
HAL Id: hal-01276761
https://hal.science/hal-01276761

Submitted on 20 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the early history of moduli and Teichmüller spaces
Norbert A’Campo, Lizhen Ji, Athanase Papadopoulos

To cite this version:
Norbert A’Campo, Lizhen Ji, Athanase Papadopoulos. On the early history of moduli and Teich-
müller spaces. L Keen, I. Kra and R. E. Rodriguez. Lipman Bers, a Life in Mathematics, Amercian
Mathematical Society, p. 175–262, 2015, 978-1-4704-2056-7. �hal-01276761�

https://hal.science/hal-01276761
https://hal.archives-ouvertes.fr


ON THE EARLY HISTORY OF MODULI AND

TEICHMÜLLER SPACES

NORBERT A’CAMPO, LIZHEN JI, AND ATHANASE PAPADOPOULOS

Abstract. We survey some major contributions to Riemann’s moduli
space and Teichmüller space. Our report has a historical character,
but the stress is on the chain of mathematical ideas. We start with
the introduction of Riemann surfaces, and we end with the discovery of
some of the basic structures of Riemann’s moduli space and Teichmüller
space. We point out several facts which seem to be unknown to many
algebraic geometers and analysts working in the theory. The period we
are interested in starts with Riemann, in 1851, and ends in the early
1960s, when Ahlfors and Bers confirmed that Teichmüller’s results were
correct.

This paper was written for the book Lipman Bers, a life in Mathemat-

ics, edited by Linda Keen , Irwin Kra and Rubi Rodriguez (Amercian
Mathematical Society, 2015). It is dedicated to the memory of Lip-
man Bers who was above all a complex analyst and spent a large part
of his life and energy working on the analytic structure of Teichmüller
space. His work on analysis is nevertheless inseparable from geometry
and topology. In this survey, we highlight the relations and the logi-
cal dependence between this work and the works of Riemann, Poincaré,
Klein, Brouwer, Siegel, Teichmüller, Weil, Grothendieck and others. We
explain the motivation behind the ideas. In doing so, we point out sev-
eral facts which seem to be unknown to many Teichmüller theorists.
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1. Introduction

Lipman Bers spent a substantial part of his activity working on Teich-
müller space. On the occasion of the Centennial of his birth, we present
a report on the origin and the early development of that theory. The pe-
riod starts with Riemann and ends with Teichmüller and the confirmation
by Ahlfors and Bers that the statements that Teichmüller made (includ-
ing those for which he did not provide complete proofs) were sound. The
main lines of the exposition is guided by the spirit of Riemann, who de-
fined the concept of Riemann surface, introduced an equivalence relation
between such surfaces, and claimed that the number of moduli for the set
of equivalence classes of closed surfaces of genus p ≥ 2 is 3p − 3. A central
question, during several decades, was to give a precise meaning to this mod-
uli count and to study the structure of what became known as the Riemann
moduli space. The mathematicians whose works are involved in this story
include, besides Riemann, Weierstrass, Schwarz, Dedekind, Klein, Poincaré,
Hilbert, Fricke, Koebe, Brouwer, Weyl, Torelli, Siegel, Teichmüller, Weil,
Grothendieck, Ahlfors, Bers, and others. In addition to the history of mod-
uli and Teichmüller spaces, this paper contains an exposition of the birth
of some of important chapters in topology which were motivated by the
development of the theory of moduli spaces.

One of the multiple factors that led us to write this article is that the
origin and history of Teichmüller theory is poorly known, probably because
this history is complicated. The name of this theory suggests that it formally
starts with Teichmüller, and indeed, he was the first to give the definition of
the space that bears his name, and he studied it extensively. But the ques-
tion of understanding the totality of Riemann surfaces as a space was ad-
dressed by others before him, starting with Riemann. Therefore, we wanted
to provide a survey of the works done on the subject before Teichmüller.

Another reason why the origin of the theory is poorly known is that several
articles by leading authors on Riemann surfaces (starting with Riemann him-
self) are rather arduous to read. In fact, some important results were given
with only sketches of proofs.1 Furthermore, Riemann, Klein and Poincaré

1The question of rigorous proofs has to be considered in its proper context. Klein,
in his Lectures on Mathematics, talking about the work of Alfred Clebsch (1833-1872),
who was the successor of Riemann at the University of Göttingen and whom he describes
as “the celebrated geometer, the central figure, who was one of my principal teachers,”
writes: “However great the achievement of Clebsch’s in making the work of Riemann more
easy of access to his contemporaries, it is in my opinion that at the present time the book
of Clebsch is no longer to be considered as the standard work for an introduction to the
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sometimes relied on arguments from physics, and several proofs they gave
were considered as unsatisfactory, e.g. those that used the Dirichlet princi-
ple or the so-called “method of continuity” on which we shall comment. One
must also bear in mind that Riemann, Poincaré, Brouwer and other contribu-
tors to this theory were also philosophers, and sometimes their philosophical
ideas (on space, on proof, etc.) are intermingled with their mathematics.
The positive effect is that besides the mathematical results, the ideas and
the methods these authors introduced acted as a motivation and a basis for
a great variety of theories that were developed later.

Another reason why we wrote this paper is that the question of figuring
out who exactly proved what, and the attribution to each of our mathemat-
ical ancestors the exact credit he or she deserves – especially for works on
which we build our own – is our duty. We take this opportunity to review
some papers of Teichmüller. Most of the results they contain are known,
but for some of them, the fact that they are due to him is rather unknown.

Beyond all these reasons, we wanted to read the original texts and trace
back the original ideas, highlight the most important ones and the connec-
tions between them. We find this a rewarding activity. We also went through
the published correspondence of Riemann, Weierstrass, Schwarz, Poincaré,
Klein, Fricke, Brouwer, Weyl and others. Doing history of mathematics is
also doing mathematics, if the historian can penetrate into the depth of the
ideas. Our paper also shows how geometry, topology and analysis are one
and the same field.

In the middle of the 1970s, Thurston came with a new vision that com-
pletely transformed the field of low-dimensional geometry and topology. His
work had many important developments and a profound impact on the the-
ory of moduli and Teichmüller spaces. He introduced a topological compact-
ification of Teichmüller space and he used it in the study of the mapping
class group. He highlighted the relation between Teichmüller space and
the geometrization of three-manifolds and with the dynamics of rational
maps of the Riemann sphere. His work motivated the later works of Ahlfors
and Bers, of McMullen, more recently of Mirzakhani, and of many others.2

Thurston conjectured a far-reaching uniformization theory for 3-manifolds,
which generalizes the uniformization theory for Riemann surfaces and which
culminated in the work of Perelman. All these developments constitute an-
other story that needs a longer article. We also do not touch upon the
deformation theory of higher-dimensional complex structures developed by
Kodaira, Spencer, Kuranishi, Grauert and others and which was motivated
by the deformation theory of surfaces.

study of Abelian functions. The chief objection to Clebsch’s presentation are twofold:
they can be briefly characterized as a lack of mathematical rigor on the one hand, and
a loss of intuitiveness, of geometrical perspicuity, on the other [...] The apparent lack of
critical spirit which we find in the works of Clebsch is characteristic of the geometrical
epoch in which he lived.” ([122] p. 4ff.)

2The authors of [164] write the following (p. 386): “Bers and Ahlfors continued their
work long into retirement, integrating their approach with his new ideas. An NSF grant
application by Ahlfors famously contained only one sentence: ‘I will continue to study the
work of Thurston’.” The same episode is reported on by other authors.
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At several places in this article, we quote verbatim some mathematicians
rather than paraphrasing them. Let us start with Poincaré’s words, from
[195]3 (p. 930): “In order to foresee the future of mathematics, the true
method is to examine their history and their present state.”4 Let us also
recall a sentence of André Weil, from his commentaries in his Collected
Papers Vol. II [264] p. 545: “There should be almost a book, or at least a
nice article, on the history of moduli and moduli spaces; and for that, one
should go back to the theory of elliptic functions.” Our paper is a modest
contribution to this wish.

We tried to make the paper non-technical so that we can communicate
the chain of ideas rather than technical details. Some of the results are
highlighted as theorems, when they are easy to state and without heavy
notation, so that they can serve as landmarks for the reader. The history
of mathematical ideas does not progress linearly. This is why in this paper
there are overlaps and flash-backs.

We are thankful to Linda Keen and Irwin Kra who, after reading our pre-
vious historical article [113], proposed that we write more on this history, for
the Bers Centennial volume. We also thank Bill Abikoff, Vincent Alberge,
Jeremy Gray, Linda Keen, Irwin Kra and François Laudenbach for reading
preliminary versions of this article and providing valuable remarks.

2. Riemann

Riemann is one of those mathematicians whose ideas constituted a pro-
gram for several generations. His work encompasses several fields, in math-
ematics and physics. In a letter addressed to Klein on March 30, 1882,
Poincaré writes about him ([77] p. 108):

He was one of those geniuses who refresh so well the face of sci-
ence that they imprint their character, not only on the works of
their immediate students, but on those of all their successors for
many years. Riemann created a new theory of functions, and it
will always be possible to find there the germ of everything that
has been done and that will be done after him in mathematical
analysis.5

We also quote Klein, from an address he delivered in Vienna on September
27, 1894 whose theme was Riemann and his importance for the development
of modern mathematics [131] (p. 484): “Riemann was one these out-of-the
way scholars who let their profound thoughts ripen, silently, in their mind.”6

3The article [195], titled L’avenir des mathématiques (The future of mathematics) is
the written version of Poincaré’s Lectures at the 1908 ICM (Rome), and it was published
at several places: Atti IV Congr. Internaz. Matematici, Roma, 11 Aprile 1908, pp. 167-
182; Bulletin des sciences mathématiques, 2e série, 32, pp. 168-190; Rendiconti del Circolo
matematico di Palermo 16, pp. 162-168; Revue générale des sciences pures et appliquées

19, pp. 930-939; Scientia (Rivista di Scienza) 2, pp. 1-23, and as a chapter in the book
Science et méthode published in 1908.

4In this paper, all the translations from the French are ours.
5An excerpt from this letter was published in the Mathematische Annalen 20 (1882) p.

52-53.
6In this footnote and in others, we provide a few biographical elements on Riemann

and some other mathematicians whose works are mentioned in this paper. It is easy for
the reader to find biographies of mathematicians, but we wanted to emphasize, in a few
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In this section, we shall concentrate on one of Riemann’s contributions,
namely, the subject that soon after its discovery received the name “Rie-
mann surfaces.” This theory makes a synthesis between fundamental ideas
from algebra, topology, geometry and analysis. It is at the heart of mod-
ern complex geometry, complex analysis and algebraic geometry. Through
elliptic and the other modular functions (Weierstrass elliptic p-functions,
Eisenstein series, etc.), it is also at the foundations of the analytic and the
algebraic theories of numbers. Riemann surfaces are also central in mathe-
matical physics.

We shall mostly refer to two writings of Riemann in which the concept of
Riemann surface plays a prominent role: his doctoral dissertation, Grundla-
gen für eine allgemeine Theorie der Functionen einer veränderlichen com-
plexen Grösse (Foundations for a general theory of functions of a complex
variable) [203] (1851), in which he initiated this theory, and his memoir
Theorie der Abel’schen Functionen (The theory of Abelian functions) [204]
(1857), which contains important developments. On Riemann’s dissertation,
Ahlfors writes ([13], p. 4):

[This paper] marks the birth of geometric function theory [...] Very
few mathematical papers have exercised an influence on the later
development of mathematics which is comparable to the stimulus
received from Riemann’s dissertation. It contains the germ to a
major part of the modern theory of analytic functions, it initi-
ated the systematic study of topology, it revolutionized algebraic
topology, and it paved the way for Riemann’s own approach to
differential geometry. [...] The central idea of Riemann’s thesis is
that of combining geometric thought with complex analysis.

lines, facts which help understanding the background where the ideas in which we are
interested evolved.

Georg Friedrich Bernhard Riemann (1826-1866) was the son of a pastor and he grew
up in a pious atmosphere. He arrived in Göttingen in 1846 with the aim of studying
theology, and indeed, on April 25 of the same year, he enrolled at the faculty of philology
and theology. But he soon turned to mathematics, with his father’s consent, after having
attended a few lectures on that subject. It is interesting to note that this background
of Riemann is quite similar to that of Leonhard Euler (of whose works Riemann was a
zealous reader). It is also important to recall that besides his interest in theology and in
mathematics, Riemann was (like Euler) a physicist and a philosopher. His philosophical
tendencies (in particular his ideas on space and on form) are important for understanding
his motivations and the roots of his mathematical inspiration. Riemann’s habilitation
lecture, On the hypotheses which lie at the bases of a geometry, is a mathematical, but also
a philosophical essay. The paper [178] is a good introduction to Riemann’s philosophical
ideas. In Physics, Riemann wrote articles on magnetism, acoustics, fluid dynamics, heat
conduction, electrodynamics, and optics. His last written work (which was published
posthumously) is an article on the physiology of sound, motivated by works of Hermann
von Helmholtz. Euler also wrote on all these subjects. Riemann died of pleurisy just before
he attained the age of forty. It should be clear to anyone reading his works that Riemann
wrote only a small part of his ideas. A short and careful biography of him, containing
several personal details, was written by Richard Dedekind (1831-1916), his colleague and
friend who also took up the task of publishing his unfinished manuscripts after his death.
About half of Riemann’s Collected Mathematical Works volume [207], which was edited
in 1876 by Dedekind and Weber, consists of posthumous works. Dedekind’s biography
is contained in this Collected works edition. For more details, we refer the reader to the
more recent biography written by Laugwitz [146].
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Before talking in some detail about Riemann’s contributions, let us make
a few remarks on the situation of complex analysis in his time.

The first name that comes to mind in this respect is Cauchy, to whom Rie-
mann’s name is intimately tied through the expression “Cauchy-Riemann
equations.” When Riemann started his research, Cauchy’s techniques of path
integration and the calculus of residues were known to him. He extensively
used them and he contributed to their development, especially by using new
topological ideas. The development of the theory of complex variables also
gave rise to multi-valued functions, like the complex square root, the com-
plex logarithm, the inverses of complex trigonometric functions, etc. and
there were also multi-valued functions defined by integrals in the complex
plane. To deal with all these functions, Cauchy used a method that in-
volved deleting some curves he called “cuts” from the complex plane, and
he considered specific determinations of the multi-valued function on the
resulting surface. Very often, Cauchy simply considered a single branch of
the cut (and therefore simply-connected) domain. Riemann came out with
a new powerful idea. He started with the cut off surfaces of Cauchy, but he
then glued them together to obtain a connected surface, which becomes a
ramified cover of the sphere, which he considered as the complex plane to
which is added one point at infinity.7 The points in each fiber above a point
represented the various determinations of the multi-valued function at that
point.

Another important notion which was available to Riemann is the notion
of circle of convergence of a power series, which was also formally introduced
by Cauchy,8 but for which a better source – for Riemann – is probably Gauss’
work on the hypergeometric series. The notion of analytic continuation was
known to Weierstrass before Riemann, and is present in unpublished papers
he wrote in 1841 through 1842.9 Riemann was aware of this concept when he
wrote his thesis in 1851, but it is unlikely that he had access to Weierstrass’
notes.10

7The sphere is, in Riemann’s words: “die ganze unendliche Ebene A.”
8For real variables, the notion of analytic function of one variable, defined by power

series, was introduced by Lagrange. See e.g. Pringsheim and Faber [198].
9These papers are reported on in [27]. Weyl, in [267] p. 1, also refers to an 1842 article

by Weierstrass [247].
10According J. Gray (in private correspondence), when Riemann started his researches,

the concept of analytic continuation was “informally in the air” before Weierstrass bursts
on the scene to everyone’s surprise in 1854. See Chapter 6 in [44] for an exposition of
Weierstrass’ work. The question of whether Riemann discovered it or learned it from
someone else is open. Dirichlet might have been aware of that principle, and Riemann
followed Dirichlet’s lectures in Berlin in 1847-1849. The book [146] contains a concise
presentation of the notion of power series as used by Weierstrass and Riemann (see in
particular p. 83). We know by the way that Weierstrass made a solid reputation in France.
Mittag-Leffler recounts in his 1900 ICM talk that when he arrived to Paris in 1873, to
study analysis, the first words that Hermite told him were ([160] p. 131): “You are making
a mistake, Sir, you should have followed Weierstrass’ courses in Berlin. He is the master of
all of us.” It is interesting to note that this was shortly after the ravaging French-German
war of 1870-1871 which ended with the defeat of France and the unification of the German
States under the German Empire. Mittag-Leffler adds: “I knew that Hermite was French
and patriotic. At that occasion I learned to what degree he was a mathematician.” The
esteem for the German school of function theory transformed in the twentieth century, to



EARLY HISTORY 7

Riemann’s construction by cutting and gluing back continued to be used
long after him as a definition of a Riemann surface. Jordan, for instance, in
his Cours d’analyse de l’École Polytechnique, writes the following ([118], 3d
edition, Vol. III, p. 626):

Let us imagine, with Riemann, a system of n leaves [feuillets] lying
down on the plane P of [the variable] z. Each of these leaves, such
as Pi, is cut along the lines L1, . . . , Lv which are characterized by
the indices i. Any one of these lines, L, having index (ik), will be
a cut for the two leaves Pi, Pk. Imagine that we join each of the
boundaries of the cut performed on Pi with the opposite boundary
of the cut done on Pk. If we perform the same thing for each of
the lines L1, . . . , Lv, the result of all these joins will be to reunite
our n leaves in a unique surface.

A vey good and concise introduction to the birth of Riemann surfaces is
contained in Remmert’s paper [201] which concerns more generally the birth
of complex manifolds. In the rest of this section, we give a brief account
of the main contributions of Riemann that are related to the concept of
Riemann surface.

(1) Riemann surfaces and function theory. Riemann’s construction
of surfaces as branched covers of the sphere is contained at the beginning
of his thesis [203]. Riemann’s construction of surfaces as branched covers
of the sphere was a matter of following the consequences of defining and
studying complex functions on arbitrary two-dimensional surfaces. Let us
quote from the beginning of his thesis: “We restrict the variables x, y to a
finite domain by considering as the locus of the point O no longer the plane
itself but a surface T spread over the plane. We admit the possibility ...
that the locus of the point O is covering the same part of the plane several
times.”11 As a consequence of this construction, Riemann discovered surfaces
on which multi-valued complex functions become single-valued.12 We recall
the idea, because this was one of his important achievements. We start
with an analytic function, and to be precise, we shall think of the function√
z. Consider a point z0 in the complex plane which is different from the

origin, so that the function is multivalued at that point, and take some
determination of this function in a neighborhood of z0. Continue defining
this function along paths starting at the point z0, using the principle of
analytic continuation. For paths that end at z0 with odd winding number
with respect to the origin, the value we get at z0 is different from the initial
one. Here Riemann introduced the idea that the endpoint of such a path
should not be considered as z0, but a point on a different sheet of a new
surface on which the function

√
z is defined. This introduced at the same

an esteem for the school there on several complex variables. The following story is told
as several places, and in particular by Remmert in [201] p. 222: “[Henri] Cartan asked
his students who wanted to learn several complex variables: Can you read German? If
answered in the negative, his advice was to look for a different field.” (This was after
another war between the two countries.)

11Translation in [201], p. 205. In this paper, we are using Remmert’s translations when
they are available.

12Riemann, instead of “single-valued,” uses the expression “perfectly determined.”
Weyl, in [267] (p. 2) uses the word “uniform.”
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time the notion of covering. In the example considered, the surface obtained
is a two-sheeted branched cover of the complex plane (or of the sphere), and
the branching locus is the origin. This construction is very general, that is,
it is possible to associate to any multi-valued analytic function a Riemann
surface which is a branched cover of the sphere and on which the function is
defined and becomes single-valued. Let us consider an arbitrary multivalued
function w of z is defined by an equation

(1) P (w, z) = 0

where P is a polynomial (in the above example, the polynomial is P (w, z) =
w2 − z), or more generally an arbitrary analytic function (that is, the func-
tion w of z may also be transcendental). In the polynomial case, and when
P is irreducible of degree m in w, then for each generic value of z we have
m distinct values of w, each of them varying continuously (in fact, holomor-
phically) in z. Thus, by the principle of analytic continuation, by following
paths starting at z, at each generic point z0 there are m possible local an-
alytic developments of w. A Riemann surface is constructed, which is nat-
urally a branched covering of the plane. The degree of the covering is the
number of values of w for a generic value of z. This construction is described
for the first time in Riemann’s dissertation [203] and is further developed in
the section on preliminaries in his 1857 paper [204]. Riemann went much
further in the idea of associating a Riemann surface to a multi-valued func-
tion, as he considered Riemann surfaces as objects in and of themselves
on which function theory can be developed in the same way as the theory
of complex functions is developed on the complex plane. He had the idea
of an abstract Riemann surface, even though his immediate followers did
not. Indeed, for several decades after him, geometers still imagined sur-
faces with self-intersections, first, immersed in 3-space, and, later, in C2.13

For instance, in 1909, Hadamard, in his survey on topology titled Notions
élémentaires sur la géométrie de situation, talking about Riemann surfaces,
still considers lines along which the leaves cross themselves (cf. [102] p.
204). From the modern period, we can quote Ahlfors ([13], p. 4):

Among the creative ideas in Riemann’s thesis none is so simple
and at the same time so profound as his introduction of multiply
covered regions, or Riemann surfaces. The reader is led to believe
that this is a commonplace construction, but there is no record of
anyone having used a similar device before. As used by Riemann,
it is a skillful fusion of two distinct and equally important ideas:
1) a purely topological notion of covering surface, necessary to clar-
ify the concept of mapping in the case of multiple correspondence;
2) an abstract conception of the space of the variable, with a local
structure defined by a uniformizing parameter.

13In his Idee der Riemannschen Fläche ([267] p. 16), Weyl, writes about these spatial
representations, that “in essence, three-dimensional space has nothing to do with analytic
forms, and one appeals to it not on logical-mathematical grounds, but because it is closely
associated with our sense-perception. To satisfy our desire for pictures and analogies in
this fashion by forcing inessential representations on objects instead of taking them as
they are could be called an anthropomorphism contrary to scientific principles.”



EARLY HISTORY 9

Riemann also addressed the inverse question, viz., that of associating a
surface to a function. More precisely, he considered the question of whether
an arbitrary surface defined by a system of leaves made out of pieces of the
complex plane glued along some system of lines can be obtained, by the
process of analytic continuation, from some algebraic curve defined by an
equation such as (1). This can be formulated as the question of finding a
meromorphic function with prescribed position and nature of singularities
(poles and branch points). Riemann answered this question, and in doing
so, he was the first to emphasize the fact that a meromorphic function is de-
termined by its singularities. This result was one of his major achievements.
It is sometimes called the Riemann existence theorem, and it is the main mo-
tivation of Riemann–Roch theorem which we discuss below. Picard, in his
Cours d’Analyse, describing this problem, writes ([176], Tome II, p. 459):
“We enter now in the profound thought of Riemann.” Riemann’s existence
proof was not considered as rigorous, because of a heuristic use he made
of the Dirichlet principle. The proof was made rigorous by others, in par-
ticular Neumann [168] and Schwarz [219]. Picard reconstructed a complete
proof of this result, following the ideas of Neumann and Schwarz, in Chapter
XVI of his Traité d’Analyse [176]. The correspondence between Riemann
surfaces and classes of algebraic functions is essential in Riemann’s count of
the number of moduli, which we shall review below.

(2) The Riemann–Roch theorem. The Riemann–Roch theorem orig-
inates in Riemann’s article on Abelian functions [204]. It makes a funda-
mental link between topology and analysis. It is formulated as an equality
involving the genus of a Riemann surface and the zeros and poles of mero-
morphic functions and of meromorphic differentials defined on it. A corollary
of the theorem is that any compact Riemann surface admits a non-constant
meromorphic function, that is, a non-constant map into the projective space,
with control on its degree. Half of theorem (that is, one inequality) was given
by Riemann in §5 of his article [204].14 The other half is due to Riemann’s
student Roch [211].15 The theorem was given the name Riemann–Roch by
Alexander von Brill and Max Noether in their 1874 article [45]. Riemann
obtained this result at the same time as the existence proof for complex
functions satisfying certain conditions which we mentioned above. After the
discovery of the gap we mentioned in Riemann’s argument, several mathe-
maticians continued working on the Riemann–Roch theorem. Dedekind and
Weber gave a new proof in 1882 [72] and Landsberg gave another one in
1898 [144]. Hermann Weyl wrote a proof in his famous 1913 book [267],
including what he called the Ritter extension. Teichmüller gave a new proof
in his paper [235], and there is also a section on that theorem in his paper
[231], where this theorem is used in an essential way. There are several later
generalizations of the Riemann–Roch theorem, and one of them is due to
André Weil, whom we shall quote thoroughly later in this paper. In his
comments on his Collected papers edition ([264] Vol. I p. 544), Weil writes

14This is the inequality d ≥ m− p+1, where d is the complex dimension of the vector
space of meromorphic functions having at most poles of first order at m given points; cf.
p. 107-108 of [204].

15Gustav Roch (1839-1866) died at the age of 26 from tuberculosis.
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that for a long period of time, the Riemann–Roch theorem was one of his
principal themes of reflection. In 1938, he obtained a version of a theorem
he called the non-homogeneous Riemann–Roch theorem (cf. [251]) which is
valid for curves over arbitrary algebraically closed fields.16 In 1953, Iwa-
sawa published a new version of Riemann–Roch, expressed in terms of the
newly discovered tools of algebraic topology [112]. Among the many other
developments, we mention the famous Riemann–Roch-Hirzebruch theorem
which is a version of Riemann–Roch valid for complex algebraic varieties
of any dimension, and its generalization by Grothendieck to the so-called
Riemann–Roch-Grothendieck theorem expressed in the language of coher-
ent cohomology. The developments and consequences of these results are
fascinating, leading for example to the Atiyah-Singer index theorem which
is a unification of Riemann–Roch with theorems of Gauss-Bonnet and of
Hirzebruch. A historical survey of the (classical) Riemann–Roch theorem
was written by Jeremy Gray [93].

(3) Birational equivalence between algebraic curves. The identifica-
tion discovered by Riemann between a Riemann surface and the field (or,
using more modern tools, the sheaf of germs) of meromorphic functions it
carries, in the case of compact surfaces, leads to the following equivalence
relation: two Riemann surfaces S1 and S2 associated with algebraic equa-
tions of the form (1) are considered as equivalent if there exists a birational
equivalence between the curves defining them.

This identification is an expression of the fact that fields of meromorphic
functions associated with a given algebraic curve are isomorphic. In the
compact case, we know that this holds if and only if the associated Riemann
surfaces are conformally equivalent. Thus, Riemann was led to the problem
of finding birational invariants of algebraic curves. This was the original form
of the famous “moduli problem.” This search for invariants under birational
transformations became, after Riemann’s work, a subject of intense research,
starting with the work of Cremona in 1863 and developed by the so-called
Italian school.

(4) The number of moduli. Riemann, at several places, stated that there
are 3p−3 complex “moduli” associated with a closed surface of genus p ≥ 2.
This parameter count is at the origin of the notion of moduli space.

One of Riemann’s counts of the moduli is based on the association be-
tween equivalence classes of algebraic functions and equivalence classes of
Riemann surfaces. This count involves the number of sheets of a branched
cover associated with a curve and local information around the ramification
points.17 Riemann ended up with 3p− 3 moduli, a number which occurs in
several places in his, works based on heuristic arguments. Several authors,
in the years following Riemann’s writings, gave more detailed proofs of these
counts, among them Klein [132] and Picard [176]. But the real meaning of
the number of moduli as the complex dimension of a manifold (or an orb-
ifold), or at least as as a number associated with some structure, was still

16In fact, this generalized Riemann–Roch theorem was already sketched in Weil’s 1935
paper [250].

17This has been made precise by Hurwitz, and it is at the origin of the so-called
Riemann-Hurwitz formula, cf. [110], p. 55.
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missing, and it is hard to find a proper definition of the term “moduli” in
these earlier works. Hyman Bass and Irwin Kra write in [26] (p. 210):

One of their important open problems, the moduli problem, left to
us from the nineteenth century, was to make rigorous and precise
Bernhard Riemann’s claim that the complex analytic structure on
an closed surface with p ≥ 2 handles depends on 3p − 3 complex
parameters.

Another one of Riemann’s counts occurs in his memoir on the theory
of Abelian functions [204], when he talks about the so-called Jacobi inver-
sion problem. This is the problem of finding an inverse to the construc-
tion of Abelian integrals of the first kind, that is, functions of the form
u(z) =

∫ z
R(ζ, w)dζ where R is a rational function and where ζ and w are

complex variables related by a polynomial equation P (ζ, w) = 0. Riemann
counted the parameters for a certain class of functions.18 He writes (English
translation [208] p. 93):

The Jacobi inversion functions of p variables are expressed using
p-infinite theta functions.19 A certain class of theta functions suf-
fices. This class becomes special for p > 3, and in that case we
have p(p+1)/2 quantities, with (p− 2)(p− 3)/2 relations between
them. Thus there remain only 3p− 3 which are arbitrary.

