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TIMELIKE HILBERT AND FUNK GEOMETRIES

ATHANASE PAPADOPOULOS AND SUMIO YAMADA

Abstract. A timelike metric space is a Hausdorff topological space equipped
with a partial order relation and a distance function satisfying a set of axioms
including certain compatibility conditions between these two objects. The dis-
tance function is defined only on a certain subset (whose definition uses the
partial order) of the product of the space with itself containing the diagonal.
Distances between triples of points, whenever they are defined, satisfy the so-
called time inequality, which is a reversed triangle inequality. In the 1960s,
Herbert Busemann developed an axiomatic theory of timelike metric spaces
and of locally timelike metric spaces. His motivation comes from the geometry
underlying the theory of relativity and the classical example he gives is the
n-dimensional Lorentzian spaces. Two other interesting classes of examples of
timelike metric spaces introduced by Busemann are the timelike analogues of

the Funk and Hilbert geometries. In this paper, we investigate these geome-
tries. We shall find new interactions among the Euclidean, affine, projective
and spherical timelike geometries. In particular, the de Sitter metric is de-
scribed as a special case of a timelike spherical Hilbert metric.

Keywords.— Timelike space, timelike Hilbert geometry, timelike Funk geome-
try, time inequality, convexity, metric geometry, Busemann geometry, Lorentzian
geometry, relativity.
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1. Introduction

A timelike metric space is a Hausdorff topological spaceR equipped with a partial
order relation < and a distance function ρ which plays the role of a metric. This
metric is asymmetric in the sense that the distance from x to y is not necessarily
equal to the the distance from y to x. More drastically, the distance from x to y
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may be defined whereas the distance from y to x is not defined. More precisely, the
distance ρ(x, y) is defined only for pairs (x, y) ∈ R × R satisfying x ≤ y (that is,
either x = y ot x < y). This distance function satisfies ρ(x, x) = 0 for every x in R,
ρ(x, y) > 0 for every x and y such that x < y, and the time inequality, namely, the
reversed triangle inequality ρ(x, y) + ρ(y, z) ≤ ρ(x, z) for all triples of points x, y, z
satisfying x < y < z. The distance function ρ and the order relation < satisfy a
set of axioms including compatibility conditions with respect to each other. For
instance, it is required that every neighborhood of a point q in R contains points
x and y satisfying x < q < y. This axiom and others are stated precisely in the
memoir [4] by Herbert Busemann.

The theories of timelike metric spaces, timelike G-spaces, locally timelike metric
spaces and locally timelike G-spaces initiated by Busemann generalize the geomet-
ric theories of metric spaces and of G-spaces that he developed in his book [2]
and in other papers and monographs. The motivation for the study of timelike
metrics comes from the geometry underlying the theory of relativity. The classical
example is the n-dimensional Lorentzian space. As other interesting examples of
timelike metric spaces, Busemann introduced timelike analogues of the Funk and
Hilbert geometries. In the present paper, we investigate these geometries. We
establish several results concerning their geodesics, their convexity properties and
their infinitesimal structure. We show in particular that they are Finsler metrics
in an appropriate sense (we call them timelike Finsler metrics). We also give a de-
scription of the de Sitter space as a special case of a more general timelike Hilbert
geometry in a spherical geometry setting.

2. The timelike Funk metric, its geodesics and its variational

formulation

We first introduce some preliminary notions and we establish some basic facts.
With few exceptions, we shall use Busemann’s notation in [4], and we first recall it.

Let K be a convex hypersurface in Rn, that is, the boundary of an open (possibly
unbounded) convex set I ⊂ Rn. For any hypersurface K which is not a plane,
there is a well-defined associated open convex set I. This is the convex connected
components of Rn \K. If K is a hyperplane, the connected components of Rn \K
are both convex, and in this case we make a choice of one of the two connected
components, that is, a half-space bounded by the hyperplane K. We call the set I
associated to K the interior of K. We denote the closure K ∪ I of I by K◦.

Let P be the set of supporting hyperplanes ofK, that is, the hyperplanes π having
nonempty intersection with K and such that the open convex set I is contained in
one of the two connected components of Rn \ π. For each π ∈ P, we let H+

π be the
open half-space bounded by the hyperplane π and containing I, and Hπ the open
half-space bounded by π and not containing I. We have:

I = ∩π∈PH
+
π .

Furthermore, if Ω = Rn \K◦ is the complement of K◦ in Rn, we have

Ω = ∪π∈PHπ.

We now introduce a partial order relation on Ω. For a point p in Ω, we let
C̃(p) ⊂ Ω be the union of all the rays originating at p and intersecting K. Clearly

C̃(p) is convex and has nontrivial interior. Depending on the shape of K and the

relative position of p and K, C̃(p) ∩ Ω may or may not be closed in Ω. We denote

by C(p) the set of interior points of C̃(p). For any two distinct points p and q in
Ω, we write

p < q if q ∈ C(p),
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and whenever this occurs, we say that q lies in the future of p. We also say that
p lies in the past of q (see Figure 1). We write p ≤ q if either p < q or p = q.
Geometrically speaking, when p < q, the ray R(p, q) from p through q intersects
the hypersurface K transversally.

We denote by Ω< (resp. Ω≤) the set of ordered pairs (p, q) in Ω × Ω satisfying
p < q (resp. p ≤ q). Since the set C(p) is open for each p, the set Ω< is open in the
product space Ω×Ω. It is disjoint from the diagonal set {(x, x) | x ∈ Ω} ⊂ Ω×Ω.

p

The future of p

The past of p

Figure 1.

Finally, for any a point p in Rn, we denote by P(p) the set of supporting hyper-
planes π ∈ P that separate K from p. In other words, the set P(p) is characterized
by

(1) P(p) = {π ∈ P | p ∈ Hπ}.

We note that a supporting hyperplane π which contains p and is tangential to K
does not belong to the set P(p).

We have the following:

Proposition 2.1. For any two points p and q in Ω, we have

p < q ⇔ P(p) ⊃ P(q).

Proof. First suppose p < q. We claim that every π ∈ P(q) is an element of P(p).
Indeed, if this does not hold, then there exists π ∈ P(q) such that p ∈ H+

π . Therefore
q lies in Hπ by definition, p lies in H+

π , and thus p and q lie across π from each
other. In particular the ray R(p, q) intersects K transversally on the Hπ side, which
contradicts the fact that K ⊂ H+

π .
As for the converse, we argue by contraposition: if the ray R(p, q) does not

intersect K transversally (hence p 6< q) then there exists some π which lies in P(q)
but not in P(p). Such a supporting hyperplane π ∈ P(q) intersects the interior of
the segment [p, q]. By definition, q lies on the other side of π from K. It follows
that p lies on the same side of K with respect to π. Hence the hyperplane π is an
element of P(q) \ P(q), namely P(p) 6⊃ P(q).

�

Corollary 2.2. Let p, q, r be three points in Ω. If p < q and q < r, then p < r.

