometry as a special case of a timelike spherical Hilbert geometry.

Keywords.— Timelike space, timelike Hilbert geometry, timelike Funk geome-
try, time inequality, convexity, metric geometry, Busemann geometry, Lorentzian
geometry, relativity.
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1. Introduction

A timelike space is a Hausdorff topological space Ω equipped with a partial order
relation < and a distance function ρ which plays the role of a metric. This distance
function is asymmetric in the sense that ρ(x, y) is not necessarily equal to ρ(y, x)
when they are both defined, as ρ(x, y) may be defined whereas ρ(y, x) is not. More
precisely, the distance ρ(x, y) is defined only for pairs (x, y) ∈ R × R satisfying
x ≤ y (that is, either x = y ot x < y). This distance function satisfies the following
three axioms:

(1) ρ(x, x) = 0 for every x in Ω;
(2) ρ(x, y) ≥ 0 for every x and y such that x < y
(3) ρ(x, y)+ρ(y, z) ≤ ρ(x, z) for all triples of points x, y, z satisfying x < y < z.

Not that the last property is a reversed triangle inequality. It is called a time
inequality.

The distance function ρ and the partial order relation < satisfy an additional
set of axioms including compatibility conditions with respect to each other. For
instance, it is required that every neighborhood of a point q in Ω contains points
x and y satisfying x < q < y. This axiom and others are stated precisely in the
memoir [4] by Herbert Busemann. We shall not recall them here (there are too
many of them) but in all the cases that we shall consider, they will be satisfied. As
a matter of fact, in this paper, the topological space Ω will always be a subset of
Rn, Sn or the hyperbolic space Hn.

Theories of timelike spaces, timelike G-spaces, locally timelike spaces and locally
timelike G-spaces were initiated by Busemann in [4] as analogues of his geomet-
ric theories of metric spaces and of G-spaces that he developed in his book [2]
and in other papers and monographs. The motivation for the study of timelike
spaces comes from the geometry underlying the physical theory of relativity. The
classical example is the (3 + 1)-dimensional Minkowski space, which Busemann
generalized, in his paper [4], to the case of general timelike distance functions on
finite-dimensional vector spaces which become, under a terminology that we use,
timelike Minkowski spaces. As other interesting examples of timelike spaces, Buse-
mann introduced timelike analogues of the Funk and Hilbert geometries. In the
present paper, we investigate various such geometries, to which we give the names
of Euclidean timelike Funk geometry, Euclidean timelike relative Funk geometry,
Euclidean timelike Hilbert geometry, hyperbolic timelike Funk geometry, timelike
relative spherical Funk geometry, and timelike sphercal Hilbert geometry. We es-
tablish several results concerning their geodesics, their convexity properties and
their infinitesimal structure. We show in particular that they are timelike Finsler
spaces. This means that the distance between two points is defined infinitesimally
by a timelike norm, that is, that there exists a timelike Minkowski structure on
the tangent space at each point of our space Ω such that the distance between two
points is the length of the longest path joining them, where the length of a path
is defined using the timelike distance function. We also give a description of the
usual de Sitter space as a special case of a spherical timelike Hilbert geometry.

Busemann’s interest, as well as the authors’ in the subject, stem from Hilbert’s
Forth Problem [8] where Hilbert proposed a systematic study of metric spaces
modelled on the Euclidiean space where the geodesics coincide with the Euclidean
line segments. The best known, and most important example of such a metric space
is the Beltrami-Klein model of the hyperbolic plane. The hyperbolic geometry in
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that context is very much hinged with convex Euclidean geometry. The aim of
the current investigation is to revisit the aspect of convex geometry in the exterior
region of convex sets in the constant curvature spaces, which naturally produce
timelike geometries as exemplified by the de Sitter geometry.

In what follows, we will set up a set of necessary tools to capture the geometry
of the exterior region of convex sets, and consequently reformulate the timelike
geometry that differs from Busemann’s approach in [4].

2. The timelike Euclidean Funk geometry

We first introduce some preliminary notions and we establish some basic facts.
With some few exceptions, we shall use Busemann’s notation in [4], and we first
recall it.

Let K be a convex hypersurface in Rn, that is, the boundary of an open (possibly
unbounded) convex set I ⊂ Rn. If K is not a hyperplane, it bounds a unique open
convex set I, namely, the unique convex connected component of Rn \K. If K is
a hyperplane, the two connected components of Rn \ K are both convex, and in
this case we make a choice of one of them, that is, of a half-space bounded by the
hyperplane K. We call the set I associated to K the interior of K. We denote the
closure K ∪ I of I by K◦, a notation used in Busemann’s paper [4].

Let P be the set of supporting hyperplanes ofK, that is, the hyperplanes π having
nonempty intersection with K and such that the open convex set I is contained in
one of the two connected components of Rn \ π.

We let P be the set of hyperplanes not intersecting the open convex set I. We
have P ⊃ P.

For every element π ∈ P, we let H+
π be the open half-space bounded by the

hyperplane π and containing I, and H−
π the open half-space bounded by π and not

containing I. We have:
I = ∩π∈PH

+
π = ∩π∈PH

+
π .

We set
Ω = Rn \K◦.

Then, we also have
Ω = ∪π∈PH

−
π .

Definition 2.1 (Order relation). We introduce a partial order relation between
points of Ω. For any two distinct points p and q in Ω, we write

p < q

if the following three properties are satisfied:

(1) The Euclidean ray R(p, q) from p through q intersects the hypersurface K;
(2) R(p, q) does not belong to a supporting hyperplane of K;
(3) the closed Euclidean segment [p, q] does not interesect K.

When p < q, we say that q lies in the future of p. We also say that p lies in the
past of q (see Figure 1). We write p ≤ q if either p < q or p = q.

We denote by Ω< (resp. Ω≤ ) the set of ordered pairs (p, q) in Ω × Ω satisfying
p < q (resp. p ≤ q). The set Ω< is disjoint from the diagonal set {(x, x) | x ∈ Ω} ⊂
Ω × Ω.

Definition 2.2 (The future set of a point). For p in Ω, we define it future set,
which we denote by I+(p) ⊂ Ω, to be the set of points q that satisfy p < q.

Definition 2.3 (The future set in K). For p in Ω, we define it future set in K,
which we denote by K(p), to be the set of k ∈ K such that ]p, k[∩K = ∅ and ]p, k[
is not contained in any supporting hyperplane of K.
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p

I+(p): the future of p

I−(p): the past of p

Figure 1.

For every point p in Ω, its future set I+(p) is nonempty, open and connected.
For p in Ω, we denote by P(p) the set of hyperplanes π ∈ P that separate the

open convex set I from p. In other words, we have

(1) P(p) = {π ∈ P | p ∈ H−
π }.

We also introduce the set of supporting hyperplanes separating p and I,

(2) P(p) = P(p) ∩ P.

P(p) is also the set of supporting hyperplanes to K at the points of K(p), the
future set of p in K.

We have the following:

Proposition 2.4. For any two points p and q in Ω, we have

p < q ⇔ P(p) ! P(q).

Proof. Suppose p < q. We claim that every π ∈ P(q) is an element of P(p). Indeed,
if this does not hold, then there exists π ∈ P(q) such that p ∈ H+

π ∪ π. For that
choice of π, q lies in H−

π and at the same time the ray R(p, q) intersects K on the
side H−

π , implying K ⊂ H−
π which contradicts the fact that I ⊂ H+

π .
To see the strict inclusion when p < q, choose a hyperplane in P\P that intersects

]p, q[. Such a hyperplane is not in P(q).
Next suppose P(p) ! P(q). Then the following inclusion

I− (p) " I− (q)

follows from the characterization (3) of I− (x).
Hence p is in the past of q, and thus p < q.

!

Corollary 2.5. For any two points p and q in Ω, we have

p < q ⇒ P(p) ⊃ P(q).

Proof. Let p < q. Then, P(p) = (P(p) ∩ P) ⊃ (P(q) ∩ P) = P(q). !

Note that the strict inclusion in Corollary 2.5 cannot be expected, as observed
from the following example in R2

K = {(x, y) | y = |x|}, p = (0,−2) < q = (0,−1)

where we have P(p) = P(q) = {y = mx with |m| ≤ 1}.

Corollary 2.6. Let p, q, r be three points in Ω. If p < q and q < r, then p < r.
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Proof. Proposition 2.4 gives:

p < q and q < r ⇔ P(p) ! P(q) ! P(r).
!

Now we can define the timelike Funk distance F (p, q) on the subset Ω≤ of Ω× Ω.

Definition 2.7 (The past set of a point). For p ∈ Ω, the past set of p, denoted by
I− (p), is the set of points q in Ω such that p is in the future of q.

The set I− (p) is an open subset of Rn, which is also characterized by the follow-
ing:

(3) I− (p) = Int
(
∩π∈P(p) H

−
π

)

where Int( ) denotes the interior of a set.
We shall also need an equivalent description of the set I+(p) which we give now.
Let

P(p)c = P \ P(p)
where P(p) is as before the set of hyperplanes that separate the open convex set I
and p. Hence for a hyperplane π in P(p)c, p is either contained in π or is contained
in the open half space H+

p containing I.
The future set I+(p) of p can now be expressed as

I+(p) = Int(∩π∈P(p)cH
+
π ).

(This should be compared with the expression of the past set I− (p) given in (3).)
As p < q implies the inclusion

P(p) ⊃ P(q),
in the light of the representation I+(p) = Int(∩π∈P(p)cH+

π ), we have the inlcusion

I+(p) ⊃ I+(q).

This implies the inclusion I+(p) ⊃ ∂I+(q). In fact, we have the following stronger
set theoretic relation:

Proposition 2.8. For any p < q, we have

∂I+(p) ∩ ∂I+(q) = ∅.
Proof. Suppose the contrary, and assume that x ∈ ∂I+(p)∩ ∂I+(q). Then there is
a supporting hyperplane π of I so that it contains p and x. As q lies in I+(p), the
ray R(q, x) from q through x intersect transversely with π and it never intersects
the convex hypersurface K, which is a contradiction as R(q, x) is contained in some
supporting hyperplane of K as x ∈ ∂I+(q) and hence it intersects K. !

Thus,

Corollary 2.9. We have the stronger implication:

p < q ⇒ I+(p) ! I+(q).

Definition 2.10 (The timelike Funk distance). The function F (p, q) on pairs of
distinct points p, q in Ω satisfying p < q is given by the formula

F (p, q) = log
d(p, b(p, q))

d(q, b(p, q))

and where b(p, q) is the first point of intersection of the ray R(p, q) with K. Here,
d(· , ·) denotes the Euclidean distance.

Note that the value of F (p, q) is strictly positive.
We extend the definition of F (p, q) to the case where p = q, setting in this case

F (p, q) = 0.



6 ATHANASE PAPADOPOULOS AND SUMIO YAMADA

Let p and q be two points in Ω such that p < q. Let π0 be a supporting hyperplane
to K at b(p, q). For x in Rn, let Ππ0 (x) be the foot of the Euclidean perpendicular
from the point x onto that hyperplane. In other words, Ππ0 : Rn → π0 is the
Euclidean nearest point projection map. From the similarity of the Euclidean
triangles △(p,Ππ0 (p), b(p, q)) and △(q,Ππ0 (q), b(p, q)), we have

log
d(p, b(p, q))

d(q, b(p, q))
= log

d(p,π0)

d(q,π0)
.

Using the convexity of K, we now give a variational characterization of the
quantity F (p, q).

For any unit vector ξ in Rn and for any π ∈ P(p), we set

T (p, ξ,π) = π ∩ {p+ tξ | t > 0}

if this intersection is non-empty.
For p < q in Rn, consider the vector ξ = ξpq = q− p

∥q− p∥ where the norm is the
Euclidean one.

We then have T (p, ξpq,πb(p,q)) = b(p, q) ∈ R(p, q) ∩K.
In the case where π ∈ P(q) is not a supporting hyperplane of K at b(p, q), the

point T (p, ξpq,π) lies outside K◦ and, again by the similarity of the Euclidean
triangles △(p,Ππ(p), T (p, ξpq,π)) and △(q,Ππ(q), T (p, ξpq,π)), we get

d(p,π)

d(q,π)
=

d(p, T (p, ξpq,π))

d(q, T (p, ξpq,π))
.

Note that as π varies in P(q), the farthest point from p on the ray R(p, q) of the
form T (p, ξpq,π) is b(p, q), and this occurs when π supports K at b(p, q). This in
turn says that a hyperplane πb(p,q) which supports K at b(p, q) minimizes the ratio

d(p, T (p, ξpq,π))

d(q, T (p, ξpq,π))

among all the elements of P(q) and thus we obtain

Proposition 2.11.

logF (p, q) = inf
π∈P(q)

log
d(p,π)

d(q,π)
.

Remark 2.12. There is an analogous formula for the classical (non-timelike) Funk
metric, where the infimum in the above formula is replaced by a supremum (see
[15] Theorem 1.)

Remark 2.13. The set I+(p) of future points of a point p, that is, the set of
points q satisfying p < q reminds us of the cone of future points of some point p
in the ambient space of the physically possible trajectories of this point in the case
of Minkowski space, that is, in the geometric setting of spacetime for the theory of
(special) relativity. The restriction of the distance function to the cone comes from
the fact that a material particle travels at a speed which is less than the speed of
light. The set of points on the rays starting at p that are on the boundary ∂I+(p)
of the future region I+(p) becomes an analogue of the “light cone” of spacetime
(again using the language of relativity). In our definition of timelike geometry, the
points of light cone is excluded and we will postpone further discussion of light
cones till §15.