It is interesting to note that the quantity p(p + 1)/2 that appears in the
above quote is the complex dimension of the Siegel modular space to which
we shall come back in §9. In modern terms, this result says that the image
of the so-called Jacobi map (which is called the Jacobian locus) is of dimen-
sion 3p − 3. At the same time, Riemann states that theta functions that
arise from periods of compact Riemann surfaces satisfy some special rela-
tions, and therefore, that the most general theta functions are not needed
in the Jacobi inversion problem. This was later considered by Klein as a
“marvelous result” ([131] p. 495).20 This consideration also suggests the
so-called Schottky problem on characterizing periods, or the locus of the
Jacobian map.21

In §12 of the same memoir (p. 111 of the English translation [208]),
Riemann ends up with the same count by computing the number of branch
points of Riemann surface coverings that he constructs. The quantity 3p−3
appears also in Riemann’s posthumous article, On the theory of Abelian
functions (p. 483-504 of the English translation of the collected papers
[208]). At the end of this paper, Riemann studies the special case of genus
3, and he concludes that “all Abelian functions, with all their algebraic

18According to Rauch [200] p. 42, the term “moduli” chosen by Riemann comes from
this count of moduli of elliptic integrals of the first kind.

19The name “theta functions” used by Riemann originates in Jacobi’s writings, who
used the letter theta to denote them.

20In the same text, Klein asks about the role played by the general theta functions.
He says that according to Hermite, Riemann already knew the theorem published later by
Weierstrass and also treated by Picard and Poincaré, saying that the theta series suffices
for the representation of the most general periodic functions of several variables.

21This locus is the subset of Jacobian varieties of compact Riemann surfaces in the
Siegel modular variety which parametrizes the space of principally polarized Abelian va-
rieties. The Schottky problem was first studied explicitly by Torelli, cf. §8 below.
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relations, can be expressed via 3p − 3 = 6 constants, which one can regard
as the moduli of the class for the case p = 3.”

In conclusion, in the work of Riemann, the quantity 3p−3 appears several
times as a moduli count, but never as a dimension. The “number of moduli”
had the vague meaning of a “minimum number of coordinates.” In fact,
at that time, there was no notion of dimension (and especially no notion
of complex dimension) with a precise mathematical meaning, except for
linear spaces. We shall discuss the question of dimension in §6, while we
survey Brouwer’s work.22 The interpretation of the number of moduli as
the complex dimension of a complex space came later, when Teichmüller
equipped Teichmüller space with a complex structure.23

(5) Abelian integrals. In his memoir on Abelian functions [204], after
studying branched coverings of the sphere, Riemann considers Abelian func-
tions, also called Abelian integrals. In his work, these integrals represent the
transcendental approach to functions, as opposed to the algebraic. Abelian
integrals are generalization of elliptic integrals, which were so called because
a special case of them gives the length of an arc of an ellipse.24 From another
point of view, Abelian functions associated with Riemann surfaces of genus
p ≥ 1 are generalizations of the elliptic functions associated with Riemann
surfaces of genus 1. Abelian functions can also be expressed as ratios of
homogeneous polynomials of theta functions.

Riemann’s work on Abelian functions is a continuation of works of Niels
Henrik Abel (1802-1829) and Carl Gustav Jacob Jacobi (1804-1851). These
works were done during the first half of the nineteenth century, but the
theory of path integration in the complex plane, developed by Cauchy, was

22One can find a description of the quantity 3p− 3 that uses the word “dimension” in
Klein’s writings (see §3 below), even though there was no precise meaning of that word.

23 It is interesting to note here the following from the beginning of Teichmüller’s paper
[241]: “It has been known for a long time that the classes of conformally equivalent closed
Riemann surfaces of genus g depend on τ complex constants, where (1) τ = 0 if g = 0; (2)
τ = 1 if g = 1, and (3) τ = 3g−3 if g > 1. This number τ has been obtained using different
heuristic arguments, and the result is being passed on in the literature without thinking
too much about the meaning of this statement.” We shall comment on Teichmüler’s paper
in §10 below. We note by the way that Thurston (like many others before him) makes
a similar heuristic count in his Princeton Notes [228]: A Fuchsian group representing
a closed Riemann surface of genus g is generated by 2g transformations satisfying one
relation. Each generator, being a fractional linear transformation, has 3 unnormalized
real parameters. Hence (subtracting 3 parameters fixed by the relation and 3 more for a
normalization of the entire group) we obtain 3× 3g− 3− 3 = 6g− 6, which is the number
of real parameters corresponding to Riemann’s count. A similar count is also made in
Bers’ ICM paper [29] and in Abikoff’s [2].

24Elliptic integrals of a real variable were very fashionable since the eighteenth cen-
tury. They were studied in particular by Fagnano, Euler, and above all, Legendre. The
name elliptic function was coined by Legendre, who gave it to some integrals that satisfy
an additivity property discovered by Fagnano, concerning the length of the lemniscate.
Legendre spent a large effort studying these functions, and he wrote a treatise on the
subject, the Traité des fonctions elliptiques et des intégrales eulériennes [151]. A wide
generalization of indefinite integrals satisfying such an additivity property was discovered
soon after by Abel. These functions were called later on Abelian, presumably for the first
time by Jacobi.
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unknown to these authors. An important step in the theory is Abel’s discov-
ery [1] that an arbitrary sum of integrals, with arbitrary limits, of a given
algebraic function, can be expressed as the sum of a certain fixed number
of similar integrals with a certain logarithmic expression. Riemann showed
that this number is just the genus of the curve.25 In 1832, Jacobi formu-
lated the famous inversion problem for Abelian integrals, a problem which
many ramifications which generalizes the inversion problem for elliptic inte-
grals and to which Weierstrass and Riemann contributed in essential ways.
While Cauchy had failed to grasp a theory of complex integrals with multi-
valued integrands, Riemann used Cauchy’s path integral theory and asso-
ciated with Abelian integrals Riemann surfaces, as he did for the algebraic
multi-valued functions. He attacked the problem of their classification and
of their moduli, and he developed the theory of periods of these integrals.
For a clear exposition of the theory of Abelian integrals, with interesting
historical remarks, we refer the reader to the monograph [157].

(6) The Jacobian. The theory of the Jacobian asks for the characteri-
zation of Abelian integrals, and more generally, for curves, by their period
matrices. It uses the integration theory of holomorphic forms on surfaces
which is a generalization of Cauchy’s computations of path integrals. To
make a complex function on a Riemann surface defined as the integral of
a differential form well defined, Riemann cuts the surface along a certain
number of arcs and curves, and as a result he gets the notion of periods of
such integrals. In this setting, a period is the difference of values taken by a
function when one traverses a cut. The cuts may be arcs (as in Riemann’s
dissertation [203]) or closed curves (in his Abelian functions memoir [204]).26

Riemann claimed that the number of curves needed to cut the surface into a
simply connected region (all the curves passing through a common point) is
of the form 2p, where p is the genus.27 He obtained 2p curves which he used
as a basis for the “period parameters” for holomorphic differentials on the
surface. His argument was improved by Torelli, whose name is now attached
to the theory. Riemann also introduced other kinds of parameters for these
differentials, namely, the locations of poles or logarithmic poles. The idea
of reconstructing the curve from its set of periods is at the origin of the
embedding of the Torelli space28 in the Siegel space, which was developed
later, and it is also a prelude to the idea of equipping Teichmüller space
with a complex structure using the period map. Several problems known as
“Torelli-type problems,” arose from Riemann’s work on periods. We shall
mention some of them in §8.

In another direction, the problem of characterizing general Abelian vari-
eties among all complex tori by period matrices, which was also motivated

25For this and other notions of genus, we refer to the comprehensive paper [197] by
Popescu-Pampu.

26It is possible that Riemann got the idea of cuts from Gauss. Betti wrote in a letter
to Tardy that Gauss, in a private conversation, gave to Riemann the idea of cuts. The
letter is reproduced in Pont [196] and Weil [262].

27This is beginning and the heart of the classification of surfaces.
28We recall that the Torelli space is the quotient of Teichmüller space by the Torelli

group, that is, the subgroup of the mapping class group consisting of the elements that
act trivially on the first homology group of the surface.
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by the work of Riemann, became an important research subject in the twen-
tieth century and involves works of Siegel, Weil, Hodge and several others.

(7) The Riemann theta functions. Given a complex vector z ∈ Cg and
a complex g × g symmetric matrix F whose imaginary part is symmetric
positive definite,29 the Riemann theta function is defined by the formula

Θ(z, F ) =
∑
n∈Zg

e2πi(
1

2
nTFn+nT z)

where nT denotes the transpose of n.30 These functions are Fourier series-
like functions. Riemann associated such functions with arbitrary Riemann
surfaces and he studied them in the second part of his 1857 memoir on
Abelian functions [204], in his solution of the generalized Jacobi inversion
problem. The Jacobi theta function is a special case where n = 1 and in this
case F belongs to the upper half-plane. Jacobi introduced this function in
his study of elliptic functions. Riemann’s theta functions are n-dimensional
generalizations of the Jacobi theta functions in much the same way as the
Siegel half-space, which was defined much later, is a multi-dimensional gen-
eralization of the upper half-plane. This is another instance, in Riemann’s
work, of a generalization from the case of genus 1 to higher genus.

Prior to Riemann, Gustav Adolph Göpel (1812-1847) and Johann Rosen-
hain (1816-1887) worked on theta functions. In 1866, the Academy of Sci-
ences of Paris announced a contest on the inverse problem of Abelian inte-
grals in the case of curves of genus two. Göpel and Rosenhain independently
solved the problem. Göpel did not submit his proof to the Academy, but
Rosenhain, who was a student of Jacobi, did. Both Göpel and Rosenhain
used 2-variable theta functions in their solution. Göpel’s paper was pub-
lished in 1847 [91]. Rosenhain’s paper won the prize in 1851 and his paper
was published the same year [212].

There are many ramifications of Riemann’s theta functions. They play
a major role in modern Teichmüller theory, and also in number theory.
Solutions of differential equations can often be written in terms of Abelian
functions, and thus in terms of theta functions.

(8) Topology of surfaces. At the beginning of the memoir on Abelian
functions [204], there is a section titled Theorems of analysis situs for the
theory of the integrals of a complete differential with two terms, in which
Riemann recalls what is the field of topology, and he introduces new tools in
the topology of surfaces. Among these notions, we mention connectivity (in
fact, arcwise-connectivity) and simply-connected surface. For non simply-
connected surfaces, he introduced the order of connectivity which gave rise
to the notion of genus for closed surfaces.31 As the reader may have realized

29A matrix with these properties is usually called a Riemann matrix.
30This way of writing the Riemann theta function is due to Wirtinger [269] (1895).

Riemann writes these functions differently, see [204], p. 93 and 119ff. of his Collected

papers edition. The fact that Im(F ) is positive definite guarantees that the series converges
for all values of z, and that the resulting function is holomorphic in both z and F .

31Riemann counted the so-called “number of handles” of a surface, that is, the minimal
number of curves along which one cuts it to make it planar. The word “genus” (in German:
“Geschlecht”) was introduced by Clebsch in [62] p. 43. Poincaré talked about the first

Betti number, which, for closed oriented surfaces, is two times the genus, and can be
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now, these topological ideas were not isolated from the rest of Riemann’s
work and were not developed per se, but were part of the development of
the theory of Riemann surfaces.

The whole subject of topology of surfaces was influenced by the research
on Riemann surface theory. The work of Riemann also gave a fundamental
impetus for the general definition of manifold. Ahlfors writes ([13] p. 4):

From a modern point of view the introduction of Riemann surfaces
foreshadows the use of arbitrary topological spaces, spaces with a
structure, and covering spaces.

(9) The use of potential theory (the Dirichlet principle). By his
substantial use of the Dirichlet principle32 and the important place he gave
to the Laplace’s equation, Riemann introduced potential theory as an im-
portant factor in complex function theory. To quote Ahlfors ([13] p. 4):
“Riemann virtually puts equality signs between two-dimensional potential
theory and complex function theory.”

Brill and Noether give a mathematical and historical review of this prin-
ciple in their paper [46]. A fact which is often repeated in the literature
is that Weierstrass pointed out a gap in Riemann’s proof of his existence
theorem, related to his use of the Dirichlet principle. Riemann’s argument
was indeed poor, and in fact he was repeating unproved arguments of Gauss
and Green. But he also attempted a proof of these arguments – a visionary
extension from functions to functionals – and the fact that he saw that these
claims needed a proof is already an important step. Ahlfors writes about
this issue ([13] p. 5): “It is perhaps wrong to call Riemann uncritical, for
he made definite attempts to exclude a degenerating extremal function.”
According to Gray [92], it was Prym (who was one of Riemann’s students)
and not Weierstrass who first pointed out the gap in Riemann’s argument
and described it in a short paper [199]. Weierstrass’ objection concerned
not only the use of the Dirichlet principle by Riemann, but also its use by
Green, Gauss and others. The use by Riemann of this variational principle
is in the context of the definition of a holomorphic function f(x+iy) = u+iv
that he gives at the beginning of his memoir on Abelian functions [204] (p.
79 of the English translation [208]), as a function satisfying the so-called

generalized to higher-dimensional manifolds. Poincaré developed the topological tools
needed to compute these numbers.

32The Dirichlet principle has its origin in physics. Riemann called this principle the
“Dirichlet principle” because he learned it from Dirichlet, during his stay in Berlin, in
the years 1847-1849. Pierre Gustave Lejeune Dirichlet (1805-1859) was born in Düren, a
city on the Rhine, now in Germany, but which belonged then to the French Empire. His
paternal grandfather was Belgian. During a long stay he made in Paris, between 1822 and
1827, the young Dirichlet became acquainted with several French mathematicians, and
after his return to Germany, he contributed to making the link between the French and
the German mathematicians. There are no existing notes from the course Dirichlet gave
in Berlin, but we know that in 1854, Riemann chose, as the subject of his first lectures in
Göttingen, the theory of partial differential equations and their applications to physics,
and that his course was modelled on the one that Dirichlet gave in Berlin (Dedekind’s
biography, p. 527 of [208]). Dirichlet moved to the University of Göttingen in 1855, where
he became the successor of Gauss. He stayed there until his death in 1859. Riemann
became, in 1859, the successor of Dirichlet.
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Cauchy-Riemann equations.33 In brief, Weierstrass gave a counter-example
that destroyed the claim that functionals bounded below attain their lower
bounds and Prym destroyed the specific claim about the Dirichlet principle,
which was much more worrying for Riemann’s function theory. This did not
prove that Riemann’s claim was false, but showed that it needed a formal
proof. Riemann was not bothered by Weierstrass’ criticism, and for what re-
gards the reaction of the mathematical community, Remmert writes ([201] p.
212) that “Weierstrass’ criticism should have come as a shock, but it did not.
People felt relieved of the duty to learn and accept Riemann’s methods.”
Weierstrass presented his counter-example on July 14, 1870 before the Royal
Academy of Sciences in Berlin, in a note titled On the so-called Dirichlet
principle [245]. This was four years after Riemann’s death. Neuenschwande
reports in [167] that “after Riemann’s death, Weierstrass attacked his meth-
ods quite often, in part even openly.”34 Weierstrass’ objection to Riemann’s
argument is analyzed in several papers, e.g. [167] where the author writes
that after the objections by Weierstrass on Riemann’s foundational meth-
ods, “only with the work of Klein and the rehabilitation of the Dirichlet
principle by Hilbert ([107] [108]) could Riemannian theory again gradually
recover from the blow delivered to it by Weierstrass.”

The history of the Dirichlet principle is complicated. The title of the
book [161], “Dirichlet’s principle: A mathematical comedy of errors and
its influence on the development of analysis,” is revealing. After Weier-
strass’ criticism, the “Dirichlet principle” turned into a “Dirichlet problem.”
The problem was solved later by works of several people, culminating with
Hilbert who, in 1900-1904 ([107] [108]), gave a proof of a form of the Dirichlet
principle which was sufficient for its use under some differentiablity condi-
tions on the boundary of the domain that were made by Riemann. Hilbert
utilized for that the so-called direct methods of the calculus of variations.
The same question was also dealt with, in different ways, by Courant [67]
and by Weyl who, in his famous book [267] §19, gave a new proof of the
uniformization following a method suggested by Hilbert and others. For a
concise presentation of the Dirichlet problem, we refer the reader to [89].
We also refer the reader to §5.2.4 of the book [44] for the use Riemann made
of the Dirichlet principle, and a discussion of where his approach breaks.

Let us conclude by quoting Hermann Weyl, from a review of mathematics
in his lifetime, quoted in [79], Part II, p. 326: “In his oration honoring
Dirichlet, Minkowski spoke of the true Dirichlet principle, to face problems
with a minimum of blind calculation, a maximum of seeing thought.”

33Note however that at the beginning of his dissertation [203] (p. 2 of the English
translation [208]), Riemann gives a definition in terms of conformality. He writes: “In
whatever way w is determined from z by a combination of simple operations, the value
of the derivative dw

dz
will always be independent of the particular value of the differential

dz,” and after a small computation, he shows that this property “yields the similarity of
two corresponding infinitely small triangles.”

34In fact, there seems to be an incompatibility between Riemann’s and Weierstrass’
views on function theory. Remmert writes in [201] p. 15: “It was Weierstrass’ dogma
that function theory is the theory of convergent Laurent series ... Integrals are not per-
mitted. The final aim is always the representation of functions. Riemann’s geometric
yoga with paths, cross-cuts, etc., on surfaces is excluded, because it is inaccessible to
algorithmization.”
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(10) The Riemann mapping theorem. The theorem is proved in the
last three pages of Riemann’s dissertation [203]. In Riemann’s words, the
theorem says the following (English translation [208], p. 36):

Theorem 2.1. Two given simply connected plane surfaces can always be
related in such a way that each point of one surface corresponds to a point
of the other, varying continuously with that point, with the corresponding
smallest parts similar. One interior point, and one boundary point, can be
assigned arbitrary corresponding points; however, this determines the corre-
spondence for all points.

The expression “with the corresponding smallest parts similar” means
that the map is conformal.35 Riemann proves the theorem under the hy-
pothesis of piecewise differentiability of the boundary. He proves the exis-
tence of a conformal map between a simply connected open subset of the
plane which is not the entire plane and the unit disc by using the Dirichlet
boundary value problem for harmonic maps. This is where he appeals to the
so-called Dirichlet principle, which characterizes the desired function among
the functions with the given boundary values as the one which minimizes
the energy integral. At the end of his dissertation, Riemann mentions a wide
generalization of his theorem. He writes ([208] p. 39):

The complete extension of the investigation in the previous sec-
tion to the general case, where a point of one surface corresponds
to several points on the other, and simple connectedness is not
assumed for the surface, is left aside here. Above all this is be-
cause, from the geometrical point of view, our entire study would
need to be put in a more general form. Our restriction to plane
surfaces, smooth except for some isolated points, is not essential:
rather, the problem of mapping one arbitrary given surface onto
another with similarity in the smallest parts, can be treated in a
wholly analogous way. We content ourselves with a reference to
two of Gauss’ works: that cited in Section 3, and Disquisitiones
generales circa superficies curvas, §13.36

After the gap that was found in Riemann’s argument, related to his use
of the Dirichlet principle, several mathematicians tried to find new meth-
ods to prove the theorem, and this became the topic of a new research
activity. Among the developments, we mention the result of Clebsch (1865)
saying that every compact Riemann surface of genus zero is biholomorphic
to the Riemann sphere and every compact Riemann surface of genus one is
biholomorphic to the quotient of the plane by a lattice, see [62] and [63].
Hermann Amadeus Schwarz in 1870 [220] gave a proof of the Riemann map-
ping theorem for simply connected plane domains whose boundary consists
of a finite number of curves.37 He introduced a method called the “alternat-
ing method,” an iterative method which solves the boundary-value problem

35 This notion of conformality was already used by Lambert, Gauss and others be-
fore Riemann, in their works on conformal projections of the sphere in the setting of
cartography (geographic map drawing).

36This is the problem of mapping conformally a surface onto a plane, which is related
to geographic map drawing, which we mentioned in Footnote 35.

37This special case is important; it applies for instance to the polygons in the hyperbolic
plane which play a major role in the works of Klein and Poincaré.
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in Riemann’s proof for domains which are unions of domains for which the
problem is known to be solved. This method is also reported on by Klein
in [134].38 In his Lectures on Riemann’s theory of Abelian integrals [168],
Neumann gave another proof of the Riemann mapping theorem for simply
connected plane domains. Poincaré, in his 1890 article [191] gave a method of
approaching the solution by a sequence of functions which are not harmonic
but which have the required boundary values. This method became famous
under the name “méthode du balayage.” William Fogg Osgood (based on
ideas of Poincaré and Harnack), in [170] (1900), gave an existence theorem
for a Green function on bounded plane domains with smoothness conditions
on the boundary. Schwarz [221] (1869) and Elwin Bruno Christoffel [61]
(1867 and 1871) independently, gave explicit Riemann mappings of open
sets whose boundaries are polygons.39 Such a map is known under the name
Schwarz-Christoffel map.40 The work on the Riemann mapping theorem
culminated in the proof in 1907 by Koebe and Poincaré of a very general
uniformization theorem. We shall report on it in more detail in §4 below.
Comparing Riemann and Weierstrass, Poincaré, writes, in a survey on the
work of the latter [187] (p. 7):

In one word, the method of Riemann is primarily a method of
discovery; that of Weierstrass is primarily a method of proof.

38In a letter to Poincaré, dated July 9, 1881, Klein writes: “There is no doubt that
the Dirichlet principle must be abandoned, because it is not at all conclusive. But we
can completely replace it by more rigorous methods of proof. You can see an exposition
in more detail in a work by Schwarz which I precisely examined these last days (for my
course)” (see [77] p. 101) and Klein refers to the 1870 article by Schwarz [222]. Ten years
after Schwarz’s work, Klein was still referring to his approach to the problem.

39The uniformization of polygonal regions plays a major role in the works of Klein
and Poincaré. In their work on Fuchsian groups, the fundamental domain of the action
is a polygon in the hyperbolic plane. Such a polygon corresponds naturally to the cut
up surface of Riemann. One gets a Riemann surface as the quotient of the fundamental
plane by the group action that identifies the boundary components. One form of the
uniformization problem is whether any Riemann surface can be obtained in this way.
This is where the so-called continuity method, which we mention several times in this
paper, was used. In his letter to Poincaré dated July 2, 1881, Klein writes, considering the
uniformization of polygonal regions ([77] p. 99): “Weierstrass can determine effectively the
constants involved by convergent processes. If we want to use Riemann’s methods, then we
can establish the following very general theorem.” He then states a general uniformization
theorem for polygons, and he says: “The proof is exactly similar to the one given by
Riemann in §12 of the first part of his Abelian functions article for the particular polygon
constituted by p parallelograms stacked above each other and connected by p ramification
points. It seems to me that this theorem, which I shaped only these last days, included,
as easy corollaries, all the existence proofs that you mention in your notes.”

40The name of Schwarz is attached the famous Schwarzian derivative which later be-
came one of the basic tools used in Poincaré’s approach to uniformization via differential
equations. Riemann used the Schwarzian derivative before Schwarz, namely, in his posthu-
mous paper of 1867 on minimal surfaces. The idea of the Schwarzian derivative is also
contained in Kummer’s paper on the hypergeometric series. (We learned this from Jeremy
Gray.) According to Klein ([122] p. 35), the name “Schwarzian derivative” was coined by
Cayley. The Schwarzian derivative plays a major role in the modern theory of Teichmüller
spaces and moduli. Let us also recall that the Schwarzian derivative is a basic tool in the
work of Bers. It appears in particular in the Bers embedding of Teichmüller space, a
holomorphic embedding of that space into a complex vector space of the same dimension,
namely, the space of integrable holomorphic quadratic differentials on a Riemann surface.
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Klein obviously stood up for Riemann. In the introduction of his book on
the presentation of Riemann’s ideas [132], he writes:

Riemann, as we know, used Dirichlet’s principle in their place in
his writings. But I have no doubt that he started from precisely
those physical problems, and then, in order to give what was physi-
cally evident the support of mathematical reasoning, he afterwards
substituted Dirichlet’s principle. Anyone who clearly understands
the conditions under which Riemann worked in Göttingen, any-
one who had followed Riemann’s speculations as they have come
down to us, partly in fragments, will, I think, share my opinion.
– However that may be, the physical method seemed the true one
for my purpose. For it is well known that Dirichlet’s principle
is not sufficient for the actual foundation of the theorems to be
established; moreover, the heuristic element, which to me was all-
important, is brought out far more prominently by the physical
method. Hence the constant introduction of intuitive considera-
tions, where a proof by analysis would not have been difficult and
might have been simpler, hence also the repeated illustration of
general results by examples and figures.

3. Klein

Klein was passionately devoted to mathematical research. He was among
the first to acknowledge the works of Lobachevsky on hyperbolic geometry.
He gave a formula for the disc model of the hyperbolic metric (which was
already discovered by Beltrami) using the cross ratio, making connections
with works of Cayley and giving the first interpretation of hyperbolic geom-
etry in the setting of projective geometry; cf. his articles [123] and [125],
and the commentary [8]. Hyperbolic geometry eventually played a major
role in the theory of Riemann surfaces, and this is an aspect Riemann did
not touch. Klein is also well known for the formulation of the Erlangen
program [124], in which geometry is considered as transformation groups
rather than spaces, and the study of invariants of these groups. The text of
this program was set out at the occasion of Klein’s inaugural lecture when
he became professor at the University of Erlangen. The program served as
a guide for mathematical and theoretical physical research, during several
decades. We refer the reader to the papers in the book [114] for a modern
view on the Erlangen program.

After the collapse of his health in 1882, Klein’s research slowed down but
he remained a great organizer and editor,41 and his influence on the German
mathematical school of the last quarter of the ninteenth century is enormous.
At the turn of the century, he was considered to be the leader of German
mathematics. Under his guidance, the University of Göttingen became the

41Klein was, for several years, the leading editor of the Mathematische Annalen. He
also co-edited Gauss’ Collected Works and the famous Encyklopädie der mathematischen

Wissenschaften mit Einschluss iher Anwendungen (Encyclopedia of Pure and Applied
Mathematics). He was awarded the official title of “Geheimrat” (Privy Councilor) by the
German state. The history of this title goes back to the Holy Roman Empire, and it was
awarded to very few people. Among them were Leibniz, Goethe, Gauss, Planck, Fricke
and Hilbert. Klein also became the representative of the University of Göttingen at the
upper chamber of the Prussian parliament.
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German center for mathematics and theoretical physics. The main factor
was that Klein attracted there some of the most talented mathematicians,
including Hilbert, Minkowski, Koebe, Bieberbach, Courant and Weyl. Of
major importance is also Klein’s relationship with Poincaré, part of which
survives in the form of a rich correspondence.

Hermann Weyl credits Klein with the concept of an abstract Riemann
surface. He writes, in the Preface of [267] (p. vii of the 1955 edition):

Klein had been the first to develop the freer concept of a Riemann
surface, in which the surface is no longer a covering of the complex
plane; thereby he endowed Riemann’s basic ideas with their full
power. It was my fortune to discuss this thoroughly with Klein in
diverse conversations. I shared his conviction that Riemann sur-
faces are not merely a device for visualizing the many-valuedness
of analytic functions, but rather an indispensable essential com-
ponent of the theory; not a supplement, more or less artificially
distilled from the functions, but their native land, the only soil in
which the functions grow and thrive.

Between the years 1880 and 1886, Klein lectured at the University of
Leipzig on Riemann’s work on algebraic functions and on Riemann surfaces.
His book [132], in which he explains the ideas of Riemann and titled On
Riemann’s theory of algebraic functions and their integrals; a supplement to
the usual treatises, is connected with these lectures. It contains a section on
Riemann’s moduli space. Klein states the following result and he explains
how to obtain it (p. 82):

Theorem 3.1. All algebraical equations with a given p form a single con-
tinuous manifoldness in which all equations derivable from one another by
a uniform transformation constitute an individual element.

Klein writes that “the totality of the m-sheeted surfaces with w branch-
points form a continuum,” and for this property he refers to theorems of
Lüroth and Clebsch in Mathematische Annalen t. iv, v.42

42The papers of Lüroth and Clebsch on the subject include [153] [64] [65] [66]. The
word “continuum” appears very often in the writings of Klein and his contemporaries. In
this context, a continuum is an arcwise connected open subset of the complex plane. In
1851 [42, p. 129], Bolzano had a different definition, to which Cantor made objections. We
refer to the paper by [162, p. 226] for several historical notes on this subject. Bolzano’s
definition was: “a continuum is present when, and only when, we have an aggregate of
simple entities (instants or points or substances) so arranged that each individual member
of the aggregate has, at each individual and sufficiently small distance from itself, at
least one other member of the aggregate for a neighbor.” The notion adopted by Klein
was introduced by Weierstrass in his Berlin lectures, cf. Weierstrass, Monatsb. Akad.