Proof. The proof follows from Proposition 2.1, since it gives:

p < q and q < r ⇔ P(p) ⊃ P(q) ⊃ P(r).

�

Now we can define the timelike Funk metric F (p, q) on the subset Ω≤ of Ω×Ω.
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Definition 2.3 (The timelike Funk metric). The function F (p, q) on pairs of dis-
tinct points p, q in Ω satisfying p < q is given by the formula

F (p, q) = log
d(p, b(p, q))

d(q, b(p, q))

where b(p, q) is the point where the ray R(p, q) first hits the convex hypersurface
K and d(., .) denotes the Euclidean distance. Note that b(p, q) ∈ K exists since
p < q. As the ray R(p, q) intersects K transversally, we have the strict inequality
d(p, b(p, q)) > d(q, b(p, q)), hence the value of F (p, q) is strictly positive. For p = q,
we extend the definition by setting F (p, q) = 0.

We remark at this point that the metric space together with the partial order
relation we have defined satisfies the three axioms T1, T

′
2 and T ′

3 of Busemann’s
[4]. (But to for the purpose of the present paper, the reader need not go through
the general axiomatics of Busemann since we are only concerned here with specific
examples.)

Let π0 be a supporting hyperplane to K at b(p, q), namely π0 ∈ P(b(p, q)). For p
in Rd, let Ππ0(p) be the foot of the point p on the hyperplane π0. In other words,

Ππ0 : Rd → π0 is the nearest point projection map. From the similarity of the
triangles △(p,Ππ0(p), b(p, q)) and △(q,Ππ0(q), b(p, q)), we have

log
d(p, b(p, q))

d(q, b(p, q))
= log

d(p, π0)

d(q, π0)
.

Using the convexity of K, the quantity F (p, q) can be characterized variationally
as follows. For any unit vector ξ in Rn and for any π ∈ P, define T (p, ξ, π) by
π ∩ {p + tξ | t > 0}. For p 6= q in Rn, consider the vector ξ = ξpq = q−p

‖q−p‖ where

the norm is the Euclidean one. When the hyperplane supports Ω at b(p, q), we
have T (p, ξpq, π) = b(p, q) and otherwise the point T (p, ξpq, π) lies outside Ω. When
π ∈ P supports the convex set at some point other than p , again by the similarity
of the triangles △(p, Fπ(p), T (p, ξpq, π)) and △(q, Fπ(q), T (ξpq, π)), we get

d(p, π)

d(q, π)
=

d(p, T (p, ξpq, π))

d(q, T (p, ξpq, π))
.

Note that the furthest point from p on the ray R(p, q) = {p + tξpq | t > 0} of
the form T (p, ξpq, π) is b(p, q). This in turn says that a hyperplane πb(p,q) which
supports Ω at b(p, q) minimizes the ratio d(p, T (p, ξpq, π))/d(q, T (p, ξpq, π)) among
all the elements of P;

(2) log
d(p, π0)

d(q, π0)
= inf

π∈P

log
d(p, π)

d(q, π)
.

Notice that there is an analogous formula for the classical (non-timelike) Funk
metric, where the infimum in the above formula is replaced by a supremum, see
[14] Theorem 1.

As π0 ∈ P(q) ⊂ P(p) ⊂ P (Proposition 2.1), we have the following identification:

(3) F (p, q) = inf
π∈P(q)

log
d(p, π)

d(q, π)
.

Remark 2.4. The set of future points of a point p, that is, the set of points
q satisfying p < q, has the structure of a cone C̃(p) with nonempty interior C(p).
This reminds us of the Lorentzian space, which is the geometric setting of spacetime
for the theory of relativity, where the cone of future points of p is the ambient space
of the physically possible trajectories of this point. The restriction of the distance
function to the cone comes from the fact that a material particle travels at a speed
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which is less than the speed of light. Thus, the set of points on the rays starting at p
that are on the boundary C̃(p)\C(p) of the solid cone C̃(p) becomes an analogue of
the “light cone” of spacetime (again using the language of relativity). However, in
the case of Lorentzian geometry, the distance between p and a point on boundary
of the light cone is zero, whereas in our setting it is undefined (recall that the
distance between two points p is defined whenever we have p < q). In conclusion,
there are analogies between Busemann’s timelike theory and the geometric setting
of relativity, but one has to be careful about several details.

Remark 2.5. Equation (3) may be used as a definition of the Funk metric F (p, q).
One advantage would be that in the case where K is unbounded, it allows us to
naturally extend the domain of definition for F so that the light cone of a point p
is defined to be the set of points q 6= p satisfying F (p, q) = 0.

We prove that the function F (p, q) satisfies the reverse triangle inequality, which
we call in this context, after Busemann, the time inequality. This inequality holds
for mutually distinct points p, q and r in Ω, satisfying p < q < r:

Proposition 2.6 (Time inequality). For any three points p, q and r in Ω, satisfying
p < q < r, we have

F (p, q) + F (q, r) ≤ F (p, r).

Proof. We use the formula (3) for the timelike Funk distance. We have, from
P(q) ⊃ P(r) (Proposition 2.1):

F (p, q) + F (q, r) = inf
π∈P(q)

log
d(p, π)

d(q, π)
+ inf

π∈P(r)
log

d(q, π)

d(r, π)

≤ inf
π∈P(r)

log
d(p, π)

d(q, π)
+ inf

π∈P(r)
log

d(q, π)

d(r, π)

≤ inf
π∈P(r)

(
log

d(p, π)

d(q, π)
+ log

d(q, π)

d(r, π)

)

= inf
π∈P(r)

log
d(p, π)

d(r, π)

= F (p, r).

�

In the rest of this section, we study geodesics and spheres in timelike Funk
geometries. We shall refer to the paper [9] for the corresponding results in the
classical Funk setting, and all the properties are motivated by Busemann’s work
[2].

First we consider geodesics for the timelike Funk metric. We start with the
definition of a geodesic. This definition is the same as in ordinary metric spaces,
except that some care has to be taken so that the distances we need to deal with
are always defined.

A geodesic is a path σ : J → Ω, where J may be an arbitrary interval of R, such
that for every pair t1 ≤ t2 in J we have σ(t1) ≤ σ(t2) and for any triple t1 ≤ t2 ≤ t3
in J we have

F (σ(t1), σ(t2)) + F (σ(t2), σ(t3)) = F (σ(t1), σ(t3)).

It follows easily from the definition that for any p < q the Euclidean segment
[p, q] joining p to q is the image of a geodesic. This makes the distance function F
“projective” in the sense of Hilbert’s Fourth Problem [8] if this problem is extended
in an appropriate way to timelike spaces. In particular, the time inequality becomes
an equality when p, q and r satisfying p < q < r are collinear in the Euclidean sense.
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Let us make an observation which concerns the non-uniqueness of geodesics and
the case of equality in the time inequality. Assume that the boundary of the convex
hypersurface K contains a Euclidean segment s. Take three points p, q, r in a small
neighborhood O of a point on s, such that the Euclidean distance of p, q, r to s
taken in that order is decreasing (Figure 2). Then, using the Euclidean intercept

p

q

r

s

Figure 2. The broken segment pqr is a geodesic

theorem, we have

F (p, r) = F (p, q) + F (q, r).