We shall prove that the function F (p, q) satisfies the reverse triangle inequality,
which we call in this context, after Busemann, the time inequality. This inequality
holds for mutually distinct triples of points p, q and r in Ω, satisfying p < q < r:
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Proposition 2.14 (Time inequality). For any three points p, q and r in Ω, satis-
fying p < q < r, we have

F (p, q) + F (q, r) ≤ F (p, r).

Proof. We use the formula given by Proposition 2.11 for the timelike Funk distance.
We have, from P(q) ⊃ P(r) (Corollary 2.5):

F (p, q) + F (q, r) = inf
π∈P(q)

log
d(p,π)

d(q,π)
+ inf

π∈P(r)
log

d(q,π)

d(r,π)

≤ inf
π∈P(r)

log
d(p,π)

d(q,π)
+ inf

π∈P(r)
log

d(q,π)

d(r,π)

≤ inf
π∈P(r)

(
log

d(p,π)

d(q,π)
+ log

d(q,π)

d(r,π)

)

= inf
π∈P(r)

log
d(p,π)

d(r,π)

= F (p, r).

!

In the rest of this section, we study geodesics and spheres in timelike Funk
geometries. We shall prove analogues of results in the paper [9] where the corre-
sponding results are proved in the non-timelike Funk setting. The current setting
is motivated by Busemann’s work [2].

First we consider geodesics for the timelike Funk distance. We start with the
definition of a geodesic. This definition is the same as in an ordinary metric spaces,
except that some care has to be taken so that the distances we need to deal with
are always defined.

A geodesic is a path σ : J → Ω, where J may be an arbitrary interval of R ,
such that for every pair t1 ≤ t2 in J we have σ(t1) ≤ σ(t2) and for every triple
t1 ≤ t2 ≤ t3 in J we have

F (σ(t1),σ(t2)) + F (σ(t2),σ(t3)) = F (σ(t1),σ(t3)).

It follows easily from the definition that for any p < q the Euclidean segment
[p, q] joining p to q is the image of a geodesic. This makes the distance function F
satisfy Hilbert’s Fourth Problem [8] if this problem is generalized in an appropriate
way to include timelike spaces. (We recall that one form of this problem asks for a
characterization of metrics on subsets of Euclidean space such that the Euclidean
lines are geodesics for this metric.) In particular, the time inequality becomes an
equality when p, q and r satisfying p < q < r are collinear in the Euclidean sense.

It is important to note that in all the development of geodesics in timelike spaces,
it is understood that geodesics are equipped with a natural orientation. Traversed
in the reverse sense, they are not geodesics.

Let us make an observation which concerns the non-uniqueness of geodesics and
the case of equality in the time inequality. Assume that the boundary of the convex
hypersurface K contains a Euclidean segment s. Take three points p, q, r in Ω such
that P (p, q) and P (q, r) intersect s (Figure 2). Then, using the Euclidean intercept
theorem, we have

F (p, r) = F (p, q) + F (q, r).

Applying the same reasoning to an arbitrary ordered triple on the broken Euclidean
segment [p, q] ∪ [q, r], we easily see that this segment is an F -geodesic. More gen-
erally, by the same argument, we see that any oriented arc in Ω such that any ray
joining two consecutive points on the arc hits the segment s is the image of an
F -geodesic.
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p

q

r

s

Figure 2. The broken segment pqr is a geodesic

We deduce the following:

Proposition 2.15. A timelike Funk geometry F defined on a set Ω≤ associated to
a convex hypersurface K in Rn satisfies the following properties:

(1) The Euclidean segments in Ω that are of the form [p, q] where p < q are
F -geodesics.

(2) Any Euclidean line [p, b) from a point p in Ω to a point b in ∂K, equipped
with the metric induced from the timelike Funk distance, is isometric to a
Euclidean ray.

(3) The Euclidean segments in (1) are the unique F -geodesic segments if and
only if the convex set I is strictly convex.

The proof is the same as that of the equivalence between (1) and (2) in Corollary
8.7 of [10], up to reversing some of the inequalities (i.e. replacing the triangle
inequality by the time inequality), therefore we do not include it here.

After the geodesics, we consider spheres.

Definition 2.16. At each point p of Ω, given a real number r > 0, the future
sphere of radius r centered at p is the set of points in Ω that are in the future of p
and situated at F -distance r from this point.

Proposition 2.17 (Future spheres). At each point p of Ω and for each r > 0, the
future sphere of center p and radius r is a piece of a convex hypersurface that is
affinely equivalent to K(p), the future of p in K.

The proof is analogous to that of Proposition 8.11 of [9], and we do not repeat
it here.

Proposition 2.17 implies that some affine properties of the hypersurface K are
local invariants of the metric. One consequence is the following strong local rigidity
theorem, which is also an analogue of a property satisfied by the non-timelike Funk
metric (cf. the concluding remarks of the paper [9]).

Corollary 2.18. Let K and K ′ be two hypersurfaces in Rn and Ω≤ and Ω′
≤ the set

of corresponding pairs of points for which the associated timelike Funk distances F
and F ′ respectively are defined. If there exists subsets O ⊂ Ω≤ and O′ ⊂ Ω′

≤ and a
map O → O′ which is distance-preserving, then there is an open subset of K which
is affinely equivalent to an open subset of K ′.

The proof follows from the fact that an isometry sends a future sphere to a future
sphere.
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The corollary has interesting consequences. For instance, it implies that if K is
the boundary of a polyhedron and K ′ a strictly convex hypersurface, then there is
no local isometry between the associated timelike spaces.

We next show a useful monotonicity result for a pair of timelike Funk geometries
which is essentially follows from a remark in convex geometry.

Given our open convex set I with associated Funk distance F , we let Î ⊃ I be
another open convex set containing I and F̂ (p, q) the associated timelike distance
defined on the appropriate set of pairs (p, q).

Proposition 2.19. For all p and q in the domains of definition of both distances
F and F̂ (that is, for p < q with respect to both convex sets I and Î), we have

F̂ (p, q) ≥ F (p, q).

Proof. Using the notation of Definition 2.10, we have

F (p, q) = log
d(p, b(p, q))

d(q, b(p, q))
.

With similar notation, we have

d̂(p, q) = log
d(p, b̂(p, q))

d(q, b̂(p, q))
.

Since Î ⊃ I, we have d(p, b̂(p, q)) = d(p, b(p, q))+x and d(q, b̂(p, q)) = d(q, b(p, q))+x
for some x ≥ 0. The result follows from the fact that the function defined for x ≥ 0
by

x /→ a−x

b−x
,

where b < a are two constants, is increasing. !

3. Timelike Minkowski spaces

Consider a finite-dimensional vector space, which we identify without loss of
generality with Rn. We introduce on this space a timelike norm function which
we also call a timelike Minkowski functional, in analogy with the usual Minkowski
functional (or norm function) defined in the non-timelike sense. To be more precise,
we start with the following definition (cf. [4] § 5).

Definition 3.1 (Timelike Minkowski functional). A timelike Minkowski functional
is a function f satisfying the following:

(1) f is defined on C ∪ {O}, where C ⊂ Rn is an open convex cone of apex the
origin O ∈ Rn, that is, an open convex subset invariant by the action of
the positive reals R>0;

(2) f(O) = 0;
(3) f(x) > 0 for all x in C;
(4) f(λx) = λf(x) for all x in C and λ > 0;
(5) f ((1−t)x+ ty) ≥ (1−t)f(x) + tf(y) for all 0 < t < 1.

It follows from the concavity condition (5) that the closure of the cone C possesses
a supporting hyperplane which intersects it only at the apex; cf. Busemann [4] p.
30. We shall say that a cone C posessing this property is proper.

We shall say that C ⊂ Rn is the cone associated with the timelike Minkowski
functional f .

Note that by the convexity of −f , f is continuous.
The unit sphere B of such a timelike norm function f is the set of vectors x in

C satisfying f(x) = 1. In general, B is a piece of a hypersurface in Rn which is
concave when viewed from the origin O (see Figure 3). We allow the possibility
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that B is asymptotic to the boundary of the cone C. The unit sphere B is called
the indicatrix of f .

O

B

Figure 3. The indicatrix B in the tangent space to a point in Ω.

The reason of the adjective timelike in the above definition is that in the Lorentzian
setting, the Minkowski norm measures the lengths of vectors in the timelike cone,
which is the part of spacetime where material particles move. In particular, there is
a timelike Minkowski functional f for the standard Minkowski space R3,1, equipped
with the Minkowski metric

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3.

It is given by

f(x) =
√
−(−x2

0 + x2
1 + x2

2 + x2
3)

and it is defined for vectors x in R4 satisfying −x2
0 + x2

1 + x2
2 + x2

3 < 0 or x = 0.

4. Timelike Finsler structures

Definition 4.1 (Timelike Finsler structure). A timelike Finsler structure on a
differentiable manifoldM is a family {fp}p∈M where each fp is a timelike Minkowski
functional defined on the tangent space TM of M at p. In the tangent space at each
point p in M , there is a cone Cp associated to fp which plays the role of the cone
C ∪ {O} associated in Definition 3.1 to a general timelike Minkowski functional.
We assume that fp together with its associated cone Cp depend continuously on
the point p.

In the situations considered in this paper, M will be either an open subset of a
Euclidean space Rn or of a sphere Sn. (In some rare cases, it will be a subset of a
hyperbolic space Hn.)

We say that a piecewise C1 curve σ : J → M , t /→ σ(t), defined on an interval J
of R , is timelike if at each time t ∈ J the tangent vector σ′(t) is an element of the
cone Cσ(t) ⊂ Tσ(t)M .

Definition 4.2 (The partial order relation). If p and q are two points in M , we
write p ≺ q, and we say that q is in the ≺ -future of p, if there exists a timelike
piecewise C1 curve σ : J → M joining p to q.

Proposition 4.3. The two order relations < and ≺ coincide; namely, for any two
points p and q in M , we have

p < q ⇔ p ≺ q.

Proof. The implication p < q ⇒ p ≺ q follows from that fact that for p < q, the
parameterized curve

σ(t) = p+
q −p

∥q −p∥ t
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for t ∈ [0, 1] is a C1 timelike curve from p to q.
The other implication p < q ⇐ p ≺ q follows from the claim that given p ≺ q

and for any piecewise C1 timelike curve σ with σ(0) = p and σ(1) = q,

σ(t) ∈ I+(p)

for all t in [0, 1]. In particular, we have σ(1) = q ∈ I+(p), and hence p < q.
The proof of the claim is as follows.
We start by the observation that the path σ, being timelike, starts at the point p

with a right derivative at p pointing strictly inside the cone C(p). This implies that
the point σ(t) is strictly inside the set I+(p) for any sufficiently small t. Likewise,
from the continuity of σ and the openness of I+(p), the connected component of
the set {t ∈ [0, 1] |σ(t) ∈ I+(p)} containing t = 0 is open in [0, 1]. Define a0 by

a0 = sup{a ∈ [0, 1] |σ(t) ∈ I+(p) for 0 ≤ t ≤ a}.
We want to show that a0 = 1. This will imply that the set {t ∈ [0, 1] |σ(t) ∈ I+(p)}
is an open and closed subset of [0, 1]. This will give the desired result.

Suppose the contrary; namely a0 < 1 and thus σ(a0) lies in the boundary ∂I+(p).
Then we can find a sequence ai ↗ a0 such that p < σ(ai) for all i and such that

lim
i→∞

distance(σ(ai), ∂I
+(p)) = 0,

while distance(∂I+(p), ∂I+(ai)) is uniformly bounded from below by some positive
number for all i sufficiently large, as

∂I+(p) ∩ ∂I+(q) = ∅
for any p < q, as follows from Corollary 2.9. This gives the desired contradiction.

!
We define the length of a piecewise C1 timelike curve σ(t) by the Lebesgue

integral

Length(σ) =

∫ 1

0
fσ(t)(σ

′(t)) dt.

We then define a function δ on pairs of points (p, q) satisfying p < q by setting

(4) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. We shall show that δ defines a timelike distance
function.

It is easy to see from the definition of δ that it satisfies the timelike inequality,
once we show the following

Lemma 4.4. For any pair p and q satisfying p < q, we have δ(p, q) < ∞.

Proof. To see that the supremum in (4) is finite, we introduce a reference metric
on a chart of the manifold modelled on the Minkowski space (Rn,−c2dt2 + dx2

1 +
· · · + dx2

n− 1) as follows. Let (U,φ) be a local chart on M containing a point p
so that φ(U) is an open subset of Rn with φ(p) = O. As φ : U → φ(U) is a
diffeomorphism, each open cone Cp in TpM on which the Minkowski functional
fp : Cp → R is defined is mapped to a proper convex cone Cφ(p) in Rn by the linear
map dφp. Hence we have a field of proper cones {Cx}x∈φ(U). By the continuity of

dφp in p, there exists an open neighborhood V ⊂ U of p so that on V there is a field
of supporting hypersurfaces of {Cx}x∈V : {πx ⊂ TxRn} with all the hyperplanes
{πx}x∈V sharing the same normal vector in Rn.