Berlin 1880 p. 719-723 and Weierstrass’ Werke 2, Berlin 1895, p. 201-205. This was
repeated by Weierstrass in 1886 [246, p. 65]. Weierstrass’ definition was also adopted by
G. Mittag-Leffler in [159, p. 2]. This definition and the more general one are recalled in
the article by Osgood in Klein’s Encyclopedia [171] p. 9. In his 1928 edition of textbook
on complex analysis [172, p. 162], Osgood called a set in the complex plane a “two-
dimensional continuum” if it is path-connected and open. In the book by Picard and
Simart [177], (Vol. I, p. 24, in the chapter on Analysis situs) the authors write: “Instead
of using the expression space, we shall often use the words variety (variété), multiplicity,
and continuum. In 1910 [73, p. 138], Denjoy writes: “Let us call a continuum (Gebiet) a
set which only contains interior points and which is connected, and let us call a domain
(Bereich) the sum of a continuum and its boundary.”
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Besides the word continuum, the word “dimension” appears for the first
time in the description of the quantity 3p− 3. Klein writes in [132] p. 82:

Hence we conclude that all algebraic equations with a given p form
a single manifoldness. [...] For the first time, a precise mean-
ing attaches itself to the number of the moduli; it determines the
dimensions of this continuous manifoldness.43

The set that Klein describes is the moduli space Mp of Riemann surfaces
of genus p. A few comments are in order.

1) The letter p denotes, as before, the genus. The notion of genus is
associated here with an algebraic equation, an idea due to Clebsch, as is the
word “genus.” This is the genus of the Riemann surface that is associated
with the multi-valued function defined by the equation.

2) The term manifoldness (“Mannigfaltigkeiten”) was introduced by Rie-
mann,44 originally as a mathematico-philosophical notion.45 It is usually
translated by “manifoldness,” and it appears in several places in the work
of Klein. This word was never defined precisely, and the notion of a gen-
eral “manifold” with charts and coordinate changes was still inexistent. In
Riemann’s context, the word manifoldness means (vaguely) an object which
can be described using a certain number of complex parameters.46

3) The word “single” refers to the fact that the space is connected.
Klein then adds some more precise facts (p. 85):

To determine a point in a space of 3p − 3 dimensions we do not
generally confine ourselves to 3p − 3 coordinates; more are em-
ployed connected by algebraical, or transcendental relations. But
moreover it is occasionally convenient to introduce parameters, in
which different series denote the same point of the manifoldness.
The relations which then hold among the 3p− 3 moduli necessar-
ily existing for p > 1 have been but little investigated. On the
other hand the theory of elliptic functions had given us an exact
knowledge of the subject for the case p = 1.

Klein tried to make Riemann’s count of moduli more precise. In the
same booklet on Riemann’s work, he recalls (§19) that “Riemann speaks
of all algebraic functions of z belonging to the same class when by means
of z they can be rationally expressed in terms of one another,” and then
he writes: “The number in question is the number of different classes of
algebraic functions which, with respect to z, have the given branch-values.”
He then adds in a note: “If I may be allowed to refer once more to my own
writings, let me do so with respect to a passage in Mathematische Annalen

43The italics are Klein’s.
44In the French edition of Riemann’s works (1898), the term is translated by “multi-

plicité” (multiplicity). This is also the term used in Hermite’s Preface to that edition.
The term was also used by Poincaré and other French geometers before the introduction
of the word “variété,” which is today’s French word for manifold and which had a more
precise meaning.

45It seems that Riemann, who was first educated in theology, had in mind, a word
which would generalize the word “Dreifaltigkeit” which designates the holy Trinity. See
the interesting article [178].

46Notice that if the word “Mannigfaltigkeiten” denoted a topological manifold (as it
has been sometimes suggested), then Riemann and Klein would have written 6p − 6 and
not 3p− 3.
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t. xii (p. 173), which establishes the result that certain rational functions
are fully determined by the number of their branchings, and again to ib.
xv p. 533, where a detailed discussion shows that there are ten rational
functions of the eleventh degree with certain branch points.” In fact, Klein,
instead of the quantity 3p− 3, has 3p− 3+ ρ, where ρ is “number of degrees
of freedom in any one-to-one transformation of a surface into itself,” that is,
the dimension of the isometry group of the surface. (This takes care of the
case of genera 0 and 1 in the formula.) The form 3p− 3+ ρ is the one which
appears later in the work of Teichmüller. In his count of the number of
moduli, Klein gives an argument which is basically the same as Riemann’s:
Each Riemann surface can be realized as an m-covering over the Riemann
sphere, with m > 2p− 2. There are w = 2m+2p− 2 branch points, and for
each Riemann surface of genus p there are 2m−p+1 ways to cover the sphere
with m sheets. Once the branches are fixed, there are finitely many ways
to glue the various sheets to get a Riemann surface.47 From this number of
parameters, one needs to subtract the 2m−p+1 ways of realizing a Riemann
surface of genus p as an m-sheet cover. Thus, the total count for moduli is
w−(2m−p+1) = 2m+2p−2−(2m−p+1) = 3p−3. Klein then writes on p.
82: “Thus for the first time, a precise meaning attaches itself to the number
of moduli: it determines the dimensions of this continuous manifoldness.”48

Klein could not define a manifold structure on the moduli space Mp (and in
fact, this space is not a manifold), and the moduli count does not provide
that space with a topology. It is therefore not a surprise that his “method of
continuity,” which he used in his attempt to prove uniformization in 1882,
and on which we shall comment later, was considered as problematic. One
should also add that Klein’s objective, in going through Riemann’s ideas,
was to transmit them, and not to make them more rigorous, since he never
doubted their validity.49 Like Riemann, Klein was more interested in general
ideas than in details.50 Like his famous predecessor, Klein also resorted to
physics. Right at the beginning of his expository monograph [132], he writes
(p. 1-2): “The physical interpretation of those functions of x+ iy which are

47We know that the finite number of choices cause a singularity of moduli space (or,
its orbifold structure).

48The reader may notice that several problems arise if one wants to make these state-
ments precise. Namely, taking quotients might destroy any manifold property of the space.
Singularities might also appear from the collision of branch points. Thus, it isn not always
true that we get a manifold structure on the resulting quotient space. This is the sort of
problem that led Teichmüller later to say that people made counts without knowing what
they were talking about (see Footnote 23 and the discussion in §10 below).

49Other mathematicians were suspicious. In his essay on Riemann and his importance

for the development of modern mathematics ([131] p. 70), Klein writes: “Riemann’s
methods were kind of a secret for his students and were regarded almost with distrust by
other mathematicians.” (Remmert’s translation [201] p. 206).

50 Wemention here a letter to Poincaré, dated July 7, 1881, by Georges Brunel, a young
French mathematician following Klein’s lectures in Leipzig ([76] p. 94): “I am extracting
from his lectures two or three lines which show clearly the fundamental idea and which
answer your question about Riemann: ‘Riemann stated the theorem that on any Riemann
surface there exist functions, but this theorem cannot be considered as proved.’ This is
written by the hand of the student who did the writing. And then, by the hand of Klein:
Despite this fact, I will use without hesitation this theorem. I think it is possible to give a

rigorous proof of the general proposition.”
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dealt with in the following pages is well known. [...] For the purpose of this
interpretation it is of course indifferent of what nature we may imagine the
fluid to be, but for many reasons it will be convenient to identify it here
with the electric fluid.” Klein refers to Maxwell’s Treatise on electricity and
magnetism (1873).51 It is interesting to note that in his essay, Klein draws
equipotential curves which are analogous to the measured foliations that are
used in the Thurston theory of surfaces. The figure below is extracted from
Klein’s essay [132].

Let us now quote Poincaré, from his La valeur de la science (1905):52

Look at the example of Mr. Klein: He is studying one of the most
abstract questions in the theory of functions; namely, to know
whether on a given Riemann surface there always exists a function
with given singularities. What does the famous German geometer
do? He replaces his Riemann surface by a metal surface whose
electric conductivity varies according to a certain rule. He puts
two of its points in contact with the two poles of a battery. The
electric current must necessarily pass, and the way this current is
distributed on the surface defines a function whose singularities
are the ones prescribed by the statement.

He several important discoveries in function theory, although he himself
considered that he was merely explaining the ideas of Riemann. Indeed, as
we mentioned several times, by his writings and his achievements, Klein was
a true perpetuator of the tradition of Riemann. In his biography of Arnold
Sommerfeld, who was Klein’s assistant in Göttingen, M. Eckert writes ([82]
p. 50): “Riemann was the great model for Klein. For Riemann, the prox-
imity of mathematics to physics had been axiomatic. Klein advised his
students to acquire a personal sense of Riemann’s work from the primary

51In the introduction of his book [132], Klein writes: “I have not hesitated to take
these physical conceptions as the starting point for my presentation.” Let us note however
that in the paper [43], Bottazzini argues that Prym and others denied that Riemann had
been pursuing a physical analogy.

52Our translation from the French.
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source literature.” Klein also contributed to invariant theory, number the-
ory, algebra and differential equations. For a concise biography of Klein, the
reader may consult [115].

Besides his work on discontinuous group actions on the hyperbolic plane,
Klein made several contributions to Riemann surfaces. He addressed the
problem of whether every compact Riemann is equivalent to a surface smoothly
embedded in a Euclidean space, on which the holomorphic structure is de-
fined by the angle structure induced from that of the ambient space.53 See
[121] Vol. 3 p. 635. He knew that the automorphism group of a compact
Riemann surface of genus ≥ 2 is finite. He states in [132]: “It is always
possible to transform into themselves in an infinite number of ways by a
representation of the first kind surfaces for which p = 0, p = 1, but never
surfaces for which p > 1.”

4. Poincaré

As a mathematician, Poincaré (1854-1912) was a geometer, an analyst,
an algebraist, a number theorist, a dynamical system theorist, and above all
a topologist. His contribution to the theory of Riemann surfaces involves
all these fields. In fact, Poincaré considered topology as part of geometry.
In his Dernières pensées (Last thoughts), published posthumously (1913)
[190], he writes:

Geometers ordinarily classify geometry into two types, calling the
first one metric and the second one projective. [...] But there is a
third geometry, where quantity is completely banished and which
is purely qualitative: this is Analysis Situs. [...] Analysis Situs
is a very important science for the geometer. It gives rise to a
series of theorems which are equally linked as the ones of Euclid.
It is on this set of propositions that Riemann constructed the most
remarkable and abstract theories of pure analysis. [...] This is what
makes this Analysis Situs interesting: the fact that it is there that
geometric intuition is really involved.

P. S. Alexandrov,54 in a talk he gave at a celebration of the centenary
of Poincaré’s birth [24], says the following: “To the question of what is
Poincaré’s relationship to topology, one can reply in a single sentence: he
created it [...].” Although this may be, strictly speaking, an overstatement,
there is a lot of support for it.55 We owe to Poincaré such basic notions as

53The problem was also addressed by Gauss. It was solved by Garsia [90] for closed
surfaces, and by Rüedy [214] in the general case.

54Pavel Serguëıevitch Aleksandrov (1896-1982) studied in Moscow under Egorov and
Luzin (the latter had studied in Göttingen between 1910 to 1914). Aleksandrov made
major contributions to topology, where his name is attached to the Alexandrov compact-
ification and the Alexandrov topology. Alexandrov visited Göttingen several times and
taught there. In her biography of Courant, Constance Reid writes ([202] p. 106): “Since
1923 Alexandrov had returned each year, either alone or accompanied by countrymen.
From 1926 through 1930, Courant always arranged for him to give courses in topology,
each for a quite different audience of mathematicians. The summer that Courant was
trying to keep up some semblance of attendance at Wiener’s lectures, Alexandrov’s were
crowded.”

55In his Analysis of his own works ([192] p. 100), Poincaré considers that his prede-
cessors, in topology, are Riemann and Betti. The latter was a friend of Riemann and was
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the fundamental group, homology, Betti numbers, torsion coefficients and
duality. He is the founder of combinatorial topology and of the qualitative
approach to differential equations from the point of view of the properties
of the vector fields they generate: singularities, existence of periodic orbits,
behavior of integral curves, etc. This is also part of topology. Poincaré’s
study of discrete group actions is also a chapter in topology. He is the author
of the celebrated Poincaré conjecture stating that simply connected, closed
3-manifold is homeomorphic to the 3-sphere and which was, until its recent
proof, one of the most central open problems in mathematics. For a history
of algebraic topology, and in particular on Poincaré’s contribution, we refer
the reader to the books [196] by Pont and [218] by Scholz. Poincaré was
also a physicist. His works on special relativity and on celestial mechanics,
which includes the three body problem and the question of the stability
of the solar system and where his qualitative study of differential equations
finds other beautiful applications, are decisive in the fields. It is not possible
to describe in a few pages his achievements. We are interested in his work
on Riemann surfaces and in his relationship to Klein. We refer to the recent
scientific biography by Gray [94].

In the 1880s, Poincaré gradually became the leading mathematician in
France, as Klein was in Germany. Hadamard, in his commentary on Poin-
caré’s mathematical work [103], writes that unlike other scientists, Poincaré,
in the choice of the subjects of his investigations, did not follow his personal
inclinations, but the need of science (p. 214). He adds: “He was present
everywhere a serious gap had to be filled or a big obstacle had to be over-
come.” Poincaré’s work on Riemann surfaces involves, like Riemann’s and
Klein’s, function theory, topology, and potential theory. He also introduced
in that theory techniques of group theory and the newly discovered methods
of hyperbolic geometry. Unlike Klein, Poincaré did not consider a Riemann
surface as an object obtained by making cuts in the complex plane and glu-
ing them again, but from the beginning, he thought of it in terms of polygons
in the plane, whose edges are circular arcs, with discontinuous groups acting
on them, the Riemann surface appearing as a quotient of this action. He
later identified the disk with the hyperbolic plane, and the discontinuous
groups with groups of hyperbolic motions. He called these groups Fuchsian,
a name he used after he read a paper by Lazarus Fuchs on second-order
differential equations [88]. He also introduced automorphic functions as a
major ingredient in the theory of Riemann surfaces. On Poincaré’s style and
his relation to Riemann, Alexandrov writes in [24]:

The close connection of the theory of functions of a complex vari-
able, which Riemann has observed in embryonic form, was first
understood in all its depth by Poincaré [...] Poincaré was a master
of topological intuition as no other mathematician of his time and
preceding eras; may be only Riemann could be compared to him
in this respect, but he did not succeed in developing it with such
breadth and diversity of applications as Poincaré. Topological in-
tuition penetrates the majority of Poincaré’s most signifiant works

influenced by him. The book [196] and the article [262] contain two letters from Betti to
his colleague and friend Tardy in which he reports on conversations he had with Riemann
on topology.
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– the theory of automorphic functions and uniformization (this is
the supreme triumph of the ‘Riemann’ approach to the theory of
functions of a complex variable).

The force of Poincaré’s geometrical intuition sometimes led him
to ignore the pedantic strictness of proofs. Here there is still an-
other side; finding himself under constant influx of a set of ideas
in the most diverse fields of mathematics, Poincaré ‘did not have
time to be rigorous’, he was often satisfied when his intuition gave
him the confidence that the proof of such and such a theorem could
be carried through to complete logical rigor and then assigned the
completion of the proof to others. Among the ‘others’ were math-
ematicians of the highest rank.

Poincaré came to Riemann surfaces and uniformization because he was
interested in the global behavior of solutions of differential equations, more
precisely, of second order linear equations whose coefficients are meromor-
phic functions.56 His aim was to prove that one can express these solutions
by a uniform function. Thus, like Riemann, but through another path,
Poincaré was led to the question of uniformization. It seems that Poincaré,
when he started working on the subject, was not aware of Riemann’s work,
and that first learned about it through his correspondence with Klein.57

Several of Poincaré’s early results on differential equations are announced
in a series of Comptes Rendus notes written in 1881 and 1882, and more
details are published in the 1882 Acta Mathematica papers of the same year
[182] [183] and in later ones. The 1881 Comptes Rendus note [180] starts as
follows:

The goal which I propose in this work is to search if there are
analytic functions which are analogous to the elliptic functions and
which allow the integration of various linear differential equations
with algebraic coefficients. I managed to prove that there exists a
very wide class of functions which satisfy these conditions and to
which I gave the name Fuchsian functions, in honor of Mr. Fuchs,
whose works have been very useful to me in this research.

Poincaré started a correspondence with Fuchs in 1880, after he noticed the
latter’s 1866 paper on linear differential equations with complex coefficients.
Several letters from Poincaré to Fuchs are published in [179], and two letters
from Fuchs, in French translation, are published in [76]. In these letters,

56The subject of Poincaré’s doctoral thesis (defended in 1879) was differential equa-
tions. This subject prepared him for his subsequent research in mathematics and physics.
In 1880, Poincaré obtained the “mention Très Honorable” for the annual competition or-
ganized by the Académie des sciences. The subject was “To improve in some important
way the theory of linear differential equations with one independent variable.” Poincaré
submitted a memoir titled The integration of all linear differential equations with algebraic

coefficients. Hadamard writes in his survey of Poincaré’s work ([103] p. 206): “The inte-
gration of differential equations and of partial differential equations remains until now the
central problem of modern mathematics. It will presumably stay one of its major problems,
even if physics continues the path it is following presently towards the discontinuous.”

57Dieudonné writes in his biography of Poincaré [74]: “Poincaré’s ignorance of the
mathematical literature, when he started his research, is almost unbelievable. He hardly
knew anything on the subject beyond Hermite’s work on modular functions; he certainly
had never read Riemann, and by his own account had not even heard of the Dirichlet
principle.”
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Fuchs responds to Poincaré who had asked for clarifications and details on
his works.

The above figure is extracted from a letter from Poincaré to Fuchs, where
the former constructs a region in the plane obtained by analytical extension
of a meromorphic function which covers itself. He explains that in a proof,
Fuchs missed one of the two cases. In fact, Poincaré saw that there were im-
precisions, inconsistencies and other problems in the writings of Fuchs, but
he nevertheless remained faithful to the terminology “Fuchsian equation,”
“Fuchsian function” and “Fuchsian group,” in gratefulness to the ideas that
he got by reading Fuchs’ papers. He eventually gave new proofs and general-
ized the results of Fuchs. Dieudonné (whose opinion is sometimes extreme),
in a letter he wrote to the editors of [76], says that “it seems evident that
Fuchs never understood the objections of Poincaré” (quoted on p. 152).

Poincaré’s theory of Fuchsian groups and Fuchsian functions provided a
lot of examples of Riemann surfaces which are equipped by non-constant
meromorphic functions, which is in the direct lineage of Riemann’s pro-
gram. As a by-product of this work, Poincaré obtained a version of the
uniformization theorem, which is also one of the important questions ad-
dressed by Riemann. Poincaré stated this result in his 1883 article [184].
We reproduce the statement, which is amazing in its generality:

Theorem 4.1. Let y be an arbitrary non-uniform analytic function of x.
Then, we can always find a variable z such that x and y are uniform func-
tions of z.

In this theorem, the function y is not necessarily algebraic.
At about the same time, Klein announced a proof of a similar theorem,

in his note [127]. Klein’s statement is closer to the spirit of Riemann. It is
summarized in the following:

Theorem 4.2. For every Riemann surface, there exists a single-valued func-
tion η, which is uniquely defined up to composition by a fractional linear
transformation, which, after cutting the surface into a simply-connected re-
gion, maps it conformally onto a simply-connected region of the sphere, and
such that along the cuts the function changes by fractional linear transfor-
mations.

In general, the works of Klein and Poincaré were close, although their
approaches to several problems were different. Poincaré kept thinking in
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terms of solutions of differential equations while Klein was following the
function-theoretic path traced by Riemann. Klein’s vision of geometry as
transformation groups expressed in the Erlangen program (1871) was com-
pletely shared by Poincaré. Klein was also among the first to recognize
the importance of Lobachevsky’s geometry and to transmit it through his
writings; this geometry played later on a major role in Poincaré’s writings.

The uniformization theorem is discussed in the correspondence between
the two men.58 Most of these letters concern Riemann surfaces and they also
give us an idea of the period when the two men were in close relationship
with one another.

When this correspondence started, in 1881, Poincaré was 27 years old, and
Klein was 32. Klein wrote in German and Poincaré responded in French.
Poincaré, like Klein, was investigating discrete groups of linear fractional
transformations and their automorphic functions, and he discovered the re-
lation between these groups and the group of isometries of the hyperbolic
plane. Both had developed methods for constructing Riemann surfaces by
assembling polygons in the plane, and they both constructed associated dis-
continuous groups. Hadamard writes in [103] that Poincaré’s discovery of
Fuchsian groups made in 1880 “attracted the attention and the admiration
of all geometers.” Hadamard also recalls the result on Fuchsian functions
came as a surprise to Poincaré, whose initial aim was to show that these
functions, as generalizations of the modular function and the inverse of the
hypergeometric series, do not exist ([103] p. 208).59 The two years 1881
and 1882 were a period of intense mathematical research for Klein. After
that, his research activity slowed down considerably because of a nervous
breakdown, and his correspondence with Poincaré slowed to a trickle.

The first letter is from Klein, dated June 12, 1881. It starts by: “Sir,
Your three Comptes Rendus Notes Sur les fonctions fuchsiennes, of which I
became aware only yesterday, and only rapidly, are so closely related to the
thoughts and the efforts that occupied me during the last years that I feel
obliged to write to you.” Then Klein reports on several of his articles, and
also on some unpublished results concerning triangles, and (more generally)
polygons, whose boundaries are pieces of “circular arcs.” The next two fig-
ures, representing such polygons, are extracted from a letter from Klein to

58This correspondence was edited by various people. One set of letters was published
by N. E. Nörlund in Acta Mathematica [173] (1923). A second set is included in Klein’s
Collected Works [121]. A third set is contained in the collection of mathematical letters
of Poincaré, published with French translations, in two parts, [76] and [77]. Some of the
letters are reproduced in the book [215]. The second volume of the correspondence [77]
contains 26 letters exchanged with Klein between June 1881 and September 1882, 3 letters
exchanged in 1895, and one letter for each of the years 1901, 1902, 1906.

59This is stated by Poincaré in Science et Méthode [189] p. 51. The passage is repro-
duced below.
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Poincaré [77].

Klein writes: “I never published anything about these concepts, but I pre-
sented them, in the summer of 1879, in a course at the General Technical
School of Munich.” He concludes his letter by the sentences: “Your ap-
proach, the one which guides your works since 2-3 years, is in fact very close
to mine. I will be very pleased if this first letter gives rise to a regular corre-
spondence. It is true that at this moment other commitments take me away
from these works, but I am all the more excited of resuming them that I
have to give, next winter, a course on differential equations.”

Poincaré responds on June 15, 1881: “Your letter proves that you saw be-
fore me some of my results on Fuchsian functions. I am not at all surprised,
because I know how much you are knowlegeable in non-Euclidean geometry,
which is the true key to the problem with which we are concerned.” Poincaré
promises to quote Klein’s work in his future publications. He then asks him
several questions: “What is the Theory of the fundamental polygon (Fun-
damentalpolygone)? Did you manage to find all the polygons with circular
arcs (Kreisbogenpolygone) which give rise to a discontinuous group? Did
you prove the existence of functions that correspond to every discontinu-
ous group?” To these questions, Klein responds in his next letter (June 19,
1881): “I was not able yet to establish the existence of all the discontinuous
groups. I only noticed that there were several for which there is no fixed
fundamental circle60 and therefore to which we cannot apply an analogy
with non-Euclidean geometry (with which, by the way, I am very familiar).”
We do not wish to enter here into the mathematical details contained in
these letters, and the interested reader should go through them. The results
discovered and the problems raised there are at the basis of the theory of
Fuchsian groups and its relation to Teichmüller theory.

In several letters, the choice of the name Fuchsian function is discussed.
Klein considers that this is a misnomer and that Fuchs’ results were known
to others before him. Klein seems to have good reasons to complain, but
Poincaré, who had already decided about this name and who had used it
in his published articles, is unrelenting.61 It is also worth noting that in a

60The fundamental circle is the circle invariant by a Fuchsian group. The terminology
seems to be due to Poincaré. This remark made by Klein shows that he knew the existence
of quasi-Fuchsian groups.

61There are several places in the mathematical literature where one can read on Klein’s
discontent about Poincaré’s choice of the adjective Fuchsian. We mention a source which
is rarely quoted, viz., a letter from Brunel to Poincaré, written from Leipzig, on June 1881
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letter dated January 13, 1882, Klein protests Poincaré’s choice of the word
Kleinian. He considers that the credit is rather deserved by Schottky, and
that in any case, the origin of everything is in Riemann’s work.

In his letter dated June 27, 1881, Poincaré asks Klein for details about
the classification of groups according to genera. In his letter dated July 2,
1881, Klein informs Poincaré that some of his work on theta functions is not
new, and that a large number of young mathematicians are working on the
subject, viz., to find conditions that distinguish Riemann’s theta functions
from the more general ones. He notes that he is surprised by a remark of
Poincaré saying that the constant associated with Riemann’s theta functions
is equal to 4p + 2, whereas it should be equal to 3p − 3, and he asks him:
“Didn’t you read Riemann’s explanations on that, or the discussion of Brill
and Noether in (Über die algebraischen Functionen und ihre Anwendung
in der Geometrie, Mathematische Annalen 7 (1874), 269-310)?” On July 5,
1881, Poincaré writes that the 4p + 2 constants he mentioned are not the
moduli but rather “parameters,” and that 4p+2 is only an upper-bound for
the number of moduli, and that this is sufficient for his needs. From here,
we conclude that the term moduli had the meaning of “minimal” number of
parameters.

In a letter dated December 4, 1881, Klein asks Poincaré to send him
an article (even in the form of a letter) which he proposes to publish in the
Mathematische Annalen. It is interesting to note that Klein asks Poincaré for
an an outline of his views and results. Klein was not interested in technical
details. He also says that he could publish, in the same issue, a note which
presents his point of view on the matter, and explain how Poincaré’s actual
program served as a principle for the orientation of his own work on modular
functions.

The letter from Klein to Poincaré dated January 13, 1882 concerns uni-
formization:

I just wrote a small article [127] which will be published next to
yours. It presents, again without proof, some of the results in this
domain, and above all the following:
Any algebraic equation f(w, z) = 0 can be solved in a unique
manner by w = φ(η), z = ψ(η) as long as we have drawn on
the corresponding Riemann surface p independent cuspidal cuts
[Rückkehrscnitte], where η is a discontinuous group, such as those

([76] p. 92). Brunel reports that at on that day, Klein, at his seminar, presenting works
of Poincaré, declared to the audience: “I protest about the choice of the name Fuchsian

function. The fundamental idea is due to Riemann, and the merit of applying this idea
of Riemann goes to Schwarz. Later, I myself worked in that direction and in my lectures
at the Munich Polytechnikum I presented a few results which were at the basis of the
work of Mr. Poincaré. As to Mr. Fuchs, who once wanted to deal with similar questions,
he only managed to do the following: to show us that in this matter he understands
strictly nothing.” Brunel adds: “I may conclude: your Fuchsian functions belong to you
and to nobody else, you can give them the name you want, and no German can criticize
this.” In his letter dated June 27, 1881, Poincaré acknowledges that he might as well have
chosen another name for these functions, namely, Schwarzian functions, but he says that
out of respect for Fuchs, he cannot change the name. Today, the terminology “Fuchsian
function” is no more used; these functions are called “automorphic,” a word that was
suggested by Klein in [133] p. 549. But the terminology “Fuchsian group” survives.
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which you have told me about after my letter. This theorem is
all the more beautiful that this group has exactly 3p− 3 essential
parameters [wesentliche Parameter], that is, as many parameters
as the equations of the given p possess moduli.

[..] But the proof is difficult. I always work with the ideas of
Riemann, respectively with the geometria situs. It is very difficult
to write this clearly. I will try to do it later on. In the meanwhile,
I would like very much to correspond with you on this matter, and
also on your proofs. Be sure that I will study with the greatest
interest your letters that you allow me to hope on this subject and
that I will respond rapidly. If you want to publish them, under
one form or another, the Annalen are naturally at your disposal.”

Poincaré responded on April 4, 1882, after he received Klein’s article on
uniformization ([77] p. 111): “Thank you very much for your note [128]
which you kindly sent me. The results which you state are of great interest
to me for the following reason: I already found them some time ago, but
I did not publish them, because I first wanted to clarify the proof. This is
why I would like to know yours, when you will clarify them from your side.”

The approach to uniformization, both by Poincaré and Klein, raised a
difficulty, due to their use of the co-called continuity method. This method
was problematic, for several reasons. First of all, it involved a map between
two spaces which are required to be manifolds (using modern terminology).
For the spaces to which Poincaré and Klein applied it, this was not proved.
In fact, this was even wrong, because one of the two spaces was Riemann’s
moduli space, which is not a manifold. Another problem was that the “num-
ber of moduli” had not been made precise, and in order to be useful, this
number had to be interpreted as a dimension (assuming the spaces involved
are known to be manifolds ...), specially after Cantor found his famous bi-
jection between the real line and the plane. We shall talk about this in more
detail in §6.

