Polytopes and simplexes in p-adic fields

Luck Darnière

To cite this version:

Luck Darnière. Polytopes and simplexes in p-adic fields. Annals of Pure and Applied Logic, 2016, 168 (6), pp.1284-1307. hal-01276748v2

HAL Id: hal-01276748
 https://hal.science/hal-01276748v2

Submitted on 22 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Polytopes and simplexes in p-adic fields

Luck Darnière*

October 22, 2016

Abstract

We introduce topological notions of polytopes and simplexes, the latter being expected to fulfill in p-adically closed fields the function of real simplexes in the classical results of triangulation of semi-algebraic sets over real closed fields. We prove that the faces of every p-adic polytope are polytopes and that they form a rooted tree with respect to specialisation. Simplexes are then defined as polytopes whose faces tree is a chain. Our main result is a construction allowing to divide every p-adic polytope in a complex of p-adic simplexes with prescribed faces and shapes.

1 Introduction

Throughout all this paper we fix a p-adically closed field (K, v). The reader unfamiliar with this notion may restrict to the special case where $K=\mathbf{Q}_{p}$ or a finite extension of it, and v is its p-adic valuation. We let R denote the valuation ring of v, and $\Gamma=v(K)$ its valuation group (augmented with one element $+\infty=v(0)$). In this introductory section we present informally what we are aiming at. Precise definitions will be given in Section 2 and at the beginning of Section 6 .

Our long-term objective is to set a triangulation theorem which would be an acceptable analogue over K of the classical triangulation of semi-algebraic sets over the reals. Polytopes and simplexes in \mathbf{R}^{m} are well known to have the following properties, among others (see for example [BCR98] or [vdD98]).
(Sim) They are bounded subsets of \mathbf{R}^{m} which can be described by a finite set of linear inequalities of a very simple form.
(Fac) There is a notion of "faces" attached to them with good properties: every face of a polytope S is itself a polytope; if $S^{\prime \prime}$ is a face of S^{\prime} and S^{\prime} a face of S then $S^{\prime \prime}$ is a face of S; the union of the proper faces of S is a partition of its frontier.
(Div) Last but not least, every polytope can be divided in simplexes by a certain uniform process of "Barycentric Division" which offers a good control both on their shapes and their faces.

[^0]The goal of the present paper is to build a p-adic counterpart of real polytopes and simplexes having similar properties. Obviously there is no direct translation of concepts like linear inequalities and Barycentric Division to nonordered fields, such as the p-adic ones. Nevertheless we want our p-adic polytopes and simplexes to be defined by conditions which are as simple as possible, to obtain a notion of faces satisfying all the above properties, and most of all to develop a flexible and powerful division tool.

This is achieved here by first introducing and studying certain subsets of Γ^{m} called "largely continuous precells mod N ", for a fixed m-tuple N of positive integers. These sets will be defined by a very special triangular system of linear inequalities and congruence relations mod N. In particular they are defined simply by linear inequalities in the special case where $N=(1, \ldots, 1)$ (again, see Section 2 for precise definitions and basic examples).

This paper, which is essentially self-contained, is organised as follows. The general properties of subsets of Γ^{m} defined by conjunctions of linear inequalities and congruence conditions are studied in section 3. Property (Fac) is proved there to hold true for largely continuous precells $\bmod N$ (while property (Sim) is a by-product of their definition). Section 4 is devoted to two technical properties preparing the proof of our main result, a construction analogous to (Div) in our context. We call this "Monohedral Division" (see below). Section 5 is devoted to its proof.

We then return to the p-adic context in the final section 6 . By taking inverse images of largely continuous precells by the valuation v (which maps K^{m} onto Γ^{m}) and restricting them to certain subsets of R^{m}, we transfer all the definitions and results built in Γ^{m} in the previous sections to K^{m}, especially the Monohedral Division (which becomes in this context the "Monotopic Division", Theorem 6.3). This latter result paves the way towards a triangulation of semialgebraic p-adic sets, to appear in a further paper.

Monohedral division. In addition to (Sim) and (fac), every largely continuous precell $A \bmod N$ has one more remarkable property which real polytopes are lacking: its proper faces, ordered by specialisation ${ }^{1}$, form a rooted tree (Proposition $3.3(4)$. When this tree is a chain, we say that A is "monohedral".

Among real polytopes of a given dimension, the simplexes are those whose number of facets is minimal: a polytope $A \subseteq \mathbf{R}^{m}$ of dimension d has at least $d+1$ facets, and it is a simplex if and only if it has exactly $d+1$ facets (see Corollary 9.5 and Corollary 12.8 in [Brø83]). We expect largely continuous precells to fulfill in Γ^{m} a function similar to polytopes in \mathbf{R}^{m}, and the monohedral ones (whose ordered set of faces is in a sense the simplest possible tree) to fulfill a function similar to simplexes.

Indeed our main result, the "Monohedral Division" (Theorem 5.5), provides in our context a powerful tool very similar to (Div), the Barycentric Division of real polytopes. It provides in particular a "Monohedral Decomposition" (Theorem 5.6) which says that every largely continuous precell $\bmod N$ in Γ^{m} is the disjoint union of a complex of monohedral largely continuous precells mod N. The latter result is in analogy with the situation in the real case, where every polytope can be divided in simplexes forming a simplicial complex.

[^1]But the Barycentric Division in \mathbf{R}^{m} says much more than this. Roughly speaking, given a polytope A and a simplicial complex \mathcal{D} partitioning the frontier of A, it makes it possible to build a simplicial complex \mathcal{C} by partitioning A and "lifting" \mathcal{D}, in the sense that for every C in \mathcal{C}, the faces D of C which are outside A belong to \mathcal{D}. Moreover, given a positive function $\varepsilon: B \rightarrow \mathbf{R}$ (where B is any proper face of A), the shapes of the elements of \mathcal{C} can be required to satisfy the following condition: for every D in \mathcal{D} there is a unique $C \in \mathcal{C}$ such that D is the largest proper face of C in \mathcal{C}, and in that case the distance of any point $x \in C$ to its projection y onto B is smaller than $\varepsilon(y)$ (see Figure 1, where the dotted curve shows how the ε function controls the shapes of the elements of \mathcal{C} whose largest proper face outside A is contained in the lower facet B).

Figure 1: Division with constraints along a facet.

Although all these properties can be derived from the Barycentric Division in \mathbf{R}^{m}, none of them involves the notion of barycenter. The strength of our Monohedral Division in Γ^{m} (Theorem 5.5), and eventually of our Monotopic Division in K^{m} (Theorem 6.3), is that they preserve ${ }^{2}$ all of these properties.

2 Notation, definitions

We let $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ denote respectively the set of non-negative integers, of integers and of rational numbers, and $\mathbf{N}^{*}=\mathbf{N} \backslash\{0\}$. For every $p, q \in \mathbf{Z}$ we let $\llbracket p, q \rrbracket$ denote the set of integers k such that $p \leq k \leq q$ (that is the empty set if $p>q$).

Recall that a Z-group is a linearly ordered group G with a smallest positive element such that $G / n G$ has n elements for every integer $n \geq 1$. The reader unfamiliar with \mathbf{Z}-groups may restrict to the special but prominent case of \mathbf{Z} itself. Indeed a linearly ordered group is a \mathbf{Z}-group if and only if it is elementarily equivalent to \mathbf{Z} (in the Presburger language $\mathcal{L}_{\text {Pres }}$ defined below).
(K, v) is a p-adically closed field in the sense of [PR84], that is a Henselian valued field of characteristic zero whose residue field is finite and whose value $\operatorname{group} \mathcal{Z}=\Gamma \backslash\{+\infty\}=v\left(K^{*}\right)$ is a \mathbf{Z}-group. A field is p-adically closed if and only if it is elementarily equivalent (in the language of rings) to a finite extension of \mathbf{Q}_{p}, so the reader unfamiliar with the formalism of model-theory may restrict to this fundamental case.

Let \mathcal{Q} be the divisible hull of \mathcal{Z}. By identifying \mathbf{Z} with the smallest nontrivial convex subgroup of \mathcal{Z}, we consider \mathbf{Z} embedded into \mathcal{Z} (and \mathbf{Q} into \mathcal{Q}).

[^2]For every $a \in \mathcal{Q}$ we let $|a|=\max (-a, a)$.
Remark 2.1 When $\mathcal{Z}=\mathbf{Z}$, one may naively define polytopes in \mathbf{Z}^{m} as intersections $S \cap \mathbf{Z}^{m}$ where $S \subseteq \mathbf{R}^{m}$ is a polytope of \mathbf{R}^{m}. With other words, a polytope in \mathbf{Z}^{m} (and more generally in \mathcal{Z}^{m}) would be an intersection of finitely many half-spaces, that is the set of solutions of finitely many linear inequalities. Our polytopes are indeed so, but it will soon become clear that we need to be much more restrictive. Note first that such a definition does not lead naturally to a good notion of faces, because $S \cap \mathbf{Z}^{m}$ is closed with respect to the topology inherited from \mathbf{R}^{m}. In particular if S^{\prime} is a face of $S, S^{\prime} \cap \mathbf{Z}^{m}$ is disjoint from the closure of $S \cap \mathbf{Z}^{m}$. In order to carry significant topological properties, a notion of face for subsets of \mathbf{Z}^{m} must involve points at infinity.

For every a in $\Omega=\mathcal{Q} \cup\{+\infty\}$ we let $a+(+\infty)=(+\infty)+a=+\infty . \Omega$ is endowed the topology generated by the open intervals and the intervals $] a,+\infty]$ for $a \in \mathcal{Q} . \Omega^{m}$ is equipped with the product topology, and Γ^{m} with the induced topology. The topological closure of any set A in Ω^{m} is denoted \bar{A}. Thus for example $\Omega=\overline{\mathcal{Q}}$ and $\Gamma=\overline{\mathcal{Z}}$. The frontier of a subset A of Ω^{m} is the closure of $\bar{A} \backslash A$. We denote it ∂A.

Whenever we take an element $a \in \Omega^{m}$ it is understood that $a_{1}, \ldots, a_{m} \in \Omega$ are its coordinates. We say that a is non-negative if all its coordinates are. A subset A of Ω^{m} is non-negative if all its elements are. A function f with values in Ω is non-negative (resp. positive) on a subset X of its domain if $f(x)$ is non-negative (resp. positive) for every $x \in X$.

If $m \geq 1$ we let \widehat{a} (resp. \widehat{A}) denote the image of a (resp. A) under the coordinate projection of Ω^{m} onto the first $m-1$ coordinates Ω^{m-1}. We call it the socle of a (resp. A). If \mathcal{A} is a family of subsets of Γ^{m} we also call $\widehat{\mathcal{A}}=\{\widehat{A}: A \in \mathcal{A}\}$ the socle of \mathcal{A}.

The support of a, denoted Supp a, is the set of indexes i such that $a_{i} \neq+\infty$. When all the elements of A have the same support, we call it the support of A and denote it $\operatorname{Supp} A$. For every subset $I=\left\{i_{1}, \ldots, i_{r}\right\}$ of $\llbracket 1, m \rrbracket$ we let:

$$
F_{I}(A)=F_{i_{1}, \ldots, i_{r}}(A)=\{a \in \bar{A}: \operatorname{Supp} a=I\}
$$

When $F_{I}(A) \neq \emptyset$ we call it the face of A of support I. It is an upward face if moreover $m \in I$ and $F_{I \backslash\{m\}}(A)$ is non-empty. Note that if A is contained in Γ^{m} then so are its faces, because Γ^{m} is closed in Ω^{m}. By construction, $F_{I}(A)=\bar{A} \cap F_{I}\left(\Omega^{m}\right)$ hence \bar{A} is the disjoint union of all its faces. A complex in Γ^{m} is a finite family \mathcal{A} of pairwise disjoint subsets of Γ^{m} such that for every $A, B \in \mathcal{A}, \bar{A} \cap \bar{B}$ is the union of the common faces of A and B. It is a closed complex if moreover it contains all the faces of its members, or equivalently if $\bigcup \mathcal{A}$ is closed. Note that a finite partition \mathcal{S} of a subset A of Γ^{m} is a closed complex if and only if \mathcal{S} contains the faces of all its members.