We introduce a Minkowski metric gc = −c2dt2 + dx2
1 + · · · + dx2

n− 1 on V ⊂
Rn where the constant c (the speed of light) will be determined below. The
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x1x2 . . . xn− 1-plane is identified with πx for each x ∈ V . We also consider B1(x) ⊂
TxRn, the set of future directed timelike vectors v with −1 < gc(v, v) ≤ 0. Then
we can choose the constant c > 0 sufficiently large so that

(1) the light cone {v ∈ TxRn | gc(v, v) < 0} properly contains Cx at each x ∈ V ;
(2) each gc-unit vector v in ∂B1(x) ∩ Cx, which is identified with a tangent

vector w := (dφx)− 1v in Tφ−1 (x)M has norm fφ−1 (x)(w) < 1.

So far, we have defined an auxiliary norm fM
q : Cq → R for any q ∈ φ− 1(V ) with

fM
q (v) > fq(v). We denote the distance with respect to the Minkowski metric gc
by dc. Note that the condition (1) ensures that a timelike curve in M with respect
to the family of norms fq is also timelike for the auxiliary family of norms fM

q .

Now given a timelike C1-curve σ : [a, b] → φ− 1(V ) ⊂ M through p = σ(0), we
have the following length comparison

∫ b

a
fσ(t)(σ

′(t)) dt <

∫ b

a
fM
σ(t)(σ

′(t)) dt

with the auxiliary length bounded above;
∫ b

a
fM
σ(t)(σ

′(t)) dt < dc(φ(σ(a)),φ(σ(b))) < ∞.

as the line segment [φ(σ(a)),φ(σ(b))] is the length maximizing timelike curve in the
Minkowski space (Rn,−c2dt2 + dx2

1 + · · ·+ dx2
n− 1). !

It follows that the timelike distance function δ defines a timelike structure on the
space Ω≤ . This timelike structure is the analogue of the so-called intrinsic metric
in the non-timelike case. We call δ the timelike intrinsic distance associated with
the timelike Finsler structure.

5. The timelike Finsler structure of the timelike Funk distance

In this section, we show that the timelike Funk distance F associated to a convex
hypersurface K in Rn is Finsler in an appropriate sense which we now describe; we
shall call such a structure a timelike Finsler structure in the sense of §4. In other
words, we show that on the tangent space at each point of Ω = Rn \K◦, there is a
timelike Minkowski functional which makes this space a timelike Minkowski space,
such that the timelike Funk distance F (p, q) between two points p and q is obtained
by integrating this norm on tangent vectors along piecewise C1 paths joining p to
q and taking the supremum (instead of the infimum, in the non-timelike case) of
the lengths of such piecewise C1 paths. The paths are restricted to those where the
tangent vector at each point of Ω belongs to the domain of the timelike Minkowski
functional.

For every point p in the timelike Funk geometry F of a space Ω≤ associated to
a convex hypersurface K, there is a timelike Minkowski functional fF (p, v) defined
on the subset of the tangent space TpΩ of Ω at p consisting of the non-zero vectors
v satisfying

p+ tv ∈ I+(p) for some t > 0

where we recall that I+(p) is the future of p. We denote by C+(p) ⊂ TpΩ the union
of vectors v that satisfy this property or are the zero vector. We define the function
fF (p, v) for p ∈ Ω and v ∈ C+(p) by the following formula:

(5) fF (p, v) = inf
π∈P(p)

⟨v, ηπ⟩
d(p,π)

for v ∈ C+(p) where P(p) is as in (2) and where ηπ is the unit tangent vector at
p perpendicular to π and pointing toward π. We define fF (p, 0) = 0. We shall
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show that this defines a timelike Minkowski functional and that this functional is
associated to a timelike Finsler geometry underlying the timelike Funk distance F .

By elementary geometric arguments (see [15] for a detailed discussion in the
non-timelike case which can be adapted to the present setting) it is shown that

(6) fF (p, v) =
∥v∥

inf{t | p+ t v
∥v∥ ∈ K◦}

for any nonzero vector v ∈ C+(p).
Note that the quantity inf{t | p+t v

∥v∥ ∈ K◦} in the denominator is the Euclidean
length of the line segment from p to the point where the ray p+ tv hits the convex
set K◦ for the first time. A simpler way to write the Minkowski functional in (5)
is:

(7) fF (p, v) = sup{t : p+ v/t ∈ K0}.
We have the following;

Proposition 5.1. The functional fF (p, v) defined on the open cone C+(p) in
TpΩ ∼= Rn satisfies all the properties required by a timelike Minkowski functional.

Proof. It is easy to check the required properties. We make a remark regarding the
last property in Definition 3.1. The inequality is a concavity of the linear functional
fF on the tangent space TpRn, which follows from the fact that fF is an infimum
over P(p) of the linear (and in particular concave) functionals, which is concave. !

Now we repeat the argument in §4, to set up a timelike space using the Finsler
structure. We say that a piecewise C1 curve σ : J → M , t /→ σ(t), defined on
an interval J of R , is timelike if at each time t ∈ J the tangent vector σ′(t) is an
element of the cone C+(σ(t)) ⊂ Tσ(t)M .

Definition 5.2 (The partial order relation). If p and q are two points in M , we
write p ≺ q, and we say that q is in the ≺ -future of p, if there exists a timelike
piecewise C1 curve σ : J → M joining p to q.

The following proposition is proved as was done in the proof of Proposition 4.3.

Proposition 5.3. The two order relations < and ≺ coincide; namely, for any two
points p and q in M , we have

p < q ⇔ p ≺ q.

As we did so in §4, we denote by δ the timelike intrinsic distance function asso-
ciated to this timelike Finsler structure:

(8) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. Like in Lemma 4.4, it is seen that the intrinsic
distance δ(p, q) for p < q is finite.

We thus have shown that the domain of definition of the set Ω< associated with
the partial order < for the timelike Funk distance F 2

1 and the domain of definition
Ω≺ for the timelike distance function δ21 coincide. Furthermore, we shall prove the
equality δ(p, q) = F (p, q) for any pair p < q in Ω<. We state this as follows:

Theorem 5.4. The value of the timelike distance δ(p, q) for a pair (p, q) ∈ Ω≤
coincides with F (p, q). That is, we have

F (p, q) = δ(p, q).

In other words, we have the following
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Theorem 5.5. The timelike Funk geometry is a timelike Finsler structure defined
by the Minkowski functional fF (p, v).

The timelike Minkowski functional fF (p, v) which underlies a timelike Funk ge-
ometry has a property which is analogous to the one noticed in [9] which makes that
metric the tautological Finsler structure associated with the hypersurface K (or the
convex body I). The term “tautological” is due to the fact that the indicatrix of
the timelike Minkowski functional at p ∈ Ω, that is, the set

Ind(p) = {v ∈ C+(p) ⊂ TpΩ | fF (p, v) = 1},
is affinely equivalent to the relative interior (with respect to the topology of K) of
the intersection of that hypersurface with I+(p), the closure in Rn of the subset
I+(p).

We also note that with this identification, given a pair of points p, q with p < q,
there always exists a distance-realizing (length-maximizing) geodesic from p to q,
since the Euclidean segment [p, q] is an F -geodesic.

Proof of Theorem 5.4. For a pair of points (p, q) with p < q, we consider the map

(9) σ : [0, 1] → Rn

parametrizing the Euclidean segment [p, q] parametrized proportionally to arc-
length t with σ(0) = p,σ(1) = q. Then we have

∫ 1

0
fF (σ(t),σ

′(t)) dt = log
d(p, b(p, q))

d(q, b(p, q))
= F (p, q),

since
d

dt
log

d(p, b(p, q))

d(σ(t), b(p, q))
= fF (σ(t),σ

′(t)).

By taking the supremum over the set of paths from p to q, this implies the inequality

(10) δ(p, q) ≥ F (p, q).

Before continuing the proof of Theorem 5.4, we show a monotonicity property
for the intrinsic distance that will be useful.

Let Î ⊃ I be an open convex set containing I and let K̂ be its bounding hyper-
surface. Let F̂ be the timelike Funk metric, fF̂ its associated timelike Minkowski

functional, and δ̂ the associated intrinsic distance. (Note that the domains of defi-

nition of fF̂ and δ̂ contain those of fF and δ respectively.) We have the following:

Lemma 5.6. For p and q in the domains of definition of both intrinsic distances
δ and δ̂, we have

δ̂(p, q) ≥ δ(p, q).

Proof. Between the two timelike Minkowski functionals fF and fP̂ , we have the
following inequality

fF̂ (x, v) ≥ fF (x, v)

whenever the two quantities are defined concurrently. This follows from the defini-
tion of the Minkowski functional:

(11) fF (p, v) =
∥v∥

inf{t | p+ t v
∥v∥ ∈ K}

for any nonzero vector v in both domains of definition, as K̂ is closer to p than K.
Hence by integrating each functional along an admissible path (note that admissible

paths for δ are also admissible paths for δ̂) and taking the supremum over these
paths, we obtain

δ̂(p, q) ≥ δ(p, q).
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!
Proof of Theorem 5.4 continued.— Suppose that we have a convex hypersurface K
bounding an open convex set I, and for (p, q) ∈ Ω<, let

Î = H+
πb(p,q)

,

where H+
πb(p,q)

is the open half-space bounded by a hyperplane πb(p,q) supporting K

at b(p, q) and containing I. The open set Î is equipped with its intrinsic distance

δ̂. We now apply Lemma 5.6 to this setting where a convex set Î contains I, and
obtain δ̂ ≥ δ.

For the open half space Î = H+
πb(p,q)

, the values of F (p, q), F̂ (p, q) and δ̂(p, q)

all coincide. Indeed, under the hypothesis Î = H+
πb(p,q)

, the set P of supporting
hyperplanes consists of the single element πb(p,q), and the line segment σ from p

to q defined in (9) is a length-maximizing path, since every timelike path for Î is
F̂ -geodesic. (Such arguments were already used in §2.)

By combining the above observations, we have

(12) F (p, q) = F̂ (p, q) = δ̂(p, q) ≥ δ(p, q) ≥ F (p, q)

and the equality δ(p, q) = F (p, q) follows. !
We end this section by the following convexity result on the timelike Funk dis-

tance associated to a strictly convex hypersurface K:

Theorem 5.7. Assume that K is strictly convex. Given a point x in Ω and M > 0,
the set of points

SM (x) := {p ∈ Ω | p < x and F (p, x) > M}
is a convex set in Ω = Rn \K◦.

Proof. Since K is strictly convex, any F -geodesic is a Euclidean segment. Given
p1 and p2 in SK(x), parameterize the Euclidean segment [p1, p2] with an affine
parameter t ∈ [0, 1] by s(t), with s(0) = p1 and s(1) = p2. We shall show that the
function t /→ F (s(t), x) is concave.

By Proposition 2.11, we have

F (s(t), x) = inf
π∈P(x)

log
d(s(t),π)

d(x,π)
.

Fix a supporting hyperplane π in P. Then

d

dt
log

d(s(t),π)

d(x,π)
=

⟨−νπ(s(t)), ṡ(t)⟩
d(s(t),π)

and
d2

dt2
log

d(s(t),π)

d(x,π)
= −⟨−νπ(s(t)), ṡ(t)⟩2

d(s(t),π)2
≤ 0,

where νπ(x) is the unit vector at x perpendicular to the hypersurface π oriented
toward π. In particular −νπ is the gradient vector of the function d(x,π). The sign

of the second derivative says that log d(s(t),π)
d(x,π) is concave in t for each π ∈ P. By

taking the infimum over π ∈ P, the resulting function F (s(t), x) is concave in t.
This implies that the super-level set SK(x) of the Funk distance F (., x) is convex.

!
As an analogous situation in special relativity, the super-level set of the past-

directed temporal distance measured from a fixed point in the Minkowski space
Rn,1 is convex. For example, the set below the past-directed hyperboloid: S1(0) =
{(x0, x1) ∈ R1,1 | −x2

0 + x2
1 < −1, x0 < 0} is convex.
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6. The timelike Euclidean relative Funk geometry

Let K1 and K2 be two disjoint convex hypersurfaces in Rn that bound convex
sets I1 and I2 respectively, with K◦

1 = K1∪ I1 and K◦
2 = K2∪ I2 being the closures

of I1 and I2 respectively.
A Euclidean timelike relative Funk geometry is associated with the partial or-

dered pair K1,K2. Its underlying space is the subset Ω of Rn, as pictured in Figure
4, defined as the union

Ω = ∪]a1, a2[,
the union being over the intervals ]a1, a2[⊂ Rn such that a1 ∈ K1, a2 ∈ K2,
]a1, a2[∩K = ∅ for i = 1, 2 and such that there is no supporting hyperplane π to
K1 or to K2 containing ]a1, a2[.

We let K2
1 ⊂ K2 be the set of points k2 ∈ K2 such that there exists a point

k1 ∈ K1 with ]k1, k2[= ∅. We shall say that K2
1 is the subset of K2 facing K1.

!
!

!
"

"
"

"
!

The space ! of the relative Funk metric

Figure 4

In the rest of this section, the pair K1,K2 is always understood to be an ordered
pair, even if the notation we use does not reflect this fact. For reasons that will
become apparent soon, K1 represents the past, and K2 the future. We shall also
say that K1 is the future of K2.