Applying the same reasoning to an arbitrary ordered triple on the broken Euclidean
segment [p, q] ∪ [q, r], we easily see that this segment is an F -geodesic. More gen-
erally, by the same argument, we see that any oriented arc in O whose points get
strictly closer to the segment s when we move along this arc, is the image of an
F -geodesic.

In fact, the situation in the neighborhood O is very special. It is a case where
the timelike Funk and the classical Funk metrics coincide, distances being defined
from a fixed point p to points in an open cone centered at this point. (Notice that
for this to happen, it is necessary that the time and the triangle inequalities hold,
therefore they must both be equalities.)

From the preceding remarks on Euclidean segments we can deduce the following:

Proposition 2.7. A timelike Funk metric F defined on a set Ω≤ associated to a
convex hypersurface K in Rn satisfies the following properties:

(1) The Euclidean segments in Ω that are of the form [p, q] where p < q are
F -geodesics.

(2) Any Euclidean line [p, b) from a point p in Ω to a point b in ∂K, equipped
with the metric induced from the timelike Funk metric, is isometric to a
Euclidean ray.

(3) The Euclidean segments in (1) are the unique F -geodesic segments if and
only if the convex set I is strictly convex.

The proof is the same as that of the equivalence between (1) and (2) in Corollary
8.7 of [10], up to reversing some of the inequalities (i.e. replacing the triangle
inequality by the time inequality).

After the geodesics, we consider spheres.
At each point p of Ω, given r > 0, a (geometric) future sphere of radius r is the

set of points in Ω that are in the future of p and situated at distance r from this
point.
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Proposition 2.8 (Future spheres). At each point p of Ω and for each r > 0, the
geometric future sphere of center p and radius r is a piece of a convex hypersur-
face that is affinely equivalent to the portion C(p) ∩ K, namely the part of the
hypersurface K that is visible from p.

The proof is analogous to that of Proposition 8.11 of [9], and we do not repeat
it here.

This proposition implies that some affine properties of the hypersurface K are
local invariants of the metric. One consequence is the following strong local rigidity
theorem, which is also an analogue of a property satisfied by the classical Funk
metric (cf. the concluding remarks of the paper [9]).

Corollary 2.9. Let K and K ′ be two hypersurfaces in Rn and Ω≤ and Ω′
≤ the set

of corresponding pairs of points for which the associated Funk metrics F and F ′

respectively are defined. If there exists subsets O ⊂ Ω≤ and O′ ⊂ Ω′
≤ and a map

O → O′ which is distance-preserving, then there is an open subset of K which is
affinely equivalent to an open subset of K2.

The proof follows from the the fact that an isometry sends a future sphere to a
future sphere.

The corollary implies for instance that if K1 is the boundary of a polyhedron
and K2 a strictly convex hypersurface, then there is no local isometry between the
associated timelike metric spaces.

The next statement is a simple observation in convex geometry, and it gives a
monotonicity result for a pair of timelike Funk geometries.

Proposition 2.10. Given as before a convex set I with associated Funk distance F ,

let Î ⊃ I be another convex set and F̂ (p, q) the associated timelike distance function
defined between appropriate pairs (p, q). Suppose that p and q are in the domain of

definition of both distances F and F̂ , that is, p < q with respect to the convex sets

I and Î. Then we have
F̂ (p, q) ≥ F (p, q).

Proof. Using the notation of Definition 2.3, we have

F (p, q) = log
d(p, b(p, q))

d(q, b(p, q))
.

With similar notation, we have

d̂(p, q) = log
d(p, b̂(p, q))

d(q, b̂(p, q))
.

Since Î ⊃ I, we have F (p, b̂(p, q)) = d(p, b(p, q))+x and d(q, b̂(p, q)) = d(q, b(p, q))+
x for some x ≥ 0. The result follows from the fact that the function defined for
x ≥ 0 by

x 7→
a− x

b− x
,

where b < a are two constants is increasing. �

3. The Finsler structure of the timelike Funk metric

The timelike Funk metric associated to a convex hypersurface Ω in R
n is Finsler

in an appropriate sense which we describe now.
On the tangent space at each point of Ω = Rn \ K◦, there is a timelike norm-

function which we also call a (timelike) Minkowski functional, in analogy with the
Minkowski functional associated to a Finsler structure in the classical sense. We
show that the timelike Funk distance F (p, q) between two points p and q is obtained
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by integrating this norm on tangent vectors along piecewise C1 paths joining p to
q and taking the supremum (instead of the infimum, in the classical case) of the
lengths of such piecewise C1 paths. We call such a structure a timelike Finsler
structure. To make this more precise we start with the following definition (cf. [4]
§ 5).

Definition 3.1 (Timelike Minkowski functional). A timelike Minkowski functional
is a function f (which plays the role of a “norm” in this timelike setting) satisfying
the following:

(1) f is defined on an open convex cone C ⊂ Rn having the origin as apex;
(2) f(x) > 0 for all x in C;
(3) f(λx) = λf(x) for all x in C and λ > 0;
(4) f ((1 − t)x+ ty) ≥ (1 − t)f(x) + tf(y) for all 0 < t < 1.

The unit sphere B of such a norm function f is the set of vectors x in C satisfying
f(x) = 1. In general, B is a piece of a hypersurface in R

n which is concave
when viewed from the origin O (see Figure 3). We allow the possibility that B is
asymptotic to the boundary of the cone C. This surface is called the indicatrix of
f .

O

B

Figure 3. The indicatrix B is a piece of hypersurface which is concave,

seen from the origin O.

The reason of the adjective timelike in the above definition is that in the Lorentzian
setting, the Minkowski norm measures the lengths of vectors which are in the time-
like cone, which is the part of spacetime where material particles move. In partic-
ular, there is a timelike Minkowski functional f for the standard Minkowski space
R3,1, equipped with the Minkowski metric

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3.