The specialisation pre-order (see footnote 1) is an order on the faces of A. The largest proper faces of A with respect to this order are called its facets. We say that A is monohedral if its faces are linearly ordered by specialisation. Note that every subset of $F_{I}\left(\Gamma^{m}\right)$ is clopen in $F_{I}\left(\Gamma^{m}\right)$. In particular if $A \subseteq F_{I}\left(\Gamma^{m}\right)$ then ∂A is the disjoint union of its proper faces. Note also that $\overline{F_{J}}(A)=\emptyset$ whenever $J \nsubseteq I$.

Example 2.2 Let $A \subseteq \mathbf{Z}^{3}$ be defined by $a_{1} \geq 0, a_{2} \geq a_{1}$ and $a_{3}=2 a_{2}-2 a_{1}$. It has four non-empty faces: A itself, two facets $F_{1}(A)=\mathbf{N} \times\{+\infty\} \times\{+\infty\}$ and $F_{3}(A)=\{+\infty\} \times\{+\infty\} \times 2 \mathbf{N}$, plus $F_{\emptyset}(A)=\{(+\infty,+\infty,+\infty)\}$.

We let π_{I}^{m} be the natural projection of Γ^{m} onto $F_{I}\left(\Gamma^{m}\right)$. When m is clear from the context, π_{I}^{m} is simply denoted π_{I}.
Remark 2.3 For every $A \subseteq \Gamma^{m}$ note that $F_{J}(A) \subseteq \pi_{J}(A)$ and $\widehat{F_{J}(A)} \subseteq F_{\widehat{J}}(\widehat{A})$ (where $\widehat{J}=J \backslash\{m\}$). Indeed for every $b \in F_{J}(B)$ there are points in A arbitrarily close to b. In particular there is a point $a \in A$ such that $\max _{i \in I}\left|a_{i}-b_{i}\right|<1$, which implies that $\pi_{J}(a)=b$. This proves the first inclusion, and we leave the second one to the reader.

For every $J \subseteq \llbracket 1, m \rrbracket$ and $a \in \Omega^{m}$ we let $\Delta_{J}^{m}(a)=\min \left\{a_{i}: i \notin J\right\}$ (if $J=\llbracket 1, m \rrbracket$ we use the convention that $\left.\Delta_{J}^{m}(a)=\min \emptyset=+\infty\right)$. Again the superscript m is omitted whenever it is clear from the context. Note that for every $a, b \in \Omega^{m}$

$$
\Delta_{J}(a+b) \geq \Delta_{J}(a)+\Delta_{J}(b)
$$

Remark 2.4 When $\mathcal{Z}=\mathbf{Z}$ the topology ${ }^{3}$ on Ω^{m} comes from the distance $d(a, b)=\max _{1 \leq i \leq m}\left|2^{-a_{i}}-2^{-b_{i}}\right|$, with the convention that $2^{-\infty}=0$. Thus $2^{-\Delta_{J}(a)}$ is just the distance from a to its projection $\pi_{J}(a)$. In the general case the topology on Ω^{m} no longer comes from a distance. Nevertheless we will keep this geometric intuition in mind, that $\Delta_{J}(a)$ measures something like a distance from a to $F_{J}\left(\Omega^{m}\right)$: the bigger $\Delta_{J}(a)$ is, the closer a is to $F_{J}\left(\Omega^{m}\right)$.

This intuitive meaning makes the following facts rather obvious.
Fact 2.5 For every function $f: A \subseteq \Gamma^{m} \rightarrow \Omega$, given $b \in \Gamma^{m}$ such that $\operatorname{Supp} b=$ J we have:

1. $b \in F_{J}(A)$ iff $b \in \bar{A}$ iff $\forall \delta \in \mathcal{Z}, \exists a \in A, \pi_{J}(a)=b$ and $\Delta_{J}(a) \geq \delta$.
2. If $b \in F_{J}(A)$ then f has limit $+\infty$ at b iff $\forall \varepsilon \in \mathcal{Z}, \exists \delta \in \mathcal{Z}, \forall a \in A$, $\left[\pi_{J}(a)=b\right.$ and $\left.\Delta_{J}(a) \geq \delta\right] \Rightarrow f(a) \geq \varepsilon$.

Given a vector $u \in \mathcal{Z}^{m}$ we let $A+u=\{x+u: x \in A\}$. We say that u is pointing to some $J \subseteq \llbracket 1, m \rrbracket$ if $u_{i}=0$ for $i \in J$ and $u_{i}>0$ for $i \notin J$.
Remark 2.6 Let $J \subseteq I \subseteq \llbracket 1, m \rrbracket$ and S be any subset of $F_{I}\left(\Gamma^{m}\right)$. Using Remark 2.3 and the above facts, one easily sees that if for every $\delta \in \mathcal{Z}$ there is $u \in \mathcal{Z}^{m}$ pointing to J such that $\Delta_{J}(u) \geq \delta$ and $S+u \subseteq S$ then $F_{J}(S)=\pi_{J}(S)$, and in particular $F_{J}(S) \neq \emptyset$.

Example 2.2 shows that even if a subset A of \mathbf{Z}^{m} is defined by finitely many linear inequalities, its faces may not be so. Thus a polytope A in Γ^{m} must satisfy additional conditions, in order to ensure that some linear inequalities which define A also define its faces after passing to the limits (see Proposition 3.11 for a precise statement). It is these conditions that we are going to introduce now.

A function $f: A \subseteq \Gamma^{m} \rightarrow \Omega$ is largely continuous on A if it can be extended to a continuous function on \bar{A}, which we will usually denote \bar{f}. If A has support I, we say that f is an affine map (resp. a linear map) if either

[^3]f is constantly equal to $+\infty$, or for some $\alpha_{0} \in \mathcal{Q}$ (resp. $\alpha_{0}=0$) and some $\left(\alpha_{i}\right)_{i \in I} \in \mathbf{Q}^{I}$, we have
\[

$$
\begin{equation*}
\forall a \in A, \quad f(a)=\alpha_{0}+\sum_{i \in I} \alpha_{i} a_{i} . \tag{1}
\end{equation*}
$$

\]

We call α_{0} the "constant coefficient" in the above expression of f. If such an expression exists for which $\alpha_{0} \in \mathcal{Z}$ and $\alpha_{i} \in \mathbf{Z}$ for $i \in I$, we say that f is integrally affine. A affine map which takes values in Γ will be called Γ-affine. For example $f(x)=x / 2$ is Γ-affine on $2 \mathbf{Z}$ but is not integrally affine.
Remark 2.7 Affinity and linearity are intrinsic properties because a function $\varphi: A \subseteq F_{I}\left(\Gamma^{m}\right) \mapsto \mathcal{Q}$ is a linear map if and only if for every $a_{1}, \ldots, a_{k} \in A$ and every $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{Q}^{m}$:

$$
\sum_{1 \leq i \leq k} \lambda_{i} a_{i} \in A \Longrightarrow \varphi\left(\sum_{1 \leq i \leq k} \lambda_{i} a_{i}\right)=\sum_{1 \leq i \leq k} \lambda_{i} \varphi\left(a_{i}\right)
$$

The symbols of the Presburger language $\mathcal{L}_{\text {Pres }}=\left\{0,1,+, \leq,\left(\equiv_{n}\right)_{n \in \mathbf{N}^{*}}\right\}$ are interpreted as usually in \mathcal{Z} : the binary relation $a \equiv_{n} b$ says that $a-b \in n \mathcal{Z}$, and the other symbols have their obvious meanings. A subset X of \mathcal{Z}^{d} is $\mathcal{L}_{\text {Pres }}$-definable if there is a first order formula $\varphi(\xi)$ in $\mathcal{L}_{\text {Pres }}$, with parameters in \mathcal{Z} and a d-tuple ξ of free variables, such that $X=\left\{x \in \mathcal{Z}^{d}: \mathcal{Z} \models \varphi(x)\right\}$. A function $f: X \subseteq \mathcal{Z}^{d} \rightarrow \mathcal{Z}$ is $\mathcal{L}_{\text {Pres }}$-definable if its graph is.

Each $F_{I}\left(\Gamma^{m}\right)$ can be identified with \mathcal{Z}^{d} with $d=\operatorname{Card}(I)$. We say that a subset A of Γ^{m} is definable if for every $I \subseteq \llbracket 1, m \rrbracket$ the set $A \cap F_{I}\left(\Gamma^{m}\right)$ is $\mathcal{L}_{\text {Pres }}$-definable by means of this identification. We say that a function $f: A \subseteq$ $\Gamma^{m} \rightarrow \Omega$ is definable if there is an integer $N \geq 1$ such that $N f(X) \subseteq \Gamma$ and if the restrictions of $N f$ to each $F_{I}\left(\Gamma^{m}\right)$ become, after this identification, either an $\mathcal{L}_{\text {Pres }}$-definable map from $\mathcal{Z}^{\operatorname{Card}(I)}$ to \mathcal{Z} or the constant map $+\infty$. Note that every affine map is definable in this broader sense.

The next characterisation of definable maps and sets comes directly from Theorem 1 in [Clu03].

Theorem 2.8 (Cluckers) For every definable function $f: A \subseteq \Gamma^{m} \rightarrow \Gamma$ on a non-negative set A, there exists a partition of A in finitely many definable sets, on each of which the restriction of f is an affine map.

It is well known that the theory of \mathbf{Z}-groups has quantifier elimination and definable Skolem functions. At many places, without mentioning, we will use the latter property under the following form.

Theorem 2.9 (Skolem Functions) Let $A \subseteq \mathcal{Z}^{m}$ and $B \subseteq \mathcal{Z}^{n}$ be two $\mathcal{L}_{\text {Pres }}$-definable sets. Let $\varphi(x, y)$ be a first order formula in $\mathcal{L}_{\text {Pres }}$. If for every $a \in A$ there is $b \in B$ such that $\mathcal{Z} \models \varphi(a, b)$ then there is a definable map $\lambda: A \rightarrow B$ such that $\mathcal{Z} \models \varphi(a, \lambda(a))$ for every $a \in A$.

Since \mathcal{Z} is elementarily equivalent to \mathbf{Z} in the language $\mathcal{L}_{\text {Pres }}$, every nonempty $\mathcal{L}_{\text {Pres }}$-definable subset of \mathcal{Z} which is bounded above (resp. below) has a maximum (resp. minimum) element. As a consequence for every $a \in \Omega$ there is in \mathcal{Z} a largest element $\lfloor a\rfloor$ (resp. $\lceil a\rceil$) which is $\leq a$ (resp. $\geq a$). Note that if $f: X \subseteq \mathcal{Z}^{d} \rightarrow \mathcal{Q}$ is definable and $N \geq 1$ is an integer such
that $N f$ is $\mathcal{L}_{\text {Pres }}$-definable, then for every integer $0 \leq k<N$ the set $S_{k}=\{x \in$ $\left.X: N f(x) \equiv_{N} k\right\}$ is $\mathcal{L}_{\text {Pres }}$-definable, and so is the map $\lfloor f\rfloor(x)=(N f(x)-k) / N$ on S_{k}. Thus the map $\lfloor f\rfloor: S \rightarrow \mathcal{Z}$ is $\mathcal{L}_{\text {Pres }}$-definable, and so is $\lceil f\rceil$ by a symmetric argument. Obviously the same holds true for every definable map from $A \subseteq \Gamma^{m}$ to Ω.

Lemma 2.10 If $f: A \subseteq \Gamma^{m} \rightarrow \Omega$ is a largely continuous definable map on a non-negative set A, then it has a minimum in A.