Definition 6.1 (Order relation). For p and q in Ω, we write p < q if we can find an
open Euclidean segment ]a1, a2[⊂ Ω such that four points a1, p, q, a2 are collinear
in that order, and such that ]a1, a2[ is not contained in any supporting hyperplane
of K1 or of K2.

If p < q then we say that q lies in the future of p, and that p lies in the past of
q.

We write p ≤ q if either p < q or p = q.
We denote by Ω< (resp. Ω≤ ) the set of ordered pairs (p, q) in Ω × Ω satisfying

p < q (resp. p ≤ q). The set Ω< is disjoint from the diagonal set {(x, x) | x ∈ Ω} ⊂
Ω × Ω.

!
!

!
"

"
"

"
!

The relative future of !

#

Figure 5. Relative future of p
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Definition 6.2 (The relative future of a point). For p in Ω, we denote by I+2 (p)
the set of all points q ∈ Ω which are in the relative future of p, and we call this set
the relative future of p. It is represented in Figure 5.

For every point p in Ω, its relative future set I+2 (p) is nonempty, open and
connected.

We shall sometimes use the word “future” instead of the expression “relative
future” if the context is clear.

Definition 6.3 (The relative future in K2 of a point). For p in Ω, we consider the
following subset of K2:

K2
1(p) = {a2 ∈ K2 such that ∃a1 ∈ K1 with p ∈]a1, a2[⊂ Ω}

and we say that K2
1 (p) is the relative future of p in K2.

!
!

!"
!
!#

!
"

"
"

Figure 6

In order to formulate the relative Funk geometry, we introduce the following
notation:

• P̃2 is the set of supporting hyperplanes to K2 at points in K2
1 .

• Ĩ2 = ∩H+
π where π varies in P̃2. This is an open convex subset of Rn and it

contains I2 = ∩H+
π where the union is over π varying in P2.

• K̃2 is the boundary of the closure of Ĩ2. (Ĩ2 are represented in Figure 6.)

• K̃2
◦
= K̃2 ∪ Ĩ2.

• P̃2(p) is the set of hyperplanes in Rn separating p from Ĩ2.

• P̃2(p) is the set of supporting hyperplanes to K̃2 at the points of K2
1(p).

We have

(13) P̃2(p) = P̃2(p) ∩ P̃2.

P̃2(p) is also the set of supporting hyperplanes to K2 at the points of K2
1 (p), the

future set of p in K2
1 . We note that a supporting hyperplane π to Ĩ2 that contains

p does not belong to P̃2(p).

For every element π ∈ P̃2, we let H+
π be the open half-space bounded by the

hyperplane π and containing Ĩ2, and H−
π the open half-space bounded by π and

not containing Ĩ2. We have:

Ĩ2 = ∩
π∈P̃2

H+
π = ∩π∈P̃2

H+
π .

We have

(14) P̃2(p) = {π ∈ P̃2 | p ∈ H−
π }.
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Definition 6.4 (The relative past of a point). For p ∈ Ω, the relative past of p,
denoted by I−2 (p), is the set of points q in Ω such that p is in the relative future of
q.

The set I−2 (p) is an open subset of Rn, and it is also characterized by the fol-
lowing:

(15) I−2 (p) = Int
(
∩π∈P̃2 (p)

H−
π

)

where Int(·) denotes the interior of a set.

Proposition 6.5. We have the equivalence: p < q ⇐⇒ P̃2(p) ! P̃2(q)

Proof. Suppose p < q. We claim that every π ∈ P(q) is an element of P̃2(p). Indeed,
if this does not hold, then there exists π ∈ P(q) such that p ∈ H+

π ∪ π. For that
choice of the hyperplane π, the point q lies in H−

π and at the same time the ray

R(p, q) intersects K̃2 on the side H−
π , implying K ⊂ H−

π , which contradicts the fact
that Ĩ2 ⊂ H+

π .

To see the strict inclusion when p < q, choose a hyperplane in P̃2 \ P̃2 that
intersects ]p, q[. Such a hyperplane is not in P(q).

Next suppose P(p) ! P(q). Then the following inclusion

I− (p) " I− (q)

follows from the characterization (15) of I− (x).
Hence p is in the past of q, and thus p < q.

!
Corollary 6.6. For any two points p and q in Ω, we have

p < q ⇒ P̃2(p) ⊃ P̃2(q).

Proof. This follows from the fact that P̃2(p) = (P̃2(p) ∩ P̃2) ⊃ (P̃2(q) ∩ P̃2) =

P̃2(q). !
In Corollary 6.6, the strict inclusion cannot be expected, as can be seen from

the following example in R2 where we have P̃2(p) = P̃2(q):
K1 is the line with equation {y = −3}, bounding the convex half-space {y < −3};
K2 is the convex surface in R2 which is the union of the rays {y = x, y > 0}

and {y = −x, y > 0}, p = (0,−2) and q = (0,−1).

Corollary 6.7. Let p, q, r be three points in Ω. If p < q and q < r, then p < r.

Proof. This follows from Proposition 2.4 since it gives:

p < q and q < r ⇔ P̃2(p) ! P̃2(q) ! P̃2(r).

!
We now define the timelike relative Funk distance F 2

1 (p, q) on the subset Ω≤ of
Ω × Ω.

Definition 6.8 (The timelike relative Funk distance). The timelike Funk distance
F 2
1 (p, q) is first defined on pairs of distinct points p, q in Ω satisfying p < q is given

by the formula

F 2
1 (p, q) = log

d(p, b(p, q))

d(q, b(p, q))
where b(p, q) is the first point of intersection of the ray R(p, q) with K2. As before,
d(· , ·) denotes the Euclidean distance.

Note that the value of F 2
1 (p, q) is strictly positive for any pair p, q satisfying

p < q.
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We extend the definition of F 2
1 (p, q) to the case where p = q, setting in this case

F 2
1 (p, q) = 0.

Using the convexity of K̃2, we now give a variational characterization of the
quantity F 2

1 (p, q).
Let p and q be two points in Ω such that p < q. Let π0 be a supporting hyperplane

to K2 at b(p, q). For x in Rn, let Ππ0 (x) be the foot of the Euclidean perpendicular
from the point x onto that hyperplane. In other words, Ππ0 : Rd → π0 is the
Euclidean nearest point projection map. From the similarity of the Euclidean
triangles △(p,Ππ0 (p), b(p, q)) and △(q,Ππ0 (q), b(p, q)), we have

log
d(p, b(p, q))

d(q, b(p, q))
= log

d(p,π0)

d(q,π0)
.

For any unit vector ξ in Rn and for any π ∈ P(p), we set

T (p, ξ,π) = π ∩ {p+ tξ | t > 0}

if this intersection is non-empty.
For p < q in Rn, consider the vector ξ = ξpq = q− p

∥q− p∥ where the norm is the
Euclidean one.

We then have T (p, ξpq,πb(p,q)) = b(p, q) ∈ R(p, q) ∩K2.

In the case where π ∈ P̃2(q) is not a supporting hyperplane of K̃2 at b(p, q),

the point T (p, ξpq,π) lies outside K̃2
◦
and, again by the similarity of the Euclidean

triangles △(p,Ππ(p), T (p, ξpq,π)) and △(q,Ππ(q), T (p, ξpq,π)), we get

d(p,π)

d(q,π)
=

d(p, T (p, ξpq,π))

d(q, T (p, ξpq,π))
.

As π varies in P̃2(q), the farthest point from p on the ray R(p, q) of the form

T (p, ξpq,π) is b(p, q), and this occurs when π supports K̃2 at b(p, q). This in turn

says that a hyperplane πb(p,q) which supports K̃2 at b(p, q) minimizes the ratio

d(p, T (p, ξpq,π))

d(q, T (p, ξpq,π))

among all the elements of P̃2(q) and thus we obtain

Proposition 6.9. For all p < q, we have

logF 2
1 (p, q) = inf

π∈P̃2 (q)
log

d(p,π)

d(q,π)
.

Now we prove that the function F 2
1 (p, q) satisfies the time inequality:

Proposition 6.10 (Time inequality). For any three points p, q and r in Ω, satis-
fying p < q < r, we have

F 2
1 (p, q) + F 2

1 (q, r) ≤ F 2
1 (p, r).
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Proof. We use the formula given by Proposition 6.9 for the timelike Funk distance.
We have, from P̃2 ⊃ P̃2(r):

F 2
1 (p, q) + F 2

1 (q, r) = inf
π∈P̃2 (q)

log
d(p,π)

d(q,π)
+ inf

π∈P̃2 (r)
log

d(q,π)

d(r,π)

≤ inf
π∈P̃2 (r)

log
d(p,π)

d(q,π)
+ inf

π∈P̃2 (r)
log

d(q,π)

d(r,π)

≤ inf
π∈P̃2 (r)

(
log

d(p,π)

d(q,π)
+ log

d(q,π)

d(r,π)

)

= inf
π∈P̃2 (r)

log
d(p,π)

d(r,π)

= F 2
1 (p, r).

!

The following proposition is an analogue of Proposition 2.15 that concerns (non-
relative) timelike Funk geometries, and it is proved in the same way:

Proposition 6.11. [Geodesics] A timelike Funk geometry F 2
1 defined on a set Ω≤

associated to two disjoint convex hypersurfaces K1 and K2 in Rn satisfies the fol-
lowing:

(1) The Euclidean segments in Ω that are of the form [p, q] where p < q are
F 2
1 -geodesics.

(2) Any Euclidean line [p, b) from a point p in Ω to a point b in ∂K, equipped
with the metric induced from the timelike distance F 2

1 , is isometric to a
Euclidean ray.

(3) The Euclidean segments in (1) are the unique F 2
1 -geodesic segments if and

only if there is no nonempty open Euclidean segment contained in the subset
K2

1 of points in K2 facing K1.

7. The timelike Finsler structure of the timelike Euclidean relative
Funk distance

In this section, as in §6, Ω is the space underlying the timelike Funk geometry
associated to two disjoint convex hypersurface K1 and K2 in Rn. We show that
the timelike Euclidean relative Funk distance associated to K1 and K2 is timelike
Finsler.

With every point p in Ω, we associate a timelike Minkowski functional fF 2
1
(p, v)

defined on the subset of the tangent space TpΩ of Ω at p consisting of the non-zero
vectors v satisfying

(16) p+ tv ∈ I+2 (p) for some t > 0

where I+2 (p) is as before the future of p.
We denote by C+

2 (p) ⊂ TpΩ the set of vectors v that satisfy Property (16) or are
the zero vector. We define the function fF 2

1
(p, v) for p ∈ Ω and v ∈ C+

2 (p) by the
following formula:

(17) fF 2
1
(p, v) = inf

π∈P̃2 (p)

⟨v, ηπ⟩
d(p,π)

for v ∈ C+
2 (p), where ηπ is the unit tangent vector at p perpendicular to π and

pointing toward π. We define fF 2
1
(p, 0) = 0 when v = 0. We shall show that this

defines a timelike Minkowski functional and that this functional is associated with
a timelike Finsler geometry underlying the timelike Funk distance F .
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Like for the Finsler structure of the timelike Euclidean (non-relative) Funk ge-
ometry (see Equations (6) and (7)), we have:

(18) fF 2
1
(p, v) =

∥v∥
inf{t | p+ t v

∥v∥ ∈ K̃2
◦
}
= sup{τ : p+ v/τ ∈ K̃2

◦
}

for any nonzero vector v ∈ C+(p).
The following can be easily checked.

Proposition 7.1. The functional fF 2
1
(p, v) defined on the open cone C+

2 (p) in
TpΩ ∼= Rn satisfies all the properties required by a timelike Minkowski functional.

Now we repeat the argument in §4, to set up a timelike space using the Finsler
structure. We say that a piecewise C1 curve σ : J → Rn, t /→ σ(t), defined on
an interval J of R , is timelike if at each time t ∈ J the tangent vector σ′(t) is an
element of the cone C+

2 (σ(t)) ⊂ Tσ(t)Rn.
We now have to follow the same scheme as in §4 to show that the timelike relative

Euclidean Funk distance is Finsler.

Definition 7.2 (The partial order relation). Suppose that p and q are two points
in Rn. We write p ≺ q, and we say that q is in the ≺ -future of p, if there exists a
timelike piecewise C1 curve σ : J → Rn joining p to q.

By following the arguments used in §4, we have the following:

Proposition 7.3. The two order relations < and ≺ coincide; namely, for any two
points p and q in M , we have

p < q ⇔ p ≺ q.

The proof is exactly the same as that of Proposition 4.3 except that I+(p) needs
to be replaced by I+2 (p).

Similarly to what we did in §4, we denote by δ21 the timelike intrinsic distance
function associated to this timelike Finsler structure:

(19) δ21(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. By the same proof of that of Lemma 4.4, the
intrinsic distance δ(p, q) for p < q is finite.

Thus, the domain of definition Ω< defined with the partial order < for the
timelike Funk distance F 2

1 and the domain of definition Ω≺ for the timelike distance
function δ21 coincide. We shall prove the equality δ21(p, q) = F 2

1 (p, q) for any pair
p < q in Ω<. We state this as follows:

Theorem 7.4. The value of the timelike distance δ21(p, q) for a pair (p, q) ∈ Ω≤
coincides with F 2

1 (p, q). That is, we have

F 2
1 (p, q) = δ21(p, q).

In other words, we have the following

Theorem 7.5. The relative timelike Funk geometry is a timelike Finsler structure
defined by the Minkowski functional fF 2

1
(p, v).