In his 1884 memoir on Kleinian groups [193], Poincaré’s surveys the
method of continuity as it was used by Klein (§VIII), and then, by him-
self (§XIV). He writes: “Mr. Klein and myself have been led independently
of one another to a method which allows one to prove that any Fuchsian
type contains a Fuchsian equation, and that we can call the method of con-
tinuity. We made various applications of this method (see Comptes Rendus,
t. 92, p. 1200 and 1486; Klein, Mathematische Annalen Bd. 19, p. 565;
Bd. 20, p. 49 and Bd. 21 p. 211; Comptes Rendus, t. 84, p. 1038).”
He then gives a brief presentation of this method. It is interesting to note
that Poincaré describes this method as a general principle, not restricted
to the case in hand. He starts with examples, namely, with maps between
one-dimensional objects and then surfaces, making the distinction between
“closed” and “open” surfaces. He writes: an open surface has a boundary,
or frontier.62 He then passes to the higher-dimensional case:

62This terminology of “open” surface, as a surface with boundary, is used in Picard’s
Cours d’Analyse ([176] p. 465). The reader should note there that this word does not
have the same meaning today.
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The same thing will happen, when S and S′ are regarded as sur-
faces situated in the space of more than two dimensions, as Man-
nigfaltigkeiten (multiplicities) of more than two dimensions, as the
Germans say.

Suppose now that to each pointm of S corresponds one and only
one point m′ of S′ in such a way that the coordinates of S′ are
analytic functions of those of m, unless m goes to the boundary
of the multiplicity S, in the case where this multiplicity is one.
Suppose that there are no points of S′ which correspond to more
than one point of S. If S is a closed multiplicity, then we can be
sure that to any point of S′ corresponds a point of S. If, on the
contrary, S is an open multiplicity having a boundary, or a frontier,
then we cannot affirm anything.

Poincaré then applies this result to a space of equivalence classes of Fuchsian
groups. The equivalence relation is the following:

Two Fuchsian groups belong to the same class when the generating
polygon has the same number of sides and when the vertices are
dispatched in the same number of cycles, in such a way that the
cycles correspond one to one, and likewise for the angle sum of two
corresponding cycles.

He then describes a map between a multiplicity S and a multiplicity S′. The
main question is whether it is surjective.

For that, and by the preceding, it suffices that S be a closed mul-
tiplicity, and that it has no boundary. This is not at all evident a
priori.

Indeed, among the groups of the same class, infinitely many
could be limit groups, corresponding to boundary points of the
multiplicity S. These are groups whose generating polygon presents
one or several infinitesimal sides. We can see, in effect, that we
can always construct a generating polygon having a side which is
as small as we want. In fact, it will not suffice for S to be an open
multiplicity, since, from §IX of the Théorie des groupes fuchsiens,
the same group may be generated by an infinity of equivalent poly-
gons and it is possible that among these polygons we can always
choose one whose sides are all greater than a given limit.

Thus, it is not evident that S is a closed multiplicity and it is
necessary to prove it, by a discussion which is special to each par-
ticular case, before asserting that to every point of S′ corresponds
a point of S. This is what Mr. Klein omitted to do. There is here
a difficulty which we cannot overcome in a few lines.

It is worth noting that about thirty years later, in a letter he wrote to
Brouwer in January 1912, which we quote in §6, Poincaré refers to the Klein
approach, to deal with the problem of singular points of Riemann’s moduli
space.

Poincaré then describes his own use of the method of continuity, in §XIV,
after having established several lemmas. He starts with a linear order-two
differential equation – one of his favorite – of the form

(2)
d2v

dx2
= φ(x, y)v
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such that x and y satisfy an algebraic equation

(3) ψ(x, y) = 0.

He argues that the space of Fuchsian groups which it leads to has no bound-
ary. The reason is that if this space had a boundary, then this boundary
would be of codimension one. But then he shows that any degeneration in
that space falls on a subspace of codimension two and not one. He writes:

The parameters representing the moduli form a multiplicity M of
dimension q which is closed and has no frontier. Indeed, Riemann
showed that if a multiplicity of dimension q were limited by another
multiplicity, then this new multiplicity would have dimension q−1.
[...] The fact is that by varying the parameters of the class, we can
only reach the frontier of M by attaining certain singular points
of this multiplicity, corresponding to the case where the type63 T
is reduced to a simpler type T ′. But this can happen only in two
manners:

1) Two singular points collide; but this gives a complex condi-
tion, that is, two real conditions;

2) The genus of the algebraic relation (3) is lowered by one unit,
that is, the curve represented by this relation. But this also gives
two real conditions.

Poincaré concludes that in both cases, “the singular points would form a
multiplicity of dimension q− 2, and therefore cannot form a frontier for the
multiplicity M , whose dimension is q.” Reasoning with limits of polygons,
he argues that the degeneration would give a multiplicity of dimension q−1.
Thus, the multiplicity has no boundary. This, according to him, settles the
continuity method.

It is of highest interest that Poincaré examined the possibility of a bound-
ary structure for his space of equivalence classes of Fuchsian groups, and that
he also noticed that the dimensions of all the spaces involved (including the
boundaries, if they exist) should be even. The reader will recall that there
was no higher-dimensional complex structure yet present in the discussion.

The rest of the correspondence between Poincaré and Klein on the method
of continuity is also rich. On May 7, 1882, Klein writes ([77] p. 113):

I recently read your Comptes Rendus Note of April 10 [181]. I was
all the more interested that I think that your present considerations
are close to mine, as for what regards the method. I prove my
theorems using the continuity, based on the following two lemmas:

1) With any discontinuous group is associated one Riemann
surface;

2) Only one of these groups belongs to a Riemann surface which
is conveniently cut [zerchnittene] (as long as there is an associated
group).

Poincaré responds, in a letter dated May 12, 1882 ([77] p. 114):

I think, as you do, that our methods are very close and they differ
less by the general principle than by the details.

In a letter dated May 14, 1882 ([77] p. 116), Klein explains his method ([77]
p. 114):

63The word “type” refers to the classification of Fuchsian group.
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I would like to explain to you, in two words, how I use the “continu-
ity.” [...] We have to prove, above all, that two manifolds [Mannig-
faltigkeiten] that we compare – the set of systems of substitution
that we consider, and on the other hand, the set of Riemann sur-
faces that exist effectively – not only have the same number of
dimensions (6g − 6 real dimensions), but are analytic with ana-
lytic frontiers [Grenze] (in the sense introduced by Weierstrass)
[...] But now it turns out this relation is analytic and even, as
it follows from the two propositions, an analytic relation whose
functional determinant is never zero.

Poincaré’s response is dated May 18, 1882 ([77] p. 117):

It is probable that we do not establish by the same method the
analytic character of the relation which relates our two Mannig-
faltigkeiten which you talk about. For me, I relate this to the
convergence of my series; but it is clear that we can obtain the
same result without such a consideration.

We refer the interested reader to the complete set of letters.
There is a historical section in Poincaré’s 1882 article [182] in which he

reports that results on discontinuous groups of fractional linear transfor-
mations follow from work of Hermite, and he then mentions works on this
subject by Dedekind, Fuchs, Klein, Hurwitz and Schwarz. In his Analysis
of his own works [192], p. 43, he describes elliptic functions as univalent
functions which are periodic.64 The periodicity here is the important prop-
erty, and it is a property of group invariance. Poincaré always thought in
terms of groups. He notes that the periods form a discrete group, and he
mentions the fundamental domain for this action, a parallelogram in the
complex plane. “The knowledge of the function in one of the parallelograms
implies its knowledge everywhere in the plane.” He then considers the situa-
tion where the fundamental region is a “curvilinear polygon.” He addresses
the question of finding the conditions under which the group generated by
reflections along sides on such a polygon is discontinuous, and he relates this
question to non-Euclidean geometry. This leads him to consider theta func-
tions which are not periodic, but “are multiplied by an exponential when
the variable is augmented by a period.” (p. 46). This is the origin of the
subject of automorphic forms.

Poincaré’s theory of Fuchsian groups and Fuchsian functions, as well as
his more general theory of automorphic forms, led to many developments
in connection with the study of moduli in works of Bers [34], Kra [141],
Sullivan [227], McMullen [158] and others, and it is not possible for us to
develop this subject here.

We saw how much Poincaré and Klein had close interests. Two events
recounted by the two men can also be put in parallel. The first one, de-
scribed by Poincaré, is well known, and it occurred in the Summer of 1880,
at the time of his correspondence with Klein, when he made his lightning
discovery that the discrete groups that arise from the solutions of differen-
tial equations he was studying are the groups of isometries of the hyperbolic
plane. Poincaré recounted this discovery, which he considered as one of his

64The word univalent does not mean injective, as the function is periodic. One has to
take into account the fact that the function is automorphic.



EARLY HISTORY 35

major ones, in a text written in 1908, that is, 28 years after the episode, at
a talk he gave at the Société de Psychologie de Paris. It is published in his
book [189], and it is worth recalling, and put in parallel with a text written
by Klein. Poincaré writes:

During fifteen weeks, I was working hard to prove that there was
no function analogous to the one which I had called since then
Fuchsian function. At that time, I was very ignorant. Every day,
I sat at my work table. I used to spend one hour or two. I tried
a large number of combinations, but I obtained no result. One
evening, I drank black coffee, contrary to my habit. I could not
sleep, because of ideas flocking up. I felt them colliding, until I
hooked two of them, and they formed a sort of stable combina-
tion. In the next morning, I established the existence of a class of
Fuchsian functions which arise from the hypergeometric series. I
had only to write the results and this took me a few hours.

Then, I wanted to represent these functions as quotients of two
series. The idea was perfectly conscious and deliberate. I was
guided by the analogy with elliptic functions. I was wondering
what should be the properties of these series, if they existed, and
I arrived without difficulty to construct the series I called theta-
fuchsian.

At that moment, I was leaving Caen, where I used to live at
that time, to take part in a geological competition organized by
the École des Mines. The adventures of the trip made me for-
get about my mathematics. When we reached Coutance, we got
in a local train for some tour. At the moment I set my foot on
the footboard, the idea came to me, without any preparation from
previous thoughts, that the transformations that I used for the
Fuchsian functions were identical to those of non-Euclidean geom-
etry. I did not check it, and in fact, I wouldn’t have got time to
do it since as soon as I sat in the train, I continued a conversa-
tion which I had started before; but I immediately got a complete
certitude. When I came back to Caen, I checked the result at my
leisure, although I was sure of it.

I started to study some questions in number theory, without
real visible result and without suspecting that this could have the
slightest relation with my research. I became sick of my failure,
and I went for a few days to the seaside, where I began thinking
about something else. One day, while I was wandering over the
cliff, an idea stoke me, again, with the same immediate suddenness
and certainty, that the arithmetic transformations of the indefinite
ternary quadratic forms were identical to those of non-Euclidean
geometry.

When I returned to Caen, I thought again of that result and
I deduced from it some consequences. The example of quadratic
forms showed me that there were other Fuchsian groups than those
which correspond to the hypergeometric series, and I saw that I
could apply to them the theory of thetafuchsian functions, and,
therefore, that there exist other thetafuchsian functions than those
that derive from the hypergeometric series, which were the only
ones I knew until that time. Naturally, I tried to form all these
functions. I made a systematic siege of them. [...]
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After that, I went to the Mont-Valérien, where I was going to
do my military service. I therefore had very different concerns.
One day, while I was crossing the boulevard, the solution of the
difficulty appeared to me suddenly. I did not try to go immediately
deeper into it and it was only after my military service that I came
back to the problem. All the elements were in my possession; I had
only to assemble them and to put some order in them. I then wrote
my memoir, without a break and without any difficulty.

Klein’s episode is related by Nörlund, in his edition of the correspon-
dence between Klein and Poincaré [173]. It concerns the discovery of the
uniformization theorem. Klein writes:

In order to follow the advice that the doctors gave me at that
epoch, I decided to come back, at Easter 1882, on the shores of
the North Sea, this time at Norderney. I wanted to write up, in this
quiet place, the second part of my book on Riemann, that is, to
have under a new written form, the existence theorem for algebraic
functions on a Rieman surface. In fact, I could not stand this
stay more than eight days; life there was too morose, since it was
impossible to go out because of the violent storms. Thus, I decided
to come back as soon as possible to my home in Düsseldorf. During
the last night of my stay there, the night of March 22 to 23, which
I spent sitting on a couch because of my asthma attacks, suddenly,
around 2:30, the central theorem [Zentraltheorem] appeared to me,
in the way it is sketched in the figure of the 14-gon [14-Eck] in Vol.
XIV of the Mathematische Annalen p. 126.65 The next morning,
in the stagecoach which at that time circulated between Norden
and Emden, I pondered about my finding, examining again every
detail. I knew I had found an important theorem. As soon as I
arrived to Düsseldorf, I wrote a memoir, dated March 27, sent it
to Teubner66 and I asked that the proofs be sent to Poincaré and
to Schwarz.

I already recounted how Poincaré reacted in the Comptes rendus
[181] on April 10. To me, he wrote: The results you state are of
great interest for me, for the following reason: I already found
them, some long time ago [...] He never said precisely how and
since when he knew them. One can easily understand that our
relations became tense. Schwarz, on his side, first thought, after
an insufficient counting of constants, that the theorem must be
false. But later on, he brought a major contribution to the new
methods of proof.

But in reality the proof was very difficult. I used the so-called
continuity method, which assigns to the set of Riemann surfaces of
a given [genus] p the corresponding automorphic group of the unit
circle. I have never doubted of the method of proof, but I always
stroke against my lack of knowledge in the theory of functions,
or against the theory of functions itself, of which I could only
tentatively assume the existence, and which in fact, was obtained
only thirty years later (1912) by Koebe [139].

65This is Klein’s article [126].
66This is Klein’s article [128].



EARLY HISTORY 37

Klein’s systematic presentation of his work on uniformization is contained
in the book he authored with Fricke [87] on which we comment in §5 below.
In 1907, Poincaré [188] and Koebe67 [137] [138] gave, independently, a proof
of the general uniformization theorem. Both proofs contain very new ideas
and do not use the continuity method. We refer the reader to the exposition
in [215]. Other proofs were obtained later on, by several authors.

It is good to conclude this section by Bers’ comments on uniformization.
He writes in his survey on this question ([36] p. 509):

A significant mathematical problem, like the uniformization prob-
lem which appears as No. 22 on Hilbert’s list, is never solved only
once. Each generation of mathematicians, as if obeying Goethe’s
dictum,68 rethinks and reworks solutions discovered by their pre-
decessors, and fits these solutions into the current conceptual and
notational framework. Because of this, proofs of important the-
orems become, and if by themselves, simpler and easier as time
goes by – as Ahlfors observed in his 1938 lecture on uniformiza-
tion. Also, and this is more important, one discovers that solved
problems present further questions.

[...] The personal element is also fascinating. It involves some of
the most illustrious mathematicians of that time: Schottky, about
to conjecture, in 1875, a fairly general uniformization theorem, but
deflected by the authority of Weierstrass (according to Klein), the
rivalry between Klein, then at the height of fame and productivity,
and the yet unknown Poincaré (see their correspondence from the
years 1881–1882). Schwarz, suggesting, in a private communica-
tion, two methods for proving the main uniformization theorem
(one using the universal covering surfaces, the other involving the
partial differential equation ∆u = e2u), Hilbert, reviving the inter-
est in the problem by his Paris lecture, and several years later cre-
ating a new tool for uniformization by “rehabilitating” the Dirich-
let principle, Brouwer, embarking on his epoch making topological
investigations in order to put the original “continuity method” of
Klein and Poincaré on firm foundations, Poincaré, returning to
the uniformization problem after a quarter of a century and fi-
nally achieving a full solution, but having to share this honor with
Koebe. Koebe “went on to explore, with the most varied methods,
all facets of the uniformization problem.” The (slightly rephrased)
quotation is from the 1955 edition of Weyl’s celebrated Idee der
Riemannschen Fläche. [...]

The modern developments in uniformization, which began af-
ter a period of hibernation, utilize quasiconformal mappings and

67Koebe (1882-1945) wrote his dissertation under Schwarz in 1905. After he proved
the uniformization theorem, Koebe practically spent the rest of his career in trying to
improve and expand his proof, and in doing so he discovered the notion of planarity in
both the topological and complex analytic contexts. Koebe also spent a lot of energy in
trying to convince others that the proof of the uniformization which Klein gave in 1882
cannot be made rigorous. We shall mention him again in §6 dedicated to Brouwer. His
work is described by Bieberbach in the article [40] and by Freudenthal in the Dictionary

of Scientific Biography.
68Was du ererbt von deinen Vätern hast, erwirb es, um es zu besitzen.
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the recent advances in the theory of Kleinian groups. Quasicon-
formal mappings give new proofs of classical uniformization the-
orems, akin in spirit though not in technique, to the old “con-
tinuity method,” and also proofs of new theorems on simultane-
ous uniformization. The theory of Kleinian groups permits a par-
tially successful attack on the problem of describing all uniformiza-
tions of a given algebraic curve. An unexpected application of si-
multaneous uniformization is Griffith’s uniformization theorem of
n-dimensional algebraic varieties, which answers a question also
raised by Hilbert in the 22nd problem. (For non-Archimedean val-
ued complete fields there are uniformization theorems due to Tate,
for elliptic curves, and to Mumford, but the present author is not
competent to report on this work).

An exposition of these later uniformization theories would need a longer
article. Let conclude by recalling that the solution by Perelman of the most
general uniformization problem so far, namely, Thurston’s geometrization,
uses as an essential ingredient, an evolution equation and the theory of
partial differential equation, which is completely in the tradition of Riemann
and Poincaré in their use of the Laplace equation and the Dirichlet principle.
By the way, this is a field where Bers worked at the beginning of his career;
cf. the article by Abikoff and Sibner in this volume [5].

5. Fricke and Klein’s book

The two-volume book Vorlesungen über die Theorie der automorphen
Funktionen [87] by Fricke69 and Klein is in the stream of the study made
by Klein and Poincaré of polygons and spaces of polygons equipped with
group actions. The book may be considered as the first comprehensive
study of groups of discrete motions of the Euclidean, elliptic and hyperbolic
planes. The hyperbolic case constitutes the largest part of the book, since
the classification of group actions in that case is much more involved. The
authors quote several articles by Klein, in particular [129] and [130]. They
describe families of polygons equipped with group actions using Riemann’s
term Mannigfaltigkeit. The space of groups includes those that act with
fixed points, and thus, spaces of orbifold surfaces are also considered.

Chapter 2 of Vol. 1 carries the title The canonical polygons and the
parameters for rotation groups.70 For each type of polygon with geodesic

69Karl Emmanuel Robert Fricke (1861-1930) studied mathematics, philosophy and
physics at the universities of Göttingen, Zürich, Berlin and Strasbourg. He obtained his
doctorate under Klein at the University of Leipzig in 1885. After this, he taught at the
Braunschweig gymnasium and then worked as a private tutor; During this period he kept
his relations with Klein, with whom he wrote the two-volume treatise Vorlesungen über die

Theorie der elliptischen Modulfunctionen, published in 1890 and 1892 respectively. It was
between the publication of these two volumes that Fricke obtained an academic position,
first at the University of Kiel (1891), then at the University of Göttingen (1882) where
Klein was teaching, and finally, in 1894, at the Braunschweig Polytechnikum, succeeding
Dedekind. Fricke married in 1894 a niece of Klein. We shall talk more thoroughly about
another two-volume treatise which he wrote with Klein, Vorlesungen über die Theorie der

automorphen Funktionen [87].
70Fricke and Klein use the word “rotation” for an isometry of any one of the three

constant-curvature planes. This is consistent with the other writings of Klein. Motivated
by projective geometry, Klein considered an isometry as a rotation whose center might be
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sides in the hyperbolic plane, the authors consider a space of polygons.
They call a “canonical polygon” a polygon obtained through a system of
cuts that forms a basis of the fundamental group of the surface. Canonical
polygons and their moduli are developed systematically on pages 284-394 of
Vol. 1. In a note on p. 284, it is specified that isomorphic groups should
not be considered as different, which shows that the space constructed is
Riemann’s moduli space and not Teichmüller space. The authors claim
that the moduli of the canonical polygons are de facto the moduli of the
discrete groups. They introduce traces of matrices as new parameters. They
describe in detail several special cases, in particular the surfaces of type
(0, 3) (pair of pants) and (1, 1) (torus with one hole) and they show that
in these cases the moduli space is in bijection with the product [0, 1]3 with
some faces removed, which they call a “cube” (p. 290 and 302 of Vol. 2).
Other surfaces of low genus and a small number of boundary components
are also considered in detail. After the special cases, the authors develop
a general theory by gluing the small surfaces along their boundaries and
adding one parameter for each gluing. This theory is a precursor of the
later rigorous theories of gluing hyperbolic surfaces developed Fenchel and
Nielsen.71 In the book by Fricke and Klein, one also finds the idea of a
marking of a surface, considering that the polygons are marked by the choice
of the elements of the fundamental group that correspond to the curves along
which it is cut. A count for the number of moduli is given, and the result
is the same as Riemann’s. There is a “modular group” acting on spaces
of polygons by identifying parameters of hyperbolic polygons which lead to
the same hyperbolic surface (cf. p. 308 of Vol. 2 of [87]). The authors
claim that this action is given by rational functions. The quotient by this
modular group is mapped injectively into the moduli space of hyperbolic
surfaces. The authors also aim to give a systematic presentation of the
method of continuity for its use in the uniformization theorem (although
without substantial improvement). Brouwer, Koebe, Bieberbach and others
were very suspicious about these attempts.72 This method is exposited
on pages 402ff. of Vol. 2. The authors consider two spaces, namely, a
space of unmarked Fuchsian groups of a fixed type, and a space of Riemann
surfaces of a fixed topological type (the Riemann moduli space). They
define a natural map between them, by assigning to each Fuchsian group the
quotient Riemann surface. Such a surface is identified, following Riemann,
with the field of meromorphic functions it carries, and a Fuchsian group
is defined accordingly as the space of automorphic functions on it. Several

in the space, or at infinity, or beyond infinity. The authors of [87] make use of Klein’s
projective model, with a conic at infinity, a point of view which Klein had adopted in his
articles [123] and [125]. Different choices of conics lead to different geometries.

71After topological tools and quasiconformal mapping theory were made available, a
more accurate construction of the canonical polygons considered by Fricke and Klein in
[87] was made by Linda Keen in [119]. The trace coordinates that are used in [87] were
also made more precise by Keen in [120].

72For instance, in a letter sent on May 22, 1912 to Brouwer ([70] p. 148), Bieberbach
writes: “In Fricke, the proof in the boundary circle case seems to rely completely on the
fact that only one fundamental domain belongs to a system of generators. But this is not
satisfied.”
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complications arise in making such a theory rigorous. We already mentioned
Poincaré’s remarks on degenerations of polygons, on the difference between
open and closed multiplicities, etc. These problems are not solved in the
book of Fricke and Klein.

We have seen that Klein, like Riemann, was more interested in com-
municating ideas than writing proofs, and his articles and books have a
conversational style. His book with Fricke is an exception: it is much more
technical and difficult to read than the rest of his writings. The notions and
results are sometimes presented in a confusing way, and everybody who has
tried to figure out what this book contains precisely knows that this task is
almost impossible.73 This is certainly due to Fricke’s style, and in fact, this
is one the reasons why the results in this book are attributed to Fricke.75

Bers claimed that Fricke and Klein, as well as Poincaré, were dealing with
Teichmüller space. For instance, in his paper [35], he writes: “The space Tp

appears implicit in the early continuity arguments by Klein and Poincaré; it
has been constructed as a manifold of 6p−p dimensions by Fricke and Klein
[87] (who proved it to be a cell) and by Fenchel-Nielsen [85].” A statement
that Fricke defined the space of marked hyperbolic or Riemann surfaces is
also made in the paper [39] by Bers and Gardiner. Ahlfors is somehow more
dubious, but on the other hand, he also talks about the complex structure
of Teichmüller space, and not only the topological definition of that space.
He says in his Collected papers edition, Vol. 2 p. 122, commenting his
paper The complex analytic structure of the space of closed Riemann sur-
faces (1960): “An incredibly patient reader of Fricke-Klein, a two-volume
1300-page book, might have been able to discern that Fricke had anticipated
Teichmüller’s idea of a space Tg of marked Riemann surfaces of genus g > 1
with a 3g−3 dimensional complex structure. Although in 1959 nobody had
yet reconstructed Fricke’s proof, it was generally believed that such a struc-
ture exists and that the elements of the Riemann matrix are holomorphic
functions with respect to that structure.” The reader will compare this with
the precise results of Teichmüller that are surveyed in §10 of this paper.

There are many modern developments of the theory developed in Fricke
and Klein’s book, but it is not possible to review them here. They include
discrete subgroups of Lie groups, number theory, automorphic forms, and
higher Teichmuller theory.

73We quote for a letter from Blumenthal to Brouwer, dated August 26, 2011 ([70] p.
99): “I would like now to deal quickly with the automorphic functions [...] In Klein’s
article in Mathematische Annalen 21 the problem is completely and clearly formulated

from a set theoretic point of view,74 even though the answer given there does not satisfy
the standard for rigor. I strongly advise you to go through the matter there, and not in
the fat Fricke and Klein, where one trips again and again over details that obscure the
general idea.” Abikoff, in a correspondence with one of the authors of the present article,
recalls the following: “In 1971, Ahlfors and I were at the Mittag-Leffler Institute. I was
trying to read Fricke-Klein and mentioned to him that my German wasn’t up to dealing
with that text. He said, ‘Your German is maybe 10 % of the problem’.”

75People talk more thoroughly about the “Fricke space” and not the “Fricke-Klein”
space, which is somehow unfair to Klein because, as Fricke acknowledges at several points,
most of the ideas are due to Klein. In the two volumes, the foreword is signed by Fricke
alone, but Fricke emphasizes Klein’s contribution.



EARLY HISTORY 41

6. Brouwer and the method of continuity

When Poincaré died in 1912. Brouwer, who was 31, became the great-
est living topologist. His doctoral dissertation, titled On the foundations of
mathematics and his inaugural dissertation, The nature of geometry, which
he had defended in 1907 and 1909 respectively, like Riemann’s doctoral
dissertation and inaugural lecture, are huge programs. Brouwer’s doctoral
dissertation has three parts: I. The construction of mathematics; II. Mathe-
matics and experience; III. Mathematics and logic. In his inaugural lecture,
Brouwer expresses the fact that topology is the most fundamental part of
mathematics. Both dissertations, have a marked logico-philosophical side.
The reader can read the English versions of the two dissertations in [47].76

Chapter 3 of Vol. 1 of [69] contains commentaries on these works.
Brouwer had an uncommon personality. He was extremely self-disciplined,

with a rigorous life, a schedule for every day and an extensive reading pro-
gram. He also had high moral standards and an enormous will to avoid
all sort of mistakes. Furthermore, his view of mathematics was unusual.
Knowing this is important for understanding his contentious relations with
mathematicians. In a letter to Poincaré in 1912, asking him to write a rec-
ommendation letter for his student Brouwer, Korteweg writes: “The goal is
to find for him an appropriate place in one of our universities; this will not
be easy, given his distinguished but very peculiar personality.”77

A review of Brouwer’s view on mathematics is contained in [69], which is
an extremely interesting two-volume mathematical, philosophical and per-
sonal biography. We also recommend to the reader the two-volume collected
works of Brouwer [47] and the valuable volume of correspondence of this
mathematical giant [70].

General topology and the topology of manifolds were undergoing birth at
the time Brouwer began his work, and his work was crucial in making this
field grow. Among his many contributions to the field are a precise definition
of the notion of dimension and its topological invariance, the notion of degree
of a map, several fixed point theorems and a rigorous proof of the Invariance
of Domain Theorem.78 His new tools included approximation by simplicial
mappings and an extensive use of homotopy and the degree of a map.

76The two dissertations are included in Vol. 1 of Brouwer’s collected works [47], that
is, the volume which contains the philosophical writings, and not in Vol. II which contains
the mathematical writings.

77The same year, Brouwer was appointed professor at the University of Amsterdam
and he was elected member of the Academic of Sciences of Netherlands.

78There were several attempts prior to Brouwer’s work to prove the invariance of di-
mension (with a notion of dimension which was still not fully satisfying). The need to
have rigorous results in this domain was particularly felt after Cantor’s example (1878) of
his bijection between a segment and a square. Several studies of dimension and dimension
invariance were made, in particular cases, by Jordan and by Schoenflies. Lüroth proved,
for some special values of m and n, that if we have a bicontinuous bijection between two
continua of dimensions m and n, then n ≥ m. He obtained this result for m = 1, n ≥ 2,
and then for m = 2, n = 3 and finally for m = 3, n = 4. [154] [155].
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For several of his discoveries, Brouwer was influenced by Poincaré, of
whose works (including the philosophical essays) he was a devoted reader.79

Like Poincaré, Brouwer was interested in automorphic functions and uni-
formization, but his stress was on the topological aspects. His style was
different though, since Poincaré was satisfied by intuitive arguments and by
sketches of proofs whereas Brouwer was obsessed by precise definitions and
by rigorous proofs. In trying to make rigorous the method of continuity
as used by Poincaré and Klein, Brouwer insisted on the fact that the in-
tegral parameter that was involved should be interpreted as a topological
dimension. This required a precise definition of dimension, the proof of its
invariance, and, of course, a precise definition of the topologies of the two
spaces involved: the space of equivalence classes of polygons equipped with
group actions, and Riemann’s moduli space.