Proof: It suffices to prove the result separately for each $A \cap F_{I}\left(\Gamma^{m}\right)$ with $I \subseteq$ $\llbracket 1, m \rrbracket$. Every such piece can be identified with a definable subset of $\mathcal{Z}^{\text {Card } I}$ hence we can assume that $A \subseteq \mathcal{Z}^{m}$. Multiplying f by some integer $n \geq 1$ if necessary we can assume that f takes values in Γ, and even in \mathcal{Z} (otherwise f is constantly $+\infty$ and the result is trivial). Since $\mathcal{Z} \equiv \mathbf{Z}$, by instantiating the parameters of a definition of $f: A \subseteq \mathcal{Z}^{m} \rightarrow \mathcal{Z}$ it suffices to prove the result for every largely continuous definable function on a non-negative subset A of \mathbf{Z}^{m}. But in that case the topology on Γ^{m} comes from a metric such that every non-negative subset of Γ^{m} is precompact (that is \bar{A} is compact). So there is $\bar{a} \in \bar{A}$ such that $\bar{f}(\bar{a})=\min \{\bar{f}(x): x \in \bar{A}\}$. For any $a \in A$ close enough to \bar{a} we have $f(a)=\bar{f}(\bar{a})$ (because $f(A) \subseteq \mathbf{Z})$ hence $f(a)=\min \{f(x): x \in A\}$.

Lemma 2.11 Let $f: A \subseteq \Gamma^{m} \rightarrow \Omega^{n}$ a continuous definable map. If A is non-negative then $f(\bar{A})$ is closed.

Proof: As for Lemma 2.10 we can reduce to the case where $\mathcal{Z}=\mathbf{Z}$. But then \bar{A} is compact, hence so is $f(\bar{A})$ since f is continuous.

We extend the binary congruence relations of \mathcal{Z} to Γ with the convention that $a \equiv+\infty[N]$ for every $a \in \Gamma$ and every $N \in \mathbf{N}$. A subset A of $F_{I}\left(\Gamma^{m}\right)$ is a basic Presburger set if it is the set of solutions of finitely many linear inequalities and congruence relations. Although we will not use it, it is worth mentioning that, by the quantifier elimination of the theory of \mathbf{Z} in the language $\mathcal{L}_{\text {Pres }}$, the definable subsets of \mathcal{Z}^{d}, and more generally of Γ^{m}, are exactly the finite unions of basic Presburger sets.

Cluckers has shown in [Clu03] that every definable subset of \mathcal{Z}^{d} is actually the disjoint union of finitely many subsets of a much more restrictive sort, called cells. The following definition of precells in Γ^{m}, more precisely of precells mod N for a given $N \in\left(\mathbf{N}^{*}\right)^{m}$, is adapted from his (see Remark 2.12 below). Since we only need to consider non-negative precells it is convenient to restrict the definition to this case. If $m=0, \Gamma^{0}$ itself is the only precell $\bmod N$ in Γ^{0}. If $m \geq 1$, for every $I \subseteq \llbracket 1, m \rrbracket$, a subset A of $F_{I}\left(\Gamma^{m}\right)$ is a precell $\bmod N$ if: \widehat{A} is a precell $\bmod \widehat{N}$, and there are non-negative affine maps $\mu, \nu: \widehat{A} \rightarrow \Omega$ and an integer ρ such that $0 \leq \rho<N_{m}$ and A is exactly the set of points $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in \widehat{A}$ and

$$
\begin{equation*}
\mu(\widehat{a}) \leq a_{m} \leq \nu(\widehat{a}) \text { and } a_{m} \equiv \rho\left[N_{m}\right] \tag{2}
\end{equation*}
$$

We call μ, ν the boundaries of A, ρ a modulus for A, and such a triple (μ, ν, ρ) a presentation of A. We call it a largely continuous presentation of A if
moreover μ, ν are largely continuous. A is a largely continuous precell mod N if $m=0$, or if \widehat{A} is largely continuous precell $\bmod \widehat{N}$ and A is a precell \bmod N having a largely continuous presentation.
Remark 2.12 Cells in [Clu03] are not required to have non-negative boundaries, but to be of one of these two types : either $\mu-\nu$ is not finitely bounded or $\mu=\nu$. Unfortunately this condition seems to be too restrictive for our constructions, we have to relax it. Thus our precells are not cells in the sense of [Clu03] but a restriction (we require non-negative boundaries) of a slight generalisation ($\mu-\nu$ can be finitely bounded and non-zero) of them.

We are going to prove in the next section that the faces of every largely continuous precell $\bmod N$ are still largely continuous precells mod the same N (see Proposition 3.11). Thus, if one restricts to the case where $N=(1, \ldots, 1)$, these precells are the best candidate we have for a discrete analogue of real polytopes: they are intersections of finitely many half-spaces and their faces are so. In the p-adic triangulation that we are aiming at we will indeed restrict to this case. However it appears that all the results and constructions that we are going to consider in the present paper remain valid for largely continuous precells mod arbitrary N. Since it does not create significant complication, we will then stick to this more general setting.

3 Faces and projections

In this section we consider a non-empty basic Presburger set $A \subseteq F_{I}\left(\Gamma^{m}\right)$ defined by

$$
\begin{equation*}
\underset{1 \leq l \leq l_{0}}{\bigwedge_{l}} \varphi_{l}(x) \geq \gamma_{l} \text { and } \underset{1 \leq l \leq l_{1}}{\bigwedge_{l}} \psi_{l}(x) \equiv \rho_{l}\left[n_{l}\right] \tag{3}
\end{equation*}
$$

where $\varphi_{l}, \psi_{l}: F_{I}\left(\Gamma^{m}\right) \rightarrow \mathcal{Z}$ are integrally linear maps, $\gamma_{l} \in \mathcal{Z}, \rho_{l}$ and n_{l} are integers such that $0 \leq \rho_{l}<n_{l}$. We prove some basic properties on the faces of A and the affine maps on A. Finally we derive from these facts that every face of a largely continuous precell $A \bmod N$ is a largely continuous precell $\bmod N$ and has a presentation inherited from A in a uniform way (Proposition 3.11).

Example 2.2 shows that precell $\bmod N($ here $N=(1,1,1))$ can have a facet which is no longer a precell mod N. But even worse is possible: the next example shows that a precell $\bmod N$ can have a facet which is not even a basic Presburger set.
Example 3.1 $A \subseteq \mathbf{Z}^{3}$ is defined by $0 \leq x_{1} \leq x_{2}$ and $\left(x_{1}+3 x_{2}\right) / 3 \leq z \leq$ $\left(x_{1}+3 x_{2}+1\right) / 3$. Its unique facet $F_{1}(A)$ is defined by $0 \leq x_{1}$ and either $x_{1} \equiv 0[3]$ or $x_{1} \equiv 2[3]$ (and of course $x_{2}=x_{3}=+\infty$).

Lemma 3.2 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be defined by (3). Let J be any subset of $\llbracket 1, m \rrbracket$. Then $F_{J}(A) \neq \emptyset$ if and only if for every $\delta \in \mathcal{Z}$ there is $u \in \mathcal{Z}^{m}$ pointing to J such that $\Delta_{J}(u) \geq \delta$ and $A+u \subseteq A$.

Proof: It suffices to prove the result when $I=\llbracket 1, m \rrbracket$. One direction is general by Remark 2.6 , so let us prove the converse. Assume that $F_{J}(A) \neq \emptyset$ and fix any $\delta \in \mathcal{Z}$. Without lost of generality we can assume that $\delta>0$. Pick $y_{0} \in F_{J}(A)$ and let $A_{0}=\left\{x \in A: \pi_{J}(x)=y_{0}\right\}$. By Remark 2.3, $F_{J}\left(A_{0}\right)=\left\{y_{0}\right\}$.

Assume that for some $k \in \llbracket 0, l_{0}-1 \rrbracket$ we have found a definable subset A_{k} of A_{0} such that $F_{J}\left(A_{k}\right)=\left\{y_{0}\right\}$ and for every $l \in \llbracket 1, k \rrbracket$, either φ_{l} is constant on A_{k} or $\varphi_{l}(x)$ tends to $+\infty$ as x tends to y_{0} in A_{k}. If the same holds true for φ_{k+1}, let $A_{k+1}=A_{k}$. Otherwise, there is some $\alpha \in \mathcal{Z}$ such that for every $\omega \in \mathcal{Z}$ there is $x \in A_{k}$ such that $\Delta_{J}(x) \geq \omega$ and $\varphi_{k+1}(x) \leq \alpha$. The set Υ of these α 's is definable, non-empty, and bounded below since $\varphi_{k+1} \geq \gamma_{k+1}$ on A_{k}. Hence it has a minimum, say β. By minimality of β there is $\omega_{0} \in \mathcal{Z}$ such that for every $x \in A_{k}$ such that $\Delta_{J}(x) \geq \omega_{0}, \varphi_{k+1}(x)>\beta-1$. Thus, for every $\omega \in \mathcal{Z}$ there is $x \in A_{0}$ such that $\Delta_{J}(x) \geq \omega$ and $\varphi_{k+1}(x)=\beta$ (because $\beta \in \Upsilon$). With other words, the set A_{k+1} defined by

$$
A_{k+1}=\left\{x \in A_{k}: \varphi_{k+1}(x)=\beta\right\}
$$

is such that $F_{J}\left(A_{k+1}\right) \neq 0$ (see fact 2.5). It obviously has all the other required properties since it is contained in A_{k}.

By repeating the process until $k=l_{0}$ we get a definable set $A_{l_{0}}$ as above. Pick any $a \in A_{l_{0}}$, by construction there is $\omega \in \mathcal{Z}$ such that for every $x \in A_{l_{0}}$ if $\Delta_{J}(x) \geq \omega$ then $\varphi_{l}(x) \geq \varphi_{l}(a)$ for every $l \in \llbracket 1, l_{0} \rrbracket$. Pick any $b \in A_{l_{0}}$ such that $\Delta_{J}(b) \geq \omega$ and $\Delta_{J}(b) \geq \delta+a_{i}$ for every $i \notin J$. It remains to check that $u=b-a$ gives the conclusion. For every $j \in J, a_{j}=b_{j}=y_{0, j}$ because $a, b \in A_{l_{0}} \subseteq A_{0}$ and $\pi_{J}\left(A_{0}\right)=\left\{y_{0}\right\}$, hence $u_{j}=0$. For $i \notin J$ we have $b_{i} \geq \Delta_{J}(b) \geq \delta+a_{i}$, hence $u_{i} \geq \delta>0$. In particular u points to J and $\Delta_{J}(u) \geq \delta$.

Finally let x be any element of $A_{l_{0}}$. For every $l \leq l_{0}$ we have $\varphi_{l}(x) \geq \gamma_{l}$ since $x \in A$, and by linearity of φ_{l}

$$
\begin{equation*}
\varphi_{l}(x+u)=\varphi_{l}(x)+\varphi_{l}(u) \geq \gamma_{l}+\varphi_{l}(u) . \tag{4}
\end{equation*}
$$

We also have $\varphi_{l}(b)=\varphi_{l}(a)+\varphi_{l}(u)$ by linearity, and $\varphi_{l}(b) \geq \varphi_{l}(a)$ because $\Delta_{J}(b) \geq \omega$, hence $\varphi_{l}(u) \geq 0$. It follows that $\varphi_{l}(x+u) \geq \gamma_{l}$ by (4). On the other hand, for every $l \in \llbracket 1, l_{1} \rrbracket$ we have $\psi_{l}(x) \equiv \rho_{l}\left[n_{l}\right]$ because $x \in A, \psi_{l}(a) \equiv \rho_{l}\left[n_{l}\right]$ and $\psi_{l}(b) \equiv \rho_{l}\left[n_{l}\right]$ for the same reason, hence $\psi_{l}(x+u)=\psi_{l}(x)+\psi_{l}(a)-\psi_{l}(b) \equiv$ $\rho_{l}\left[n_{l}\right]$. Thus $x+u \in A$ for every $x \in A$, which proves the result.