Note that with the identification F 2
1 = δ21 , given a pair of points p, q satisfying

p < q, there always exists a distance-realizing (length-maximizing) geodesic from p
to q, since the Euclidean segment [p, q] is an F 2

1 -geodesic.
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Proof of Theorem 12.6. The proof is similar to the one of Theorem 5.4: Given a
pair (p, q) with p < q, consider the geodesic ray R(p, q) from p through q and let

b(p, q) ∈ K2
1 be the first intersection point of this ray with the convex set K̃2

◦
.

Parameterize proportionally to arc-length the Euclidean segment [p, q] by a path
σ(t) with parameter t, with σ(0) = p,σ(1) = q. Then we have

∫ 1

0
fF 2

1
(σ(t),σ′(t)) dt = log

d(p, b(p, q))

d(q, b(p, q))
= F 2

1 (p, q),

since
d

dt
log

d(p, b(p, q))

d(σ(t), b(p, q))
= fF 2

1
(σ(t),σ′(t)).

Taking the supremum over the set of paths from p to q, we obtain the inequality

δ21(p, q) ≥ F 2
1 (p, q).

We need to show a monotonicity lemma for the intrinsic distance.
Let Î2 ⊃ I2 be an open convex set containing I2, let K̂2 be its bounding hyper-

surface, P̂ 2
1 be the timelike Minkowski functional associated with the pair (I1, Î2)

and δ̂21 the associated intrinsic distance. (Note that the domains of definition of P̂ 2
1

and δ̂21 contain those of fF 2
1
and δ21 respectively.)

Lemma 7.6. For p and q in the domains of definition of both intrinsic distances
δ21 and δ̂21, we have

δ̂21(p, q) ≥ δ21(p, q).

The proof is, with an adaptation of the notation, the same as that of Lemma
5.6.
Proof of Theorem 12.6 continued.— For (p, q) ∈ Ω<, let

Î2 = H+
πb(p,q)

,

whereH+
πb(p,q)

is the open half-space bounded by a hyperplane πb(p,q) supportingK
2
1

at b(p, q) and containing Ĩ2. The open set Î is equipped with its intrinsic distance

δ̂. We now apply Lemma 5.6 to this setting where a convex set Î2 contains I2, and
obtain δ̂21 ≥ δ21 .

For the open half space Î2 = H+
πb(p,q)

, the values of F 2
1 (p, q), F̂

2
1 (p, q) and δ̂21(p, q)

all coincide. Indeed, under the hypothesis Î2 = H+
πb(p,q)

, the set P̃2 of supporting
hyperplanes consists of the single element πb(p,q), and the path σ from p to q is

length-maximizing, since every timelike path for Î2 is F̂ 2
1 -geodesic. This follows

from the considerations in §6.
By combining the above observations, we have

F 2
1 (p, q) = F̂ 2

1 (p, q) = δ̂21(p, q) ≥ δ21(p, q) ≥ F 2
1 (p, q)

and the equality δ21(p, q) = F 2
1 (p, q) follows. !

8. The timelike Euclidean relative reverse Funk geometry and its
Finsler structure

We continue using the notation of §7 associated to two convex subsets K1 and
K2 of Rn.

Definition 8.1. We define the timelike Euclidean relative reverse Funk geometry
F 2
1 , by

(20) F 2
1 (p, q) = F 1

2 (q, p)
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where F 1
2 (q, p) is the timelike Euclidean relative Funk metric associated with the

pair (K2,K1), that is, the convex set K1 lies in the future of the convex set K2,
and where p lies in the future of q relatively to this ordered pair. (In particular,

the domain of definition of F 2
1 is equal to the domain of definition of F 2

1 .)

With the notation introduced in §7, we have:

(21) q ∈ I+2 (p) ⇔ p ∈ I+1 (q).

For every point p in Ω, we associate a timelike Minkowski functional fF 1
2
(p, v)

defined on the subset of the tangent space TpΩ of Ω at p consisting of the non-zero
vectors v satisfying

p+ tv ∈ I+1 (p) for some t > 0.

We denote by C+
1 (p) ⊂ TpΩ the union of vectors v that satisfy this property or are

the zero vector. We note that by definition there is a symmetry between C1(p) and
C2(p) in the sense that

v ∈ C1(p) ⇔ −v ∈ C2(p).

This follows from the fact (21) remarked above.
We define the function fF 1

2
(p, v) for p ∈ Ω and v ∈ C+

1 (p) by the following
formula:

(22) fF 1
2
(p, v) = inf

π∈P̃1 (p)

⟨v, ηπ⟩
d(p,π)

for v ∈ C+
1 (p) where ηπ is the unit tangent vector at p perpendicular to π (with

respect to the underlying Euclidean metric) and pointing toward π. We extend the
definition to fF 2

1
(p, 0) = 0 when v = 0. In the same way as for the geometries that

were considered previously, this defines a timelike Minkowski functional, and this
functional is associated to a timelike Finsler geometry underlying the timelike Funk
distance F 1

2 .
We shall use the followign definition in §9:

Definition 8.2. The timelike Minkowski functional f
F 1

2
(p, v) for the timelike Eu-

clidean relative reverse Funk geometry F 2
1 is the function

f
F 1

2
(p, v) = fF 1

2
(p,−v).

for v ∈ C+
2 (p)(= −C+

1 (p)).

9. The timelike Euclidean Hilbert geometry

We use the notation introduced in §6. We let I1 and I2 be two disjoint open
(possibly unbounded) convex sets in Rn bounded by disjoint convex hypersurfaces
K1 and K2 respectively and we set K◦

1 = K1 ∪ I1 and K◦
2 = K2 ∪ I2. The latter

are the closures of I1 and I2 respectively.
We shall define the Euclidean timelike Hilbert geometry H(p, q) associated with

the ordered pair K1,K2. Its underlying space Ω is the union in Rn of the intervals
of the form ]a1, a2[ such that a1 ∈ K1, a2 ∈ K2 satisfying ]a1, a2[∩K = ∅ for i = 1, 2
and such that there is no supporting hyperplane π to K1 or to K2 with ]a1, a2[⊂ π.

Referring to §6, we shall use the two timelike relative Funk metrics, F 2
1 and F 1

2 ,
both defined on Ω, but we shall always consider K1 as representing the past and
K2 the future, except if the contrary is explicitly specified.

In particular, the partial order relation on Ω that underlies the timelike Hilbert
geometry H(p, q) is the same as the partial order associated with the relative Eu-
clidean Funk metric with respect to the pair K1,K2 as an ordered pair. The relative
future and relative past of a point p in Ω are defined accordingly, as in Definitions
6.2 and 6.4.
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Definition 9.1 (Timelike Euclidean Hilbert geometry). The timelike Euclidean
Hilbert distance is defined on pairs (p, q) ∈ Ω satisfying p < q by

H(p, q) =
1

2
(F 2

1 (p, q) + F 2
1 (p, q)).

The definition is extended to the case where p = q by setting H(p, q) = 0.

Note that the definition of H depends on the ordered pair K1,K2, and strictly
speaking the notation should reflect this (we may have chosen e.g. H2

1 instead of
H), but we keep the notation H for simplicity.

The fact that the timelike Hilbert geometry satisfies the time inequality follows
from the definition of the timelike Hilbert geometry as a sum of two timelike relative
Funk geometries that both satisfy the time inequality.

The timelike Hilbert geometry satisfies some properties which follow from those
of a timelike Funk geometry. In particular, we have the following:

Proposition 9.2. (a) In a timelike Hilbert geometry H associated to an ordered
pair of convex hypersurfaces K1,K2, the Euclidean segments of the form ]a1, a2[
such that

(1) a1 ∈ K1 and a2 ∈ K2;
(2) ]a1, a2[ is not contained in any support hyperplane to K1 or to K2;
(3) the open segment ]a1, a2[ is in the complement of K1 ∪K2

are H-geodesics. Each such geodesic is isometric to the real line. (We recall that,
as it is always the case in timelike spaces, it is understood that the segments ]a1, a2[
are oriented from a1 to a2. Traversed in the reverse sense, they are not geodesics.)

(b) The oriented Euclidean segments contained in the segments of the form
[a1, a2] satisfying the above properties are the unique H-geodesics if and only if
the following holds: There are no segments [a1, a2] of the above form with a1 in the
interior of an open nonempty Euclidean segment J1 ⊂ K1 and a2 in the interior of
an open nonempty segment J2 ⊂ K2, with J1 and J2 coplanar.

The proof is an adaptation of that of the non-timelike Hilbert metric (cf. [2] or
[9]), and we omit it.

We may express the timelike Hilbert distance using the cross ratio.
Recall that if a, b, c, d are four distinct points lying in that order on a Euclidean

line, their cross ratio [a, b, c, d] is defined by

(23) [a, b, c, d] =
|b−d|
|c−d|

|c−a|
|b−a| .

The following proposition follows easily from the definition of the cross ratio and
the timelike Euclidean Hilbert distance:

Proposition 9.3. For any two points p and q in Ω satisfying p < q, their timelike
Euclidean Hilbert distance is also given by

H(p, q) =
1

2
log[a1, p, q, a2]

where a1 and a2 satisfy [a1, a2] ∩Ki = ai for i = 1, 2.

With this form of the definition of the timelike Euclidean Hilbert geometry, we
see that the projective transformations of Rn that preserve (setwise) each of the
two convex sets I1 and I2 are isometries for the timelike Hilbert distance. (Note
that strictly speaking we deal with projective transformations in the setting of
the projective space, and in fact, we are talking here about transformations of Rn

that preserve the points at infinity, with respect to the natural inclusion of Rn in
projective space RPn).
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We point out two 2-dimensional examples of timelike Hilbert geometries. Higher-
dimensional analogues also hold.

Example 9.4 (The strip). Let Ω be a region contained by two parallel lines in
the plane R2, namely the complement of two half-spaces H1, H2 bounded by a pair
of parallel hyperplanes π1 and π2, which without loss of generality, are assumed
to be (−1, 1) × R . Then any timelike curve is a geodesic for the timelike Hilbert
geometry. In this setting, a curve is timelike if at each point the tangent vectors
are not vertical.

Consider the nearest point projection Π : Ω → (−1, 1) onto the interval (-
1,1) of the x-axis. Then the Hilbert distance H(x, y) for x < y is equal to
H(− 1,1)(Π(x),Π(y)) where

H(− 1,1)(a, b) =
1

2
log

a−1

b−1

b+ 1

a+ 1

is the Hilbert distance for the interval. This metric is sometimes called the “one-
dimensional hyperbolic metric” as this is the Klein-Beltrami model of the hyperbolic
space H1. Notice that Ω is concave as well as convex in R2.

Example 9.5 (The half-space). The half space corresponds to the limiting case of
the strip discussed above, Ω = (−a, 1) × R , as a → ∞. Then the Hilbert timelike
distance

H(− a,1)(x, y) =
1

2
log

Π(x)−1

Π(y)−1

Π(y) + a

Π(x) + a

converges to (half of) the timelike Funk distance

F (x, y) = log
Π(x)−1

Π(y)−1

which is the timelike Funk distance for the half-space R2 \ {x ≥ 1}. We will come
back to this example later.

Remark 9.6. Our approach to the timelike Euclidean Hilbert geometry, based on
the relative Euclidean Funk geometry, is slightly different from that of Busemann
in [4]. In fact, Busemann, in §8 of his paper [4], works in the projective space, and
the geometry which he obtains is a local timelike geometry (the order relation is
only locally defined). Thus, the Hilbert geometry he obtains is locally timelike.

One important result that Busemann obtains (his Theorem (3) p. 47) is that in
the case where the convex sets K1 and K2 are strictly convex, the isometry group
of a locally timelike Hilbert geometry is obtained by taking the restriction of the
projective transformations of the ambient projective space that preserve the given
convex set.

Busemann then defines a timelike Funk geometry associated to a convex hy-
persurface K contained in an affine space An using his locally timelike Hilbert
geometry, namely, it becomes the geometry associated to a pair K1,K2 where K1

is the hyperplane at infinity RPn− 1 in the projective space RPn = An ∪ RPn− 1.
The set K1 is the collection of points which are “infinite distance away” from any
pair of points in An\K1, in the sense that for any pair of points p, q with p < q (the

order relation when K2 is the future set), we have d(p,a1 )
d(q,a2 )

= 1. In that case, and
using the notation of Definition 9.1, the Hilbert distance from p to q associated with
the pair K1,K2 is just the Funk distance from p to q associated with the convex
set K2, up to a constant.
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10. The timelike Finsler structure of the timelike Hilbert geometry

In this secton, we show that the timelike Hilbert distance H(p, q) introduced in
§9 is a timelike Finsler metric, and we give its timelike Minkowski functional.

We use the notation introduced in §7 for the Finsler structure of the timelike
relative Euclidean Funk distance.

Consider a point p in Ω so that the associated cone C+
2 (p) ⊂ Tp(Ω) (which,

we recall, is equal to the cone −C+
1 (p)) is nonempty. We denote by C(p) the set

C2(p) = −C1(p) ⊂ TpΩ. Following the notation of § 5 that concerns the infinitesimal
Finsler metric associated to a timelike Funk geometry, we define a linear functional
on C(p) by the formula:

(24) fH(p, v) = fF 2
1
(p, v) + fF 1

2
(p,−v),

or, equivalently,

(25) fH(p, v) = fF 2
1
(p, v) + f

F 2
1
(p, v).

where fF 2
1
and f

F 2
1
are the timelike Minkowski norms on the tangent spaces as-

sociated with the timelike relative Funk geometry and the timelike reverse Funk
geometry defined by K1 and K2.