Brouwer proved the first version of the Invariance of Dimension Theorem
in his paper 1911 [48], and he obtained stronger results later on. Also im-
plicit in his paper [48] is the notion of degree of a mapping, an idea that
he made more explicit in [50].80 We refer to Koetsier [140] and to the com-
ments in Brouwer’s Collected Works edition by Freudenthal for summaries
of Brouwer’s works on topology.

In the intense period 1911-1913, an extensive and interesting exchange
of letters took place between Brouwer, Koebe, Klein, Blumenthal, Baire,
Poincaré, Fricke, Hilbert, Scheonflies, Hadamard and others, concerning the
birth of the topological notion of dimension and the method of continuity.

Brouwer gave a memorable talk at the automorphic functions-session of
the annual meeting of the German Mathematical Society (DMV) which
was held in Karlsruhe on September 27 to 29, 1911. He presented there
Poincaré’s original proof of uniformization, in which he filled two gaps, and a
version of his Invariance of Dimension Theorem, which rescued the method
of continuity. This talk was a source of disagreement and fighting with
several mathematicians, that lasted several years. In particular, a conflict
between Koebe and Brouwer started just after the meeting. The debates
caused by these conflicts are interesting for us, because they concern spaces
of Riemann surfaces, and because they contributed making the methods and
problems that concern us more precise. The technical issues involved are
summarized in letter from Brouwer to Fricke, dated December 22, 1911, and
we quote it in its entirety because it is interesting ([70] p. 116):

Dear Geheimrat, With reference to our last conversation I inform
you about some remarks related to the topological difficulties of

79Poincaré is quoted ten times in Brouwer’s doctoral dissertation (especially referring
to his philosophical writings).

80Brouwer obtained the idea of a degree of a map by reading a work of Poincaré. In
a letter to Hadamard on December 24, 1909 ([70] p. 62):, he writes: “Cher Monsieur,
Thank you very much for having pointed out Mr. Poincaré’s memoirs on algebraic vector
distributions. [...] I have had another idea. First we remark that if we adapt the concept
of an ‘index’ (quoted from the first memoir, p. 400) to general continuous vector distri-
butions, Corollary I of p. 405 becomes the following: If the singular points are finite in

number, each of them has a finite index and the algebraic sum of all the indices is equal

to 2.”
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the continuity proof, which I have presented at the meeting of
Naturforscher in Karlsruhe.

Let κ be a class of discontinuous linear groups of genus p with n
singular points and with a certain characteristic signature; for this
class the fundamental theorem of Klein holds if to every Riemann
surface of genus p that is canonically cut and marked with n points
there belongs one and only one canonical system of fundamental
substitutions of a group of class κ.

In the continuity method, which Klein uses to deduce his fun-
damental theorem, the six following theorems are applied.
(1) The class κ contains for every canonical system of fundamen-

tal substitutions that belongs to it without exception a neigh-
borhood that can be represented one to one and continuously
by 6p− 6 + 2n real parameters.

(2) During continuous change of fundamental substitutions within
the class κ the corresponding canonically cut Riemann sur-
face likewise changes continuously.

(3) Two different canonical systems of fundamental substitutions
of the class κ cannot correspond to the same cut Riemann
surface.

(4) When a sequence α of canonically cut Riemann surfaces with
n designated points and genus p converges to a canonically
cut Riemann surface with n distinguished points and genus
p, and when each surface in the sequence α corresponds to
a canonical system of fundamental substitutions of the class
κ; then the limit surface likewise corresponds to a canonical
system of fundamental substitutions of the class κ.

(5) The manifold of cut Riemann surfaces contains for every sur-
face belonging to it without exception a neighborhood that
can be one to one and continuously represented by 6g−6+2n
parameters.

(6) In the (6g− 6+2n)-dimensional space the one to one contin-
uous image of a (6g − 6 + 2n)-dimensional domain is also a
domain.

I am ignoring here Theorems 1, 2, 3, 4. For the case of the
boundary circle they have been completely treated by Poincaré
in Vol. 4 of Acta Mathematica. For the most general case only
Theorems 3 and 4 await an exhaustive proof. In this matter also
this gap will be filled in by Mr. Koebe in papers that are to appear
soon.

Theorems 5 and 6 are those which constitute the topological
difficulties of the continuity proof that are emphasized in your
book about automorphic functions [87]. However, of these, The-
orem 6 is settled by my recent article ‘Beweis der Invarianz des
n-dimensional Gebiets [49], whereas the application of Theorem 5
can be avoided by carrying out the continuity proof in the following
modified form:

We choose m > 2p − 2 and consider on the one hand the set
Mg of automorphic functions belonging to the class κ that only
have simple branching points and with m simple poles in the fun-
damental domain, and on the other hand the set Mf of Riemann
surfaces covering the surface, of genus p, with n signed points, and
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with m numbered leaves and with 2m + 2p − 2 numbered simple
branching points not at infinity, for which the sequential order of
the leaves and the branching points correspond to the canonical
relations in the sense of Lüroth-Clebsch.81

The set Mf constitutes a continuum, and possesses for each of
its corresponding surfaces without exception a neighborhood which
is one-to-one and continuously representable by 4p− 8 + 2n+ 4m
real parameters.

For an arbitrary automorphic function φ belonging to Mg there
exists in Mg a neighborhood uφ which can be determined by 4p−
8+ 2n+4m real parameters; these parameters are the m complex
places of the poles in the fundamental domain, the m − p − 1
complex behaviors of the m − p arbitrary pole residues, and the
6p − 6 + 2n parameters of the canonical systems of fundamental
substitutions. The value domain of the parameters belonging to
Uφ constitutes a (4p− 8 + 2n+ 4m)-dimensional domain wφ.

With the function φ there corresponds a finite number of sur-
faces belonging to Mφ. Furthermore we conclude from Theorems
1, 2, 3 and the remark that possible birational transformations
into itself not only for the single Riemann surface, but also for
the totality of Riemann surfaces belonging to uφ, cannot become
arbitrarily small, that with a sufficiently small wφ in Mf there
corresponds a finite number of one to one and continuous images,
and hence because of Theorem 6 a domain set. However, then the
total set Mg in Mf corresponds with a domain set Gf too.

Now we formulate Theorem 4 in the following form:
When a sequence of canonically cut surfaces of Mf converges

to a canonically cut surface of Mf and when each surface of the
sequence corresponds to a canonical system of fundamental sub-
stitutions of the class κ, then the limit surface also corresponds to
a canonical system of fundamental substitutions of the class κ.

This property immediately entails that the domain set Gf can-
not be bounded in Mf , and hence it must fill the whole manifold
Mf . This proves the fundamental theorem for every Riemann sur-
face of genus p on which there exist algebraic functions with more
than 2p − 2 simple poles and with exclusively simple branching
points, i.e. just for any Riemann surface of genus p.

In this letter, both spaces Mf andMg are not the Riemann moduli space;
their dimension is greater since m > 2p − 2. The space Mf is a space of
coverings of the Riemann sphere with some specified branching above the
moduli space. The space Mg also sits above the Riemann moduli space,
and it corresponds to spaces of hyperbolic surfaces (or Fuchsian groups)
with certain additional structure obtained by imposing conditions on the
automorphic functions of the group. The idea of introducing these spaces
is to enhance the structures of Riemann surfaces and hyperbolic surfaces in
order to get manifold structures on the resulting moduli spaces. This is a
precursor to the idea of marking.

81The editor of [70] writes, in a footnote: Crossed out footnote of Brouwer: ‘Two
of these surfaces are considered identical if and only if the corresponding not-covered
surfaces can be mapped so much similarly onto each other that corresponding return cuts
and stigmata behave the same with respect to the construction of the covering surface.”
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In fact, Koebe was not prepared to publish the paper which is announced
in Brouwer’s letter. On February 2, 1912, he wrote to Brouwer, express-
ing various thoughts, including a critique of Fricke and Klein’s book [87]:
“Poincaré rather represents the interpretation of closed continua by adding
limits of polygons [...] Poincaré recently informed me in conversation that
the continuity method cannot be used at all if one wants to prove the no-
boundary-circle theorem, because these manifolds are not closed. [...] Also
Fricke-Klein’s ‘Vorlesungen über automorphe Funktionen’ has adopted ex-
tensively the view of Poincaré about closedness.” He then sent a text which
he asked Brouwer to insert in his paper, in which he says the following:
“[...] The proofs found by Mr. Koebe extend to the case of boundary circle
uniformization, the only one considered by Poincaré, and imply a life giving
advance, because of the liberation from the thoughts introduced by Poincaré
and copied by Klein-Fricke about polygonal limits and closed continua, an
advance which is at the same time a return to Klein’s old standpoint of
non-closed continua which was vigorously attacked by Poincaré.”

Brouwer responded to Koebe, on February 14, 1912: “Fortunately I am
still in possession of the abridged text of my Karlsruhe talk, which I enclose,
so that you can no longer maintain that I used in Karlsruhe in the talk
or in discussion the ‘closed’ manifolds of Poincaré! That you could make
such a statement only proves that modern set theory must be absolutely
unfamiliar to you. For, the elaborations of Poincaré who works with the so-
called ‘closed manifolds’ are pure balderdash, and can only be excused by the
fact that at the time of their formulation there was not yet any set theory.”
In his notes on Brouwer’s collected Works, Vol. II, Freudenthal writes:
“The essential point is that Poincaré, in 1884, uses the closed ‘manifold’ of
Riemann surfaces, which Brouwer calls Blödsinn [non-sense] in his letter to
Koebe; whereas Klein [Neue Beiträge zur Riemann’schen Functionentheorie,
Mathematische Annalen, 21 (1882), 41-218] does this with the open variety
of cut Riemann surfaces, the way Brouwer did it later.”

In a letter to Hilbert, written on March 3, 1912, Brouwer writes: “Koebe
apparently does not understand that a not one-to-one but continuous spec-
ification of a set by r real parameters does not guarantee at all that this
set is an r-dimensional manifold without singularities. [...] Koebe moves
in a vicious circle, because on the one hand he demands from me that I
extensively praise his paper which hasn’t appeared yet, on the other hand
he tries to prevent me from seeing this article [...] That the planned note
of Koebe doesn’t contain any falsehoods or insinuations concerning me, is,
by the way, more in Koebe’s interest than in mine, because in my eventual
refutation I will probably not be able to avoid to disgrace him irreparably.”

At the same period, a conflict started between Brouwer and Lebesgue,
regarding the notion of dimension.82 It is related in Freudenthal’s paper
[86]. Blumenthal (who was the managing editor of Mathematische Annalen

82One may recall here that in 1877, Cantor gave his famous bijection between a line at
a plane [52]. Before that, it was assumed that the dimension of a space means the number
of coordinates necessary to parametrize a point in that space. Cantor’s result showed that
this is problematic. Schoenflies writes in [217] that when the first example of a space-filling
curve was given, “the geometers felt that the ground on which their doctrine was founded
was shaking.”
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at that time) met Lebesgue in Paris, during the Christmas holidays of 1910,
and told him about Brouwer’s discovery of the invariance of dimension.
Lebesgue told Blumenthal that he already knew this result, and that he had
several proofs. Blumenthal asked him to send him a paper containing one
of his proof so he could publish it in the Annalen. Lebesgue provided his
paper, and the proof, based on Lebesgue’s so called paving property, was
published next to Brouwer’s paper. The proof in that paper was insuffi-
cient. According to Brouwer, the paper contained no proof at all. Brouwer
complained to Blumenthal, and wrote to Lebesgue, who remained evasive,
and never provided a proof, until the year 1921, when he published a proof
of the paving principle, which was based on Brouwer’s ideas.

We must mention now Brouwer’s correspondence with Poincaré,83 which
started in 1911. Brouwer addresses the difficulties he mentioned in his Karl-
sruhe lecture, and he talks about the possible singularities of Riemann’s
moduli space. It seems that this is the first time that the latter problem
is addressed.84 We reproduce part of this correspondence because it is ex-
tremely interesting, and several problems with which we are concerned here
are addressed there in a very precise way. In his letter to Poincaré dated
December 10, 1911, Brouwer writes ([70] p. 113):

My ‘Beweis der Invarianz des n-dimensionalen Gebiets’85 has been
inspired by reading your “méthode de continuité” in Vol. 4 of Acta
Mathematica.86 It was in the course of this reading that I had the
impression that on the one hand one did not know in the general
case if the one-one and continuous correspondence between the
two 6g− 6+ 2n-dimensional manifolds concerned, is analytic, and
on the other hand, that in order to be able to apply the method
of continuity, one has to start by proving the absence of singular
points in the variety of modules of Riemann surfaces of genus p;
this last demonstration, incidentally, turns out to be fairly easy.
Now after having read somewhere in an article by your hand (I
believe about the equation ∆u = eu in the Journal de Liouville)
that you considered your exposition of the method of continuity
as perfectly rigorous and complete, I started to fear that I had
poorly understood your memoirs in Acta, and I have published my
memoir ‘Beweis der Invarianz des n-dimensionalen Gebiets’ with-
out indicating there the application to the method of continuity,

At a bout the same time, Peano gave of a space-filling curve. All this showed that
geometers and analysts had to revise the definition of the notion of “curve” that they
were using, in particular in the theories of Cauchy and of Riemann. This also confirmed
the fact that the method of continuity, which was already suspicious, was not correct if
not applied precisely. The response was given by Brouwer in his 1911 paper [48]. For the
historical development of the notion of dimension, the interested reader can refer to the
papers [116] and [117].

83In [70], there are two letters from Poincaré to Brouwer and one from Brouwer to
Poincaré, but the content shows that there were more. The set [76] contains one letter
from Poincaré and one from Brouwer.

84Although Brouwer says in his first letter to Poincaré that this issue can be easily
resolved, he will come back to it later, and he will consider it as a real difficulty. We refer
the interested reader to Vol. II of Brouwer’s Collected works.

85Proof of invariance of the n-dimensional domain, [49].
86Poincaré’s paper [185].
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restricting myself to an oral communication on this subject on Sep-
tember 27, 1911 at the Congress of the German Mathematicians
in Karlsruhe, of which communication I join the text in this letter.
At the occasion of this talk, Mr. Fricke expressed to me his doubts
that at the start I had formulated exactly the result of your ar-
guments of pages 250-276 of the Acta. Meanwhile, I continue to
believe that I have interpreted you exactly.

In fact, if the conditions of this statement, in which the word
“uniformly” (uniformément) is the key word, are satisfied, the re-
duced polygons of the sequence of groups converge also uniformly
to the boundary of the (2n+6p−6)-dimensional cube, and because
of your arguments there exists at least a reduced limit polygon that
only has parabolic angles on the fundamental circle, correspond-
ing for that reason to a limit Riemann surface, for which either the
genus is decreased, or the singular points have become coincident.

Would I ask you too much of your benevolence and your precious
time, asking you to be so kind as to convey briefly to me your
opinion about the disputed points [...]”

On December 10, 1911, Poincaré responds ([70] p. 114):

[...] I do not see why you doubt that the correspondence between
the two manifolds would be analytic; the moduli of Riemann sur-
faces can be expressed analytically as functions of the constants of
Fuchsian groups. It is true that certain variables only can have real
values, but the functions of those real values nonetheless preserve
their analytic character.

Now in your eyes the difficulty arises from the fact that one of
these manifolds does not depend on the constants of the group but
does depend on the invariants. If I remember correctly, I consid-
ered a manifold depending on the constants of the fundamental
substitutions of the group;87 so to a group there will correspond a
discrete infinity of points in this manifold; next I subdivided this
manifold into partial manifolds in such a fashion that to a group
[element] corresponds a single point of each partial manifold (in
the same way as one decomposes the plane into parallelograms
of the periods, or the fundamental circle into Fuchsian polygons).
The analytic correspondence does not seem to be altered for me.
With regard to the manifold of Riemann surfaces one can get into
problems if one considers those surfaces in the way Riemann did:
one may for example wonder if the totality of these surfaces form
two separate manifolds. This difficulty vanishes if one views these
surfaces from the point of view of Mr. Klein: the continuity, the
absence of singularities, the possibility to go from one surface to
another in a continuous way become then almost intuitive truths.

I apologize for the disjointed fashion and the disorder of my
explanations, I have no hope they are satisfying to you, because
I have presented them very poorly to you; but I think they will
lead you to make the points that bother you more precise, so I can
subsequently give you complete satisfaction. I am happy to have
this opportunity to be in contact with a man of your merit.

87The term “substitutions” denotes the fractional linear transformations.
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A few remarks are due, and some consequences can be drawn from this
letter:

(1) In this letter, Poincaré uses the usual French word for “manifold,”
whereas in the papers quoted, he was using the terms “multiplicity”
which was motivated by the German word Mannigfaltigkeit which
Riemann had introduced and which did not have at that time a
precise mathematical meaning.

(2) The letter shows that Poincaré has a paving of moduli space. This
cellular decomposition appears clearly to Poincaré, thirty years after
he wrote the memoirs concerned, and this does not seem to have been
highlighted before.

(3) Poincaré says that if we stick to the methods of Riemann, it is not
clear whether the manifold we obtain is connected but that the prob-
lem can be settled if one adopts the “point of view of Klein,” which
also shows the “absence of singularities.” The reference to the “point
of view of Klein” is also made in the next letter.

The letter from Poincaré to Brouwer, sent in January88 1912, also contains
valuable information. It appears from that letter that in the meantime,
Brouwer had sent several letters to Poincaré, asking him for details on what
he knew, in particular on the question of the singularities of Riemann’s mod-
uli space ([70] p. 120). Concerning the latter point, Poincaré repeats that
the solution comes from adopting Klein’s point of view instead of Riemann’s.
The letter says the following:

Thank you very much for your successive letters; I will study the
matter in detail as soon as I have time. I still believe that the
simplest way to prove the absence of a singular point would be to
not use the Riemann surfaces in the form given by Riemann, in
other words with stacked flat leaves and cuts, but in the form given
by Klein; an arbitrary surface with a convenient connection and
some law (with a representation that is or is not conformal) for the
correspondence of the points of this surface with the imaginary89

points of the curve f(x, y) = 0.
Already many years ago I have expounded my ideas about this
point during a session of the Société Mathématique de France; but
I did not publish them because Mr. Burckhardt, who was present
at that session, told me then that Mr. Klein had already published
them in his autographically prepared lecture notes; may be you can
avail yourself of these.
It all amounts to this. Let f(x, y) = 0 be a curve of genus p; to
this curve I let correspond a Riemann-Klein surface S and a law L
of correspondence between the real points of this surface and the
complex points of the curve f(x, y) = 0. Next I consider surfaces
S′ and laws L′ that differ infinitesimally little from S and L. One
first must prove that there are ∞6p−6 such surfaces S′ (which are
not considered distinct if they can be transformed into each other
by birational transformations); and then one can always pass from

88According to the editor of [70], the exact date is not certain.
89The word “imaginary” means here “complex.”
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an arbitrary S′, L′ to another arbitrary S′, L′, without moving too
far from S,L and without passing by S,L.

The last passage is extremely interesting. The space of equivalence classes
under birational transformations is Riemann’s moduli space, and Poincaré
says that in order to get rid of the singularities of that space, one has to
consider a space of pairs (S,L) of a real surface equipped with a “law of
correspondence” (he probably means a homeomorphism) between the real
points of the surface S and a complex curve. He then says a few words about
the topology of that space of pairs. Although it is said in very concise words,
the idea that one has to consider marked surfaces instead of surfaces in order
to overcome the singularities of the moduli space is clearly stated. It seems
that Poincaré attributes this idea to Klein. Unfortunately, Poincaré passed
away a few months later and the correspondence with Brouwer ended there.
It is unlikely that Teichmüller, who was the first to make explicit the idea
of marking, was aware of this letter.

7. Weyl

Hermann Weyl (1885-1955) is another one of the mathematical giants
who worked in several fields at the same time, both in mathematics and in
theoretical physics.90 In the proceedings of a conference celebrating Weyl’s
legacy [265], Bott writes: “Reverence and gratitude for the breadth and
beauty of his work I believe we all share.” Weyl, in his turn, had a great
devotion for Riemann.91 In 1919, he edited his Habilitationvortrag [268],
with a commentary making the relation with relativity theory. His point of
view on Riemann surfaces is a synthesis of the sometimes diverging points
of view of Riemann, Weierstrass, Klein, Hilbert and Brouwer. In the winter
semester of the academic year 1911/1912, Weyl gave at the University of
Göttingen [266] a course on Riemann surfaces. The written notes start with
a historical survey:

Complex variables have an essentially real purport. Functions of
complex variables have a geometric interpretation as maps and a
physical interpretation as images of electric currents. Their de-
velopment took place on the basis of such interpretations. One
can also consider function theory as part of mathematical physics.
The bases of this field were laid down by Cauchy, Riemann and
Weierstrass.

Riemann took as a starting point mathematical physics. He
borrowed from there the problems that characterize the develop-
ment he made of function theory. Weierstrass followed another
direction, starting with power series. They essentially reached the

90The third author of this paper remembers a conversation with Pierre Cartier, in
Strasbourg, where he asked him why André Weil used the French-Parisian pronunciation
“Vey” for his name, and not the Alemannic pronunciation “Wayl” (the family Weil was
Alsacian). Cartier responded spontaneously that Weil had too much respect for Hermann
Weyl and did not want himself to be confused with him.

91Weyl also used to express his gratefulness to Klein as a source of inspiration. His
approach to mathematics is often described as a synthesis of Riemann’s geometric ideas
with Klein’s ideas on group theory. The reference to Klein’s Erlangen program is recurrent
in his works.
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same point, and we must take into account the method of Cauchy-
Riemann and that of Weierstrass.

In this section, we shall mostly be concerned with Weyl’s book Die Idee
der Riemannschen Fläche [267] (1913). The book is a summary of his
1911/1912 lectures [266]. Bers writes in [36] about this book: “The ap-
pearance of the first edition in 1913 may be thought of as concluding the
classical period. The Idee contained, among other things, the concepts,
though not the present names, of cohomology and Hausdorff space, and the
proof of the uniformization theorem based on an idea of Hilbert.” In his
Preface to the 1955 edition, Weyl writes:92

Three events had a decisive influence on the form of my book:
the fundamental papers of Brouwer on topology, commencing in
1909; the recent proofs by my Göttingen colleague P. Koebe of the
fundamental uniformization theorems; and Hilbert’s establishment
of the foundation on which Riemann had built his structure and
which was now available for uniformization theory, the Dirichlet
principle.

In the Preface to the 1913 edition, Weyl was more explicit about topology,
because the subject was still nascent; he writes (p. v):

Until now, such a rigorous presentation, building the foundations
of the concepts and the propositions of Analysis situs to which the
theory of functions refers not on intuitive plausibility, but on exact
proofs from set theory, was missing.

As the title indicates, this book concerns chiefly Riemann surfaces. The
book is generally referred to as the reference for the abstract definition of
a Riemann surface, that is, as an object independent of any algebraic func-
tion. On p. 17, in introducing surfaces, Weyl first defines the notion of
manifold as a topological space, then he restricts to a characterization of
two-dimensionality. On p. 32, Weyl gives the definition of a Riemann sur-
face as an atlas with analytic coordinate-changes. This explicit definition
of a Riemann surface is at the same time the first abstract definition of
a manifold defined by coordinate charts. Weyl notes, on p. 33, that the
definition of an n-dimensional manifold was first given in Riemann’s Habili-
tationsvortrag, Über die Hypothesen welche der Geometrie zu Grunde liegen
[210] (1854). He recalls, on the same page, the following: “ This formula-
tion of the concept of a Riemann surface, first developed in intuitive form
by F. Klein in his monograph [132] is more general than the formulation
which Riemann himself used in his fundamental work on the theory of an-
alytic functions. There can be no doubt that the full simplicity and power
of Riemann’s ideas become apparent only with this general formulation.”
Klein’s ideas on the notion of abstract Riemann surface, confirming Weyl’s
comments, are presented by Remmert in [201] §1.2.

Let us quote the following from the article on Weyl by Chevalley and
Weil. The text is interesting because it discusses, besides Weyl, several
mathematicians whose works are related to our subject matter, and it sum-
marizes several important steps ([60] p. 170):

92We are quoting from the English translation of the 1955 version [267].
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It is as a student of Hilbert, and as an analyst, that Weyl had
to tackle the subject of one of the first courses that he taught
at Göttingen as a young Privatdozent: function theory after Rie-
mann. As soon as the course was finished and written up, he ended
up as a geometer, and the author of a book which was to exert a
profound influence on the mathematical thought of his century. It
might be that he only proposed to put on the agenda, using the
ideas of Hilbert on the Dirichlet principle, the traditional exposi-
tions of which the classical book by C. Neumann was a model. But
it must have appeared to him soon that in order to substitute cor-
rect and “rigorous” (as these were called at that time) reasonings
to his predecessors’ constant appeals to intuition – and in Hilbert’s
circle, it was not admitted that somebody cheats on that – it was
above all the topological foundations that had to be renewed. It
seems that Weyl was not prepared for that by his previous works.
It was possible for him, in this task, to rely on Poincaré’s work, but
he hardly talks about that. He mentions, as having been, regarding
this subject, profoundly influenced by the researches of Brouwer,
which at that time were very new. But in reality, he does not make
any use of them. Frequent contacts with Koebe, since the latter
was fully dedicated to the uniformization of complex variables, be-
came surely very useful to him, in particular for clearing up his
own ideas. The first edition of the book is dedicated to Felix Klein
who, of course, as Weyl writes in his preface, was fairly interested
in a work which was so close to his youth’s concerns, and because
he provided the author with pieces of advise that were inspired
from his intuitive temper and his profound knowledge of the work
of Riemann. Even though he never met him, Klein embodied, in
Göttingen, the Riemann tradition. Lastly, in one of his memoirs
on the foundation of geometry, Hilbert had formulated a system
of axioms based on the notion of neighborhood, underlining the
fact that one can find there the best starting point for a “rigor-
ous axiomatic treatment of analysis situs.” Of all these elements
which are so different that were provided him by tradition and his
environment, Weyl extracted a book which is profoundly original
and which made history.

8. Torelli

In 1957, one year before he gave a Bourbaki seminar talk on Teichmüller’s
work, André Weil gave a Bourbaki seminar [255] on a result of Torelli93 on
which recent progress had been made. The theorem says that we can recover
a Riemann surface from its polarized Jacobian.

Torelli’s theorem roughly says that the surface can be reconstructed from
its Jacobian. One point which makes the theorem interesting is the fact
that the Jacobian of the surface, although a higher-dimensional complex

93Ruggiero Torelli (1884-1915) had a very short life. He worked as an assistant to
Severi in Parma, starting in 1904, and in Padova, starting in 1907. In 1915, during World
War I, he joined the Italian army and died while he was a soldier, from a heart attack, at
the age of 31. He was a very promising mathematician and his early death was felt as a
great loss by the Italian mathematical community. For an exposition of Torelli’s life and
works, see Castelnuovo [53] and Severi [223].
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manifold, is in principle is simpler than the surface, due to of its linear
character. As stated by Weil, Torelli’s theorem says the following:

Theorem 8.1. Let C and C ′ be two algebraic curves of genus g with po-
larized Jacobian varieties J and J ′, and let φ : C → J and φ′ : C ′ → J ′ be
their canonical maps. If we have an isomorphism α : J → J ′ (respecting the
polarizations), then there exists a mapping f : J → J ′ which is of the form
±α + c (where c is a constant) which maps φ(C) to φ′(C ′). In particular,
since φ is an isomorphism from C to φ(C) and since φ′ is an isomorphism
from C ′ to φ′(C ′), this implies that C and C ′ are naturally isomorphic.

The proof of this theorem consists in constructing, from the knowledge
that the polarized variety J is the Jacobian of a curve, the curve C and
the map φ from C to J . Stated in other words, the proof involves the con-
struction of a space of Riemann surfaces in terms of periods of holomorphic
differentials. Abelian integrals appear in this theory, and we are back to the
ideas of Riemann. Torelli’s main article on this subject is [243]. There is also
a local Torelli theorem which amounts to the injectivity of the differential of
the period map at non-hyperelliptic curves, see ([136], Theorem 17). This
result is attributed to Andreotti and Weil.

The Torelli theorem and its proof are important for our subject for several
reasons. First of all, the theorem concerns our problem of moduli of algebraic
curves. Secondly, the theorem involves a map from an algebraic curve into
its Jacobian variety, and the collection of such maps embeds the space of
equivalence classes of what Weil calls “Torelli surfaces” (cf. §11) into a
complex vector space. This embedding can be used to show that the Torelli
space has a complex-analytic structure. The result is in the direct lineage of
Riemann’s work on periods of Abelian integrals, and it is also a forerunner
of Teichmüller’s work on the complex structure of Teichmüller space using
period matrices. Thirdly, this theorem is a rigidity theorem. It says that an
isomorphism between the Jacobian varieties associated with two algebraic
curves is induced by an isomorphism between the curves. Several rigidity
theorems which have the same flavor were proved later in Teichmüller theory.