Proposition 3.3 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a basic Presburger set, J and H be any subsets of $\llbracket 1, m \rrbracket$ such that $F_{J}(A)$ and $F_{H}(A)$ are non-empty.

1. $F_{J}(A)=\pi_{J}(A)$.
2. If $H \subseteq J$ then $F_{H}(A)=F_{H}\left(F_{J}(A)\right)$.
3. $F_{H}(A) \subseteq \overline{F_{J}(A)}$ if and only if $H \subseteq J$. In particular the faces of A are linearly ordered by specialisation if and only if their supports are linearly ordered by inclusion.
4. $F_{H \cap J}(A)$ is non-empty.

We will refer to the n-th point of Proposition 3.3 as to Proposition 3.3(n).
Remark 3.4 Proposition 3.3(4) shows that the set of faces of A ordered by specialisation is a distributive lower semi-lattice with one smallest element. If S is any monohedral subset of Γ^{m}, Proposition 3.3(3) implies that every basic Presburger subset A of S is monohedral, and Proposition 3.3(2) that every face of A is again monohedral.

Proof: The first point $F_{J}(A)=\pi_{J}(A)$ follows from Lemma 3.2, by Remark 2.6 applied to $S=A$.

For the second point, $H \subseteq J$ implies that $\pi_{H}(A)=\pi_{H}\left(\pi_{J}(A)\right)$. Since $F_{H}(A)=\pi_{H}(A)$ and $F_{J}(A)=\pi_{J}(A)$ by the first point, it suffices to prove that $F_{H}\left(\pi_{J}(A)\right)=\pi_{H}\left(\pi_{J}(A)\right)$. For every $\delta \in \mathcal{Z}$ there is by Lemma 3.2 a vector $u \in \mathcal{Z}^{m}$ pointing to H such that $\Delta_{H}(u) \geq \delta$ and $A+u \subseteq A$. Then obviously $\pi_{J}(A)+u=\pi_{J}(A+u) \subseteq \pi_{J}(A)$, and the conclusion follows by Remark 2.6 applied to $S=\pi_{J}(A)$.

For the third point, one direction follows from the second point and the other direction is general since $F_{H}(A) \subseteq F_{H}\left(\Gamma^{m}\right), \overline{F_{J}(A)} \subseteq \overline{F_{J}\left(\Gamma^{m}\right)}$, and $F_{H}\left(\Gamma^{m}\right)$ is disjoint from $\overline{F_{J}(A)}$ if H is not contained in J.

It remains to prove the last point. For every $\delta \in \mathcal{Z}$, Lemma 3.2 gives u_{J} and u_{H} in \mathcal{Z}^{m} pointing to J and H respectively such that $\Delta_{J}\left(u_{J}\right) \geq \delta, A+u_{J} \subseteq A$ and similarly for u_{H}. Without lost of generality we can assume that $\delta>0$ hence for every $i \notin J \cap H, u_{J, i}+u_{H, i} \geq \delta>0$. In particular $u_{J}+u_{H}$ points to $J \cap H$ and $\Delta_{J \cap H}\left(u_{J}+u_{H}\right) \geq \delta$. Obviously $A+u_{J}+u_{H}$ is contained in A. So $F_{J \cap H}(A)$ is non-empty by Remark 2.6.

Proposition 3.5 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a basic Presburger set defined by (3), $f: A \rightarrow \Omega$ be an affine map, $J \subseteq I$ and $B=F_{J}(A)$. Assume that B is not empty and that f extends to a continuous map $f^{*}: A \cup B \rightarrow \Omega$. Then f^{*} is affine, and if $f^{*} \neq+\infty$ then $f=f_{\mid B}^{*} \circ \pi_{J \mid A}$. In particular if $f^{*} \neq+\infty$ then $f(A)=f^{*}(B)$.

If f is Γ-affine then so is f^{*} of course. However, if f is integrally affine we cannot conclude that f^{*} will be integrally affine as well, even if f is largely continuous, as the following example shows.
Example 3.6 Keep $A \subseteq \mathbf{Z}^{3}$ as in Example 2.2. The map $f(x)=x_{2}-x_{1}$ is integrally affine and largely continuous on A, with $\bar{f}(x)=x_{3} / 2$ on ∂A. This is no longer an integrally affine map on $B=F_{3}(A)=\{+\infty\} \times\{+\infty\} \times 2 \mathbf{N}$.

Proof: It suffices to prove the result when $I=\llbracket 1, m \rrbracket, f<+\infty$ is an integrally linear map and f^{*} is not constantly equal to $+\infty$. Note that f^{*} is affine by Remark 2.7 (because equalities satisfied by f at every point of A pass to the limits). So we only have to prove that $f(x)=f^{*}\left(\pi_{J}(x)\right)$ for every $x \in A$.

Let φ be an integrally linear map on \mathcal{Z}^{m} extending f, and $b \in B$ such that $f^{*}(b)<+\infty$. Since $f(A) \subseteq \mathcal{Z}$ and $f(x)$ tends to $f^{*}(b)$ at b, there exists $\delta \in \mathcal{Z}$ such that for every $x \in A$, if $\pi_{J}(x)=b$ and $\Delta_{J}(x) \geq \delta$ then $f(x)=f^{*}(b)$. Pick any $a \in A$ such that $\pi_{J}(a)=b$ and $\Delta_{J}(a) \geq \delta$, hence $f(a)=f^{*}(b)$.

Now assume for a contradiction that $f\left(x_{0}\right) \neq f^{*}\left(\pi_{J}\left(x_{0}\right)\right)$ for some $x_{0} \in A$. Let $y_{0}=\pi_{J}\left(x_{0}\right)$, since $f(x)$ tends to $f^{*}\left(y_{0}\right)$ at y_{0} and $f^{*}\left(y_{0}\right) \neq f\left(x_{0}\right)$ there exists $\omega \in \mathcal{Z}$ such that for every $x \in A$, if $\pi_{J}(x)=y_{0}$ and $\Delta_{J}(x) \geq \omega$ then $f(x) \neq f\left(x_{0}\right)$. Lemma 3.2 gives $u \in \mathcal{Z}^{m}$ pointing to J such that $\Delta_{J}(u) \geq$ $\omega-\Delta_{J}\left(x_{0}\right)$ and $A+u \subseteq A$. Then $\pi_{J}\left(x_{0}+u\right)=\pi_{J}\left(x_{0}\right)=y_{0}$ and $\Delta_{J}\left(x_{0}+u\right) \geq$ $\Delta_{J}\left(x_{0}\right)+\Delta_{J}(u) \geq \omega$, hence $f\left(x_{0}+u\right) \neq f\left(x_{0}\right)$. By linearity it follows that $\varphi(u)=f\left(x_{0}+u\right)-f\left(x_{0}\right) \neq 0$. On the other hand we have $\Delta_{J}(a+u) \geq$ $\Delta_{J}(a)+\Delta_{J}(u) \geq \delta$ and $\pi_{J}(a+u)=\pi_{J}(a)=b$ hence $f(a+u)=f^{*}(b)=f(a)$, and thus by linearity $\varphi(u)=f(a+u)-f(a)=0$, a contradiction.

Proposition 3.7 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a basic Presburger set with $m \geq 1$, and $X=\widehat{A}$. Then for every face ${ }^{4} B=F_{J}(A)$, its socle $\widehat{B}=F_{\widehat{J}}(\widehat{A})$ is a face of \widehat{A}. If moreover A is non-negative, then conversely for every face Y of X there is a face B of A such that $\widehat{B}=Y$. In that case $B=Y \times\{+\infty\}$ if $m \notin \operatorname{Supp} B$, and $B=(Y \times \mathcal{Z}) \cap \bar{A}$ if $m \in \operatorname{Supp} B$.

Remark 3.8 The last assertion on B is general: for every subset S of $F_{I}\left(\Gamma^{m}\right)$ and every face $T=F_{J}\left(\Gamma^{m}\right)$ with socle Y, we have $T=Y \times\{+\infty\}$ if $m \notin J$, and $T=(Y \times \mathcal{Z}) \cap \bar{S}$ if $m \in J$. Indeed $T=F_{J}\left(\Gamma^{m}\right) \cap \bar{S}$ and $F_{J}\left(\Gamma^{m}\right)$ is equal to $F_{\widehat{J}}\left(\Gamma^{m-1}\right) \times\{+\infty\}$ if $m \notin J$ and to $F_{\widehat{J}}\left(\Gamma^{m-1}\right) \times \mathcal{Z}$ otherwise.

Example 3.9 Let $A=\left\{x \in \mathbf{Z}^{3}: x_{1}-x_{2}-x_{3}=0\right\}$, its proper faces are $B_{0}=\{(+\infty,+\infty,+\infty)\}, B_{1}=\{+\infty\} \times\{+\infty\} \times \mathbf{Z}$ and $B_{2}=\{+\infty\} \times \mathbf{Z} \times\{+\infty\}$. Thus $\mathbf{Z} \times\{+\infty\}$ is a facet of $\widehat{A}=\mathbf{Z}^{2}$ which is not the socle of any face of A.

This example shows that the assumption that A is non-negative is needed for the second part of Proposition 3.7 to hold. Note that $\widehat{B}_{1}=\{(+\infty,+\infty)\}$ is not a facet of $\widehat{A}=\mathbf{Z}^{2}$, which shows that the positivity of A is mandatory also in Corollary 3.10.
Proof: Given that $B=F_{J}(A)$ is a face of A, hence non-empty, let us prove that $F_{\widehat{J}}(\widehat{A})=\pi_{\widehat{J}}(\widehat{A})$. For every $\delta \in \mathcal{Z}$ we can find a vector $u \in \mathcal{Z}^{m}$ pointing to J such that $\Delta_{J}(u) \geq \delta$ and $A+u \subseteq A$, in particular \widehat{u} points to $\widehat{J}, \Delta_{\widehat{J}}(\widehat{u}) \geq \delta$ and $\widehat{A}+\widehat{u} \subseteq \widehat{A}$. Thus $F_{\widehat{J}}(\widehat{A})=\pi_{\widehat{J}}(\widehat{A})$ by Remark 2.6 applied to $S=\widehat{A}$. Since $B=\pi_{J}(A)$ by Proposition 3.3(1), and obviously $\widehat{\pi_{J}(A)}=\pi_{\widehat{J}}(\widehat{A})$, it follows that $\widehat{B}=F_{\widehat{J}}(\widehat{A})$.

Now assume that A is non-negative. Then the socle of \bar{A} is closed by Lemma 2.11. It contains X, hence \bar{X}. In particular it contains Y, which is non-empty. So there is $b \in \bar{A}$ whose socle \widehat{b} belongs to Y. Let $J=\operatorname{Supp} b$ and $B=F_{J}(A)$. Since B contains b it is non-empty, hence a face of A. Then \widehat{B} is a face of X by the first point. Since \widehat{b} belongs both to Y and \widehat{B}, it follows that $Y=\widehat{B}$.

Corollary 3.10 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a non-closed non-negative basic Presburger set with socle X. Let B be a facet of A with socle Y. Then $Y=X$ or Y is a facet of X.