Now we follow the outline used in §4, to set up a timelike space using the Finsler
structure fH . We say that a piecewise C1 curve σ : J → Rn, t /→ σ(t), defined on
an interval J of R , is timelike if at each time t ∈ J the tangent vector σ′(t) is an
element of the cone C+

2 (σ(t)) ⊂ Tσ(t)Rn.

Definition 10.1 (The partial order relation). Suppose that p and q are two points
in Rn. We write p ≺ q, and we say that q is in the ≺ -future of p, if there exists a
timelike piecewise C1 curve σ : J → Rn joining p to q.

Like in the situation studied in in §4, the following holds in this setting as well.
The proof is exactly the same as that of Proposition 4.3, except I+(p) needs to be
replaced by I+2 (p).

Proposition 10.2. The two order relations < and ≺ coincide; namely, for any
two points p and q in M , we have

p < q ⇔ p ≺ q.

As we did so in §4, we denote by δ the the timelike intrinsic distance function
associated to this timelike Finsler structure:

(26) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. As in Lemma 4.4, we prove that for all p < q, we
have δ(p, q) < ∞. This shows that the domain of definition Ω< defined with the
partial order < for the timelike Hilbert distance H and the domain of definition
Ω≺ for the timelike distance function δ coincide.

Now we prove the equality δ(p, q) = F (p, q) for any pair p < q in Ω< = Ω≺. We
state this as follows:

Theorem 10.3. The timelike Hilbert geometry is a timelike Finsler structure given
by the Minkowski functional fH defined in (25).

Proof. Let (p, q) be an element in Ω<. In what follows, when we talk about a
Euclidean segment [p, q] joining p to q, we mean that the segment is oriented from
p to q. We parametrize such a segment [p, q] by x(t), 0 ≤ t ≤ 1 and the same
segment traversed in the opposite direction, [q, p], by y(t) = x(1−t).
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Recall that the Euclidean segment [p, q] is an F 2
1 -geodesic, and the Euclidean

segment [q, p], is an F 1
2 -geodesic. Thus, we have

F 2
1 (p, q) =

∫

[p,q]
fF 2

1
(x, x′)dx

and

F 1
2 (q, p) =

∫

[q,p]
fF 1

2
(x, x′)dx.

Since the segment [q, p] is the interval [p, q] traversed in the opposite direction,
we have ∫

[q,p]
fF 1

2
(y, y′)dy =

∫

[p,q]
f
F 2

1
(x, x′)dx.

Thus, we obtain

(27) H(p, q) =

∫

[p,q]

(
fF 2

1
(x, x′) + f

F 2
1
(x, x′)

)
dx ≤ δ(p, q)

Furthermore, if γ is now an arbitrary path in the domain of definition of H joining
p to q, then we have

(28)

∫

γ
fF 2

1
(x, x′)dx ≤

∫

[p,q]
fF 2

1
(x, x′)dx

and

(29)

∫

γ
f
F 2

1
(x, x′)dx ≤

∫

[p,q]
f
F 2

1
(x, x′)dx.

Adding (28) and (29), we get

(30)

∫

γ
fF 2

1
(x, x′)dx+

∫

γ
f
F 2

1
(x, x′)dx ≤

∫

[p,q]
fH(x, x′)dx = H(p, q).

This shows that H is timelike Finsler, with its timelike Minkowski functional at
each point x given by fH(p, v).

!

The timelike Finsler structure PH is well-behaved in the sense that the linear
functional

PH(p, ) : C(p) → R
is a timelike Minkowski functional (in the sense of §3.1) defined on the open cone
C(p) = C+

2 (p) = −C+
1 (p) in TpΩ.

11. The timelike spherical relative Funk geometry

In this section, as in the rest of this paper, the ambient space Rn is replaced
by the sphere Sn. We equip Sn with its canonical metric for which it becomes a
Riemannian manifold of constant curvature 1 and of diameter π. The shortest lines
(geodesics) connecting two points of Sn are pieces of great circles. Great circles
have length 2π. We first discuss a few basic notions concerning convexity and we
start with the definition:

Definition 11.1 (Convex subset). A convex subset of Sn is a subset I ⊂ Sn such
that I ̸= Sn and such that for every x and y in I, any shortest line joining them is
is contained in I.
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It follows from the definition that I is contained in an open hemisphere of Sn,
that is, one of the two half-spaces bounded by a great hypersphere π (an (n−1)-
dimensional sphere totally geodesically embedded in Sn). Each great hypersphere
π has two poles. Let j be the stereographic projection from the center of Sn,
defined on the hemisphere U containing our convex set I onto the tangent plane
TNSn ⊂ Rn+1 at the pole N of π belonging to U . The image j(I) of the convex
set I is thus regarded as a convex subset of Rn. This projection sends the great
circles of Sn to the lines in Rn, and the convexity properties of subsets of Sn can
be translated into convexity properties of their images by the map j. In particular,
a subset I of Sn is convex if and only if its image j(I) ⊂ Rn is convex.

A supporting hyperplane π to an open convex subset I of Sn is a great hyper-
sphere whose intersection with the closure I of I is nonempty and such that I is
contained in one of the two connected components of the complement of π in Sn. We
call this component H+

π and we call the other component H−
π . Each open convex

subset of the sphere has a supporting hyperplane at each point of its boundary.
In the rest of this section, I1 and I2 are open convex subsets of Sn whose bound-

ing convex hypersurfaces are called K1 and K2 respectively, and let K◦
i := Ii ∪Ki

for i = 1, 2. We shall also say that a supporting hyperplane to Ii is also called
supporting hyperplane to Ki or to K◦

i , depending on the subset of the sphere that
we want to stress on.

We shall always assume that the property in the following definition is satisfied
for K1 and K2.

Definition 11.2. We shall say that the two hypersurfaces (K1,K2) are in good
position if the following two peoperties are satisfied:

(1) K◦
1 ∩K◦

2 = ∅;
(2) For any great circle C such that C∩Ki ̸= ∅ for i = 1, 2, the set C\(K◦

1∪K◦
2 )

is the union of two geodesic segments of length < π.

Proposition 11.3. The union I1 ∪ I2 contains a pair of antipodal points, each of
these points belonging to one of the sets I1, I2.

Proof. Take any great circle C on Sn intersecting the two convex sets K◦
1 and K◦

2 .
By assumption, C intersects Sn\(K◦

1∪K◦
2 ) in two geodesic segments, each of length

< π. Consider one of these two segments and let k1 ∈ K◦
2 and k2 ∈ K◦

2 be its two
boundary points. On the great circle C, moving monotonically k1 and k2 inside I1
and I2 respectively, we find, by continuity, two points in I1 and I2 on C ∩ (I1 ∪ I2)
whose distance is equal to π. This proves the proposition. !

Let P1 and P2 be respectively the sets of supporting hyperplanes to K1 and K2

respectively, and let P1 and P2 be respectively the sets of great hyperspheres that
do not intersect the open convex set I1 and I2. We have Pi ⊃ Pi.

We have, for i = 1, 2,

Ii = ∩π∈PiH
+
π = ∩π∈PiH

+
π .

We let Ω be the union of the open segments ]a1, a2[∈ Sn such that a1 ∈ K1,
a2 ∈ K2 and with ]a1, a2[∩(I1 ∪K2) = ∅.

Proposition 11.4. We have

Ω = Sn \ (K◦
1 ∪K◦

2 ).

Proof. The inclusion Ω ⊂ Sn\(K◦
1∪K◦

2 ) is clear from the definition of Ω. Let P and
N be two antipodal points in Sn contained respectively in I1 and I2 (Proposition
11.3). Given a point p ∈ Sn \ (K◦

1 ∪K◦
2 ), consider a great circle C through N and S

containing p. This circle intersects Ω in two open segments, one of which contains
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p. Let ]a1, a2[ be this segment. We may assume without loss of generality that
ai ∈ Ki for i = 1, 2. This shows that p is in Ω. !

We now define a partial order relation on Ω.

Definition 11.5 (Partial order). For p and q in Ω, we write p < q (and we say that
q is in the future of p, or that p is in the past of q) if there exists a segment [p, q] of
a great circle C such that [p, q] joins p and q and such that there exist two points
a1 ∈ C ∩K1 and a2 ∈ C ∩K2 with the four points a1, p, q, a2 lying in that order
on C with ]a1, a2[⊂ Ω, and ]a1, a2[ is not contained in any supporting hyperplane
to K1 or K2.

As usual, we write p ≤ q if p < q of p = q.
For any point p in Ω, we set P2(p) to be the set of great hyperspheres in Sn

separating p and I2.

Definition 11.6 (Future and past). Given a point p in Ω, we call the future of p
the set of points q in Ω such that p < q, and we denote this set by I+(p), and the
past of p the set of points q in Ω such that q < p, and we denote this set by I− (p).

As in the other situations previously studied (see e.g. the case of the timelike
Euclidean Funk geometry in §2), we have

(31) I− (p) = ∩π∈P2 (p)H
+
π

and

(32) I− (p) = Int
(
∩π∈P2 (p) H

−
π

)

Proposition 11.7. For p and q in Ω, we have

p ≤ q ⇐⇒ P2(p) ⊃ P2(q).

Proof. Suppose that p ≤ q. Let π be an element of P2(q), that is, π separates
q and I2. We claim that π also separates p and I2. Indeed, otherwise we would
have p ∈ H+

π , which implies the existence of a segment of great circle joining
[p, r] containing q in its interior and whose length is > π., contradicting our initial
assumption on K1 and K2.

Conversely, suppose that P2(p) ⊃ P2(p). Then, from the characterization of
I− (p) and I− (q) given in (32), we have I− (p) ⊂ I− (q).

!
We deduce the following:

Proposition 11.8 (Transitivity of the partial order relation). Let p, q and r be
three points in Ω satisfying p ≤ q and q ≤ r. Then we have p ≤ r.

Proof. The proof follows from Proposition 11.7. !
For each p ∈ Ω, we let P2(p) denote the union of the support hyperplanes at K2

that separate p from I2.
The following proposition is now also proved using the (now familiar) methods

introduced in the methods.

Proposition 11.9. For any two points p and q in Ω, we have:

p < q ⇐⇒ P2(p) ⊃ P2(q).

We now define the timelike spherical relative Funk distance F 2
1 . Its domain of

definition is the subset Ω≤ of the product Ω × Ω consisting of pairs (p, q) with
p ≤ q. We are using the notation that we used in §6 in the context of the timelike
Euclidean relative Funk geometry, assuming that this will not cause any confusion,
since the present section and§6 are independent.
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Definition 11.10 (The timelike spherical Hilbert geometry). We first define F 2
1

on the subset Ω< of Ω × Ω consisting of pairs (p, q) with p < q by the formula

F 2
1 (p, q) = log

sin d(p, b(p, q))

sind(q, b(p, q))
,

and we then extend this definition to the pairs (p, p) in the diagonal of Ω × Ω by
setting F 2

1 (p, p) = 0 for any such pair.

Proposition 11.11. The timelike spherical relative Funk distance is also given by:

F 2
1 (p, q) = inf

π∈P2 (q)
log

sin d(p,π)

sind(q,π)
.

Proposition 11.12 ( Time inequality). The function F 2
1 (p, q) satisfies the timelike

inequality:
F 2
1 (p, q) + F 2

1 (q, r) ≤ F 2
1 (p, r)

for any p, q, r in Ω such that p < q < r.

Proof. Since P(q) ⊃ P(r) (Proposition 11.9), we have

F 2
1 (p, q) + F 2

1 (q, r) = inf
π∈P2 (q)

log
d(p,π)

d(q,π)
+ inf

π∈P2 (r)
log

d(q,π)

d(r,π)

≤ inf
π∈P2 (r)

log
d(p,π)

d(q,π)
+ inf

π∈P2 (r)
log

d(q,π)

d(r,π)

≤ inf
π∈P2 (r)

(
log

d(p,π)

d(q,π)
+ log

d(q,π)

d(r,π)

)

= inf
π∈P2 (r)

log
d(p,π)

d(r,π)

= F 2
1 (p, r).

!
The following proposition on the geodesics of a timelike relative Funk geometry

will be useful in the next section that concerns the Fnsler structure of such a
geometry. It is an analogue of 9.2.

The following proposition is an analogue of Proposition 6.11 that concerns the
timelike relative Euclidean Funk geometries, and it is proved in the same way.

Proposition 11.13 (Geodesics). A timelike relative spherical Funk geometry F 2
1

defined on a set Ω≤ associated to two disjoint convex hypersurfaces K1 and K2 in
Sn satisfies the following:

(1) The spherical segments in Ω that are of the form [p, q] where p < q are
F 2
1 -geodesics.

(2) The spherical segments in (1) are the unique F 2
1 -geodesic segments if and

only if there is no nonempty open spherical segment contained in the subset
K2

1 of points in K2 facing K1.