It is given by

f(x) =
√
−(−x2

0 + x2
1 + x2

2 + x2
3)

and it is defined for non-zero vectors x in R4 satisfying −x2
0 + x2

1 + x2
2 + x2

3 < 0.
We now study the timelike Minkowski norms on tangent spaces of Funk geome-

tries. For every point p in the timelike Funk geometry of a space Ω≤ associated to
a convex hypersurface K, there is a timelike Minkowski functional P (p, v) defined
on the tangent space TP (Ω) of Ω at p consisting of the non-zero vectors v satisfying

p+ tv ∈ C(p) for t > 0

where we recall that C(p) is the (nonempty) interior of the cone spanned by K
with vertex p. We denote the set of such vectors v by D(p) ⊂ TpΩ. The function
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P (p, v) for a given point p ∈ Ω and for any vector v ∈ D(p) is given by the following
formula:

(4) P (p, v) = inf
π∈P(p)

〈v, ηπ〉

d(p, π)

for v ∈ D(p) and P (p, 0) = 0 when v = 0, where P(p) is as in (1) above. By
elementary geometric arguments (see [14] for a detailed discussion in the classical
case which can be adapted to the present setting) it is shown that

(5) P (p, v) =
‖v‖

inf{t | p+ t v
‖v‖ ∈ K}

for any nonzero vector v ∈ D(p).
Note that the quantity inf{t | p+ t v

‖v‖ ∈ K} in the denominator is the length of

the line segment from p to the point where the ray p + tv hits the convex set K◦

for the first time. It is clear that

Proposition 3.2. The functional P (p, v) defined on the open cone D(p) in TpΩ ∼=
Rn satisfies all the properties required by a timelike Minkowski functional.

We say that a piecewise C1 curve t 7→ σ(t) in Ω, defined on an interval J
of R, is timelike if at each time t ∈ J the tangent vector σ′(t) is an element of
D(σ(t)) ⊂ Tσ(t)Ω.

As the set D(p) is a subset of an open cone bounded by a concave hypersurface
K ∩ C(p), the sub-level set

sK(p) = {v ∈ D(p) | P (p, v) < K}

is open in each tangent space TpΩ, implying that the Minkowski functional P (p, v)
is upper semi-continuous. Using this upper semi-continuity we define the length of
a piecewise C1 timelike curve σ(t) by the Lebesgue integral

Length(σ) =

∫ 1

0

P (σ(t), σ′(t)) dt.

By standard arguments, again using the upper semi-continuity of P , it follows that
the length functional is upper semi-continuous in the C0-topology on curves (for
detailed treatments, see [13] or [6].)

We then define a “distance function” d for pairs of points (p, q) satisfying p < q
by setting

d(p, q) = sup
σ

Length(σ)

where the supremum is taken over all the timelike piecewise C1 curves σ : [0, 1] → Ω
satisfying σ(0) = p and σ(1) = q. It is easy to check that the distance function d
is a timelike metric on the space Ω≤. This timelike metric is the analogue of the
so-called intrinsic metric in the classical (non-timelike) case. We call d the timelike
intrinsic metric. We shall prove that this distance function coincides with the Funk
timelike metric. We state this as follows:

Theorem 3.3. The value of the distance d(p, q) for a pair (p, q) ∈ Ω≤ coincides
with F (p, q). That is, we have

F (p, q) = d(p, q).

In other words, we have the following

Theorem 3.4. The timelike Funk metric is a timelike Finsler metric with timelike
Finsler structure given by the Minkowski functional P (p, v).
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The Minkowski functional P (p, v) which underlies a Funk metric has a property
which is analogous to the one noticed in [9] which makes this metric the tautological
Finsler structure associated to the hypersurface K (or the convex body I). The
term “tautological” is due to the fact that the indicatrix of the timelike Minkowski
functional at p ∈ Ω, that is the set

Ind(p) = {v ∈ TpΩ | P (p, v) = 1},

is naturally identified with the subset K ∩C(p) of the hypersurface K. Recall that
C(p) is the open cone centered at p spanned by K.

We also note that with this identification, given a pair of points p, q with p < q,
there always exists a distance-realizing (length-maximizing) geodesic from p to q,
since the Euclidean segment [p, q] is an F -geodesic. In the theory of relativity, the
existence of geodesics is established by imposing the so-called global hyperbolicity
([13] or [6]) of the spacetime. The global hyperbolicity, roughly put, consists of two
conditions: the non-existence of closed causal curves and the sequential compactness
of geodesics in C0-topology. In our setting, the first condition is satisfied, while
the second is not always guaranteed due to the lack of assumptions on the set
C̃(p) \ C(p).

Proof of Theorem 3.3. For a pair of points (p, q) with p < q, let R(p, q) be the ray
from p through q and let b(p, q) ∈ K be the first intersection point of this ray with
the convex set K◦. Parameterize the Euclidean segment [p, q] by a path σ̃(t) having
Euclidean arc-length parameter t with σ(0) = p, σ(1) = q. Then we have

∫ 1

0

P (σ̃(t), σ̃′(t)) dt = log
d(p, b(p, q))

d(q, b(p, q))
= F (p, q),

since
d

dt
log

d(p, b(p, q))

d(σ̃(t), b(p, q))
= P (σ̃(t), σ̃′(t)).

By taking the supremum over the set of paths from p to q, this implies the inequality

d(p, q) ≥ F (p, q).

Before continuing the proof of Theorem 3.3, we show the following monotonicity
for the intrinsic distance.

Lemma 3.5. For an open convex set I bounded by K, consider the associated
timelike Minkowski functional P : TΩ → R and the intrinsic distance d induced

by P . Also let Î ⊃ I be another open convex set bounded by K̂, P̂ its associated

timelike Minkowski functional, and d̂ the intrinsic distance. Suppose that p and q

are in the domain of definition of both intrinsic distances d and d̂. Then we have

d̂(p, q) ≥ d(p, q).

Proof. The set of admissible paths from p to q for the convex set Î is larger than

the set of paths for Î. This is due to the inclusion Ĉ(x) ⊃ C(x) for every x in

Ω. Also between the two timelike Minkowski functionals P and P̂ , we have the
following inequality

P̂ (x, v) ≥ P (x, v)

whenever the two quantities are defined. This follows from the definition of the
Minkowski functional:

(6) P (p, v) =
‖v‖

inf{t | p+ t v
‖v‖ ∈ K}
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for any nonzero vector v ∈ D(p), as K̂ is closer to p than K. Hence by integrating
each functional along an admissible path and taking supremum over these paths,
we have

d̂(p, q) ≥ d(p, q)

�

Proof of Theorem 3.3 continued.— Suppose that we have a convex hypersurface K

bounding an open convex set I, and for (p, q) ∈ Ω<, let Î := Hπb(p,q)
, where Hπb(p,q)

is the open half-space bounded by a hyperplane πb(p,q) supporting K at b(p, q). The

open set Î comes with its intrinsic distance d̂. We now apply Lemma 3.5 to this

setting where a convex set Î contains I, and obtain d̂ ≥ d.

Now for the open half space Î = Hπb(p,q)
, the values of F (p, q), F̂ (p, q) and

d(p, q) all coincide, since under the hypothesis Î = Hπb(p,q)
, the set P of supporting

hyperplanes consists of the single element πb(p,q), and the path σ̃ from p to q is a

length-maximizing path. Also from the lemma above, we have d̂(p, q) ≥ d(p, q).
Hence we have

F (p, q) = F̂ (p, q) = d̂(p, q) ≥ d(p, q) ≥ F (p, q)

and the equality d(p, q) = F (p, q) follows. �

We end this section by the following convexity result for the timelike Funk dis-
tance:

Theorem 3.6. Given a point x in Ω and K > 0, the set of points

SK(x) := {p ∈ Ω | p < x and F (p, x) > K}

is a convex set in Ω = Rn \K◦.