Proof: By Proposition 3.7, Y is a face of X. If $Y \neq X$ then there is a facet Y^{\prime} of X whose closure contains Y. It remains to show that $Y=Y^{\prime}$. Proposition 3.7 gives a face B^{\prime} of A with socle Y^{\prime}. Let $J, J^{\prime}, H, H^{\prime}$ be the supports of A, A^{\prime}, B, B^{\prime} respectively. Obviously $H=J \backslash\{m\}$ and $H^{\prime}=J^{\prime} \backslash\{m\}$. If $B=B^{\prime}$ then $J=J^{\prime}$ hence $H=H^{\prime}$ and thus $Y=Y^{\prime}$. Now assume that $B \neq B^{\prime}$. Since B is a facet of A it is not smaller than B^{\prime} (with respect to the specialisation order) hence $J \nsubseteq J^{\prime}$ by Proposition 3.3(3). On the other hand $Y \leq Y^{\prime}$ hence $H \subseteq H^{\prime}$ (otherwise $F_{J}\left(\Gamma^{m-1}\right)$ is disjoint from the closure of $F_{J^{\prime}}\left(\Gamma^{m-1}\right)$). Altogether this implies that $J=J^{\prime} \cup\{m\}$. In particular $H=J \backslash\{m\}=J^{\prime} \backslash\{m\}=H^{\prime}$ hence $Y=Y^{\prime}$ is a facet of X.

[^4]Proposition 3.11 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a largely continuous precell mod N with $m \geq 1$. Let (μ, ν, ρ) be a largely continuous presentation of A, J a subset of I, $\widehat{J}=J \backslash\{m\}$ and $Y=F_{\widehat{J}}(\widehat{A})$. Then $F_{J}(A) \neq \emptyset$ if and only if either $m \in J$ and $\bar{\mu}<+\infty$ on Y, or $m \notin J$ and $\bar{\nu}=+\infty$ on Y. In any case

$$
F_{J}(A)=\left\{b \in F_{J}\left(\Gamma^{m}\right): \widehat{b} \in Y, \bar{\mu}(\widehat{b}) \leq b_{m} \leq \bar{\nu}(\widehat{b}) \text { and } b_{m} \equiv \rho\left[N_{m}\right]\right\} .
$$

In particular, if $F_{J}(A)$ is non-empty then it is a largely continuous precell A $\bmod N$ and $\left(\bar{\mu}_{\mid Y}, \bar{\nu}_{\mid Y}, \rho\right)$ is a presentation of $F_{J}(A)$.

Remark 3.12 Combining the last point of the above result with Remark 3.4, we get that if A is a monohedral largely continuous precell $\bmod N$ in Γ^{m} then so is every face of A.

Proof: Let X be the socle of A. Recall that $Y=F_{\widehat{J}}(X)$ is a face of X and of the socle of $F_{J}(A)$ by Proposition 3.3(1). Let B be the set of $a \in F_{J}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in F_{\widehat{J}}(\widehat{A})=Y, \bar{\mu}(\widehat{a}) \leq a_{m} \leq \bar{\nu}(\widehat{a})$ and $a_{m} \equiv \rho\left[N_{m}\right]$. Non-strict inequalities and congruence relations valid on A pass to the limits, hence remain valid on $F_{J}(A)$. So $B \subseteq F_{J}(A)$, and if $F_{J}(A) \neq \emptyset$ then necessarily one of the two alternatives of the first point hold true.

Conversely, take any point $a \in A$ and let $b=\pi_{J}(a)$. Assume first that $m \in J$ and $\bar{\mu}<+\infty$. By Proposition 3.5, $\bar{\mu} \circ \pi_{J}=\mu$ on X hence $\bar{\mu}(\widehat{b})=$ $\mu(\widehat{a}) \leq a_{m}=b_{m}$. If $\bar{\nu}<+\infty$ then similarly $b_{m} \leq \bar{\nu}(\widehat{b})$. Otherwise $\bar{\nu}=+\infty$ and $b_{m} \leq \bar{\nu}(\widehat{b})$ is obvious. Since $b_{m}=a_{m} \equiv \rho[N]$ it follows in both cases that $b \in B$. Now assume that $m \notin J$ and $\bar{\nu}=+\infty$. Then $b_{m}=+\infty$, hence obviously $\bar{\mu}(\widehat{b}) \leq+\infty=b_{m}=\bar{\nu}(\widehat{b})$ and $b_{m}=+\infty \equiv \rho[N]$. Thus $b \in B$, which proves that $\pi_{J}(A) \subseteq B$. In particular $B \neq \emptyset$, hence $F_{J}(A) \neq \emptyset$ since it contains B. This proves the first point. Moreover by Proposition 3.3(1) it follows that $F_{J}(A)=\pi_{J}(A) \subseteq B$. Hence $F_{J}(A)=B$, which proves the second point. In particular $F_{J}(A)$ is a largely continuous precell if $F_{\vec{J}}(Y)$ is so. The remaining of the conclusion then follows by a straightforward induction.

4 Bounding functions

We prove here two technical results (Propositions 4.1 and 4.3) used in the next section.

Proposition 4.1 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a definable set, and f_{1}, \ldots, f_{r} be definable maps from A to \mathcal{Q}. Assume that the coordinates of all the points of A are nonnegative. Then there exists a largely continuous, positive, integrally affine map $f: A \rightarrow \mathcal{Z}$ such that $f(x) \geq \max _{j} f_{j}(x)$ on A and $\bar{f}=+\infty$ on ∂A. More precisely f can be taken of the form $f(x)=\beta+\alpha \sum_{i \in I} x_{i}$ on A, for some positive $\alpha \in \mathbf{Z}$ and $\beta \in \mathcal{Z}$.

Proof: Without lost of generality we can assume that $I=\llbracket 1, m \rrbracket$. Because of Theorem 2.8, it suffices to consider the case where the f_{j} 's are affine. Each f_{j} then can be written as

$$
f_{j}(x)=\alpha_{0, j}+\sum_{1 \leq i \leq m} \alpha_{i, j} x_{i}
$$

for some $\alpha_{i, j} \in \mathbf{Z}$ for $i \geq 1$ and some $\alpha_{0, j} \in \mathcal{Z}$. Let $\alpha \geq 1$ be an integer greater than $\alpha_{i, j}$ for every $i, j \geq 1$, and $\beta \geq 1$ an element of \mathcal{Z} greater the $\alpha_{0, j}$ for every $j \geq 1$. For every x in A and every $i, j \geq 1$, since $x_{i} \geq 0$ we have $\alpha x_{i} \geq \alpha_{i, j} x_{i}$. So the function $f(x)=\beta+\alpha \sum_{1 \leq i \leq m} x_{i}$ has all the required properties.

Lemma 4.2 Let $A \subseteq \mathcal{Z}^{m}$ be a largely continuous precell $\bmod N, X$ its socle, (μ, ν, ρ) a largely continuous presentation of A and f a largely continuous affine map on A such that $\bar{f}=+\infty$ on ∂A. Let $\left(\alpha_{i}\right)_{1 \leq i \leq m} \in \mathbf{Q}^{m}$ and $\beta \in \mathcal{Q}$ be such that $f(a)=\beta+\sum_{1 \leq i \leq m} \alpha_{i} a_{i}$ on A. Extend f to \mathcal{Q}^{m} by means of this expression. For every $x \in \widehat{A}$ let $\hat{f}(x)=f(x, \mu(x))$ if $\alpha_{m} \geq 0$, and $\hat{f}(x)=f(x, \nu(x))$ otherwise. Then \hat{f} is a well-defined largely continuous affine map on X with limit $+\infty$ at every point of ∂X, and $\min f(A)-\left|\alpha_{m}\right| N_{m} \leq \hat{f}(\widehat{a}) \leq f(a)$ for every $a \in A$.

Proof: The only possible problem in the definition of \hat{f} is when $\nu=+\infty$. But then $\alpha_{m} \geq 0$ because otherwise, given any $x \in X$ we have $(x,+\infty) \in \partial A$ and $f(a)<0$ for every $x \in A$ close enough to $(x,+\infty)$, a contradiction since $\bar{f}=+\infty$ on ∂A. Thus $\hat{f}(x, \mu(x))$ is well-defined in this case too.

Let $\lambda=\mu$ if $\alpha_{m} \geq 0$ and $\lambda=\nu$ otherwise. Then $\hat{f}(x)=f(x, \lambda(x))$ is an affine map and $\alpha_{m}\left(a_{m}-\lambda(\widehat{a})\right)$ is non-negative on A by construction, hence

$$
f(a)=f(\widehat{a}, \lambda(\widehat{a}))+\alpha_{m}\left(a_{m}-\lambda(\widehat{a})\right) \geq \hat{f}(\widehat{a}) .
$$

For every $x \in X$ there is a point $a \in A$ such that $\widehat{a}=x$ and $\left|a_{m}-\lambda(x)\right| \leq$ N_{m}. So there is a definable function $\delta: X \rightarrow \mathcal{Z}$ such that $(x, \delta(x)) \in A$ and $|\delta(x)-\lambda(x)| \leq N_{m}$ for every $x \in X$. We have

$$
\begin{aligned}
f(x, \lambda(x)) & =f(x, \delta(x))+\alpha_{m}(\lambda(x)-\delta(x)) \\
& \geq f(x, \delta(x))-\left|\alpha_{m}\right| N_{m}
\end{aligned}
$$

In particular $\hat{f}(x) \geq \min f(A)-\alpha_{m} N_{m}$ on X.
It only remains to check that, given any $y \in \partial X, f(x, \lambda(x))$ tends to $+\infty$ when $x \in A$ tends to y. By the above inequality it suffices to prove that $f(x, \delta(x))$ tends to $+\infty$ when $x \in A$ tends to y. Since $(x, \delta(x)) \in A$ for every $x \in X$ and $\bar{f}=+\infty$ on ∂A, it is sufficient to show that $\delta(x)$ tends to a limit $l \in \Gamma$ as $x \in X$ tends to y. Indeed, since $y \in \partial X$ we will then have that $(x, \delta(x))$ tends to $(y, l) \in \partial A$ so the conclusion. We prove it only when $\alpha_{m} \geq 0$, the case where $\alpha_{m}<0$ being similar.

If $\bar{\mu}(y)=+\infty$, then obviously $\delta(x)$ tends to $+\infty$ since $\mu(x) \leq \delta(x)$. If $\bar{\mu}(y)<+\infty$ then $\mu(x)=\bar{\mu}(y)$ for every $x \in X$ close enough to y. Hence $\delta(x)$, which is the smallest element t in Γ such that $\mu(x) \leq t$ and $t \equiv \rho\left[N_{m}\right]$, remains constant too. In particular it has a limit in \mathcal{Z} as $x \in X$ tends to y.

Proposition 4.3 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a largely continuous precell $\bmod N$, and f_{1}, \ldots, f_{r} be largely continuous affine maps on A such that $\overline{f_{j}}=+\infty$ on ∂A for every j. Then there exists a largely continuous affine map f on A such that $\bar{f}=+\infty$ on ∂A and $f(x) \leq \min _{j} f_{j}(x)$ for every $x \in A$. If, moreover, each f_{j} is positive on A then f can be chosen positive on A.

Proof: W.l.o.g. we can assume that $A \subseteq \mathcal{Z}^{m}$ and $f_{j}<+\infty$ for every j. By Lemma 2.10 there is $\gamma \in \mathcal{Q}$ such that $\gamma=\min \bigcup_{j} f_{j}(A)$. Given an arbitrary $\gamma^{\prime}<\gamma$ in \mathcal{Q} we are going to show that there exists a largely continuous map $f: A \rightarrow \mathcal{Q}$ such that $\bar{f}=+\infty$ on ∂A and $\gamma^{\prime} \leq f(x) \leq \min _{j} f_{j}(x)$ on A. This will prove simultaneously the two statements, because if each f_{j} is positive then $\gamma>0$ hence taking for example $\gamma^{\prime}=\gamma / 2$ will give that $0<\gamma / 2 \leq f$ on A.

The proof goes, needless to say, by induction on m. If $m=0$, and more generally if A is closed, the constant function $f=\gamma$ has the required properties. So we can assume that A is not closed, $m \geq 1$ and the result is proven for smaller integers. Replacing each f_{j} by $f_{j}-\gamma$ we can assume that $\gamma=0$. Replacing $\gamma^{\prime}<0$ by a bigger one if necessary we can assume that $\gamma^{\prime} \in \mathbf{Q}$.