In the introduction of the Bourbaki seminar paper on Torelli’s theorem,
Weil writes the following, which gives a good idea of the whole setting:

It is said that an algebraic curve of genus g > 1 depends on 3g− 3
“moduli” (whatever meaning one should give to this sentence!).94

But its integrals of the first kind, normalized as it is usually done
in the classical theory using a system of “retrosections,” admit a
period matrix which is symmetric and contains therefore g(g+1)/2
independent coefficients. Nothing prevents us from conjecturing

that there are g(g+1)
2 − 3g− 3 = (g−2)(g−3)

2 relations among them;
and no mistake was found in this, since in the hundred years of
existence of the theory.

The goal of the Torelli theorem is to show the first assertion
after giving it a precise meaning.

94This is reminiscent of a sentence in Teichmüller’s paper [241] which we already quoted,
cf. Footnote (23).
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Torelli’s theorem was generalized and extended in several ways and there
is extensive current research in algebraic geometry motivated by it. More-
over, Torelli’s original proof is characteristic free and it lead directly to
extensions to curves on other fields. The Schottky problem asks for a char-
acterization of Jacobians of curves among all principally polarized Abelian
varieties. This is another subject of current research which is in the lineage
of the work of Torelli. The last article [244] written by Torelli is devoted to
that problem.

9. Siegel

After Torelli, it is natural to talk about Siegel.95 He introduced techniques
for understanding moduli that are in the tradition of Riemann and of Torelli.
In particular, he worked extensively on the question of reconstructing the
equations of an algebraic curve from the associated periods of meromorphic
Abelian differentials. Siegel went a step further than his predecessors, and
he managed to avoid the complications of the method of continuity. In
comments that Weil made on an Air Force final report, as an addendum to
his Collected Papers edition ([264], Vol. II p. 545), he writes:

The theory of moduli of curves, inaugurated by Riemann, has
taken two decisive steps in our time, first in 1935, with the work of
Siegel (Ges. Abh. No. 20, §13, Vol. I, pp. 394-405), and then with
the remarkable works of Teichmüller; it is true that some concerns
were raised about the latter, but these were finally cleared up by
Ahlfors in 1953 (J. d’An. Math. 3, pp. 1-58). On the other hand,
we realized at the end that Siegel’s discovery of automorphic func-
tions belonging to the symplectic group applied first to the moduli
of Abelian varieties and then, only by extension, to those of curves,
via their Jacobians and using Torelli’s theorem. Thus, thanks to
Siegel, we have at our disposal the first example of a theory of
moduli for varieties of dimension > 1. We owe to Kodaira and
Spencer (Ann. of Math. 67 (1958), pp. 328–566) the discovery of
the fact that progress on cohomology allows us not only to address
a new aspect of the same problem but also, at least from the local
point of view, to tackle the general case of complex structures on
varieties.

In the article [224] which Weil quotes, Siegel generalizes the classical study
of quadratic forms in two variables to the study of forms in n variables and
he develops a series of results in class field theory. At the end of this article,

95Carl Ludwig Siegel (1896-1981) and Weil were friends. This friendship started in
Göttingen and continued in Princeton, cf. Weil’s Collected Papers [264] Vol. I p. 521 and
557. In Vol. II (p. 544), Weil writes that “to comment on Siegel has always appeared to
me as one of the most useful tasks that a mathematician of our epoch can undertake.”
Weil and Siegel also worked on common subjects; for instance, one may recall the famous
Siegel-Weil formula, and the work of Weil contains various generalizations of results of
Siegel on quadratic forms [260] [261]. Krantz recounts in [143] (p. 186) that when Weil was
asked who was the greatest mathematician of the twentieth century, the answer, without
hesitation, was “Carl Ludwig Siegel.” In this section, we talk about Siegel’s work on the
Torelli space, but there are several other contributions to topics which are related to
the modern Teichmüller theory; for instance, the computation of volumes of fundamental
domains of discrete groups, but we cannot expand more on this in the present paper.
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Riemann surfaces appear and Siegel gives a construction of the Torelli space.
He generalizes the half-plane representing the hyperbolic plane (which was
used for binary forms) to a higher-dimensional half-space which is now called
the Siegel upper half-space. This is a space of symmetric square matrices
whose imaginary part is positive definite. Siegel describes in the Siegel half-
space a fundamental domain for the action of the symplectic group (which is
in some sense a higher-dimensional analogue of the modular group acting on
the two-dimensional upper half-space). He notes that this action is discrete
and that this provides a complex structure on a generic part of moduli space.
This result is described in the form of a map from the Torelli space into the
Siegel upper half-space, equipped with a complex structure which is Kähler.
We shall dwell below on the importance of Kähler structures in the theory of
moduli. Combining this with the canonical map from Teichmüller space to
the Torelli space, one obtains a map from Teichmüller space Θ into the Siegel
space. This map is described by Weil in his Bourbaki seminar on Teichmüller
space ([257], p. 383). Weil declares that this map is holomorphic when Θ
is provided with its natural complex structure. The image is an analytic
subvariety of the Siegel space, whose points are all smooth except those
corresponding to hyperelliptic Riemann surfaces. Weil then says: “As for M
(Riemann’s moduli space) there is virtually no doubt that it can be provided
with the structure of an algebraic variety (non-complete of course, and with
multiple points), the “variety of moduli,” so the natural mapping of Θ onto
M is holomorphic.”

10. Teichmüller

In 1958, Weil gave a Bourbaki seminar [256] on the results of Teichmüller.
The aim of these seminars is to present recent and important advances on a
specific topic. In the present case, Teichmüller’s results were already twenty
years old. The fact that these results were presented twenty years after their
discovery is meaningful.96 In the first page of [256], Weil writes:

96Oswald Teichmüller (1913-1943) lived and died in the darkest period of German
history. Little is known about his life, compared to the ones of other mathematicians of
his stature. The reason is that he was a notorious Nazi, and writing about his life has been
a delicate matter for historians. Dieudonné says, in a review he wrote on the paper [106]
(MR1152479): “Oswald Teichmüller’s life is a tragic example of one of the most brilliant
minds in his generation of mathematicians, who fell prey to a fanatical doctrine that was
bent upon stifling all feelings of decency and compassion.” A biographical sketch, based
on notes written by his mother, is contained in English translation in Abikoff’s article
[3]. Teichmüller entered the University of Göttingen at 17, with very broad interests.
Two years later, in 1932, he joined the Nazi Party. He obtained his doctorate in 1935
under Helmut Hasse. The subject of his thesis was linear operators on Hilbert spaces
over the quaternions. Fenchel was one of his teachers, and in a private conversation
with Abikoff (which the latter shared with the authors of this article), he described him
as a lonely boy who grew up in the Harz mountains. It seems that Teichmüler found
friends in the Party. In 1935-36, he followed lectures on function theory by Egon Ullrich
and Rolf Nevanlinna and became interested in value distribution problems. Nevanlinna
was teaching at Göttingen, as a visiting professor. Teichmüller moved in 1937 to Berlin,
where he joined the Bieberbach group and where he earned a qualification to lecture. The
Bieberbach conjecture became one of his strong centers of interest. In 1939, he obtained a
regular position at the University of Berlin, but the same year he was drafted in the army,
and he remained a soldier until his death. He died at the Eastern Front, in the Dnieper
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Teichmüller proved, first heuristically, then (it is said) rigorously,
that we can define a topological space, homeomorphic to an open
ball of dimension 6g − 6, whose points are “naturally” in one-to-
one correspondence with the classes of Teichmüller surfaces (classes
with respect to the equivalence relation defined by isomorphism);
Ahlfors gave another proof of the same fact.

In the same year, in a report written for an Air Force contract ([258] p. 91),
Weil writes:

[...] Teichmüller’s chief contribution was to define on T [Teichmüller
space] a certain topology, the “natural” one in a sense described
below, and then to prove that T , with this topology, is homeomor-
phic to an open cell of real dimension 6g−6. So far, I have mainly
been concerned with the local properties of Teichmüller space and
of its “natural” complex analytic structure. The definition of the
latter depends upon ideas introduced by Teichmüller himself, but
which do not appear to have been fully understood until Kodaira
and Spencer attacked similar problems for higher dimensions.

Teichmüller had a new approach to the moduli problem. He defined
Teichmüller space as a cover of moduli space in which the singularities dis-
appear, and he thoroughly studied its metric and complex structures. This
point of view was new as compared to those of Poincaré, Klein and others
who did not study the moduli space of Riemann surfaces as an intrinsic
object, but as a tool for understanding uniformization. We start with a list
of the major contributions of Teichmüller to the moduli problem.

(1) The formulation of Riemann’s moduli problem as a problem of ex-
istence of a complex structure on the space of equivalence class of
Riemann surfaces and the interpretation of the number of moduli as
a complex dimension.

(2) The solution of the moduli problem described in (1).
(3) The introduction of marking as a homeomorphism defined up to

homotopy from a fixed topological surface to a varying Riemann
surface.

(4) The introduction of quasiconformal mappings as an essential tool in
the study of moduli of Riemann surfaces.

(5) The introduction of the Teichmüller metric. Teichmüller showed
that this metric is Finsler and he studied its infinitesimal norm and
its geodesics.

region, in 1943. He wrote several of his papers on moduli while he was a soldier. As
a mathematician, Teichmüller was exceptionally talented. In the review we mentioned,
Dieudonné writes: “the diversity of mathematical problems which he tackled in his 34
published papers, during barely 10 years, is amazing for such a young man: from logic,
through algebra, number theory and function theory to topology and differential geometry,
most of these papers display an originality that later research entirely justified.” Five
papers, on various subjects, were completed during the last year of his life, while he was
on the front, and they were published in 1944, the year after his death (four of them in
Deutsche Mathematik and one in Crelle’s Journal). Concerning Teichmüller’s deeds, Bers
quotes in [28] a famous sentence by Plutarch (Perikles 2.2) which is often repeated: “It
does not of necessity follow that, if the work delights you with its grace, the one who
wrought it is worthy of your esteem.” We quote Gustave Flaubert: “L’homme n’est rien,
l’œuvre est tout.” (Letter to George Sand, December 1875).
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(6) The infinitesimal theory of quasiconformal mappings, and a thor-
ough study of the partial differential equations of which they are the
solution.

(7) The introduction and the study of Teichmüller discs (which Te-
ichmüller called “complex geodesics”).

(8) The comparison between the hyperbolic length of closed geodesics
and the quasiconformal dilatation of a map.

(9) A correct use of the continuity method in the moduli problem, on
which Poincaré, Klein and others had wrestled with for a long period
of time. For the first time, the method was applied to objects which
were known to be manifolds of the same dimension.

(10) The existence and uniqueness of the universal Teichmüller curve
and its use in the existence of the complex structure on Teichmüller
space. At the same time, this introduced the first fibre bundle over
Teichmüller space, Teichmüller universal curve.

(11) The proof that the automorphism group of the universal Teichmüller
curve is the extended mapping class group.

(12) The idea that Teichmüller space is defined by a universal property.
Grothendieck expressed this later on, by the fact that Teichmüller
space represents a functor.

(13) The idea of using the period map to define a complex structure on
Teichmüller space.

(14) The question of whether there is a Hermitian metric on Teichmüller
space.

There has been a lot of confusion about what Teichmüller proved, and this
is due to several reasons. The first reason is probably non-mathematical,
viz., his declared anti-semitism. Because of that, many mathematicians
were reluctant to the idea of reading his papers. Another reason is that
part of his results on moduli are expressed in the language of algebraic
geometry. Since the papers were read essentially by analysts, several points
were missed. For example, Ahlfors’ review (MR0018762) of Teichmüller’s
1944 paper [241] shows that he completely missed all the important results
in that paper, probably for lack of knowledge or appreciation of algebraic
geometry, and may be also of topology. In fact, it took Ahlfors several years
to realize the importance of that paper. The definition of the mapping
class group which is given in that review is even wrong. The confusion that
surrounds Teichmüller’s paper is also due in part to his style. In fact it is
difficult for someone who does not go into his papers thoroughly to figure out
what he states as a conjecture that he cannot prove, what he first states as a
conjecture and then proves later in the same paper, or what he postpones for
a subsequent paper. We shall elaborate on all this in the text that follows.
Let us first make some quick comments on the above list of results.

The results (3) (4), (5), (6), (7), (8), (9), are contained in the paper [231]
which we shall summarize below. The results (1), (2), (10), (11), (12), (13)
are contained in the paper [241] on which we shall also comment.

A consequence of (6), which also involves the equivalence relation on
Beltrami differentials and the complex structure on each tangent space of
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Teichmüller space, is (using modern terms) the existence of a natural almost-
complex structure on Teichmüller space. This structure was shown, later
on, using the deformation theory of Kodaira-Spencer or the Newlander-
Nirenberg theorem, to be integrable. This approach was at the basis of the
complex theory of Teichmüler space developed by Weil, Ahlfors and Bers.

In fact, it seems that the first appearance of the expression “complex
analytic manifold” appears in Teichmüller’s paper [241] (under the German
name komplexe analytische Fläche). Let us quote Reinhold Remmert, one
of the founders of the theory of several complex variables, talking about the
history of the theory of complex manifolds of higher dimension ([201], p.
225):

It seems difficult to locate the first paper where complex mani-
folds explicitly occur. In 1944 they appear in Teichmüller’s work
on “Veränderliche Riemannsche Flächen” [241] Collected Papers
p. 714);97 here we find for the first time the German expres-
sion “komplex analytische Mannigfaltigkeit.” The English “com-
plex manifold” occurs in Chern’s work ([59], p. 103); he recalls
the definition (by an atlas) just in passing. And in 1947 we find
“variété analytique complexe” in the title of [252]. Overnight com-
plex manifolds blossomed everywhere.

Concerning Item (10): In his book Lectures on quasiconformal mappings
[20], Ahlfors constructs (Section D of Chapter 4) the Teichmüller curve, with
a reference to Kodaira-Spencer and without mentioning that this object was
already defined by Teichmüller in his paper [241]. The second edition of this
book contains an update, in the form of a very rich survey by Earle and Kra,
titled A supplement to Ahlfors lectures, where references to the Teichmüller
curve are given (in §2.7), namely to the papers by Grothendieck [98], Engber
[84] and Earle-Fowler [81], but without any mention of Teichmüller’s paper.
The reference is also missing in the three papers quoted.

Concerning Item (9): Teichmüller applied the method of continuity in
his main paper [231] and also in [234], and he also applied the invariance
of domain in his paper [236] where he proves the general existence result
for quasiconformal mappings. In this paper, the surfaces are represented by
polygons in the hyperbolic plane, in the tradition of Poincaré.

Concerning Item (12), a few words on the origin of quasiconformal map-
pings are in order. Ahlfors gives a brief summary of the early use of these
mappings in [19], p. 153. According to this account, these mappings were in-
troduced (by a different name) in the 1928 paper [95] by Grötzsch. Ahlfors
notes that Grötzsch’s paper was “buried in a small journal,” that it first
remained unnoticed, and that he learned of it by word of mouth in 1931.
He adds that the problem of finding the best mapping between a rectan-
gle and a square was first considered as a mere curiosity, and that the full
strength of quasiconformal mappings and their use in the deformation the-
ory of Riemann surfaces was first realized by Teichmüller. The expression

97The quote concerns the complex manifolds which are not defined as domains of some
complex vector space. (Domains of CN had been studied earlier by several authors, in
particular, C. L. Siegel, in the context of modular forms or automorphic functions of
several variables.) Teichmüller space was not known yet to be a complex domain. An
embedding of that space in some CN was found later; cf. §13.
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“quasiconformal mapping” appears in print in Ahlfors’ 1935 fundamental
paper on covering surfaces [12].98 In the comments he makes in his Collected
Papers edition ([11] Vol. 1, p. 213), Ahlfors recalls that Grötzch called
these mappings “nichtconforme Abbildungen,” and that almost simultane-
ously with his own 1935 paper, Lavrentiev, in the Soviet Union, published
a paper (in French) in which he introduced a notion which is equivalent to
quasiconformal mappings, which he termed “fonctions presque analytiques.”
Teichmüller in his paper [231] mentions Grötzsch, Ahlfors and Lavrentiev,
and he refers several times to what he calls the “Grötzsch-Ahlfors method.”

Teichmüller had the reputation of not writing complete proofs. In fact,
it seems that it was considered as a German tradition to write only the
main ideas and not the technical details. According to Abikoff, this was the
style of the journal in which most of Teichmüller’s articles were published.
He writes in [3]: “The tradition of Deutsche Mathematik is one of heuristic
argument and contempt for formal proof. Busemann notes that Teichmüller
manifested those traits early in his career but when pressed could offer a
formal proof.” One should also mention that this journal was not easily
accessible.99 Today, his Collected papers are easily accessible, but there is
still a tendency not to read them.

A recurrent problem in Teichmüller’s writing is his use of the word “con-
jecture.” In fact, he uses it in two different senses: either as a statement
which he does not prove at that precise location in the text, but which he
proves later, or as a statement of which he does not give a complete proof,
even if he gives a sketch of a proof which is sufficient for an astute reader
to work out a complete proof (this happens several times in [231]). Ahlfors
writes in [14]: “It requires considerable effort to extricate Teichmüller’s com-
plete and incontestable proofs from the maze of conjectures in which they
are hidden.” In fact, most of the times the word “conjecture” occurs in the
paper [231], it concerns the relation between quadratic differentials and ex-
tremal quasiconformal mappings, which is one of the main results in that
paper. Teichmüller gives a lot of evidence for it, but the complete proof is
given in the later paper [236]. Another instance occurs in §19 of the same
paper, where Teichmüller writes, after the definition of his metric: “We will
later be led to the reasonable hypothesis that Rσ is with regard to our met-
ric a Finslerian space.” Here, Rσ is Riemann’s moduli space and this also
looks like a conjecture, but in fact, it is proved later in the same article, for
Teichmüller space, which is introduced later on, and the Finsler structure is
studied in detail.

As an example of the confusion in the literature that surrounds Te-
ichmüller’s statements, we quote Abikoff from [3] (p. 16), talking about
the paper [231]: “He shows that he is aware that he has no proof of the key
existence theorem. (He offered a proof of this theorem in [236] but it was
never really accepted by the mathematical community although, as Bers
notes, Teichmüller’s proof is correct and complete.)” The reader wonders

98This is the paper for which Ahlfors earned the Fields medal.
99Abikoff says in [3] that he started his search for some of Teichmüller’s papers during

a stay in Paris at the end of the 1970s, and that it was very difficult for him to find the
ones published in Deutsche Mathematik.
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why the theorem was never really accepted since Bers noted that the poof
is complete and correct.

As an additional sign of that confusion, we note that the definition of Te-
ichmüller space and of the action of the mapping class group on it was very
poorly understood, even among eminent geometers. We mention as exam-
ples Narasimhan’s Preface to Riemann’s collected works [207] and Ahlfors’
review mentioned above. They both contain a wrong definition of the map-
ping class goup. Dieudonné, in his book [75], in the section on Teichmüller’s
work (§IC.12, Vol. I p. 218) also gives an incorrect definition of the map-
ping class group. A mistake also occurs in Bers’ paper [33]. All this shows
that several eminent analysts and algebraic geometers have some trouble
with basic topological notions. Much more recently, F. Kirwan, in her arti-
cle “Moduli spaces” published in the Encyclopedia of mathematical physics
[83] has a wrong definition of Teichmüller space and a very naive and also
wrong description of the complex structure on that space. She attributes
the fact that Teichmüller space is homeomorphic to a ball to Bers. At the
beginning of her article, the author makes a short history of the subject,
and her view on this history probably represents that of the majority of the
algebraic geometers. In this short history, she passes directly from Riemann
to Mumford, with no mention of Teichmüller and of Grothendieck, who led
the foundations of the analytic and the algebraic structure of moduli space.
This article, published in 2006, is a revised version of a survey article she
wrote in 1998 and it seems that no algebraic geometer caught these mistakes
before the revision.100

In the rest of this section, we review some papers by Teichmüller on
moduli, for the sake of making clearer what results he obtained.

We start with the paper Extremale quasikonforme Abbildungen und quadra-
tische Differentiale (Extremal quasiconformal maps and quadratic differen-
tials) [231]. The paper is translated in [232], with an extended commentary
in [22]. It contains 170 sections divided into 31 chapters. This theory is de-
veloped for the most general surfaces of finite type: orientable or not, with or
without boundary, with or without distinguished points which may be in the

100Narasimhan, in his Editor’s Preface of the new reprint of Riemann’s Collected Works
edition [207] (1990), writes (p. 15): “In the 1930s, O. Teichmüller introduced another idea
into the study of questions of moduli. He considered pairs consisting of a compact Riemann
surface of genus g and a fixed choice of homology basis, and showed the equivalence classes
of such pairs for a space homeomorphic to R6g−6 (g > 1).” The space he describes is
the Torelli space, instead of Teichmüller space. Moreover, Narasimhan talks about the
complex structure on Teichmüller space without mentioning Teichmüller’s 1944 paper
[241], which is the basic paper on the subject. Kirwan writes in [83] p. 453: “We consider
the space of all pairs consisting of a compact Riemann surface of genus g and a basis
γ1, ..., γ2g for H1(Σ,Z) as above such that γiγi+g = 1 = −γi+gγi if 1 ≤ i ≤ g and all
other intersection pairings γiγj are zero. If g ≥ 2, this space (called Teichmüller space)
is naturally homeomorphic to an open ball in C3g−3 (by a theorem of Bers).” This space
she describes is again the Torelli space and not Teichmüller space. Ahlfors writes in his
review: “Let H0 be a fixed surface, H a variable surface and T a topological map of H0

onto H . Then the couple (H,T ) is an element of the space R if and only if H can be
mapped onto H0 by a conformal transformation S such that TS−1 can be deformed to
the identity.” Dieudonné writes that the mapping class group is “the discrete group γ of
isomorphism classes of Riemann surfaces of genus g, where two isomorphisms belong to
the same class if they fix a given point of Teichmüller space.”
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interior or on the boundary. The author declares (§12): “in later works, we
shall study for example the case where two distinguished points are moved
infinitely close together. In the present work, this will be excluded.” This
remark in itself is a whole program on degeneration of Riemann surfaces.
The paper contains several such ideas.

Surfaces equipped with complex structures and distinguished points are
called principal regions.101 Teichmüller denotes (§13) the space of confor-
mally equivalent principal regions by Rσ. This is Riemann’s moduli space.
The author says that the conformal invariants “are precisely the functions
on Rσ.” The exact value of σ is given in §14 as:

σ − ρ = −6 + 6g + 3γ + 2n+ 3h+ k

where
g = number of handles;
γ = the number of crosscaps;
n = the number of distinguished interior points;
h = the number of distinguished boundary components;
k = the number of distinguished points on the boundary;
ρ = the number of parameters of the continuous group of conformal map-

pings of the principal region onto itself.
Teichmüller states that “on a small scale, Rσ is homeomorphic to the σ-

dimensional Euclidean space.” Strictly speaking, this is not correct, because
of the existence of singular points. In §49, he will consider Teichmüller space,
which has no singular points.

In §15, Teichmüller introduces the dilatation quotient of a quasiconformal
mapping, and in §16, he states the following general problem, which concerns
the behavior of conformal invariants under quasiconformal mappings:

Problem 10.1. Let a conformal invariant J , seen as a function on Rσ for
a fixed principal region and a number C be given. What values does J
assume for those principal regions onto which the given principal region can
be quasiconformally mapped so that the dilatation quotient is everywhere
≤ C.

This is also a broad problem with many ramifications.
In §18, the Teichmüller distance is introduced as the logarithm of the

dilatation quotient. In §19, the author says that this distance is Finsler.
He then gives is a series of examples before stating a theorem which is a
wide generalization of a result of Grötzsch on the conformal representation
of quadrilaterals.

In §34, Teichmüller starts the study of surfaces whose universal cover is the
hyperbolic plane. In §35, he addresses the question of conjugating a confor-
mal structure by a quasiconformal homeomorphism. He proves an inequality
between quasiconformal dilatation and the dilatations of the isometries of
the hyperbolic plane. This is an early version of an inequality, rediscovered
later on by Sorvali [226] and Wolpert [270]. He then asks a question con-
cerning the topology defined by the sequence of inequalities associated with
the elements of the isometry group acting on the upper half space. This is
analyzed in [23].

101Hauptbereich.
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In §36, the study of extremal quasiconformal mappings starts. The au-
thor states that “this should naturally not be a proof, but rather a heuristic
consideration: the maximum dilatation must be constant = K everywhere.”
In §37, he defines the measured foliations on the surface obtained through
the consideration of the infinitesimal ellipses that are images of infinitesi-
mal circles by quasiconformal maps.102 He addresses the question of which
foliation is associated with a given extremal quasiconformal mappings. He
then defines (§38) the notion of a locally extremal quasiconformal mapping.
§41 to §45 concern the Riemann–Roch theorem. In §46, he writes:

We now conjecture that there is a connection between everywhere
finite quadratic differentials and extremal quasiconformal mappings

and he adds the following, which gives an answer to te latter question ad-
dressed in §37.

Here, I arrived in a night in 1938 at the following conjecture: Let
dζ2 be an everywhere finite quadratic differential on F different
from 0. One assigns to every point of F a direction where dζ2 is
positive. All the extremal quasiconformal mappings are described
through the direction fields thus obtained and arbitrary constant
dilatation quotient K ≥ 1.

He then spends several sections on testing this conjecture on special cases.
Chapter 15 starts at §49. It is titled The topologically determined principal

regions. The mapping clas group, although without a name, appears for the
first time in this section. The expression “topologically determined” means
marked. The author introduces the Teichmüller space Rσ with its topology,
equipping the moduli space with the quotient topology. He explains how
a marking by homeomorphisms determines homotopy classes of curves. He
states as a conjecture that Rσ is homeomorphic to a σ-dimensional Euclidean
space.

Chapter 16 starts at §53 and is titled Definition of principal regions
through metrics. From here on, the conformal structures are given as struc-
tures underlying Riemannian metrics, and they are written, in the tradition
of Gauss, as:

Edx2 + 2Fdxdy +Gdy2.

This infinitesimal structure leads Teichmüller to the approach to confor-
mality and to the moduli problem using partial differential equations. In
§55 and §56, he explains how the main problem on extremal quasiconfor-
mal mappings is now replaced by a problem between Riemannian metrics.
§57ff. concern the determination of the quasiconformal dilatation in terms
of the coefficients of the Riemannian metric on the surface. In Chapter 17,
Teichmüller starts a classification of infinitesimal quasiconformal mappings
and a thorough development of the theory of the Beltrami equation. In §85,
he introduces in this study Poincaré series and automorphic functions.

Chapter 20 starts at §88 and is titled The linear metric space Lσ of
the classes of infinitesimal quasiconformal mappings. There, Teichmüller

102Teichmüller mentions in a note that “the idea seams to have been expressed by
Lawrentieff.”
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describes infinitesimal quasiconformal mappings through quadratic differen-
tials. At the end of §91, he asks whether one can define a Hermitian product
on the tangent space.

Chapter 21, called The duplication, starts at §92. It concerns the opera-
tion of doubling of a Riemann surface with boundary, and also the operation
of passing to the orientation-cover for non-orientable surfaces.

In §§108 and 109, he obtains the dimension of the tangent space to Te-
ichmüller space. He considers periods of differentials and the period map.
He then gives a formula for the dimension of Teichmüller space using the
theorem of Riemann–Roch. In §112, he announces another proof using the
ray structure and the geodesics.

Chapter 23, which starts at §113, is titled Going to finite mappings: Rσ as
a Finsler space. Teichmüller returns to the finite (versus the infinitesimal)
quasiconformal mappings. He considers that the problem of the infinitesimal
extremal quasiconformal mappings is solved. He gives a formula for the
finite extremal quasiconformal mappings and he explains how a passage
to the limit gives the infinitesimal quasiconformal extremal mapping. He
declares: “The supposition is based on nothing.” In §114, he reformulates
more precisely his main conjecture, in terms of the metric, and he then
moves on to the study the Finsler structure and the existence of geodesics
connecting arbitrary points. The extremal quasiconformal mappings arise
now from the extremal infinitesimal quasiconformal mappings, as one keeps
the direction fields and gives to the dilatation quotient a finite constant value
> 1. In §116 and §117, he proves that the Teichmüller metric is Finsler. In
§120, he studies the backward extension of geodesic rays and he proves that
the two geodesic rays emanating from the same point corresponding to dζ2

and −dζ2 join together into a geodesic line.
In §121, given a point P in Rσ, a complex number ϕ of modulus 1, and

a real number K ≥ 1, Teichmüller considers the point P (K,ϕ) of Rσ whose
direction is e−iϕdζ2 and at distance logK from P . The target principal
region is denoted by h(K,ϕ) and is described by the metric

|dζ2|+ K2 − 1

K2 + 1
Re−iϕdζ2.

He considers logK and ϕ as “geodesic polar coordinates” and he calls the
two-dimensional space constituted by all these Riemann surfaces P (K,ϕ),
for variable K and φ, a complex geodesic. He states that in the special
case where the surface h is a topologically fixed ring with no distinguished
point (§26 to §28), the associated space R2 is a “unique complex geodesic.”
Equipped with the metric under study, it is the hyperbolic plane (constant
curvature −1). More generally, he establishes the following:

Proposition 10.2. Any complex geodesic is isometric to the hyperbolic
plane.