Proof. Given p1 and p2 in SK(x), parameterize the Euclidean segment [p1, p2] with
an affine parameter t ∈ [0, 1]. We will show that the function

F (s(t), x) = inf
π∈P

log
d(s(t), π)

d(x, π)

is convex in t. Fix a supporting hyperplane π in P. Then

d

dt
log

d(s(t), π)

d(x, π)
=

〈−νπ(s(t)), ṡ(t)〉

d(s(t), π)

and
d2

dt2
log

d(s(t), π)

d(x, π)
= −

〈−νπ(s(t)), ṡ(t)〉
2

d(s(t), π)2
≤ 0,

where νπ(x) is the unit vector at x perpendicular to the hypersurface π oriented
toward π. In particular −νπ is the gradient vector of the function d(x, π). The sign

of the second derivative says that log d(s(t),π)
d(x,π) is concave in t for each π ∈ P. By

taking the infimum over π ∈ P, the resulting function F (s(t), x) is concave in t.
This implies that the super-level set SK(x) of the Funk distance F (., x) is convex.

�

As an analogous situation in special relativity, the super-level set of the past-
directed temporal distance measured from a fixed point in the Minkowski space
Rn,1 is convex. For example, the set below the past-directed hyperboloid: S1(0) =
{(x0, x1) ∈ R1,1 | − x2

0 + x2
1 < −1, x0 < 0} is convex.
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4. The timelike Hilbert metric

We define the timelike Hilbert metric following the ideas of Busemann in [4], with
a slight modification. For this, we consider two disjoint open, possibly unbounded,
convex sets I1 and I2 in Rn, bounded by convex hypersurfaces K1 and K2 respec-
tively. Let Ω = Rn \ (K◦

1 ∪K◦
2 ) be the complement of the closures K◦

1 = K1 ∪ I1
and K◦

2 = K2 ∪ I2 in Rn. For i = 1, 2, we denote by Pi the set of supporting
hyperplanes of Ii.

Given a point p in Ω, for i = 1, 2, we define Ci(p) to be the set of interior points

of the cone C̃i(p) spanned by Ki with apex at p.
We denote by R the set of points in Ω that are contained in the interior of

Euclidean segments of the form [a1, a2] joining a point a1 in K1 and a2 in K2, with
the open line segment (a1, a2) entirely contained in Ω.

We define a partial order relation < on R by setting

p < q ⇔ q ∈ C2(p) and p ∈ C1(q).

As usual, p ≤ q, we mean either p < q or p = q. We also introduce the subset Ω<

(resp. Ω≤) as the set of ordered pairs (p, q) in Ω×Ω satisfying p < q (resp. p ≤ q).
Since the set C2(p) is open for each p ∈ Ω, and the set C1(q) is open for each q ∈ Ω,
it follows that the set Ω< is open in the product space Ω × Ω. This set is disjoint
from the diagonal set {(x, x) | x ∈ Ω} ⊂ Ω× Ω.

If p < q, then p and q are both in R, and there exists a pair of points a1 ∈ K1

and a2 ∈ K2, such that the open segment (a1, a2) is disjoint from K1 and K2 and
the quadruple (a1, p, q, a2) are situated in that order on [a1, a2] (cf. Figure 4). The
converse does not hold; namely for a quadruple (a1, p, q, a2) aligned in that order
on the segment [a1, a2] with a1 ∈ K1 and a2 ∈ K2, when either p ∈ π for some
π ∈ P2 or q ∈ π̂ for some π̂ ∈ P1, we have p 6< q.1

Note that K1 and K2 do not play a symmetric role in this definition. We have
p < q but not q < p. We shall stress this fact when needed, talking for instance of
an oriented Euclidean line joining a point in K1 to a point in K2 when needed, but
we shall not emphasize this fact when it is understood.

K1

K2

p
qa1

b2

Figure 4.

Definition 4.1 (Timelike Hilbert metric). The timelike Hilbert metric on Ω is a
distance function H(p, q) defined on Ω≤ ⊂ Ω× Ω by the formula

H(p, q) = F2(p, q) + F1(q, p)

where for i = 1, 2, Fi is the timelike Funk metric associated to the convex hyper-
surfaces Ki.

The timelike Hilbert metric satisfies the time inequality. This follows from the
definition of the timelike Hilbert metric as a sum of two timelike Funk metrics and
the fact that the timelike Funk metric satisfies the time inequality. In particular,

1In this sense, we differ from Busemann’s treatment of timelike Hilbert metric in [4].
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the metric space together with the partial order relation thus defined satisfies the
three axioms T1, T

′
2 and T ′

3 of Busemann’s [4].
The timelike Hilbert metric satisfies additional properties which follow from those

of the Funk metric. In particular, we have:

Proposition 4.2. (a) In a timelike Hilbert metric H associated to two convex
hypersurfaces K1 and K2, the Euclidean segments of the form [a1, a2] where a1 ∈ K1

and a2 ∈ K2, oriented from a1 to a2 such that a1 /∈ π for every π in P2 and a2 /∈ π̂
for every π̂ in P1, are H-geodesics and such that the open segment (a1, a2) is in the
complement of K1 ∪K2. They are isometric to the real line.

(b) The oriented Euclidean segments contained in the segments of the form
[a1, a2] where a1 ∈ K1 and a2 ∈ K2 with a1 /∈ π for every π in P2 and with
a2 /∈ π̂ for every π̂ in P1, and their subsegments are the unique H-geodesics if and
only if there are no segments [a1, a2] in Ω with a1 in the interior of a segment J1
in K1 and a2 in the interior of a segment J2 in K2 with J1 and J2 coplanar.

The proof is an adaptation of that of the classical Hilbert metric (cf. [2] or [9]),
and we omit it.

We show that the corresponding timelike Hilbert metricH(p, q) introduced above
is a Finsler metric, and we give its linear functional (the analogue of the Minkowski
functional) defined on a subset of each of the tangent space.

Definition 4.3. Consider a point p in Ω so that C2(p)∩−C1(p) is nonempty (where
−C is the cone {−v | v ∈ C}.) Denote by D(p) the set C2(p) ∩ −C1(p) ⊂ TpΩ.
Using the notation of § 3 that concerns the infinitesimal Finsler metric associated
to a timelike Funk metric, we define a linear functional on D(p) by the formula:

(7) PH(p, v) = P2(p, v) + P1(p,−v).

where P1 and P2 are the timelike norms on tangent spaces associated to the Funk
metrics associated to K1 and K2 respectively (see Equations (1) or (6)). Note that
when v is an element of D(p), v is in C2(p) and −v is in C1(p).

Theorem 4.4. The timelike Hilbert metric is a timelike Finsler metric with time-
like Finsler structure given by the Minkowski functional PH defined in (7).