12. The Finsler structure of the timelike spherical relative Funk
geometry

For every point p in Ω ⊂ Sn, we associate a timelike Minkowski functional
fF 1

2
(p, v) defined on the subset of the tangent space TpΩ of Ω at p consisting of the

non-zero vectors v satisfying

expp tv ∈ I+1 (p) for some t > 0.

where expp : TpSn → Sn is the exponential map based at p. We denote by C+
1 (p) ⊂

TpΩ the union of vectors v that satisfy this property or are the zero vector.
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From the definition of order p < q on Ω, q lying in the future of p and p lying in
the past of q are equivalent:

(33) q ∈ I+2 (p) ⇔ p ∈ I+1 (q).

We deduce that there is a symmetry between C1(p) and C2(p) in the sense that

v ∈ C1(p) ⇔ −v ∈ C2(p).

Definition 12.1 (Timelike Minkowski functional). We define the function fF 2
1
(p, v)

for p ∈ Ω and v ∈ C+
1 (p) by the following formula:

(34) fF 2
1
(p, v) = inf

π∈P2 (p)

⟨v, ηπ⟩
tan d(p,π)

for v ∈ C+
2 (p) where ⟨., .⟩ is the canonical Riemannian metric on Sn, ηπ is the unit

tangent vector at p perpendicular to π (with respect to the underlying Euclidean
metric) and pointing toward π. We extend the definition to fF 2

1
(p, 0) = 0 when

v = 0.

Note that due to the condition imposed in Definition 11.2 on the relative position
of K1 and K2, we have d(p,π) < π, which in turn makes the definition of the
function fF 2

1
well-defined. There is a timelike Minkowski functional fF 1

2
defined on

C1(p) for the timelike spherical relative Funk metric F 1
2 , simply by interchanging

the indices 1 and 2 of fF 2
1
.

Definition 12.2 (Timelike reverse Minkowski functional). We define the timelike
Minkowski functional f

F 1
2
(p, v) for the timelike Euclidean relative reverse Funk

geometry F 2
1 by

f
F 1

2
(p, v) = fF 1

2
(p,−v).

for v ∈ C+
2 (p) = −C+

1 (p).

Thus the two timelike Minkowski functionals fF 1
2
and f

F 1
2
share the same domain

of definition in TpSn. It is easy to check the following:

Proposition 12.3. The functionals fF 2
1
(p, v) and f

F 1
2
defined on the open cone

C+
2 (p) in TpΩ satisfy all the properties (Definition 3.1) required by a timelike

Minkowski functional.

Repeating the argument in §4, we set up a timelike space using the Finsler
structure. We say that a piecewise C1 curve σ : J → Ω ⊂ Sn, t /→ σ(t), defined on
an interval J , is timelike if at each time t ∈ J the tangent vector σ′(t) is an element
of the cone C+

2 (σ(t)) ⊂ Tσ(t)Ω.

Definition 12.4 (The partial order relation). Suppose that p and q are two points
in Ω. We write p ≺ q, and we say that q is in the ≺ -future of p, if there exists a
timelike piecewise C1 curve σ : J → Ω joining p to q.

By following the outline of the corresponding results proved in §4, the following
holds in the present setting. The proof is the same as that of Proposition 4.3 except
that I+(p) needs to be replaced by I+2 (p).

Proposition 12.5. The two order relations < and ≺ coincide; namely, for any
two points p and q in Ω, we have

p < q ⇔ p ≺ q.
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As we did so in §4, we denote by δ21 the the timelike intrinsic distance function
associated to this timelike Finsler structure:

(35) δ21(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. Again, following the general set up of §4, we
show, as in Lemma 4.4, that the intrinsic distance δ(p, q) for p < q is finite.

Finally, we obtain that the domain of definition Ω< defined with the partial
order < for the timelike Funk distance F 2

1 and the domain of definition Ω≺ for the
timelike distance function δ21 coincide. Furthermore, we shall prove the equality
δ21(p, q) = F 2

1 (p, q) for any pair p < q in Ω<. We state this as follows:

Theorem 12.6. The value of the timelike distance δ21(p, q) for a pair (p, q) ∈ Ω≤
coincides with F 2

1 (p, q). That is, we have

F 2
1 (p, q) = δ21(p, q).

In different words, we have the following useful form of Theorem 12.6:

Theorem 12.7. The timelike spherical relative Funk geometry F 2
1 is a timelike

Finsler structure defined by the Minkowski functional fF 2
1
(p, v).

With the identification F 2
1 = δ21 , given a pair of points p, q with p < q, there

always exists a δ-distance-realizing (length-maximizing) geodesic from p to q, since
the spherical geodesic [p, q] is an F 2

1 -geodesic.

Proof of Theorem 7.4. The proof is similar to the proof of Theorem 5.4: Given a
pair (p, q) with p < q, consider the spherical geodesic ray R(p, q) from p through q
and let b(p, q) ∈ K2 be the first intersection point of this ray with the convex set
K◦

2 . Parameterize the geodesic segment [p, q] by a path σ(t) having a parameter t
proportional to the arc-length with σ(0) = p,σ(1) = q. Then we have

∫ 1

0
F 2
1 σ(t),σ

′(t)) dt = log
sin d(p, b(p, q))

sin d(q, b(p, q))
= F 2

1 (p, q),

since
d

dt
log

sin d(p, b(p, q))

sin d(σ(t), b(p, q))
= F 2

1 (σ(t),σ
′(t)).

Taking the supremum over the set of picewise-C1 timelike paths from p to q, we
obtain the inequality

δ21(p, q) ≥ F 2
1 (p, q).

We now need a monotonicity lemma for the intrinsic distances.
We consider our pair of open convex set I1 and I2 bounded respectively by the

two disjoint convex hypersurfaces K1 and K2 which we assume as before to be in
good position (Definition 11.2). Let fF 2

1
: TΩ → R be, as before, the associated

timelike Minkowski functional, and δ21 the intrinsic distance induced by fF 2
1
.

Finally, let Î2 ⊃ I2 be another open convex set and let K̂2 be its bounding
hypersurface. We assume that K1 and K̂2 are also in good position. Let fF̂ 2

1
be the

timelike Minkowski functional of the timelike relative Funk distance F̂ 2
1 associated

with the pair (I1, Î2) and δ̂21 the associated intrinsic distance. (Note here that the

domains of definition of fF̂ 2
1
and δ̂21 contain those of fF 2

1
and δ21 respectively.)

Lemma 12.8. Suppose that p and q are in the domain of definition of both timelike
intrinsic distances δ21 and δ̂21. Then we have

δ̂21(p, q) ≥ δ21(p, q).
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The proof is, with an adaptation of the notation, the same as that of Lemma
12.8.
Proof of Theorem 7.4 continued.— For (p, q) ∈ Ω<, let

Î2 = H+
πb(p,q)

,

where H+
πb(p,q)

is the open hemisphere bounded by a hyperplane πb(p,q) supporting

K2 at b(p, q) and containing Ĩ2. The open set Î is equipped with its intrinsic distance

δ̂. We now apply Lemma 12.8 to this setting where a convex set Î2 contains I2, and
obtain δ̂21 ≥ δ21 .

For the open hemisphere Î2 = H+
πb(p,q)

, the values of F 2
1 (p, q), F̂

2
1 (p, q) and δ̂21(p, q)

all coincide. Indeed the set P̂2 of supporting hyperplanes consists of the single
element πb(p,q), and the path σ from p to q is length-maximizing, since every timelike

path for Î2 is F̂ 2
1 -geodesic. This follows from the considerations in §6.

By combining the above observations, we have

F 2
1 (p, q) = F̂ 2

1 (p, q) = δ̂21(p, q) ≥ δ21(p, q) ≥ F 2
1 (p, q)

and the equality δ21(p, q) = F 2
1 (p, q) follows. !

13. The timelike spherical Hilbert geometry

In this section, we shall continue using the notions and notation of §11: I1, I2
is an ordered pair of convex subsets of the sphere Sn, with boundaries convex
hypersurfaces in Sn, denoted by K1 and K2 respectively, satisfying the conditions
stated at the beginning of that section, and with K◦

i = Ii ∪Ki for i = 1, 2. As in
§11, K1 will represent the past and K2 the future. The subset Ω of Sn is defined as
in §11, and the partial order relation p < q for p and q in Ω is defined accordingly,
K1 representing the past and K2 representing the future.

We denote, as usual, the set of points (p, q) in Ω× Ω satisfying p < q by Ω<. We
also write p ≤ q when p < q or p = q.

F 2
1 is the timelike spherical Funk metric associated with the ordered pair K1,K2.

We showed that this is a timelike Finsler metric, and its associated timelike Minkowski
functional, denoted by fF 2

1
is defined for each point p in Ω as in §12 on a subset of

the tangent space TpΩ of Ω at p which is a cone denoted by C+
2 (p).

As in the Euclidean case (see Definition 8.1), there is a timelike spherical relative

reverse Funk metric F 2
1 associated with the pair (K1,K2). For this, we first consider

the timelike spherical relative Funk metric F 1
2 associated with the ordered pair

(K2,K1), and we define F 2
1 , whose domain of definition is equal to the domain of

definition of F 2
1 , by

F 2
1 (p, q) = F 1

2 (p, q).

Definition 13.1 (Timelike spherical Hilbert metric). The timelike spherical Hilbert
metric H2

1 associated with the ordered pair K1,K2 is defined on the set of ordered
pairs (p, q) such that p < q in the sense where the convex set K1 represents the
part and the convex set K2 the future, by the formula

H(p, q) =
1

2
(F 2

1 (p, q) + F 2
1 (p, q)).

As usual, the definition is extended to the case where p = q by setting H(p, q) =
0.

Unlike the situation studied in [12], there is no straightforward way of defining a
timelike Funk spherical metric, because given two distinct points in the complement
of a convex subset of the sphere Sn, there is no natural way of saying that one is
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in the future of the other (the great circle through these points may intersect the
convex set in two points).

We recall that given four points p1, p2, p3, p4 situated in that order on a great
circle on the sphere, their spherical cross ratio is defined by

[p1, p2, p3, p4] =
sin d(p2, p4) sin d(p3, p1)

sin d(p3, p4) sin d(p2, p1)
.

Its values are in R≥0 ∪ {∞}. The spherical cross ratio is a projectivity invariant,
cf. [12].

For any pair of points (p, q) in Ω<, let a1 ∈ K1 and a2 ∈ K2 be the intersection
points between the great circle through p and q and the two hypersurfaces K1

and K2, so that a1, p, q, a2 lie on the arc of great circle [a1, a2] ⊂ Ω in that order.
With this notation, the timelike spherical Hilbert distance associated with the pair
(K1,K2) is also by the following equivalent form:

Proposition 13.2. Let p and q be two points in Ω satisfying p < q and let [a1, a2]
be the segment of great containing p and q with [a1, a2]∩Ki = ai for i = 1, 2. Then,
we have:

H(p, q) =
1

2
log[a1, p, q, a2].

Proposition 13.3 (Invariance). The timelike spherical Hilbert geometry associated
with the pair of convex sets K1,K2 ⊂ Sn is invariant by the projective transforma-
tions of the sphere Sn that preserve setwise each of the two convex sets K1,K2.

The timelike spherical Hilbert geometry H has an underlying timelike Finsler
structure which we describe in the next section. For that, we need first to talk about
H-geodesics. The following proposition is analogous to Proposition 9.2 concerning
the timelike Hilbert geometry stated in Proposition 9.2.

Proposition 13.4. (a) In a timelike spherical Hilbert geometry H associated to
an ordered pair of convex hypersurfaces K1,K2, the spherical segments of the form
]a1, a2[, equipped with their natural orientation from a1 to a2 and satisfying the
following three properties

(1) a1 ∈ K1 and a2 ∈ K2;
(2) ]a1, a2[ is not contained in any support hyperplane to K1 or to K2;
(3) the open spherical segment ]a1, a2[ is in the complement of K1 ∪K2

are H-geodesics. Each such geodesic (with its orientation) is isometric to the real
line.

(b) The oriented spherical segments contained in the segments of the form [a1, a2]
satisfying the above properties are the unique H-geodesics if and only if the following
holds: There are no spherical segments [a1, a2] of the above form with a1 in the
interior of an open nonempty sphericalsegment J1 ⊂ K1 and a2 in the interior
of an open nonempty segment J2 ⊂ K2, with J1 and J2 coplanar (contained in a
2-dimensional sphere).

The proof is an adaptation of that of the non-timelike spherical Hilbert metric
(Proposition 8.2 of [11]), and we omit it.

We end this section by a remark concerning the hyperbolic analogues of our
timelike spherical Hilbert geometry.

Remark 13.5 (Timelike hyperbolic Funk geometry and timelike hyperbolic Hilbert
geometry). Let us note that there is a Funk geometry associated with a convex
hypersurface K in the hyperbolic space Hn. This was studied in [12]. In the same
way, one can define a timelike Funk geometry associated with convex subsets of
Hn. The pre-order p < q is defined as in the case of the Euclidean timelike Funk
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geometry, and the timelike distance from p to q satisfying p < q is given by the
formula

(36) F (p, q) = log
sinh d(p, b(p, q))

sinh d(q, b(p, q))

where b(p, q) is the point where the ray R(p, q) hits K for the first time, and d is
the hyperbolic distance. Several properties of the hyperbolic (non-timelike) Funk
metric proved in [12] hold verbatim for this timelike hyperbolic Funk geometry.
In particular, we have a variational formulation of the timelike hyperbolic Funk
distance:

F (p, q) = inf
π∈P(p)

log
sinh d(p,π)

sinh d(q,π)
.