Let $\alpha_{i, j} \in \mathbf{Q}$ and $\beta_{j} \in \mathcal{Q}$ such that $f_{j}(x)=\beta_{j}+\sum_{1 \leq i \leq m} \alpha_{i, j} x_{i}$. Let $\hat{f}_{j}: X \rightarrow \mathcal{Q}$ be defined as in Lemma 4.2, and $\eta=\min \bigcup_{j} \hat{f}_{j}(X)$. By Lemma 4.2 the induction hypothesis applies to these functions. Given any $\eta^{\prime}<\eta$, it gives a largely continuous affine map $g: X \rightarrow \mathcal{Q}$ such that $\bar{g}=+\infty$ on ∂X and $\eta^{\prime} \leq g(x) \leq \hat{f}_{j}(x)$ on X for $1 \leq j \leq r$. We do this for $\eta^{\prime}=-\left(\max _{j}\left|\alpha_{m, j}\right| N_{m}+1\right)$. Indeed by Lemma 4.2, $-\left|\alpha_{m, j}\right| N_{m} \leq \hat{f}_{j}$ on X for $1 \leq j \leq r$ hence $\eta^{\prime} \leq \eta-1<\eta$. Since $\eta^{\prime}<0$, replacing γ^{\prime} by a bigger one if necessary we can assume that $\eta^{\prime} \leq \gamma^{\prime}$.

Case 1: $\nu_{A}=+\infty$. Then for $1 \leq j \leq r$ the coefficient $\alpha_{m, j}$ of x_{m} in the above expression of f_{j} is positive (see the proof of lemma 4.2), hence $\hat{f}_{j}(x)=$ $f_{j}(x, \mu(x))$ and $\alpha=\min _{j \leq r} \alpha_{m, j}$ is positive. Let $G(a)=g(\widehat{a})+\alpha\left(a_{m}-\mu(\widehat{a})\right)$ on A. For $1 \leq j \leq r$ we have

$$
G(a) \leq \hat{f}_{j}(\widehat{a})+\alpha_{m, j}\left(a_{m}-\mu(\widehat{a})\right)=f_{j}(\widehat{a}, \mu(\widehat{a}))+\alpha_{m, j}\left(a_{m}-\mu(\widehat{a})\right)=f_{j}(a)
$$

Every $b \in \partial A$ either belongs to $X \times\{+\infty\}$ or to $\partial X \times \Gamma$. If $b \in X \times\{+\infty\}$ then $G(a)=g(\widehat{a})+\alpha\left(a_{m}-\mu(\widehat{a})\right)$ tends to $+\infty$ as $a \in A$ tends to b, because \widehat{a} then tends to \widehat{b}, a_{m} tends to $+\infty$ and $\alpha>0$. If $b \in \partial X \times \Gamma$ then $G(a) \geq g(\widehat{a})$ tends to $+\infty$ as $a \in A$ tends to b, because \widehat{a} then tends to \widehat{b}. Hence G is largely continuous and $\bar{G}=+\infty$ on ∂A.

Case 2: $\quad \nu_{A}<+\infty$. Then every $b \in \partial A$ belongs to $\partial X \times \Gamma$ hence $g(\widehat{a})$ tends to $+\infty$ as $a \in A$ tends to b. Moreover $g(\widehat{a}) \leq \hat{f}_{j}(\widehat{a}) \leq f_{j}(a)$ for $1 \leq j \leq r$.

Cases 1 and 2: In both cases, it remains to modify G so that its minimum becomes greater than γ^{\prime}. By construction $G(a) \geq g(\widehat{a}) \geq \eta^{\prime}$ on A. Recall that $\eta^{\prime}=-\left(\max _{j}\left|\alpha_{m, j}\right| N_{m}+1\right)$ and $\gamma^{\prime} \geq \eta^{\prime}$ are strictly negative rational numbers. Thus we can define $f(a)=\left(\gamma^{\prime} / \eta^{\prime}\right) G(a)$ on A. Clearly f is a largely continuous affine function on A with $\bar{f}=+\infty$ on ∂A, and $f \geq\left(\gamma^{\prime} / \eta^{\prime}\right) \eta^{\prime}=\gamma^{\prime}$ since $\gamma^{\prime} / \eta^{\prime} \geq 0$ and $G \geq \eta^{\prime}$ on A. Moreover $0 \leq \gamma^{\prime} / \eta^{\prime} \leq 1$ hence for every $a \in A$:

$$
f(a)=\frac{\gamma^{\prime}}{\eta^{\prime}} G(a) \leq \max (0, G(a)) \leq \min _{1 \leq j \leq r} f_{j}(a)
$$

5 Monohedral division

The next lemma is the technical heart of this paper. Loosely speaking, given a precell $A \subseteq \Gamma^{m}$, a facet B of A, a function $f: B \rightarrow \mathcal{Z}$ and a family \mathcal{D} of monohedral precells covering B, we are going to inflate each D in \mathcal{D} to a precell $C_{D} \subseteq A$ in such a way that:

1. C_{D} is a monohedral precell with facet D;
2. the shape of C_{D} is controlled by f, in the sense that the distance to B of any point $a \in C_{D}$ is less than $f(b)$ (where b is the projection of a onto B);
3. C_{D} contains a "neighbourhood of D ", so to say, in the sense that every point of A close enough to D belongs to C_{D} (the "close enough" condition will be controlled by a function $\delta: B \rightarrow \mathcal{Z})$;
4. the various C_{D} 's do not intersect too much (in particular if \mathcal{D} is a partition of B, we require the various precells C_{D} to be pairwise disjoint).

In addition we construct simultaneously a family \mathcal{U} of precells partitioning the complement of $\bigcup_{D \in \mathcal{D}} C_{D}$ in A, such that the proper faces of every $U \in \mathcal{U}$ are proper faces of A different from B. In particular U has less faces than A, which will make possible to repeatedly use the next lemma (first applied to A, then to each $U \in \mathcal{U}$) while proving results by induction on the number of faces.

Lemma 5.1 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a non-closed largely continuous precell mod N. Let B be a facet of A, J its support, $f: B \rightarrow \mathcal{Z}$ a definable map. Let \mathcal{D} be a family of largely continuous monohedral precells mod N such that $\bigcup \mathcal{D}=B$. Then there exists a pair $(\mathcal{C}, \mathcal{U})$ of families of largely continuous precells $\bmod N$ contained in A and an integrally affine map $\delta: B \rightarrow \mathcal{Z}$ such that \mathcal{U} is a finite partition of $A \backslash \bigcup \mathcal{C}$, the proper faces of every precell in \mathcal{U} are proper faces of A, and \mathcal{C} is a family $\left(C_{D}\right)_{D \in \mathcal{D}}$ of precells with the following properties:
(Fac) C_{D} has a unique facet which is D.
(Sub) $C_{D} \subseteq\left\{a \in A: \pi_{J}(a) \in D\right.$ and $\left.\Delta_{J}(a) \geq f \circ \pi_{J}(a)\right\}$.
$($ Sup $) C_{D} \supseteq\left\{a \in A: \pi_{J}(a) \in D\right.$ and $\left.\Delta_{J}(a) \geq \delta \circ \pi_{J}(a)\right\}$.
(Diff) For every $E \in \mathcal{D}, \pi_{J}\left(C_{D} \backslash C_{E}\right) \subseteq D \backslash E$.
Remark 5.2 In every application of Lemma $5.1, \mathcal{D}$ will be a partition of B. So the condition (Diff) simply says that the precells in \mathcal{C} are pairwise disjoint, hence that $\mathcal{C} \cup \mathcal{U}$ is a partition of A. However we can not restrict to this case because it may happen that \mathcal{D} is a partition of B and $\widehat{\mathcal{D}}$ is not a partition of \widehat{B}, which will be crippling when proving the result by induction on m.

Before entering in the somewhat intricate proof of this lemma, let us make a few preliminary observations.

Claim 5.3 With the notation of Lemma 5.1, B is not a face of any $U \in \mathcal{U}$.
Proof: For every $b \in B$ there is $D \in \mathcal{D}$ such that $b \in C_{D}$. By (Sup) every point in A such that $\pi_{J}(a)=b$ and $\Delta_{J}(a) \geq \delta \circ \pi_{J}(a)$ belongs to C_{D}, hence not to U. Thus $b \notin \bar{U}$, that is $B \cap \bar{U}=\emptyset$.

Claim 5.4 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a non-closed largely continuous precell $\bmod N$, B a facet of $A, J=\operatorname{Supp} B$. Let C_{D}, D be any precells mod N contained in A, B respectively, satisfying conditions (Sub) and (Sup) of Lemma 5.1 for some definable maps $f, \delta: B \rightarrow \mathcal{Z}$. If f is largely continuous and $\bar{f}=+\infty$ on ∂B then property (Fac) of Lemma 5.1 follows: C_{D} has a unique facet which is D.

Proof: For every $b \in D$ and every $\varepsilon \in \mathcal{Z}, b \in \bar{A}$ hence there exists $a \in A$ such that $\pi_{J}(a)=b$ and $\Delta_{J}(a) \geq \max (\delta(b), \varepsilon)$. By (Sup) this point a belongs to C_{D}, hence b is in the closure of C_{D}. So $D \subseteq F_{J}\left(C_{D}\right)$, and conversely (Sub) implies that $\pi_{J}\left(C_{D}\right) \subseteq D$, hence $F_{J}\left(C_{D}\right)=\pi_{J}\left(C_{D}\right)=D$ by Proposition 3.3(1).

Assume for a contradiction that C_{D} has a proper face $F_{H}\left(C_{D}\right)$ not contained in \bar{D}. Pick any c in $F_{H}\left(C_{D}\right)$. By Proposition 3.3(3), H is not contained in J so pick any $k \in H \backslash J$. By Proposition 3.3(4), $F_{J \cap H}\left(C_{D}\right) \neq \emptyset$ hence by the remaining of Proposition 3.3, $\pi_{J \cap H}\left(C_{D}\right)=F_{J \cap H}\left(C_{D}\right)=F_{J \cap H}\left(F_{H}\left(C_{D}\right)\right) \subseteq$ $F_{J \cap H}(B) \subseteq \partial B$. So $\pi_{J \cap H}(c) \in \partial B$, hence f has limit $+\infty$ at $\pi_{J \cap H}(c)$. In particular there is $\delta \in \mathcal{Z}$ such that for every $b \in B$

$$
\begin{equation*}
\left[\pi_{J \cap H}(b)=\pi_{J \cap H}(c) \text { and } \Delta_{J \cap H}(b) \geq \delta\right] \Rightarrow f(b)>c_{k} \tag{5}
\end{equation*}
$$

On the other hand $c \in F_{H}\left(C_{D}\right)$ hence there is $a \in C_{D}$ such that $\pi_{H}(a)=c$ and $\Delta_{H}(a) \geq \delta$. Let $b=\pi_{J}(a)$, then $\pi_{J \cap H}(b)=\pi_{J \cap H}(a)=c$ and

$$
\Delta_{J \cap H}(b)=\min _{j \notin H} b_{j}=\min _{j \in J \backslash H} a_{j} \geq \min _{i \notin H} a_{i}=\Delta_{H}(a) \geq \delta
$$

By (5) this implies that $f(b)>c_{k}$, that is $f \circ \pi_{J}(a)>c_{k}$. By (Sub) it follows that $\Delta_{J}(a)>c_{k}$, a contradiction since $\Delta_{J}(a)=\min _{j \notin J} a_{j} \leq a_{k}$ (because $k \notin J$) and $a_{k}=c_{k}$ (because $k \in H$ and $\pi_{H}(a)=c$.