In §122, he proves the following:

Proposition 10.3. Between any two points of Rσ passes a unique geodesic,
and this geodesic is distance minimizing.
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In §123, for any point P in Rσ, using the geodesic polar coordinates
defined in §121, he maps the space Rσ homeomorphically onto the Euclidean
space Rσ, which gives the following:

Proposition 10.4. The space Rσ of classes of conformally equivalent topo-
logically fixed principal regions of a given type is homeomorphic to a σ-
dimensional Euclidean space.

In §124ff., Teichmüller considers special cases of this theorem (about 24
cases). In particular, in §129 he considers the case of pentagons, for which
he can find explicit parameters, and then the case of hexagons. The space
of hexagons is three-dimensional. He studies geodesic lines in this space,
and he discusses their behavior at infinity. An application of the Schwarz
reflection principle reduces the case of a ring domain to that of the torus
(§131). In §141, he proves:

Proposition 10.5. A conformal mapping of a closed orientable Riemann
surface onto itself which is homotopic to the identity can be deformed to the
identity through conformal maps.

In particular, for genus > 1, since there are no holomorphic continuous
deformations, the map itself is the identity. The proof uses the action on
quadratic differentials.

In §142, he considers the (extended) mapping class group F. It acts on
Teichmüller space, and it keeps the metric invariant. He then studies the
special cases of the torus and of the closed orientable surface of genus 2.

In §147 he starts the study of convexity in Teichmüller space. He makes
the following definition: Under a geodesic manifold in Rσ, we understand
a nonempty subset of Rσ which always contains for two distinct points the
whole geodesic running through both points. He relates this study to the ques-
tion of finite subgroup actions on Teichmüller space, and he asks whether
any finite subgroup of the mapping class group fixes a Riemann surface.103

In §150, he examines an example of a geodesic manifold of dimension 4g−2.
He then addresses the question of what is a geodesic subspace with respect
to complex geodesics.

In §158, Teichmüller studies periods of tori embedded in 3-space. This is
carried out again in his paper [238], and it turns out to be important in the
work on the complex structure of Teichmüler space. He then considers gen-
eral problems on quasiconformal mappings, and in particular the following,
which we state using his own words:

Problem 10.6. Let a sufficiently regular topological mapping of the circle
|z| = 1 onto itself be given. One wants to extend it to a quasiconformal
topological mapping of the disk |z| ≤ 1 onto itself so that the maximum of
dilatation quotients becomes the smallest possible.

Teichmüller adds: “Unlike what is before, the boundary must hence not
only go over itself in totality but for every boundary point the image point is
prescribed. This is as if all boundary points were distinguished.” He makes
several guesses and conjectures. He notes: “I would like to call this statement

103This is Nielsen’s realization problem [169].
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not a conjecture but only a stimulation for a search for exact conditions.”
He then passes to a generalization to an arbitrary bordered surface with a
distinguished arc on the boundary.

Chapter 29, titled A metric, starts at §160. He defines the following
metric on a Riemann surface: Consider a Riemann surface h of negative
Euler characteristic equipped with a variable interior point p. The space of
pairs (h, p) is a two-dimensional manifold. A Finsler metric can be defined
on that space by considering the logarithm of the dilatation of the extremal
quasiconformal mappings h to itself taking p to p′. Teichmüller addresses
several questions about this metric and he says that in the case where h

is the 3-punctured sphere, the space obtained is the hyperbolic plane. He
notes that one may make the same study with distinguished points on the
boundary.

At the end of the paper, Teichmüller addresses the question of why one
studies quasiconformal mappings. He makes connections with very early
work of Tissot104 on geographical map drawing. He mentions that Picard
and Ahlfors proved theorems about these mappings which were direct gen-
eralizations of theorems on conformal mappings, but that they were never-
theless interested in conformal mappings, and their results, he says, “taught
us in which way the presupposition of conformality restricts the behavior
of a mapping.” He then adds: “This view is outdated,” and he reviews the
new results and theories that quasiconformal mappings may lead to. He
announces further results in future papers, in particular, detailed proofs of
the results he announces in the present paper.

The results of [231] are complemented in the papers [236], [233], [234] and
[235].

In the paper Bestimmung der extremalen quasikonformen Abbildungen bei
geschlossenen orientierten Riemannschen Flächen (Extremal quasiconfor-
mal maps of closed oriented Riemann surfaces) [236], Teichmüller completes
the proofs of the results he obtained in [231]. A translation of the paper
is available [237], and a detailed commentary in [7]. Let us quote from the
introduction of that paper.

In a longer article105 I gave heuristic arguments for the existence
of an extremal quasiconformal mapping under a certain class of
constraints, that means a map with minimal upper bound of the
dilatation quotient. Additionally, I gave an analytic description of
this map. I confirmed this there in the simplest examples, espe-
cially for the torus . Later106 I could add the more difficult case of
a pentagon. Only now, I succeeded in proving my conjecture on
the existence and the analytic form of the extremal quasiconformal
maps to its full extent.

In 1939, it was risky to publish a lengthy article entirely built on
conjectures. I had studied the topic thoroughly, was convinced of
the truth of my conjectures and I did not want to keep back from
the public the beautiful connections and perspectives to which I

104Nicolas Auguste Tissot (1824-1897) is a famous cartographer, who also taught math-

ematics at the École Polytechnique.
105Extremale quasikonforme Abbildungen und quadratische Differentiale [231].
106Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung [234].
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had arrived. Moreover, I wanted to encourage attempts for proofs.
I acknowledge the reproaches that have been made to me from
various sides, even today, as justifiable but only in the sense that
an unscrupulous imitation of my procedure would certainly lead
to a proliferation of our mathematical literature. But I never had
any doubt about the correctness of my article, and I am glad now
to be able to actually prove the main part of it.

At that time I was missing an exact theory of modules , the
conformal invariants of closed Riemann surfaces and similar prin-
cipal domains. In the meantime, particularly with regard to the
intended application to quasiconformal maps, I developed such a
theory. I will have to briefly report on it elsewhere. The present
proof does not depend on this new theory, and instead works with
the notion of uniformization. However, I think one will have to
combine both to bring the full content of my article [231] into
mathematically exact form.

This paper was read by Ahlfors and Bers, who after that acknowledged
the soundness of all the results stated by Teichmüller in his longer paper
[231]. We shall quote Ahlfors and Bers, in the last section of the present
paper. Ahlfors wrote in his review [MR0017803]: “The restriction to closed
surfaces is probably inessential. It is proved that every class of topological
maps of a closed surface onto another contains an extremal quasiconformal
map, i.e., one for which the upper bound of the dilatation is a minimum. [...]
The surfaces are represented by means of Fuchsian polygons, the parameters
being coefficients in a set of independent automorphisms. The proof is again
based on the method of continuity.”

The paper Ein Verschiebungssatz der quasikonformen Abbildung (A dis-
placement theorem for quasiconformal mapping) [239] is purely on the qua-
siconformal theory. Teichmüller solves the following question: Describe the
quasiconformal map f from the unit disc to itself such that:

• f is the identity on the boundary circle;
• f(0) = −x, where x is some given number 0 < x < 1;
• f has the smallest dilatation among the maps satisfying the above
two properties.

The tools are those introduced in [231]. By taking two coverings of the disk
ramified at 0 and −x respectively, the author reduces the question to that
of finding the extremal map between two ellipses in the Euclidean plane
with horizontal and vertical axes, which are obtained from each other by a
quarter-circle rotation, such that the map preserves the horizontal axes and
the vertical axes and is affine on the boundary of the ellipse. Teichmüller
shows that the natural affine map between the ellipses is the extremal map
with the given boundary conditions. See [21] for a detailed commentary on
this paper, and a review of some the developments. The paper is translated
in [240].

Finally, we comment on the paper Veränderliche Riemannsche Flächen
(Variable Riemannian surfaces) [241]. This is the last one that Teichmüller
wrote on the problem of moduli. Together with [231], it is the most impor-
tant one that he wrote on the subject.
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In this paper, the author presents a completely new point of view on
Teichmüller space, through complex analytic geometry. The paper is difficult
to read, both for analysts and for low-dimensional topologists and geometers
because of its very concise style, and also because it depends heavily on the
language of algebraic geometry (function fields, divisors, valuations, places
and so on). We state the main existence theorem:

Theorem 10.7. There exists an essentially unique globally analytic family
of marked Riemann surfaces H[c], where c runs over a τ -dimensional com-
plex analytic manifold C such that for any marked Riemann surface H of
genus g there is one and only one c such that the Riemann surface H is
conformally equivalent to an H[c] and such that the family H[c] satisfies the
following universal property: If H[p] is any globally analytic family of Rie-
mann surfaces with base B, there is a holomorphic map f : B → C such
that the family H[p] is the pull-back by f of the family H[c].

In this statement, C is Teichmüller space and H[c] → C is a fiber bundle
over C where the fiber above each point is a marked Riemann surface rep-
resenting this point. The fiber bundle H[c] → C is the Teichmüller universal
curve. The theorem says that any analytic family of Riemann surfaces is
obtained from the universal Teichmüller curve by pull-back by a certain
holomorphic map. It follows easily from the uniqueness property107 that
the automorphisms group of the universal Teichmüller curve is the extended
mapping class group. This fact also remained unnoticed.108 An English
translation [242] as well as a commentary [6] of this paper are available.

The paper [241] did not attract much attention and it was practically
never cited, especially compared with Teichmüller’s previous papers on the
subject, which were analyzed and commented by Ahlfors and Bers.109 Grothendieck

107This is the statement made in Theorem 10.7 that the family H[c] → C is “essentially
unique.” From the context, this means that it is unique up to composition by elements of
the mapping class group.

108A proof of this result is contained in a paper by Andrei Duma (1975) who apparently
was not aware of the fact that Teichmüller had already proved this result, see [78]. Duma’s
proof does not use Royden’s theorem on the complex structure automorphism group of
Teichmüller space. Earle and Kra had already given a proof of that theorem, using
Royden’s theorem, without being aware that it was known to Teichmüller. We thank Bill
Harvey and Cliff Earle for bringing this to our attention. See the MR review of Duma’s
paper by Earle (MR0407323) and the Zentralblatt review by Abikoff (Zbl 0355.32021).

109Ahlfors, in his 1960 paper [15], writing about the complex structure of Teichmüller
space, does not consider that Teichmüller’s approach in [241] is conclusive. He refers only
to the quasiconformal approach in the paper [231]. He writes: “In the classical theory
of algebraic curves many attempts were made to determine the ‘modules’ of an algebraic
curve. The problem was vaguely formulated, and the only tangible result was that the
classes of birationally equivalent algebraic curves of genus g > 1 depend on 6g − 6 real
parameters. More recent attempts to go to the bottom of the problem by more powerful
algebraic methods have also ended in failure. The corresponding transcendental problem is
to study the space of closed Riemann surfaces and, if possible, introduce a complex analytic
structure on that space. In this direction, considerable progress has been made. The most
important step was taken by Teichmüller [241].” But in his 1964 paper [19], Ahlfors emits
a different opinion: “It is only fair to mention, at this point, that the algebraists have
also solved the problem of moduli, in some sense even more completely than the analysts.
Because of the different language, it is at present difficult to compare the algebraic and
analytic methods, but it would seem that both have their own advantages.”
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is among the first who understood the importance of that paper, about 15
years after its publication. We shall review his work on the subject in §12.

11. Weil

Weil got interested very early in the theory of moduli. Together with
Grothendieck, Kodaira, Ahlfors and Bers, he was influenced by Teichmüller’s
work, and probably more than the others, even though he did not publish
much on this topic. Ahlfors and Bers were analysts, and Weil had a much
broader vision, steeped in Riemann, and with a special taste for number
theory. In his Souvenirs d’apprentissage, he recalls the following, from the
year 1925 (he was 19) ([263] p. 46 of the English translation): “In the
course of my walks, I would even stop to open a notebook of calculations
on Diophantine equations. The mystery of Fermat’s equations attracted
me, but I already knew enough about it to realize that the only hope of
progress lay in a fresh vantage point. At the same time, reading Riemann
and Klein had convinced me that the notion of birational invariance had
to be brought to the foreground. My calculations showed me that Fer-
mat’s methods, as well as his successors’, all rested on one virtually obvious
remark, to wit: If P (x, y) and Q(x, y) are homogeneous polynomials al-
gebraically prime to each other, with integer coefficients, and if (x, y) are
integers prime to each other, then P (x, y)Q(x, y) are ‘almost’ prime to each
other, that is to say, their G.C.D. admits a finite number of possible values;
if, then, given P (x, y)Q(x, y) = zn, where n is the sum of the degrees of
P and Q, P (x, y) and Q(x, y) are ‘almost’ exact n-th powers. I attempted
to translate this remark into a birationally invariant language, and had no
difficulty in doing so. Here already was the embryo of my future thesis.”
In 1926, Weil spent some time in Göttingen, with a grant from the Rocke-
feller foundation, after a few months spent in Italy. He makes a picturesque
description of this visit in his Souvenirs d’apprentissage ([263] p. 49ff):
“I chose Courant in Göttingen, because of linear functionals [...] Courant
extended a cordial welcome to me [...] I started explaining my ideas on func-
tional calculus. [...] Courant listened patiently. Later on I learned that as
of that day he concluded that I would be ‘unproduktiv.’ Leaving his house,
I met his assistant, Hans Lewy, whose acquaintance I had made the day
before. He asked me, ‘Has Courant given you a topic?’ I was thunderstruck:
neither in Paris nor in Rome had it occurred to me that one could ‘be given’
a topic to work on [...] I learned little from Courant and his group.”110 It
seems that Weil learned everything on his own, in books. In fact, this is
how he learned to read and write, and this also how he learned Latin and
Greek, when he was a child. His thesis, defended in 1928, titled Les courbes
algébriques and written under Hadamard, was completely innovative and
at the same time rooted in the works of Riemann, Abel and Jacobi. In a

110Weil had nevertheless a great respect for Courant. He writes, in the same pages:
“It has sometimes occurred to me that God, in His Wisdom, one day came to repent for
not having had Courant born in America, and He sent Hitler into the world expressly to
rectify this error. After the war, when I said as much to Hellinger, he told me, ‘Weil, you
have the meanest tongue I know’.”
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letter written to his sister Simone, André Weil writes: “My work consists in
deciphering a trilingual text.”111

In any case, unlike several others mathematicians interested in Teichmüller
theory, Weil was able to understand Teichmüller’s papers written in the lan-
guage of algebraic geometry. He was also a differential geometer and indeed
his main contribution in Teichmüller theory lies in the local differential ge-
ometry of that space.

It seems that Weil is the first who gave the name Teichmüller space to
the space discovered by Teichmüller, and in any case, he gave this name
independently of others: in his comments on the paper he wrote for Emil
Artin’s birthday ([264] Volume II p. 546), he writes: “I was asked for a
contribution to a volume of articles to be offered to Emil Artin in March
1958 for his sixtieth birthday; this led me to the decision of writing up my
observations, even incomplete, on the moduli of curves and on what I called
“Teichmüller space.”

There is another terminology which Weil introduced, which does not sur-
vive, but which is interesting. In his 1958 Bourbaki seminar [256] and in his
paper ([257]), Weil called the object today called a marked Riemann surface
a Teichmüller surface, and he also introduced the terminology Torelli sur-
face. A Teichmüller surface is a pair (S, [f ]) where S is a Riemann surface
S homeomorphic to S0 and [f ] is the homotopy class of some orientation-
preserving homeomorphisms f : S0 → S. The Teichmüller space of S0 is
then the space of Teichmüller surfaces (S, [f ]) up to the following relation
(S, [f ]) ≡ (S′, [f ′]) if there is a holomorphic map h : S → S′ such that h ◦ f
is homotopic to h′. A Torelli surface is a Riemann surface S homeomorphic
to S0, together with a homomorphism from the fundamental group of S0 to
the homology group of S that is induced by an orientation-preserving home-
omorphism between the two surfaces. A Torelli surface is, like a Teichmüller
surface, a reinforced Riemann surface, that is, it carries more structure112

than a Riemann surface in the same sense in which a Teichmüller surface
is a reinforced Riemann surface. The choice of names reflects clearly the
sequence of maps Tg → Torg → Mg between the Teichmüller, the Torelli
and the Riemann spaces.

Weil also highlighted the relation with the period map and the Siegel
upper half-space. After a choice of a basis for π1(S), a Torelli structure
determines the images of the generators in H1(S), which are generators of
this group. With these generators of H1(S), one can define the so-called
“renormalized differentials of the first kind,” that is, those whose matrices
are of the form (Ig, Z) where Ig is the unit g×g matrix and Z is a symmetric
matrix whose imaginary part is positive non-degenerate. Such a matrix can
be considered as a point of the Siegel space. Torelli’s theorem states that
the Z determines S up to isomorphism.

Let us say a few words on some of Weil’s early works, which will show
how he arrived naturally to the subject.

111The letter is quoted in [109], where the author adds: “Roughly speaking, this con-
sists in the analogies between number fields (arithmetic), function fields (analysis) and
Riemann surfaces (geometry and topology).

112The adjective is used by Weil in [257].
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Weil was interested since his early years in complex function theory of
several variables, and in fact, he is one of the promoters of that theory,
which was rather dormant since some works Poincaré did on that subject in
the nineteenth century. In an interview he gave to the Notices of the AMS
in 1999, Henri Cartan, who is the founder of one of the major schools in
that field, says the following ([56] p. 784): “I believe it was André Weil
who suggested that it could be interesting. He told me about the work
of Carathéodory on circled domains. That was the beginning of my inter-
est.”113 Soon after, Weil published the two papers [248] and [249] in which
he introduced a method of integration in the theory of several complex vari-
ables, generalizing the Cauchy integral. In the paper [251], he started the
study of vector bundles over algebraic curves, with fibers of any dimension
≥ 1. In his comments in Vol. I of his Collected papers, Weil recalls that
in that paper, he “subconsciously” endeavored to build a moduli space for
these bundles, but that at that time he did not have clear ideas on the sub-
ject. He states that a special case of the construction was implicit in the
classical literature, and it amounts to that of the Jacobian of a curve. He
also says that his hope was to define functions which would generalize the
theta functions, but that he did not succeed. The idea, he tells us, even
though it was unclear to him, was to conceive a “moduli space” for the ana-
logue of a Fuchsian group G in dimension ≥ 1. This would be a quotient of a
variety of equivalence classes of representations of G into GL(r,C), equipped
with its natural complex structure. Weil made the observation that there
exist equivalence classes of representations that do not contain unitary ones,
but that such a unitary representation, if it exists, is essentially unique. He
writes in his comments: “It seems to me that I had the feeling of the impor-
tant role of unitary representations in the future development of the theory.”
The famous Weil conjectures which he made in 1949 [253], which led to an
huge amount of work in algebraic geometry during several decades, with a
culmination in the works of Grothendieck and Deligne, are also related to
Riemann’s ideas. In some sense, they concern the applications of the topo-
logical methods of Riemann to the setting of fields of finite characteristic.
Many other works of Weil are related in one way or another to the subject
of the present paper, but we shall concentrate only on some of them, which
are very closely related to Riemann’s and Teichmüller’s works.

In the years 1957 and 1958, Weil wrote four papers on the problem of
moduli:

• A Bourbaki seminar, on the Torelli theorem, titled Sur le théorème
de Torelli [255], which we mentioned in §8.

• A Bourbaki seminar titled Modules des surfaces de Riemann [256].

113Cartan completed his doctorate in 1928, the same year as Weil, under Montel, on
functions of one complex variable. This conversation with Weil probably occurred soon
after. In 1930, Cartan published a paper titled Les fonctions de deux variables complexes

et les domaines cerclés de M. Carathéodory [54], and several others in the same year and
the one that followed, in which he studied and classified bounded domains in C2 with
infinitely many automorphisms having one fixed point. We note that among these papers
is one of the two papers that Henri Cartan co-authored with his father (who was not so
much involved in these questions), [55].
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• An unpublished manuscript, in English, carrying the same title as
the Bourbaki seminar, dedicated to Emil Artin on his sixtieth birth-
day [257].

• An unpublished report on an AF contract [258].

This collection of papers constitutes a brief account of Riemann’s moduli
space, of Torelli space and of Teichmüller space, and they contain the es-
sential ideas of several constructions. The two unpublished papers (and not
the Bourbaki seminars) appear in Weil’s Collected Papers [264]. We shall
review these four papers, together with the comments that Weil made on
them. The papers and the comments provide us with a clear summary of
why Weil was interested in Teichmüller theory, and also what he learned
from Teichmüller’s papers and from Kodaira, Spencer, Ahlfors and Bers.
The papers also contain open questions. The report [257] starts with:

The purpose in the following pages is partly to clarify my own ideas
on an interesting topic, at a stage when they are still unripe for
publication. In speaking of these ideas as “my own,” my intention
is not to claim originality for them. They are little more than a
combination of those of Teichmüller with the ideas on the variation
of complex structures, recently introduced by Kodaira, Spencer
and others into the theory of moduli.

Weil describes two approaches to the complex structure on Teichmüller
space in the paper [258]. The first one uses harmonic Beltrami differentials
and quasiconformal maps, and he attributes it to Bers. The second one uses
the period map. With the latter, he recovers a construction of Rauch of the
complex structure in the complement of the hyperelliptic locus. He then
says that this complex structure can be extended to Teichmüller space by
“using well-known general theorems on analytic spaces.”114

In his 1958 paper dedicated to Emil Artin, Weil writes ([257], p. 413):

Perhaps the most remarkable of Teichmüller’s results is the follow-
ing: when provided with a rather obvious “natural” topology, the
set Θ of all classes of mutually isomorphic Teichmüller surfaces is
homeomorphic to an open cell of real dimension 6g−6. This global
result will neither be used nor discussed in the following pages, the
chief purpose of which is to consider the local properties of Θ and
to define on it a “natural” complex analytic structure, of complex
dimension 3g − 3, and a “natural” Hermitian metric.

In the same paper, he writes:

[...] In order to justify the statements that we have made so far,
we shall make use of the Kodaira–Spencer technique of variation
of complex structures. This can be introduced in an elementary
manner in the case of complex dimension 1, which alone concerns
us here; this, in fact, had already been done by Teichmüller; but

114Such an extension was published by Ahlfors later, in his 1960 paper [15]. Ahlfors
does not mention Weil’s Bourbaki seminar. In his comments to his Collected papers edi-
tion, Vol. 2, p. 122, Ahlfors writes: “H. Rauch published two notes (On the transcendental
moduli, 1955, and On the moduli, 1955) in which he settled the problem for non hyper-
elliptic surfaces. For my part I was also in possession of a proof in the nonhyperelliptic
case, but I had held up publication until I was able to construct the complex structure for
the whole space Tg.”
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he had so mixed it up with his ideas concerning quasiconformal
mappings that much of its intrinsic simplicity got lost. Perhaps
the worst feature of his treatment, in the eyes of the differential
geometer, is that his extremal mappings are destructive of the
differentiable structure; this corresponds to the fact that his metric
on Θ is almost certainly not to be defined by a ds2, even though
it is presumably a Finsler metric.115

Weil, who was chiefly interested in the complex structure of Teichmüller
space, does not mention the paper [241]. His approach was, like the one
of Ahlfors and Bers, to extract the complex structure from the almost-
complex structure through the theory of the Beltrami equation developed
in Teichmüller’s paper [231]. In his Bourbaki seminar, he starts with a
differentiable function µ on the upper half-plane H2 equipped with a discrete
group of isometries Γ representing a surface S, such that |µ| < 1 and such
that the tensor µdz/dz is invariant by Γ (that is, µ is of type (−1, 1)).
The differential ζ = dz + µdz defines a new complex structure on H2, and
one gets a Riemann surface S(µ). Given a marked Riemann surface S,
Weil denotes by Cl(S) the corresponding element in Teichmüller space. We
shall use instead the notation [S] which is common today. We have a map
µ 7→ [S(µ)]. The theory that Weil sketches is summarized in the following

Theorem 11.1. If µ = µ(z, u) depends continuously (resp. differentiably,
resp. holomorphically) on a parameter u, then the map u 7→ [S(µu)] is
continuous (resp. differentiable, resp. holomorphic).

Weil notes that if Fµ is the homeomorphism of the plane H2 which con-
formally represents H2 equipped with the structure defined by the form ζ
on H2 equipped with its usual complex structure (defined by dz), and if we
normalize Fµ so that it preserves the points 0, 1,∞, then, if µ = µu depends
continuously (resp. differentiably) on a parameter u, the same holds for
Fµ.

116 He then adds that the analogous statement for a holomorphic result
is false.117 Contrary to what Weil says, this result is correct, and it is the
famous Ahlfors-Bers Riemann mapping theorem for variable metrics [16].

Then, Weil studies the differentiable structure determined by Theorem
11.1. He introduces the notion of an infinitesimal variation of a structure in
the sense of Kodaira-Spencer and the notion of a trivial infinitesimal varia-
tion, which amounts to the fact that (∂µ/∂u)u=0 is of the form ∂ξ/∂z where
ζ is a complex-valued form of type (−1, 0) on H2. He concludes (“heuris-
tically,” he says, postponing the proof to later) that one can identify the
(real) tangent vectors to Teichmüller space at a point [S0] with a “Kodaira-
Spencer space” defined as the quotient of the (real) vector space of functions
of type (−1, 1) defined on H2 quotiented by the subspace of functions ∂ξ/∂z
where ζ is of type (−1, 0). Thus, the complex structure is defined using the
Kodaira-Spencer theory.

115Weil writes “is presumably a Finsler metric,” but Teichm/”uller proved it is in his
paper [231].

116Regarding this result, Weil writes in [256] p. 416: “Some reliable ellipticians guar-
anteed this to me.”

117Weil writes in [256] p. 416: “One should not think that if µu depends in a holomor-
phic manner on u, the same is true for Fµu

, since this is false.”
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In the paper [257], Weil introduces the Riemannian metric on Teichmüller
space which has become known as the Weil-Petersson metric. This is defined
using a version of an inner product which was defined in 1939 by Petersson118

in the context of automorphic forms, cf. [174] and [175]. Petersson defined
the scalar product of pairs φ and ψ of automorphic forms of the same class
by the formula

(φ,ψ) =

∫ ∫
φ(z)ψ(z)yr

dxdy

y2

where z = x + iy in the upper half-plane, with r ≥ 0 being some integer
weight and where the integral is over a fundamental domain. In his first
papers, Petersson pointed out several applications of this product to the
theories of modular forms and of automorphic forms. Many other applica-
tions were discovered later by others. Weil noticed that this product gives
a metric on Teichmüller space. Let us quote his Bourbaki seminar in which
he defines the Weil-Petersson metric:

One observes immediately that the space of quadratic differentials
on S0 is equipped with a well-known Hermitian metric (a particular
case of that of Petersson in the theory of automorphic forms),
given, for w = qdz2, w′ = q′dz2, by

(w,w′) = i

∫ ∫
S0

qq′y2dzdz

with y = Im(z). After checking some small poor differentiability
conditions, this means that this form defines on Teichmüller space
a “natural” Hermitian structure, and one checks (by a stupid com-
putation) that it is Kähler. The preceding can also be expressed
by saying that any quadratic differential w on S0 defines a cov-
ector (with complex values) at the equivalence class [S0] of S0 in
Teichmüller space, a covector which, by definition, is of type (or
“bidegree”) (1, 0), for the quasi-complex structure that we defined
above.119 Then a trivial computation allows one to check that for
such a structure, the map u 7→ [Su] is holomorphic if µu depends
holomorphically on a parameter u with values in Cn. If we take
then, to be more precise:

µu(z) =

3g−3∑
i=1

uiy
2qi(z),

118This is Hans Petersson (1902-1984). Lehner writes about Petersson, in Chapter 1
(Historical Development) of his book [148] (p. 35): “The most important contributor to
the theory of automorphic functions in recent times is H. Petersson, whose investigations
begin about 1930. He was a student of Hecke and much of his work consists of extending
to more general discontinuous groups what Hecke developed for congruence subgroups of
the modular group. Petersson, like Klein and Hecke, is greatly interested in the corre-
spondence between Riemann surface theory and automorphic function theory. Because he
insists on considerable generality, his papers are hard to read, but it is also true that he
returns again and again to the classical examples from which the general theory sprang,
reinterpreting and deepening them with the newest results.” After recalling the Petersson
product, Lehner writes: “Petersson’s investigations of the new Hilbert spaces revolution-
ized the theory of automorphic forms of negative dimension. Formerly difficult theorems
could now be proved by the methods of liner algebra.”

119This is the almost-complex structure defined by the equivalence classes of Beltrami
differentials.
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where the qi are such that the qidz
2 form a basis of the vector

space of quadratic differentials on S0, we deduce that the map
u 7→ [S0] is an isomorphism from a neighborhood of 0 in C3g−3 to
a neighborhood of [S0] in Teichmüller space, in the sense of quasi-
complex structures. This confirms the fact that the latter space is
complex analytic of dimension 3g− 3. [N.B. This reasoning is due
to Bers (personal communication)].