Proof. Let p and q be two points in the space Ω = Rn \ (K◦
1 ∪K◦

2 ) associated to
the convex sets K1 and K2 such that (p, q) is in Ω<. In what follows, when we
talk about a “Euclidean segment [p, q]” joining p to q, we mean that the segment
is oriented from p to q.

Recall that the Euclidean segment [p, q] is an F2-geodesic, and the Euclidean
segment [q, p], is an F1-geodesic. Thus, we have

F2(p, q) =

∫

[p,q]

P2(x, v)dx

and

F1(q, p) =

∫

[q,p]

P1(x, v)dx.

Since the segment [q, p] is the interval [p, q] traversed in the opposite direction,
we have ∫

[q,p]

P1(x, v)dx =

∫

[p,q]

P1(x,−v)dx.

Thus, we have

(8) H(p, q) =

∫

[p,q]

(P2(x, v) + P1(x,−v)) dx.
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Furthermore, if γ(p, q) is any path in the domain of definition of H joining p to q,
then we have ∫

γ

P2(x, v) ≤

∫

[p,q]

P2(x, v)

and

(9)

∫

γ

P1(x,−v) ≤

∫

[p,q]

P1(x,−v).

Equations (8) and (9) show that H is timelike Finsler, with timelike Minkowski
functional at each point x given by PH(p, v) = P2(x, v) + P1(x,−v).

�

The Finsler structure PH is well-behaved in the sense that the linear functional

PH(p, ) : D(p) → R

is a timelike Minkowski functional (see §3.1) defined on the open cone D(p) =
C2(p) ∩ −C1(p) in TpΩ. Since the sublevel set sK = {v ∈ TpΩ : PH(p, v) < K} is
open (this follows from the same argument used for the timelike Funk metric), PH

is upper semi-continuous in the tangent bundle TΩ, making the length functional
well-defined, and upper semi-continuous in C0 topology of the path space.

4.1. Classical examples. We now point out some two-dimensional examples of
timelike Hilbert metrics. Analogous higher-dimensional analogues hold.

Example 4.5 (The strip). Let Ω be a region contained by two parallel lines in
the plane R2, namely the complement of two half-spaces H1, H2 bounded by a pair
of parallel hyperplanes π1 and π2, which without loss of generality, are assumed
to be (−1, 1) × R. Then any timelike curve is a geodesic for the timelike Hilbert
metric. In this setting, a curve is timelike if at each point the tangent vectors are
not vertical.

Consider the vertical projection Π : Ω → (−1, 1). Then the Hilbert distance
H(x, y) for x < y is equal to H(−1,1)(Π(x),Π(y)) where

H(−1,1)(a, b) = log
a− 1

b− 1

b+ 1

a+ 1

is the Hilbert distance for the interval. This metric is sometimes called the “one-
dimensional hyperbolic metric” as this is the Klein-Beltrami model of the hyperbolic
space H1. Notice that Ω is concave as well as convex in R2.

Example 4.6 (The half-space). The half space corresponds to the limiting case of
the strip discussed above, Ω = (−a, 1)× R, as a → ∞. Then the Hilbert metric

H(−a,1)(x, y) = log
Π(x) − 1

Π(y)− 1

Π(y) + a

Π(x) + a

converges to the Funk metric

F (x, y) = log
Π(x) − 1

Π(y)− 1

which is the timelike Funk metric for the half-space R2 \ {x ≥ 1}. We will come
back to this example later.
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5. The non-Euclidean timelike Funk and Hilbert metrics

Leaving the setting of the Euclidean space, we now work in the n-dimensional
affine space An as underlying space, then the sphere Sn, and finally the projective
space RPn. We first recall a few facts.

First, notice that the definition and the variational characterization of the time-
like Funk metric uses only the affine structure of the Euclidean space. Namely
though the Euclidean distance function appears in the definition of the timelike

Funk metric, only the ratio of the distances d(p,b(p,q))
d(q,b(p,q)) among the points p, q, b(p, q)

on the ray R(p, q) is used. The corresponding remark is well known in the setting
of the classical Hilbert metric. Also in the variational characterization of the Funk
distance, the ratio d(p,π)

d(q,π) can be realized as the ratio of distances among points on

the ray R(p, q) transversally intersecting the supporting hyperplane π. This is an
interesting fact, since it shows that perpendicularity, a concept which is Euclidean
but not affine, is not needed in the variational formulation.

In the same trend, we recall that the convexity of a subset in affine space does
not require a metric: A convex set in An is a set whose intersection with any line
is contractible.

5.1. Affine geometry. An affine space An is usually thought of as a chart for the
projective space RPn. A convex set in RPn can be regarded as a convex set in an
affine space An after choosing an appropriate chart.

The notion of convexity in the Euclidean setting extends to the spherical setting
where one considers only subsets which are contained in an open hemisphere. An
open convex subset I of Sn can be identified with the intersection of open half spaces
indexed by the set P of supporting hyperplanes π, which are great hyperspheres.
We have, in analogy with the Euclidean setting,

I = ∩π∈PH
+
π

where H+
π is the open half space bounded by the hyperplane π containing I. As

before, we denote the other half space by Hπ. The complement of the closure in
Sn is then

Ω = ∪π∈PHπ.

Note that the set P is not empty, since the convex set lies in some hemisphere. For
a point p ∈ Ω, denote the set of great circles by P(p) such that if π ∈ P(p). Then
p lies on the other side of the convex set I with respect to π.

5.2. Spherical and projective geometry. We now define a timelike Hilbert
metric on the sphere Sn. When talking about a convex open subset of Sn, we shall
always assume that it is contained in an open hemisphere.

We consider two convex hypersurfaces K1, K2 with non-intersecting closures
K◦

1 = K1 ∪ I1, K
◦
2 = K2 ∪ I2. The definition of the associated timelike Hilbert

metric is analogous to the Euclidean one, with some extra care. Namely, we let
Ω = Sn \ (K◦

i ∪ K◦
2 ). We define a pre-order relation by first noting that given

a great circle which intersects K1 and K2 at four distinct points, we can label
them so that a1, b1 ∈ K1, a2, b2 ∈ K2 and the two open arcs (a1, a2) and (b1, b2) are
entirely contained in Ω, while [a1, a2] lies in K◦

1 , and [b1, b2] in K◦
2 . This observation

says that every spherical geodesic segment in Ω connecting K1 and K2 is naturally
oriented, where K1 represents the past and K2 the future. We denote by R the set
of points in Ω that are contained in the interior of geodesic segments of the form
[a1, a2] joining a point a1 in K1 and a2 in K2, with the future-oriented open line
segment (a1, a2) entirely contained in Ω.

Given a point p in R, define C2(p) to be the set of interior points of the future-

directed cone C̃2(p) spanned by K2 with apex p. Similarly we set C1(p) to be the
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set of interior points of the past-directed cone C̃1(p) spanned by K1 with apex p.

From the definition of R, C̃1(p) and C̃2(p) are non-empty.
We define a preorder relation < on R×R ⊂ Ω× Ω by setting

p < q ⇔ q ∈ C2(p) and p ∈ C1(q).