Proof (of Lemma 5.1): Let (μ, ν, ρ) be a largely continuous presentation of A. Let X, Y be the socles of A, B respectively, $\widehat{I}=\operatorname{Supp} X$ and $\widehat{J}=\operatorname{Supp} Y$. Since B is a facet of A, by Proposition 3.7 either $Y=X$ and $B=X \times\{+\infty\}$, or Y is a facet of A and either $B=Y \times\{+\infty\}$ or $B=(Y \times \mathcal{Z}) \cap \bar{A}$. For each $D \in \mathcal{D}$ let $\left(\mu_{D}, \nu_{D}, \rho_{D}\right)$ be a largely continuous presentation of D.

If $m=0$ the result is trivially true because there is no non-closed precell contained in Γ^{0}. So we can assume that $m \geq 1$ and the result is proven for smaller integers. If $\mu=+\infty$ then $A=X \times\{+\infty\}$ can be identified with X, after which the result follows by the induction hypothesis. So we can assume that $\mu<+\infty$. Proposition 4.1 gives positive $\alpha \in \mathbf{Z}$ and $\beta \in \mathcal{Z}$ such that $f(x) \leq \beta+\alpha \sum_{j \in J} x_{j}$ on B. Without loss of generality we can assume that equality holds on B, and we still denote by f the corresponding extension of f to $F_{J}\left(\Omega^{m}\right)$. In particular f is now largely continuous on B with $\bar{f}_{B}=+\infty$ on ∂B.

It is sufficient to build a pair $\left(\left(C_{D}\right)_{D \in \mathcal{D}}, \mathcal{U}\right)$ of families of largely continuous precells $\bmod N$ contained in A and a definable map $\delta: B \rightarrow \mathcal{Q}$ such that \mathcal{U} is a finite partition of $A \backslash \bigcup \mathcal{C}$, that the proper faces of every precell in \mathcal{U} are proper faces of A, and that for each D in \mathcal{D} we have:
$\left(\mathrm{Fac}^{\prime}\right) \pi_{J}\left(C_{D}\right)=D ;$
(Sub') $\Delta_{J} \geq f \circ \pi_{J}$ on $C_{D} ;$
$\left(\right.$ Sup) $C_{D} \supseteq\left\{a \in A: \pi_{J}(a) \in D\right.$ and $\left.\Delta_{J}(a) \geq \delta\left(\pi_{J}(a)\right)\right\}$;
(Diff') $\pi_{J}\left(C_{D} \backslash C_{E}\right)$ is disjoint from E, for every $E \in \mathcal{D}$.
Indeed, we do not need to require that δ is integrally affine, because if property (Sup) holds for a definable map $\delta: B \rightarrow \mathcal{Q}$ it will then hold for every larger map, and Proposition 4.1 provides an integrally affine one. Then by (Fac'), properties (Sub) and (Diff) will follow from (Sub') and (Diff'). Because $\bar{f}=+\infty$ on ∂B, (Fac) will then follow from (Sup) and (Sub) by Claim 5.4.

We have to distinguish several cases. For the convenience of the reader most of them are accompanied by a figure representing (very approximatively) the general idea of the construction when $m=2$. In these figures, each $(i, j) \in \Gamma^{2}$ with positive coordinates takes place at the point of coordinates $\left(1-2^{-i}, 1-2^{-j}\right)$ in the figure, so that the order is preserved. Therefore the set of positive points of Γ^{2} is represented by a square whose bottom, left, right and top edges represent $\Gamma \times\{0\},\{0\} \times \Gamma, \Gamma \times\{+\infty\}$ and $\{\infty\} \times \Gamma$ respectively ${ }^{5}$. A side effect of this compactification is that linear functions are represented by curved lines.

The various precells involved will be represented in this square by gray areas whose union is A (or the auxiliary precell A° in figure 5). Their socles will take place in the bottom $\Gamma \times\{0\}$, as we identify it with Γ. Finally B will be represented by a thick edge or a corner of the square, depending on the cases.

Case 1: $\quad Y=X$.
Then $B=X \times\{+\infty\}$ hence $\nu=+\infty$ and $J=I \backslash\{m\}$, thus $\Delta_{J}(a)=a_{m}$ and $\pi_{J}(a)=(\widehat{a},+\infty)$ for every $a \in A$. So B identifies to X and \mathcal{D} to $\widehat{\mathcal{D}}$. Roughly speaking, we are going on one hand to split A in two parts by means of a function λ to be defined such that $\mu<\lambda$ and $f<\lambda$, and on the other hand to lift the family $\widehat{\mathcal{D}}$ of X to a family of precells covering of the upper part of A. This will give us \mathcal{C}. As figure 2 suggests, the lower part of A will remain unchanged and give \mathcal{U}.

Figure 2: Dividing A when $\nu=+\infty$.
Let us check the details now. Proposition 4.1 gives a largely continuous affine function $\lambda: X \rightarrow \mathcal{Z}$ such that $\lambda(x) \geq \max \left(f(x,+\infty), \mu(x)+N_{m}\right)$ on

[^5]X. Let U be the set of $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in X, \mu(\widehat{a}) \leq a_{m} \leq \lambda(\widehat{a})$ and $a_{m} \equiv \rho\left[N_{m}\right]$. It is clearly a largely continuous precell $\bmod N($ with socle X since $\left.\lambda \geq \mu+N_{m}\right)$. For each $D \in \mathcal{D}$ let C_{D} be the set of $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in \widehat{D}, \lambda(\widehat{a})+1 \leq a_{m}$ and $a_{m} \equiv \rho\left[N_{m}\right]$. This is a largely continuous precell $\bmod N$ with socle \widehat{D}. Let $\mathcal{C}=\left\{C_{D}: D \in \mathcal{D}\right\}$ and $\mathcal{U}=\{U\}$. Obviously $\cup \mathcal{C}=A \backslash U, \partial U=\partial B$ and (Fac), (Diff) hold for every $D \in \mathcal{D}$.

By construction, for every $D \in \mathcal{D}$ and every $a \in C_{D}$ we have

$$
\Delta_{J}(a)=a_{m}>\lambda(\widehat{a}) \geq f(\widehat{a},+\infty)=f\left(\pi_{J}(a)\right)
$$

which proves (Sub'). Further, for every $a \in A$ such that $\pi_{J}(a) \in D$ and $\Delta_{J}(a) \geq$ $\lambda(\widehat{a})$, we have $\widehat{a} \in \widehat{D}, a_{m} \geq \lambda(\widehat{a})$ and $a_{m} \equiv \rho\left[N_{m}\right]$ hence $a \in C_{D}$. This is property (Sup) with $\delta(b)=\lambda(\widehat{b})$ on B.

Case 2: $\quad Y$ is a facet of X and $B=Y \times\{+\infty\}$.
Then $J=\widehat{J}, \bar{\mu}=+\infty$ on Y (otherwise by Proposition 3.11, $F_{J \cup\{m\}}(A) \neq \emptyset$ is a proper face of A larger than B) and $\nu<+\infty$ (otherwise $X \times\{+\infty\}$ is a proper face of A larger than $B)$. In particular $\mu(x) \geq f(y,+\infty)$ for every $y \in Y$ and every $x \in X$ close enough to y, so there is a definable map $\eta: Y \rightarrow \mathcal{Z}$ such that for every $x \in X$

$$
\begin{equation*}
\Delta_{\widehat{J}}(x) \geq \eta\left(\pi_{\widehat{J}}(x)\right) \Rightarrow \mu(x) \geq f\left(\pi_{\widehat{J}}(x),+\infty\right) \tag{6}
\end{equation*}
$$

In the precells C_{D} that we are looking for, we want to have $a_{m} \geq \mu(\widehat{a}) \geq$ $\pi_{\widehat{J}}(\widehat{a})$ in order to get condition (Sub). The idea is then to inflate first $\widehat{\mathcal{D}}$ in a way controlled by η (using the induction hypothesis), and then to divide A by lifting this division of its socle X (see figure 3).

Figure 3: Dividing A when $B=Y \times\{+\infty\}$ and Y is a facet of X.
The induction hypothesis applies to $X, \quad Y, \widehat{\mathcal{D}}$ and $g(y)=$ $\max (f(y,+\infty), \eta(y))$ on Y. It gives a definable $\operatorname{map} \varepsilon: Y \rightarrow \mathcal{Z}$ and a pair $(\mathcal{S}, \mathcal{W})$ of families of precells. For each $W \in \mathcal{W}$ (resp. $D \in \mathcal{D})$ let U_{W} (resp. C_{D}) be the set of $a \in F_{J}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in W$ (resp. \widehat{a} belongs to the unique precell $S_{\widehat{D}} \in \mathcal{S}$ whose facet is $\left.\widehat{D}\right), \mu(\widehat{a}) \leq a_{m} \leq \nu(\widehat{a})$ and $a_{m} \equiv \rho\left[N_{m}\right]$. This is obviously a largely continuous precell $\bmod N$ with socle $W\left(\right.$ resp. $\left.S_{\widehat{D}}\right)$,
and exactly the set of $a \in A$ such that $\widehat{a} \in W$) (resp. $S_{\widehat{D}}$). In particular it is contained in A, and if we let $\mathcal{U}=\left\{U_{W}: W \in \mathcal{W}\right\}$ and $\mathcal{C}=\left\{C_{D}: D \in \mathcal{D}\right\}$ then \mathcal{U} is a partition $A \backslash \bigcup \mathcal{C}$ by induction hypothesis on $(\mathcal{S}, \mathcal{W})$.

For every $W \in \mathcal{W}$, every proper face of W is a proper face Z of X. Let H be its support. Then by Proposition 3.11, $\left(\bar{\mu}_{\mid Z}, \bar{\nu}_{\mid Z}, \rho\right)$ is a presentation of $F_{H}\left(U_{W}\right)$, but also of $F_{H}(A)$ hence $F_{H}\left(U_{W}\right)=F_{H}(A)$ is a proper face of A.

Let us check (Fac') and (Diff). For every $D \in \mathcal{D}$, since $\bar{\mu}=+\infty$ on Y we have $F_{J}\left(C_{D}\right)=\widehat{D} \times\{+\infty\}=D$ by Proposition 3.11 , hence $\pi_{J}\left(C_{D}\right)=D$ by Proposition 3.3. Moreover for every $E \in \mathcal{E}, \pi_{\widehat{J}}\left(S_{\widehat{D}} \backslash S_{\widehat{E}}\right) \subseteq \widehat{D} \backslash \widehat{E}$ by induction hypothesis hence

$$
\pi_{J}\left(C_{D} \backslash C_{E}\right)=\left[\pi_{\widehat{J}}\left(S_{\widehat{D}}\right) \backslash \pi_{\widehat{J}}\left(S_{\widehat{E}}\right)\right] \times\{+\infty\} \subseteq(\widehat{D} \backslash \widehat{E}) \times\{+\infty\}=D \backslash E
$$

Now we turn to (Sub'). For every $a \in C_{D}$, since $J=\widehat{J}$ we have $\Delta_{J}(a)=\min \left(a_{m}, \Delta_{\widehat{J}}(\widehat{a})\right)$ and $\pi_{J}(a)=\left(\pi_{\widehat{J}}(\widehat{a}),+\infty\right)$. By the induction hypothesis $\Delta_{\widehat{J}}(\widehat{a}) \geq \eta \circ \pi_{\widehat{J}}(\widehat{a})$ and $\Delta_{\widehat{J}}(\widehat{a}) \geq f\left(\pi_{\widehat{J}}(\widehat{a}),+\infty\right)$ because $\widehat{a} \in S_{\widehat{D}}$. The first inequality implies that $a_{m} \geq \mu(x) \geq f\left(\pi_{\widehat{J}}(\widehat{a}),+\infty\right)$ by (6). Together with the second inequality this gives that $\min \left(a_{m}, \Delta_{\widehat{J}}(\widehat{a})\right) \geq f\left(\pi_{\widehat{J}}(\widehat{a}),+\infty\right)$. That is $\Delta_{J}(a) \geq f\left(\pi_{J}(a)\right)$.