In the same vein, we can now treat by a computation, without
difficulty, a variety of questions concerning the differentials, at
a given point in Teichmüller space, of functions defined on that
space, and for instance:

A. Coefficients for the substitutions of the [Fuchsian] group Γ.
In this way, we find that if this group is normalized, the 6g − 6
coefficients of the first 2g − 2 “distinguished” generators may be
taken as local coordinates (in the sense of real analytic structures)
on Teichmüller space. Thus, this space is represented as an open
set on R6g−6;

B. Periods of normalized integrals of the first kind on Sµ. We
can thus check the theorem of Rauch, which says the following: In
the Siegel space of symmetric matrices with positive non-degenerate
imaginary part, the points corresponding to the “Torelli surfaces”
form an analytic subspace of complex dimension 3g − 3, whose
singular points are those which correspond to the hyperelliptic
curves. The latter form a complex analytic variety (with no sin-
gular point) of complex dimension 2g − 1. In the neighborhood
of every point of this space corresponding to a non hyperelliptic
surface S0, we can write, as local coordinates on that set, every
system of 3g − 3 periods pij such that the quadratic differentials
ζiζj (where ζ1, . . . , ζg are the normalized differentials of the first
kind) are linearly independent over C.

Weil concludes his paper [257] with the following (p. 389):

This raises the most interesting problems of the whole theory: is
this a Kähler metric?120 has it an everywhere negative curvature?
is the space Θ, provided with its complex structure and with this
metric, a homogeneous space? It would seem premature even to
hazard any guess about the answers to these questions.

The first two questions were answered positively by Ahlfors in the two
papers [17] and [18]. In the paper [17], Ahlfors writes in a footnote: “Ac-
cording to an oral communication, the fact has been known to Weil, but
his proof has not been published.” In the second paper [18], Ahlfors writes:
“Intrinsic definitions lead to a metric on Tg, introduced by Teichmüller, to
a Riemannian structure whose use was suggested by A. Weil, and finally to
a complex analytic structure of dimension 3g − 3. It was proved by Weil,
and again in [17], with very little computation, that the Riemannian metric
is Kählerian with respect to the complex structure.” In a note contained in
his Collected papers edition, Vol. 2, p. 155, Ahlfors writes: “Weil knew that

120In his Bourbaki seminar paper [256] which we quoted above, written the same year,
Weil writes, on the contrary (on p. 414 and on p. 418), that the space has a Kähler
structure, and that this can be checked “by a stupid computation.” The same existence
result is stated in his AF Report [258], p. 392 of Vol. II of Weil’s Collected papers.



74 NORBERT A’CAMPO, LIZHEN JI, AND ATHANASE PAPADOPOULOS

the Petersson metric was Kählerian, but had not published the proof. This
turned out to be an almost immediate consequence of the calculations in
[17], and in [18] I showed through hard work that the metric has negative
Ricci and sectional curvature.” This last information contrasts with what
Weil says in his Bourbaki seminar, where he gives the impression that every-
thing was easy for him. In any case, it is impossible to know with certainty
who first proved that the Weil-Petersson metric is Kähler. The homogeneity
question that Weil addressed concerning the complex structure was answered
in the negative by Royden in 1969 [213]. The homogeneity question for the
Weil-Petersson metric is a consequence of the 2002 result of Masur and Wolf
[156].

To understand his motivations, it should also be noted that Weil, at the
time he was also working and making conjectures on the Kähler structure
of Teichmüller space, was also working on the Kähler geometry of K3 sur-
faces. In fact, in his final report to the AF [258], Weil reports on two
problems: the problem of moduli, which we are discussing here, and “a
study of the Kähler varieties topologically identical with the non-singular
quartics in projective 3-space (henceforward called K3 surfaces).”121 It is
interesting to note that the same group of mathematicians contributed to
both problems, including Siegel, Kodaira, Spencer and Andreotti, and the
two theories share many common problems and techniques: the existence of
a complex-analytic structure and of a Kähler metric, intersection matrices
and period maps, the use of polarization of Abelian varieties, the theory of
automorphic functions, etc. Finally, we mention that in the same year, Weil
published his important book on Kähler manifolds, Introduction à l’étude
des variétés kählériennes [259]. He had been working on the subject for at
least ten years; see [252] and [254].

In discussing the theory of the Beltrami equation, Weil several times
refers to Bers, and for some other points he refers to “analysts” and to some
“reliable ellipticians” (e.g. [256] p. 418) and to Kodaira and Spencer, with
whom he said he had several discussions. In his report [258], he writes: “In
order to give, in what follows, a coherent account of these topics, it will
be necessary to include much of the work of my colleagues, and it would
be unpractical to try unravel in detail what may belong to me and what
belongs to each one of them. It should be understood that they deserve a
large share of credit for the work described in this report.”

It seems that Weil left the subject after he wrote these four papers, and
we have two conjectural reasons for that. The first one is that Weil saw
he was superseded on these questions by Ahlfors and Bers.122 The other
reason is related to Alexander Grothendieck’s appearance on the scene.

121Here also, the name seems to be due to Weil. In his commentary on this paper, Weil
writes that the name K3 is in honor of Kummer, Kähler, Kodaira and of the beautiful
Kashmir mountain K2. A K3 surface is Calabi-Yau of smallest dimension which is not
a torus. Most K3 surfaces are not algebraic varieties. A K3 surface is also Kähler (a
theorem of S.-T. Siu).

122From Weil’s comments on his paper for Emil Artin’s birthday, in his Collected Works

([264] Vol. II p. 546): “Soon after that, I noticed that on more than one point I was
matching Ahlfors and Bers; these continued their research, and soon after they overtook
me.”
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Grothendieck completely changed the foundations of analytic geometry, and
in doing this he was greatly influenced by Teichmüller’s construction of the
analytic structure of Teichmüller space.123 We shall elaborate on this in
the next section. The relation between Grothendieck and Weil was not al-
ways friendly. In fact, Weil hardly mentions Grothendieck in the comments
he makes in his Collected Works. In his paper [165], Mumfor writes that
“Weil radiated cynicism about anyone else’s abstractions.” One certain fact
is that Grothendieck’s Éléments de géométrie algébrique (1960–1967) almost
condemned Weil’s Foundations of algebraic geometry (1946) to oblivion.

12. Grothendieck

In the academic year 1960-1961, Grothendieck124 gave a series of 10
talks at Cartan’s seminar in which he presented Teichmüller’s existence and
uniqueness result on the complex analytic structure of Teichmüller space
(Theorem 10.7 above). This result was reformulated by Grothendieck and
given a complete proof in the language of algebraic geometry. The new point
of view included the statement that Teichmüller space represents a functor.

A large part of Grothendieck’s work is developed in the setting of cat-
egories and functors, and his approach to Teichmüller theory was in the
same spirit. This abstract categorical setting is a unifying setting, and it is
the result of Grothendieck’s broad vision and a profound feeling of unity in
mathematics, especially algebraic geometry, complex geometry, and topol-
ogy. The fact that Grothendieck formulated the moduli problems in such a
setting came out of a need. With the classical methods, it was possible to
construct analytic moduli spaces, but not algebraic ones. In fact, the ques-
tion of “what is an algebraic deformation?” was one of the main questions
formulated clearly by Grothendieck, using the language he developed. Para-
phrasing and expanding the introduction in [99], Grothendieck’s goal in his
series of lectures, which he announced in the first lecture, is the following:

(1) To introduce a general functorial mechanism for a global theory of
moduli. Teichmüller theory is one example to which this formalism
applies, but the theory also applies to other families, like the family
of elliptic curves (the case of genus 1), which so far (according to
Grothendieck) had not been made very explicit in the literature.

(2) To give a “good formulation” of a certain number of moduli prob-
lems for analytic spaces. Grothendieck gives a precise formulation
of several moduli problems in the setting of analytic spaces, includ-
ing the moduli of Hilbert schemes of points or Hilbert schemes of
subvarieties, or of Hilbert schemes with a given Hilbert polynomial.
These were used as step-stones, but they also have an independent
interest. According to Grothendieck, for all these moduli problems,
the state of the art in most of the situations is such that one could

123These are Grothendieck’s own words ([99], p. 1): “Chemin faisant, la nécessité
deviendra manifeste de revoir les fondements de la Géométrie analytique” (On the way,
the necessity of revising the foundations of analytic geometry will be manifest).

124Alexander Grothendieck was born in Berlin, in 1928. It is impossible to say anything
significant on his life in a few lines. We refer the reader to the collective book [216] and
in particular the article [57] by Cartier.
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only conjecture some reasonable existence theorems. He neverthe-
less gives some existence and uniqueness results, and he proves in
particular the existence of Teichmüller space as a universal object.

(3) Under some “projectivity hypothesis” (this is the analogue of com-
pactness in the algebraic geometry setting) for the morphisms that
will be considered, to give some existence theorems for the prob-
lems in (2). This includes in particular the existence theorem for
Teichmüller space.125

(4) Grothendieck says that for that purpose, it will be necessary to re-
consider the foundations of analytic geometry, by getting inspiration
from the theory of schemes.126 In particular, it will be important
to admit nilpotent elements127 in the local fields defining analytic
spaces, and also in more general spaces that consist of families of
spaces, so that the theorems are stated with their full strength.

Let us now quote Grothendieck’s statement:

Theorem 12.1 (Theorem 3.1. of [99]). There exists an analytic space T
and a P-algebraic curve V above T which are universal in the following
sense: For every P-algebraic curve X above an analytic space S, there exists
a unique analytic morphism g from S to T such that X (together with its
P-structure) is isomorphic to the pull-back of V/T by g.

In this statement an algebraic curve over an analytic space is a family
of algebraic curves which depends analytically on a parameter. The reader
should notice the intertwining of the words “algebraic” and “analytic” in
the statement. This is one of the major ideas in modern algebraic geometry.
The analytic space T which is referred to here is Teichmüller space and the
P-algebraic curve V above T is the Teichmüller universal curve. The term
“P-algebraic” refers to a rigidification of the curves, and P is a functor, the
so-called Teichmüller rigidifying functor.

It is probable that Grothendieck did not read any of Teichmüller’s pa-
pers, but that he heard of them by word of mouth. In the bibliographical
references of the first article of the series [99], in which he outlines the whole
theory, the only reference he makes (apart from references to his own works)
is to Bers’ paper [30]. On p. 9 of this paper, Grothendieck writes: “It is
easy to check, using if necessary a paper by Bers [30], that the space which
is introduced here axiomatically (and which we shall prove the existence)
is homeomorphic to the Teichmüller space of analysts. It follows that Te-
ichmüller space is homeomorphic to a ball, and therefore, is contractible,

125Grothendieck underlines.
126In this setting, an analytic space is defined as a system of local rings, each ring

being a quotient of the ring of convergent complex power series in several variables. This
is a wide abstraction of the idea of Riemann where the stress is on functions rather than
on the space itself. The theory of schemes gives a way of gluing these local fields. One can
also think of this in analogy with the manifolds defined by local charts, in the differential
category.

127Recall that points in an analytic space are defined as ideals in certain rings of fields,
and Grothendieck says here that in order to get the full strength of the theory, we must
admit nilpotent elements in the ideals. For instance, one should be able to distinguish
between the function y2 and the function y which have the same zero set, namely, the
point 0.
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and in particular connected and simply connected. A fortiori, the Jacobi
spaces of all levels are connected, and likewise the moduli space introduced
in §5 as a quotient space of Teichmüller space. It seems that at the time
being there is no proof, using algebraic geometry, of the fact that the moduli
space is connected, (which, in algebraic geometry, is interpreted by saying
that two algebraic curves of the same genus g are part of a family of curves
parametrized by a connected algebraic variety).”

One of the main tools is the introduction of categories whose objects are
fibrations over complex spaces whose fibers are complex spaces and func-
tors between them. Grothendieck introduces several functors in the theory.
Some of them are rigidifying and some are representable. Classical objects
like projective spaces, Grassmannians, and Eilenberg-Mac Lane spaces, rep-
resent functors. Rigidifying functors are obtained by equipping the fibers
with some extra structure. Marking is a rigidification of the structure and it
is transported from fiber to fiber by analytic continuation. In this process a
monodromy appears, which, in the case of the functor built from Riemann
surfaces, is encoded by the mapping class group action on the fibers. The
rigidifying functor resulting from the rigidification of Riemann surfaces is
the so-called Teichmüller functor, which is an example of a representable
functor. We recall the definition. Let C be a category, X an object in C
and hX a contravariant functor from C to the category (Ens) of sets, defined
by the formula

hX(Y ) = Hom(Y,X)

at the level of objects. At the level of morphisms, if Y and Z are objects
in C and f : Y → Z a morphism between them, then the image of f is the
map p 7→ p ◦ f from the set Hom(Z,X) to the set Hom(Y,X). If C is a
category and

F : C → (Ens)

a contravariant functor from C to the category of sets, then F is said to
be representable if there exists an object X in C such that the functor F is
isomorphic to the functor hX . We say that F is represented by the object
X. According to Grothendieck in [97], the “solution of a universal problem”
always consists in showing that a certain functor from a certain category to
the category (Ens) is representable. The fact that a functor is representable
makes the abstract category on which it is defined more understandable,
since it says that the objects and morphisms of this category can be replaced
by objects and morphisms of the category of sets.

The main result of Grothendieck in his series of lectures is the following:

Theorem 12.2 ([99] p. 8). The rigidifying Teichmüller functor, P, for
curves of genus g, is representable.

In fact, Teichmüller space was the first non-trivial example of a complex
space representing a functor. Grothendieck also showed that the Teichmüller
functor is universal in the sense that any rigidifing functor can be deduced
from an operation of fiber product from the Teichmüller rigidifying functor
(see [99] p. 7).

Theorems 12.1 and 12.2 are equivalent, although there are differences in
the formulations and in the proofs. Teichmüller first constructs Teichmüller
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space, and then moduli space. It seems that he thought it was impossible
to construct moduli space directly. Grothendieck constructs moduli space
directly as a space representing a functor in the algebraic category, so that
the space is canonically equipped with an algebraic structure (and a fortiori
an analytic structure). Teichmüller used a topological marking of Riemann
surfaces in order to construct Teichmüller space. Grothendieck, in dealing
with the singularities of moduli space caused by the non-trivial automor-
phisms of Riemann surfaces, introduced a marking by cubical differentials
and another marking through level structures on the first homology.128 The
algebraic structure on moduli space cannot be lifted to Teichmüller space
since the latter is an infinite cover of the former. In fact, Teichmüller space
does not carry a natural algebraic structure.

Inspired by Teichmüller’s ideas, Grothendieck proposed a general ap-
proach to the construction of moduli spaces of algebraic varieties, in partic-
ular Hilbert schemes for families of closed subvarieties of a given projective
variety. This also led him to his theory of families of algebraic varieties. The
idea of marking allowed him to remove nontrivial automorphism groups of
the varieties and to construct fine moduli spaces. The desingularization of
the moduli spaces was obtained by looking at smooth covering varieties, cf.
the papers [98], and also [96], [97].

Like Teichmüller’s paper [241], Grothendieck’s papers are difficult to read
for people not used to the abstract language of algebraic geometry.129 On
p. 9 of his first lecture [99], Grothendieck writes: “One can hope that we
shall be able one day to eliminate analysis completely from the theory of
Teichmüller space, which should be purely geometric.” A detailed review of
the 10 lectures in Cartan’s seminar is contained in the paper [9].

Grothendieck, in his lectures, raised several questions, among them the
question of whether Teichmüller space is Stein ([99] p. 14). Bers and Ehren-
preis answered this question affirmatively in [38], apparently without being
aware that Grothendieck had raised it.

Grothendieck left Teichmüller theory just after he gave these lectures.
The reason was certainly his complete investment in the foundations of gen-
eral algebraic geometry. Mumford brought later a new point of view, based
on geometric invariant theory, which allowed him to give an intrinsic con-
struction of Riemann’s moduli space and equipping it with the structure of
an algebraic (quasi-projective) variety, after the work of Baily on the sub-
ject. Mumford’s work [163] is mentioned by Grothendieck in his last lecture,
as well as Baily’s work [25]. In the introduction of that lecture, he writes:

128In [215], the authors mention the fact that one can deal with the problem of surfaces
having nontrivial automorphisms by considering “level structures,” and they refer for this
to the book [105]. No reference to the papers of Grothendieck [99] [100] is given, either in
[215] or in [105].

129Abikoff writes, in a review published in 1989 in the Bulletin of the AMS [4], on an
book on Teichmüller theory by Nag: “First, algebraic geometers took us, the noble but
isolated practitioners of this iconoclastic discipline, under their mighty wings. We learned
the joys of providing lemmas solving partial differential and integral equations and various
other nuts and bolts results. These served to render provable such theorems as: The ?%♯$!
is representable.”
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The method indicated in the text bumps, in the context of
schemes, on a difficulty related to taking quotients, which
does not exist in the transcendental case. By a similar method,
using in a more systematic way Picard schemes and their
points of finite order, the lecturer was able to construct the
Jacobi modular schemes Mn of high enough level, but, for
lack of knowledge of whether Mn is quasi-projective, it was
not possible to take a quotient by finite groups in order to
obtain the moduli spaces of arbitrary level, and in particular
the classical moduli space M1. These difficulties have just
been overcome by Mumford, using a new theorem of passage
to the quotient which can be applied to polarized Abelian
schemes, and from there to curves.

Grothendieck returned to Riemann surfaces several years later, after he
had officially put an end to his extraordinarily intense mathematical activ-
ity. He introduced the subject which became known as the Grothendieck-
Teichmüller theory, whose overall goal is to understand the absolute Galois
group ΓQ = Gal(Q/Q) through its action on the fundamental group of the
tower of moduli space Mg,n of algebraic curves of genus g with n punctures.
The main reference is [101]. Several papers were written after Grothendieck.
See in particular [149] [150] [166]. The work is also surveyed in [10].

13. Ahlfors and Bers

In the years that followed Teichmüller’s work, a huge effort was made
by Ahlfors and Bers to provide proofs for the analytic part of his work,
and in particular, on his existence and uniqueness theorem for extremal
quasiconformal maps. We shall mainly quote some of their writings related
to the major results on that subject, explaining their motivation and their
goal.

Ahlfors writes in his 1953 paper celebrating the 100 years anniversary of
Riemann’s inaugural dissertation:

In the premature death of Teichmüller, geometric function theory,
like other branches of mathematics, suffered a grievous loss. He
spotted the image of Grötzsch’s technique, and made numerous
applications of it, which it would take me too long to list. Even
more important, he made systematic use of extremal quasicon-
formal mappings, a concept that Grötzsch had introduced in a
very simple special case. Quasiconformal mappings are not only
a valuable tool in questions connected with the type problem, but
through the fundamental although difficult work of Teichmüller
it has become clear that they are instrumental in the study of
modules of closed surfaces. Incidentally, this study led to a better
understanding of the role of quadratic differentials, which in some-
what mysterious fashion seem to enter in all extremal problems
connected with conformal mapping.

In the commentaries he made on his paper On quasiconformal mappings [14]
(1954) in his Collected Papers edition ([11] Vol. 1, p. 1), Ahlfors writes:

More than a decade had passed since Teichmüller wrote his re-
markable paper [231] on extremal quasiconformal mappings and
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quadratic differentials. It has become increasingly evident that
Teichmüller’s ideas would profoundly influence analysis and espe-
cially the theory of functions of one complex variable, although
nobody at that time could foresee the extent to which this would
be true. The foundations of the theory were not commensurate
with the loftiness of Teichmüller’s vision, and I thought it was
time to reexamine the basic concepts. My paper has serious short-
comings, but it has nevertheless been very influential and has led
to a resurgence of interest in quasiconformal mappings and Te-
ichmüller theory. [...]
Based in this definition the first four chapters are a careful and
rather detailed discussion of the basic properties of quasiconfor-
mal mappings to the extent that they were known at that time. In
particular a complete proof of the uniqueness part of Teichmüller’s
theorem was included. Like all other known proofs of the unique-
ness it was modeled on Teichmüller’s own proof, which used uni-
formization and the length-area method. Where Teichmüller was
sketchy I tried to be more precise.
In the original paper Teichmüller did not prove the existence part
of his theorem, but in a following paper [236] he gave a proof based
on a continuity method. I found his proof rather hard to read and
although I did not doubt its validity I thought that a direct vari-
ational proof would be preferable. My attempted proof on these
lines had a flaw, and even my subsequent correction does not con-
vince me today. In any case my attempt was too complicated and
did not deserve to succeed. Later L. Bers [28] published a very
clear version of Teichmüller’s proof. The final credit belongs to
R. Hamilton, who gave an amazingly short and direct proof of the
existence theorem. The consensus today is that the existence part
is easier to prove than the uniqueness.

Ahlfors adds in a note in his Collected papers edition (Vol. 2, p. 155):

During the period of roughly 1958-1961, L. Bers and I were busy
developing the fundamentals of the theory of Teichmüller space.
We were in constant touch with each other, and it is sometimes
hard to tell, and difficult to remember, who did what. If I were
an impartial judge I would give the laurel to Bers for having in-
troduced what has become the standard approach to Teichmüller
space as an open subset of the complex linear space of quadratic
differentials, and I would give myself honorable mention for having
helped develop the analytic techniques.

The complex structure of Teichmüller space was worked out by Ahlfors
and Bers, but, as Weil did it, from the point of view of the Beltrami equation.
In a paper published in 1960 on the complex structure [15], Ahlfors says that
he does not agree with Teichmüller’s statement made in [241] that his work
in [231] on the metric structure is of no use for the complex structure of
that space (in fact, Ahlfors bases his construction of the complex structure
on that work). He then adds the following:

The problem [of moduli] is not a clear cut one, and several formu-
lations seem equally reasonable. In his paper of 1944, Teichmüller
analyzes the situation and ends by setting his sights extremely
high. He does not claim complete success, and due to the sketchy
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nature of the paper I have been unable to determine just how
much he proved. [...] I have not succeeded in showing that the
Teichmüller topology is the only topology which permits a com-
plex analytic structure of the desired kind. Nevertheless, there are
sufficient indications that the Teichmüller topology is the only one
that is reasonable to consider.

Let us now talk about Bers.
Bers started his research by studying partial differential equations, and

he used them later in uniformization problems, in the tradition of Poincaré.
In his paper ICM 1958 paper, Spaces of Riemann surfaces, [29], he writes:

This address is a report on recent work, partly not yet published,
on the classical problem of moduli. Much of this work consists
in clarifying and verifying assertions of Teichmüller whose bold
ideas, though sometimes stated awkwardly and without complete
proofs, influenced all recent inverstigations, as well as the work of
Kodaira and Spencer on the higher dimensional case. Following
Teichmüller, we consider not the space of closed Riemann sur-
faces of a given genus g but rather an appropriate covering space
and certain related spaces. [...] Our main technical tools are uni-
formization theory and the theory of partial differential equations.
The problem of moduli has also an algebro-geometric aspect, but
the topological and analytical methods used here are, of course,
restricted to the classical case.

In the same paper, after presenting Teichmüller’s proof for the existence
of extremal quasiconformal mappings, Bers writes:

The statement that Tg is a (6g−6)-cell is already contained in the
work of Fricke. Fricke’s proof is quite different and very difficult
to follow.

The existence of a “natural” complex analytic structure in Tg

has been asserted by Teichmüller [241]; the first proof was given by
Ahlfors (The complex analytic structure of the space of complex
closed Riemann surfaces, to appear) after Rauch (On the tran-
scendental moduli, NAS, 42-49, 1955) showed how to introduce
complex-analytic coordinates in the neighborhood of any point of
Tg which is not a hyperelliptic surface. Other proofs are due to
Kodaira (to appear) and to Weil (Bourbaki).

He states as an application: “Every canonical dissection of a closed Riemann
surface S = U/G can be deformed into a dissection which maps into a convex
non-euclidean polygon in U .” He adds: “This was stated, with a different
and complicated proof, by Fricke” and he refers to Fricke and Klein [87]. At
the end of the paper, Bers asks:

Is Tg a subset of C3g−3?

The space of (unmarked) Riemann surfaces is the factor-
space Tg/Γg, Γg being the so-called mapping class group.
Give a precise description of this space.

In his paper [31] (1960), he announces, with a sketch of a proof, the
following theorem:

Theorem 13.1. Teichmüller space Tg,n is (holomorphically equivalent to)
a bounded domain in a complex vector space.
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For the existence of the complex structure, Bers mentions in [31] five pa-
pers (by Ahlfors, by himself, by Kodaira-Spencer, by Rauch and by Weil).130

The proof of Theorem 13.1 is based on the Ahlfors-Bers Riemann’s mapping
theorem theorm for variable metrics [16] (1960). In the next year, in a
note [32], Bers announces a mistake in the proof in [31] (which is not in
the Ahlfors-Bers Riemann mapping theorem and which nonetheless does
not affect the statement of 13.1, and he gives an outline of a new proof.
He announces that in the meanwhile, “simultaneously and independently,”
Ahlfors found another proof.

In 1964, Bers and Ehrenpreis showed that any finite-dimensional Te-
ichmüller space can be embedded as a domain of holomorphy in some CN

[38]. This is equivalent to the fact that Teichmüller space is a Stein manifold,
a question which was asked by Grothendieck in [99]. The Bers embedding
is defined in terms of Kleinian groups, and in that theory, quasiconformal
mappings and fine properties of their Schwarzian derivatives play a central
role. The embedding is based on Bers’ simultaneous uniformization theorem
[33]. Bers also worked on the generalization of the deformation theory to
surfaces of infinite type and to the universal Teichmüller space which later
on appears to be of use in physics. Bers worked on deformations of Kleinian
groups and he studied boundaries of Teichmüller spaces and of spaces of
Kleinian groups. It is not possible to review this work here. We refer to
Bers’ collected papers [37], and the survey by Kra and Maskit [142].

We would like to conclude this article by a quote from Adolphe Buhl,
commenting the work of Poincaré [51].

A brilliant work is not some novel entanglement which is so com-
plex that nobody, until then, had managed to build something so
complicated.

On the contrary, this is the clear perception of a very simple
harmony which the unrefined eyes of the contemporaries did not
see. It is the rapid sketch of an artist, unexpected though luminous
and striking, as soon as it exists. This is true in all domains of
thought and even more particularly in the mathematical domain.

In writing this paper, we were interested in the origin of the ideas that
are at the basis of the work of Bers. We hope to have communicated this
interest to the reader. We also tried to convey the conviction that math-
ematics, despite its division into several subfields, is a coherent living or-
ganism. Mathematical work requires personal investment but it is above all
a community work. Finally, the work we describe shows that mathemati-
cians are persistent and patient people, and the important constructions are
only achieved after several decades, sometimes centuries, of collective work,
exactly like Middle Ages cathedrals.
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[22] V. Alberge, A. Papadopoulos and G. Théret, A Commentary on Teichmüller’s paper
Extremal quasiconformal maps of closed oriented Riemann surfaces [231], Handbook
of Teichmüller theory, Vol. V (A. Papadopoulos, editor), Zürich, 2015 (to appear).
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Carathéodory. C. R. Acad. Sci. Paris, 190, 354-356 (1930).

[55] E. Cartan and H. Cartan, Les transformations des domaines cerclés bornés. C. R.
Acad. Sci. Paris, 192, 709-712 (1931).

[56] H. Cartan, Interview, Notices of the AMS, 46 (1999) No. 7, pp. 782-788.
[57] P. Cartier, A country of which nothing is known but the name: Grothendieck and

“motives.” In: L. Schneps (ed.) Alexandre Grothendieck: A Mathematical Portrait,
International Press of Boston, 2014, [216], p. 269-298.
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[75] J. Dieudonné, Course on algebraic geometry. 1: An outline of the history and de-
velopment of algebraic geometry. Translation of: Cours de géométrie algébrique. I :
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[95] H. Grötzsch, Über einige Extremalprobleme der konformen Abbildung. I, II. Berichte
Leipzig 80 (1928) 367-376, 497-502.

[96] A. Grothendieck, Techniques de descente et théorèmes d’existence en géométrie
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[175] H. Petersson, Über eine Metrisierung der automorphen Formen und die Theorie der
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Amer. Jour, of Math., t. 12 (1890) 211-294. Œuvres, Vol. IX, pp. 28-113.
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Riemann, traduites par L. Laugel, avec une préface de C. Hermite, Paris, Gauthier-
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[234] O. Teichmüller, Vollständige Lösung einer Extremalaufgabe der quasikonformen Ab-
bildung, Abh. Preuss. Akad. Wiss., Math.-Naturw. Kl. 1941, No. 5, 1-18 (1941).

[235] O. Teichmüller, Skizze einer Begründung der algebraischen Funktionentheorie durch
Uniformisierung. Deutsche Math. 6, 257-265 (1941).

[236] O. Teichmüller, Bestimmung der extremalen quasikonformen Abbildungen bei
geschlossenen orientierten Riemannschen Flächen. Abh. Preuss. Akad. Wiss. Math.-
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[249] A. Weil, L’intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann.

111, 178-182 (1935).
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1992.

[264] A. Weil, Collected Papers. Three volumes. Springer Verlag, 2nd printing, 2009.
[265] R. O. Wells jun., (ed.) The mathematical heritage of Hermann Weyl. Proceedings

of a symposium held at Duke University, Durham, North Carolina, May 12-16, 1987.
Proceedings of Symposia in Pure Mathematics, 48. Providence, RI: American Math-
ematical Society, 1988.
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