We denote, as before, the set of points (p, q) in Ω× Ω satisfying p < q by Ω<. We
also write p ≤ q when p < q or p = q. We note that in the spherical setting, the
cone Ci(p) is an open lune, with two vertices, p and its antipodal point −p.

Unlike the situation studied in [12], it is not possible to define a timelike Funk
spherical metric, because given two distinct points in the complement of a convex
subset of the sphere Sn, there is no natural way of saying that one is in the future
of the other (the great circle through these points may intersect the convex set in
two points).

We recall that given four points p1, p2, p3, p4 situated in that order on a great
circle on the sphere, the spherical cross ratio is defined by

[p1, p2, p3, p4] =
sin d(p2, p4) sin d(p3, p1)

sin d(p3, p4) sin d(p2, p1)
.

Its values are in R≥0 ∪ {∞}. The spherical cross ratio is a projectivity invariant,
cf. [12].

Now, for a pair of points (p, q) in Ω<, let a1 ∈ K1 and a2 ∈ K2 be the intersection
points between the great circle through p and q and the two hypersurfaces K1 and
K2, so that a1, p, q, a2 lie on the arc of great circle [a1, a2] ⊂ Ω in that order.

Definition 5.1 (Timelike Hilbert metric on Sn). The timelike Hilbert metric as-
sociated to the pair (K1,K2) is a distance function H(p, q) defined on the subset
Ω≤ of Ω×Ω consisting of points p and q satisfying p ≤ q, using the above notation
for a1, a2, by the formula

H(p, q) = log[a1, p, q, a2].

There is a timelike Minkowski functional PH associated to the timelike Hilbert
metric H as follows. First we denote by D(p) the cone in TpΩ consisting of vectors
tangent to great circles in C2(p)∩−C1(p). The set D(p) may be empty depending
on p. For a given point p ∈ R and for any vector v ∈ D(p), PH is given by the
following formula:

(10) PH(p, v) = P2(p, v) + P1(p,−v).

We also set PH(p, 0) = 0 when v = 0, where P(p) is as in (1) above, and where

Pi(p, v) = inf
π∈P(p)

〈v, ηπ〉

tan d(p, π)

for v ∈ Ci(p) for i = 1, 2.
The fact that PH is the Finsler structure for H can be checked in the same way

as for the Euclidean setting (Theorem 4.4.) Likewise, it can be shown is that PH is
upper semi-continuous, that it can be used to define lengths of curves, and that the
timelike Hilbert distance is the intrinsic timelike distance defined as the supremum
of length of curves, as we noticed for the timelike Funk distance.

The fact that H defines a timelike distance on Ω can be proved as in the case
of the Euclidean timelike Hilbert metric. The spherical geodesic segments are
geodesics for this timelike spherical metric; this can be proved as in the case of
the spherical (non-timelike) Hilbert metric considered in [12]. In fact, there is a
relation between the Euclidean and the spherical timelike Hilbert metrics which
can be seen as follows.
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Assume that the sets K◦
1 and K◦

2 are both contained in an open hemisphere of
Sn, which we may assume to be the northern hemisphere U. (We may consider this
hemisphere as an affine chart of the projective space RPn.) There is an isomorphism
between the timelike Hilbert metric associated to the pair (K1,K2) and a Euclidean

timelike Hilbert metric whose associated convex sets are the images K̃◦
i of K◦

i

(i = 1, 2) in the Euclidean space Rn seen as the hyperplane {x0 = 1} via the
projection

PS : U → {x0 = 1}

centered at the origin of Rn+1 (see [12] for the details).
There is a notable case of a timelike spherical metric. Consider the case where

the two convex hypersurfaces K1 and K2 are antipodal in Sn, that is, K2 = −K1

where the minus sign refers to the antipodal map x 7→ −x of Sn modeled in R
n+1.

In particular, when K1 is a small circle of radius π/4 in Sn ⊂ Rn+1, then the
resulting timelike Hilbert metric is isometric to the de Sitter metric restricted to
the timelike vectors. Below, we will explicitly identify the de Sitter metric with the
spherical timelike Hilbert metric.

Taking quotients, this case is identified with a timelike Hilbert metric on an open
subset of the projective space RPn, in which K1 and K2 become a single convex
hypersurface K under the antipodal quotient map Sn → RPn.

p

The future of p

The past of p

Figure 5.

In this setting, there is a doubling phenomenon for the rays emitted from a point
p in the complement of K◦ = K ∪ I: if such a ray intersects K at p+ in the future,
then it also does so at a point p− in the past (cf. Figure 5). In other words, for
a pair of points p, q satisfying p < q, the ray R(p, q) from p through q intersects
K and the ray R(q, p) also intersects K. In the light of the discussion about the
spherical timelike Hilbert metric above, this picture corresponds to the situation
where the two convex subsets of Sn are antipodally located; K2 = −K1. The line
R(p, q) ∪R(q, p) ∪ {∞} in RPn is a great circle in Sn, p+ is the intersection point
between the future-directed ray and K1, while p

− is the intersection point between
the ray and K2.

5.3. Light cone and null vectors. So far, we have carefully avoided the issue of
null vectors in timelike geometry. We did so because there is no coherent general
treatment for the timelike Funk and Hilbert metrics. However, this setting where
K1 and K2 are antipodally located on Sn, is a particular situation worth being
investigated. Let Ω be the complement of the set K◦

1 ∪ K◦
2 where K◦

i = Ki ∪ Ii.
Then a great circle intersecting K1 at two points q1, q2 also intersect K2 at two
antipodal points −q1,−q2. Another way of saying this is that C̃2(p) = −C̃1(p) and
also C2(p) = −C1(p). Recall that each Ci(p) is a lune whose two vertices are p
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and −p. Hence C1(p) and C2(p) are a pair of antipodal lunes. Now consider the
situation when a great circle c intersect K1 tangentially at q, which can be thought
as a limiting picture for q1 and q2 merging on K1. This circle also intersects K2

tangentially at −p. We consider a pair of points x, y on an arc of the great circle c in
Ω, and the timelike Hilbert distanceH(x, y), which is the logarithm of the cross ratio
of the quadruple (−q, x, y, q) lying on the arc in that order. Under the antipodal
quotient map π : Sn → RPn, π(q) and π(−q) coincide, thus the value of the cross
ratio is one, hence H(x, y) = 0 . As the choices of x and y on the great circle c are
arbitrary, we conclude that the (naturally extended) timelike Minkowski functional
evaluated along the great circle tangential to K1 and K2 = −K1 is zero. In other
words, given a point p in Ω, consider the cone C̃2(p)\C2(p) consisting of great circles
through p which are tangential to the convex hypersurface K2. These great circles
are automatically tangential to K1 = −K2. The cone D(p) = C2(p) ∩ −C1(p)
in TpΩ on which the Minkowski functional PH(p) is defined is equal to C2(p).