There is also a timelike hyperbolic Hilbert geometry, defined in an analogous
way to the timelike Hilbert geometry defined in §9, replacing, in the definition, the
distance by the hyperbolic sine of the distance, as we did in the definition of the
timelike hyperbolic metric in (36).

The hyperbolic segments are geodesics for the timelike hyperbolic Funk and for
the timelike hyperbolic Hilbert geometries. The proofs use the same as the one of
the analogous result for the hyperbolic (non-timelike) Funk and Hilbert geometries
considered in [12].

14. The timelike Finsler structure of the timelike spherical Hilbert
geometry

We shall define a function fH(p, v) which will play the role of a timelike Minkowski
functional associated with the timelike spherical Hilbert geometry H . It is defined
on pairs (p, v) belonging to the tangent bundle of Ω, where p ∈ Ω and v is a vector
in the tangent space TpΩ which is either the zero vector or a vector tangent to a
segment of great circle starting at p and pointing in the direction of a point in I+(p).
This function fH(p, v) is defined by the same formula as the timelike Minkowski
norm associated with the Finsler structure of the Euclidean Hilbert geometry (see
formulas (24) and (25) :

(37) fH(p, v) = fF 2
1
(p, v) + fF 1

2
(p,−v),

or, equivalently,

(38) fH(p, v) = fF 2
1
(p, v) + f

F 2
1
(p, v)

where fF 2
1
and f

F 2
1
are now the timelike Minkowski norms on the tangent tangent

spaces associated with the timelike spherical relative Funk geometry and the time-
like reverse Funk geometry associated, as in §12, with the convex hypersurfaces K1

and K2 with the given order implied by the notation.
Now we repeat the argument in §4, to set up a timelike distance function using

the Finsler structure fH . We say that a piecewise C1 curve σ : J → Rn, t /→ σ(t),
defined on an interval J of R , is timelike if at each time t ∈ J the tangent vector
σ′(t) is an element of the cone C+

2 (σ(t)) ⊂ Tσ(t)Rn.

Definition 14.1 (The partial order relation). Suppose that p and q are two points
in Rn. We write p ≺ q, and we say that q is in the ≺ -future of p, if there exists a
timelike piecewise C1 curve σ : J → Ω joining p to q.

By following the outline in §4, the following also holds in the present setting.
The proof is cthe same as that of Proposition 4.3 except I+(p) needs replaced by
I+2 (p).
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Proposition 14.2. The two order relations < and ≺ coincide; namely, for any
two points p and q in Ω, we have

p < q ⇔ p ≺ q.

As we did so in the Euclidean setting of §4, we denote by δ the the timelike
intrinsic distance function associated to this timelike Finsler structure:

(39) δ(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. Also, by the work done in §4 (Lemme 4.4), the
intrinsic distance δ(p, q) for p < q is finite.

Thus, the domain of definition Ω< defined with the partial order < for the time-
like Hilbert distance H and the domain of definition Ω≺ for the timelike distance
function δ coincide.

The following theorem is then proved in the same way as Theorem 10.3, replacing,
in the proof, the Euclidean segments joining a pair p, q by the spherical geodesic
joining them:

Theorem 14.3. The timelike spherical Hilbert geometry is a timelike Finsler struc-
ture given by the Minkowski functional fH defined in (38).

15. Timelike spherical Hilbert geometry with antipodal symmetry :
Light cone and null vectors

We consider a notable case of a timelike spherical Hilbert metric, namely, the
case where the underlying two convex hypersurfaces K1 and K2 are antipodal in
Sn, that is, they satisfy K2 = −K1 where the minus sign refers to the antipodal
map x /→ −x of Sn modeled in Rn+1. Note that the antipodal condition would
guarantee that K1 and K2 are in good position (Definition 11.2) on Sn.

The quotient space by the antipodal symmetry group Z2 is identified with a
timelike Hilbert geometry on an open subset of the projective space RPn, in which
K1 and K2 become a single convex hypersurface K under the antipodal quotient
map Sn → RPn. This has been investigated by Busemann [4]. We do not, however,
consider the projective space here, and exclusively treat the spherical setting with
two convex sets K◦

1 and K◦
2 . The main reason is that in working in the projective

space, Busemann gets locally timelike spaces instead of timelike spaces, whereas we
prefer to work with timelike spaces.

In this setting, there is a doubling phenomenon for the rays emitted from a point
p ∈ Sn in the complement of K◦

1 ∪K◦
2 : if such a ray intersects K2 at K+

2 (p) in the
future, then it also does so at a point K−

1 (p) in the past.
Let us recall that in the physics modeled by Minkowski geometry, a curve in

the light cone has zero length corresponds to the fact that light travels along it at
infinite speed. So far, we have carefully avoided the issue of null vectors in timelike
geometry. We did so because there is no obvious coherent general treatment for
the timelike Funk and Hilbert geometries. However, this setting, where K1 and K2

are antipodally located on Sn, is a particular situation worth being investigated in
which null vectors arise.

Let Ω be the complement of the set K◦
1 ∪ K◦

2 where K◦
i = Ki ∪ Ii. Then a

great circle intersecting K1 at two points a1, b1 also intersect K2 at two antipodal
points a2(:= b1)1, b2(:= −a1). Now consider the situation when a great circle C is
contained in a supoorting hypersurface π of K2 and let a2 be a point in π ∩ K2.
This circle C also intersects K1 tangentially at a1, which is identified as −a2. We
consider a pair of points p, q on an arc of the great circle C in Ω, and the timelike
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Hilbert distance H(p, q), which is the logarithm of the cross ratio of the quadruple
(a1, p, q, a2) lying on the arc in that order.

H(x, y) =
1

2
log

sin d(p, a2) sin d(q, a1)

sin d(q, a2) sin d(p, a1)
=

1

2
log

sind(p, a2) sin(π −d(q, a2))

sind(q, a2) sin(π −d(p, a2))
= 0.

Here we have used the fact that d(p, a1) = π −d(p, a2), as a1 is antipodal to a2.
As the choices of p and q on the great circle C are arbitrary, we conclude that the
(naturally extended) timelike Minkowski functional evaluated along the great circle
tangential to K1 and K2 = −K1 is zero.

In other words, given a point p in Ω, consider the cone Cone2(p) consisting of
great circles through p each of which is contained in a supporting hyperplane of
K2. These great circles are automatically elements of Cone1(p). Recall that the
set of vectors in TpΩ on which the Minkowski functional PH(p) is defined is equal
to C2(p). Then the tangent vectors in TpΩ which lies in the boundary of the open
cone C2(p) constitute the future-directed light cone at p with respect to the timelike
Minkowski functional for the spherical timelike Hilbert geometry H . In this way,
we have demonstrated null vectors in the timelike spherical Hilbert geometry with
antipodal symmetry naturally exist.

16. The de Sitter geometry as a timelike spherical Hilbert geometry
with antipodal symmety

In this section we explain that the de Sitter space is a canonical example of
the timelike spherical Hilbert geometry with antipodal symmetry. In the setting
described in the preceding section, if we take K1 to be a small circle of radius π/4
in Sn ⊂ Rn+1, then the resulting timelike Hilbert geometry is isometric to the de
Sitter metric restricted to the timelike vectors. We now establish this isometry.

We first recall that the n-dimensional de Sitter space is the unit sphere in the
Minkowski space Rn,1 in the sense that

dSn− 1,1 = {(x0, x1, . . . , xn) | −x2
0 +

n∑

i=1

x2
i = 1} ⊂ Rn,1,

equipped with the so-called de Sitter metric, a Lorentzian metric of type (n, 1)
whose first fundamental form is induced from the ambient Minkowski metric ds2 =
−dx2

0 +
∑n

i dx
2
i . It is diffeomorphic to Sn− 1 × R . The de Sitter space is an n-

dimensional Lorentzian manifold, with global time orientation where we take the
future direction to be the globally defined non vanishing vector field ∂

∂x0
. Naturaly

this induces an order relation in the sense that q lies in the future of p when there
exists a piecewise C1 timelike curve from p to q.

The intersection between the unit sphere dSn− 1,1 and the x0x1-plane in R is
denoted by dS0,1 ⊂ R1,1. It is a totally geodesically embedded submanifold and
geometrically it is a hyperbola (see Figure 7) diffeomorphic to S0 × R . By using
an element of the orthogonal group SO(n, 1), any pair of points (p, q), with q lying
in the future of p in Sn,1 can be isometrically transposed to a pair of points on
dS0,1 so that the x0 coordinates of the points are positive. Hence we may assume
without loss of generality that p and q belong to a connected component of the
upper hemisphere U := {(x0, x1)|−x2

0 + x2
1 = 1, x0 > 0} of dS0,1 in R1,1.

We introduce parameterization σ(t) of dS0,1, t ∈ R , so that

(x0, x1) = (sinh t, cosh t).

Note that t is an arc-length parameter for the de Sitter metric, as the tangent
vector to σ(t) = (sinh t, cosh t) has norm 1. Hence for p = σ(t1) and q = σ(t2) with
t1 < t2, the de Sitter distance d(p, q) is equal to t2−t1. Here the point q lies in the
future of p in dSn− 1,1.
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Figure 7.

We now project, as pictured in Figure 7, a part of the hyperboloid {(x0, x1)|−
x2
0 + x2

1 = 1, x0 > 0} onto the hyperplane {x0 = 1} along the rays from the origin
of R1,1

(40) PdS : {−x2
0 + x2

1 = 1} → {x0 = 1}.

Let p̃ = (1, s̃1) and q̃ = (1, s̃2) be the images of p and q by this correspondence,
where s̃1 > s̃2. The asymptotic lines x0 = ± x1 of the hyperboloid {−x2

0 + x2
1 = 1}

are sent to the points (1, 1) and (1,−1). The cross ratio of those four points defines
the Hilbert geometry H for the convex set I = {x0 > ± x1} in the projective space
RP 1, and for the pair of points p̃ and q̃ with p̃ < q̃, we have

H(p̃, q̃) =
1

2
log

s̃1 −1

s̃2 −1
· s̃2 + 1

s̃1 + 1
.

By noting the equality

s̃i =
sinh ti
cosh ti

,

the Hilbert distanceH(p̃, q̃) is equal to (t2−t1). Hence we have shown that d(p, q) =
H(p̃, q̃) for p < q.

By post-composing the map PdS with the map P − 1
S : {x0 = 1} → U where U is

the upper hemisphere {(x0, x1, . . . , xn) | x2
0 +

∑n
i=1 x

2
i = 1, x0 > 0}, the geodesic

through p and q in the de Sitter space is identified with a great circle in the sphere,
and the image of the map P − 1

S ◦ PdS of the northern half of the de Sitter space is
U \ B where B is the northern cap bounded by the small circle of radius π/4 (see
Figure 7.) This demonstrates that the timelike geometry of the de Sitter space is
realized by the timelike Hilbert metric modeled on the sphere. The maps PdS and
PS are perspectivities, namely they preserve the cross ratio (see [12]). We conclude
that the de Sitter distance is equal to the timelike Hilbert distance.

The quotient space of the de Sitter space is equipped with a locally timelike
Hilbert geometry, where the quotient is taken by the Z2 antipodal symmetry of
Ω = Sn \ (K◦

1 ∪ (−K1)◦), with K1 a small circle of radius π/4 in Sn. The timelike
Hilbert geometry thus defined is only local, as the space Ω = RPn \ K◦

1 is not
time-orientable. Namely consider the closed path from p ∈ Ω to itself, along the
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circle at infinity of RPn. Traversing the loop then reverses the orientation of the
light cone (cf. Hawking-Ellis [6], Calabi-Marcus [5]).

Acknowledgements The first author is supported by the French ANR Grant
FINSLER and by the U.S. National Science Foundation grants DMS 1107452,
1107263, 1107367 “RNMS: Geometric structures And Representation varieties”
(the GEAR Network) and JSPS Invitation Fellowship (short-term) FY2017. He
is also grateful to Gakushuin University (Tokyo), to the Graduate Center of the
City University of New York and to the Tata Institute of Fundamental Research
(Bombay) where part of this work was done. The second author is supported by
JSPS KAKENHI 24340009, 16K13758 and 17H01091. He is also grateful for IRMA
(Strasbourg), where part of the work was done. The authors would like to thank
V. N. Berestovskii for his valuable comments on an earlier version.

References

[1] J. K. Beem, Synthetic theory of indefinite metric spaces, PhD thesis, University of Southern
California, 1968.

[2] H. Busemann, The Geometry of Geodesics, Academic Press, Now York, 1955. Reprinted by
Dover, 2005 and later editions.

[3] H. Busemann and J. K. Beem, Axioms for indefinite metrics. Rend. Circ. Mat. Palermo (2)
15 (1966) 223-246.

[4] H. Busemann, Timelike spaces. Dissertationes Math. Rozprawy Mat. 53 (1967) 52 pp.
[5] E. Calabi and L. Marcus, Relativistic space forms, Ann. of Math. 75, (2012) 63–76.
[6] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge

University Press, 1973.
[7] P. Y. Woo, Doubly-Timelike General G-spaces, PhD thesis, University of Southern California,

1968.
[8] A. Papadopoulos, Hilbert’s fourth problem Athanase Papadopoulos. In Handbook of Hilbert

Geometry (A. Papadopoulos and M. Troyanov, ed.) European Mathematical Society Pub-
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