Then the tangent vectors D(p) \D(p) at p constitute the future-directed light cone
with respect to the timelike Minkowski functional for the spherical timelike Hilbert
metric H . In this way, we have demonstrated the existence of null vectors in the
de Sitter space within the framework of timelike Hilbert geometry.

5.4. The de Sitter distance equals the Hilbert distance. The quotient space
of the de Sitter space is equipped with a locally timelike Hilbert geometry, where the
quotient is taken by the Z2 antipodal symmetry of Ω = Sn\(K◦

1∪(−K1)
◦), with K1

a small circle of radius π/4 in Sn. The timelike Hilbert metric thus defined is only
local, as the space Ω = RPn \K◦

1 is not time-orientable. Namely consider the closed
path from p ∈ Ω to itself, along the circle at infinity of RPn. Traversing the loop
then reverses the orientation of the light cone (cf. Hawking-Ellis [6], Calabi-Marcus
[5]).

We now demonstrate an explicit isometry between the locally timelike Hilbert
metric and the de Sitter metric. For this, we first recall that the Sitter space is the
unit sphere in the Minkowski space R

n,1

Sn,1 = {(x0, x1, . . . , xn) | − x2
0 +

n∑

i=1

x2
i = 1} ⊂ R

n,1,

equipped with the so-called de Sitter metric, a Lorentzian metric of type (n, 1)
whose first fundamental form is induced from the ambient Minkowski metric ds2 =
−dx2

0 +
∑

dx2
i .

The intersection between Sn,1 and the x0x1-plane is a copy of S1,1 ⊂ R1,1 which
is totally geodesically embedded. By an element of SO(n, 1), any pair of points
(p, q), with q lying in the future of p in Sn,1, can be isometrically transposed to a
pair of points on S1,1 so that the x0 coordinates of the points are positive. Hence we
may assume without loss of generality that p and q belong to the upper hemisphere
{(x0, x1)| − x2

0 + x2
1 = 1, x0 > 0} of S1,1 in R1,1.

We introduce a local parameter t on S1,1 so that

(x0, x1) = (sinh t, cosh t).

Note that t is an arc-length parameter for the de Sitter metric, as the tangent
vector to σ(t) = (sinh t, cosh t) has norm 1. Hence for p = σ(t1) and q = σ(t2) with
t1 < t2, the de Sitter distance d(p, q) is equal to t2− t1. Here the point q lies in the
future of p (p < q.)

On the other hand, we can project a part of the hyperboloid {(x0, x1)|−x2
0+x2

1 =
1, x0 > 0} onto the hyperplane {x0 = 1} along the rays from the origin of R1,1

(11) PdS : {−x2
0 + x2

1 = 1} → {x0 = 1}.
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Let p̃ = (1, s1) and q̃ = (1, s2) be the images of p and q by this correspondence,
where s1 > s2. The asymptotic lines x0 = ±x1 of the hyperboloid {−x2

0 + x2
1 = 1}

are sent to the points (1, 1) and (1,−1). The cross ratio of those four points defines
the Hilbert metric H for the convex set I = {x0 > ±x1} in the projective space
RP 1, and for the pair of points p̃ and q̃ with p̃ < q̃, we have

H(p̃, q̃) = log
s1 − 1

s2 − 1
·
s2 + 1

s1 + 1
.

By noting the equality

s̃i =
sinh ti
cosh ti

,

the Hilbert distance H(p̃, q̃) is equal to 2(t2 − t1). Hence we have shown that
d(p, q) = 2H(p̃, q̃) for p < q.

By post-composing the map PdS with the map P−1
S : {x0 = 1} → U where U

is the upper hemisphere {(x0, x1, . . . , xn)|x
2
0 +

∑n

i=1 x
2
i = 1, x0 > 0}, the geodesic

through p and q in the de Sitter space is identified with a great circle in the sphere,
and the image of the map P−1

S ◦ PdS of the northern half of the de Sitter space
is U \ B where B is the northern cap bounded by the small circle of radius π/4.
This demonstrates that the timelike geometry of the de Sitter space is realized
by the timelike Hilbert metric modeled on the sphere. The maps PdS and PS are
perspectivities, namely they preserve the cross ratio (see [12]). We conclude that
the de Sitter distance is equal to the timelike Hilbert distance.

5.5. Funk geometry in projective space. Finally we note, as Busemann men-
tions in his paper [4], that the Funk metric associated to a convex hypersurface
K contained in an affine space An appears as a special case of a Hilbert metric,
namely, the one associated to a pair K1,K2 where K1 is the hyperplane at infinity
RPn−1 in the projective space RPn = An ∪RPn−1. The set K1 is the collection of
points which are “infinite distance away” from any pair of points in An \K1, in the

sense that for any pair of points p, q with p <2 q, we have d(p,a1)
d(q,a2)

= 1. In that case,

and using the notation of Definition 4.1, the Hilbert distance from p to q associated
to the pair K1,K2 is just the Funk distance from p to q associated to the convex
set K2.

6. Concluding remarks

There is a Funk metric associated with a convex hypersurfaceK in the hyperbolic
space Hn. This was studied in [12]. In the same way, one can define a timelike
Funk metric associated with convex subsets of Hn. The pre-order p < q is defined
as in the case of the Euclidean timelike Funk metric, and the distance from p to q
satisfying p < q is given by the formula

(12) F (p, q) = log
sinh d(p, b(p, q))

sinhd(q, b(p, q))

where b(p, q) is the point where the ray R(p, q) hits K for the first time, and d is
the hyperbolic distance. Several properties of the hyperbolic (non-timelike) Funk
metric proved in [12] hold verbatim for this timelike hyperbolic Funk metric. In
particular, we have a variational formulation of the timelike hyperbolic Funk metric:

F (p, q) = inf
π∈P(p)

log
sinh d(p, π)

sinhd(q, π)
.

There is also a timelike hyperbolic Hilbert metric, defined in an analogous way
to the timelike Hilbert metric defined in §4, replacing, in the definition, the distance
by the hyperbolic sine of the distance, as we did in the definition of the timelike
hyperbolic metric in (12).
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The hyperbolic segments are geodesics for the timelike hyperbolic Funk and for
the timelike hyperbolic Hilbert metrics. The proofs use the same as the one of
the analogous result for the hyperbolic (non-timelike) Funk and Hilbert metrics
considered in [12].

Finally as this is apparently a field of research revived after it was left behind
by Busemann half a century ago, several problems naturally arise, and we propose
the following:

Problems 6.1. (1) Study the geometric properties of specific examples (time-
like geometries of individual or special classes of convex sets).

(2) Study the infinite-dimensional case.
(3) Study the reverse timelike Funk metric.
(4) Study the isometries of the timelike Funk metric.
(5) Study the horofunction boundaries of the timelike Funk and Hilbert metrics.
(6) Find a characterization of the timelike Hilbert geometries that can be em-

bedded in a Lorentzian space.
(7) Complexify.
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