We finally check (Sup) with $\delta(b)=\varepsilon(\widehat{b})$ on B. Since C_{D} is clearly the set of $a \in A$ such that $\widehat{a} \in S_{\widehat{D}}$, for every $a \in A$ such that $\pi_{J}(a) \in D$ (hence $\left.\pi_{\widehat{J}}(\widehat{a}) \in \widehat{D}\right)$ and $\Delta_{J}(a) \geq \varepsilon \circ \pi_{\widehat{J}}(\widehat{a})$ we have $\widehat{a} \in S_{\widehat{D}}$ by induction hypothesis on ε and \widehat{D} hence $a \in C_{D}$.

Case 3: $\quad Y$ is a facet of X and $B=(Y \times \mathcal{Z}) \cap \bar{A}$.
Then $m \in \operatorname{Supp} B=J$, hence $\bar{\mu}<+\infty$ on $Y, \mu_{D}<+\infty$ for every $D \in \mathcal{D}$, and for every $a \in A$:

$$
\begin{equation*}
\Delta_{J}(a)=\Delta_{\widehat{J}}(\widehat{a}) \quad \text { and } \quad \pi_{J}(a)=\left(\pi_{\widehat{J}}(\widehat{a}), a_{m}\right) \tag{7}
\end{equation*}
$$

Note that $\rho=\rho_{D}$ for every $D \in \mathcal{D}$ because, given any $b \in D \subseteq B$, we have $b_{m} \neq+\infty$ and on one hand $b_{m} \equiv \rho_{D}\left[N_{m}\right]$, on the other hand $b_{m} \equiv \rho\left[N_{m}\right]$ (using the presentation of $B=F_{J}(A)$ given by Proposition 3.11).

Sub-case 3.1: $\quad \nu<\infty$.
This is the most difficult case, because $f(b)$ depends both on \widehat{b} and b_{m}. Therefore our construction is done in two steps.

Step 1: Intuitively, we are going to remove the top of A by introducing a function $\zeta(x)$ which will ensure that a_{m} doesn't grow too fast as $a \in A$ goes closer to B. The connection between ζ (a function of $x \in \widehat{A}$) and f (a function of $b \in B$) will be made via an intermediate function g defined below. We need to restrict the socle X of A to a domain X° close enough to Y so as to ensure at least that $\mu<\zeta<\nu$ on X°. In order to do this we will divide X by applying to it the induction hypothesis. The resulting partition of X together with ζ will give us a partition of A which might look like figure 4.

Let $g: Y \rightarrow \mathcal{Z}$ be a positive affine map given by Proposition 4.1 such that $g(y) \geq f(y, 0)+\alpha\left(\bar{\mu}(y)+N_{m}\right)$ on Y and $\bar{g}=+\infty$ on ∂Y. Given any $y \in Y$, since

Figure 4: Removing the top of A.
$g(y)<+\infty$ and $\nu-\mu$ has limit $+\infty$ at y, we have $\nu(x)-\mu(x)>2 N_{m}+1+g(y)$ for every $x \in X$ close enough to y. So there is a definable function $\eta_{1}: Y \rightarrow \mathcal{Z}$ such that for every $x \in X$

$$
\begin{equation*}
\Delta_{\widehat{J}}(x) \geq \eta_{1}\left(\pi_{\widehat{J}}(x)\right) \Rightarrow \nu(x)-\mu(x)>2 N_{m}+1+g\left(\pi_{\widehat{J}}(x)\right) . \tag{8}
\end{equation*}
$$

The induction hypothesis applies to $X, Y,\{Y\}$ and $\max \left(\eta_{1}, 2 g\right)$. It gives a definable map $\varepsilon_{1}: Y \rightarrow \mathcal{Z}$ and a pair $\left(\mathcal{S}_{1}, \mathcal{W}_{1}\right)$ of families of precells. In the present case \mathcal{S}_{1} consists of a single largely continuous precell $X^{\circ} \bmod N$ contained in X, such that $\Delta_{\widehat{J}} \geq \max \left(\eta_{1} \circ \pi_{\widehat{J}}, 2 g \circ \pi_{\widehat{J}}\right)$ on X°, and every $x \in X$ such that $\pi_{\widehat{J}}(x) \in Y$ and $\Delta_{\widehat{J}}(x) \geq \varepsilon_{1}\left(\pi_{\widehat{J}}(x)\right)$ belongs to X°. The family \mathcal{W}_{1} is a finite partition of $X \backslash X^{\circ}$ in largely continuous precells $\bmod N$. Let $\mathcal{U}_{1}=$ $\left\{U_{W}: W \in \mathcal{W}_{1}\right\}$ where $U_{W}=(W \times \mathcal{Z}) \cap A$ for every $W \in \mathcal{W}$. Since $\nu<+\infty$, the proper faces of U_{W} are proper faces of A by Claim 5.3.

For every $k \notin \widehat{J}$ and every $x \in X^{\circ}$, we have $x_{k} \geq \Delta_{\widehat{J}}(x)$ because $k \notin \widehat{J}$, and $\Delta_{\widehat{J}} \geq 2 g \circ \pi_{\widehat{J}}(x)$ on X° by the induction hypothesis. Thus on one hand $x_{k}-g \circ \pi_{\widehat{J}}(x) \geq g \circ \pi_{\widehat{J}}(x) \geq 1$, and on the other hand $x_{k}-g \circ \pi_{\widehat{J}}(x) \geq x_{k} / 2$. In particular $x \mapsto x_{k}-g \circ \pi_{\widehat{J}}(x)$ is a largely continuous positive affine function on X° with limit $+\infty$ at every point of ∂X°. We also have $\Delta_{\widehat{J}}(x) \geq \eta_{1}\left(\pi_{\widehat{J}}(x)\right)$ by induction hypothesis, hence $\nu(x)-\mu(x)>2 N_{m}+1+g\left(\pi_{\widehat{J}}(x)\right)$ by (8). In particular the restriction of $\nu-\mu-2 N_{m}-1$ to X° is a positive affine function with limit $+\infty$ at every point of ∂X°. Proposition 4.3 then gives a largely continuous positive affine function $\lambda: X^{\circ} \rightarrow \mathcal{Q}$ such that $\bar{\lambda}=+\infty$ on ∂X°, $\lambda \leq \nu-\mu-2 N_{m}-1$ on X° and $\lambda(x) \leq\left(x_{k}-g \circ \pi_{\widehat{J}}(x)\right) / \alpha$ for every $k \notin \widehat{J}$. Let us quote for further use that in particular

$$
\begin{equation*}
\alpha \lambda(x) \leq \min _{k \notin \widehat{J}}\left(x_{k}-g\left(\pi_{\widehat{J}}(x)\right)\right)=\Delta_{\widehat{J}}(x)-g\left(\pi_{\widehat{J}}(x)\right) \tag{9}
\end{equation*}
$$

Note that $\partial X^{\circ}=\bar{Y}$ because X° has a unique facet which is Y by Claim 5.4, hence $\bar{\lambda}=+\infty$ on \bar{Y}. Let $n \geq 1$ an integer such that $n \lambda$ is integrally affine, so that $\lambda(x)>t$ if and only if $\lambda(x) \geq t+1 / n$ for every $(x, t) \in X^{\circ} \times \mathcal{Z}$. Let $\zeta=\mu+\lambda+N_{m}$ on X°, and V (resp. A°) be the set of $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in X^{\circ}, \zeta(\widehat{a})+1 / n \leq a_{m} \leq \nu(\widehat{a})\left(\right.$ resp. $\left.\mu(\widehat{a}) \leq a_{m} \leq \zeta(\widehat{a})\right)$ and $a_{m} \equiv \rho\left[N_{m}\right]$. By construction ζ is a largely continuous affine map on X° with $\bar{\zeta}=+\infty$ on ∂X°. Moreover on X° we have

$$
\zeta+\frac{1}{n}+N_{m}=\mu+\lambda+2 N_{m}+\frac{1}{n} \leq \nu
$$

(because $\lambda \leq \nu-\mu-2 N_{m}-1$ by construction) hence the socle of V is X°. Obviously $\mu+N_{m} \leq \mu+\lambda+N_{m}=\zeta$ (because $\lambda>0$ by construction) hence the socle of A° is X°. Thus both V and A° are largely continuous precells $\bmod N$ contained in $\left(X^{\circ} \times \mathcal{Z}\right) \cap A$. Moreover $a_{m}>\zeta(\widehat{a})=\mu(\widehat{a})+\lambda(\widehat{a})+N_{m}$ if and only if $a_{m} \geq \mu(\widehat{a})+\lambda(\widehat{a})+1 / n+N_{m}=\zeta(\widehat{a})+1 / n$. Thus V and A° form a partition of $\left(X^{\circ} \times \mathcal{Z}\right) \cap A$, or equivalently $\mathcal{U}_{1} \cup\{V\}$ is a partition of $A \backslash A^{\circ}$. Since $\bar{\zeta}=+\infty$ on $\partial X^{\circ}=\bar{Y}$, by Proposition 3.11 every proper face V^{\prime} of V is of type $Z \times\{+\infty\}$ for Z a face of Y. In particular V^{\prime} is a proper face of A.

Step 2: Intuitively, we are going to build the C_{D} 's by inflating inside A° each D in \mathcal{D} as suggested by figure 5 (which zooms in on A°, the other parts of A remaining as in figure 4).

Figure 5: Dividing A° by inflating each $D \in \mathcal{D}$.
For every $D \in \mathcal{D}$ let $\zeta_{D}=\nu_{D}$ if $\nu_{D}<+\infty$ and $\zeta_{D}=\mu_{D}+N_{m}$ otherwise. Since $\bar{\zeta}=+\infty$ on Y there is a definable function $\eta_{2}: Y \rightarrow \mathcal{Z}$ such that for every $x \in X^{\circ}$ and every $D \in \mathcal{D}$ such that $\pi_{\widehat{J}}(x) \in \widehat{D}$ we have

$$
\begin{equation*}
\Delta_{\widehat{J}}(x) \geq \eta_{2}\left(\pi_{\widehat{J}}(x)\right) \Rightarrow \zeta(x) \geq \zeta_{D}\left(\pi_{\widehat{J}}(x)\right) \tag{10}
\end{equation*}
$$

The induction hypothesis applies to $X^{\circ}, Y, \widehat{\mathcal{D}}$ and η_{2}. It gives a definable $\operatorname{map} \varepsilon_{2}: Y \rightarrow \mathcal{Z}$ and a pair $\left(\mathcal{S}_{2}, \mathcal{W}_{2}\right)$ of families of precells. For each $W \in \mathcal{W}_{2}$ let $U_{W}=(W \times \mathcal{Z}) \cap A^{\circ}$. Clearly the family $\mathcal{U}_{2}=\left\{U_{W}: W \in \mathcal{W}_{2}\right\}$ is a finite partition in largely continuous precells mod N of the complement in A° of the set $A^{\circ \circ}=\left(\bigcup \mathcal{S}_{2} \times \mathcal{Z}\right) \cap A^{\circ}$. Equivalently, $\mathcal{U}_{1} \cup\{V\} \cup \mathcal{U}_{2}$ is a finite partition of $A \backslash A^{\circ \circ}$. Since $\nu<+\infty$, by Claim 5.3 the proper faces of U_{W} are proper faces of A for every $W \in \mathcal{W}_{2}$.

For each $D \in \mathcal{D}$ let $S_{\widehat{D}}$ be the precell in \mathcal{S}_{2} given by the induction hypothesis, so that conditions (Fac), (Sub), (Sup), (diff) apply to $S_{\widehat{D}}, \eta_{2}$ and ε_{2}. If $\nu_{D}=$ $+\infty$ (resp. $\left.\nu_{D}<+\infty\right)$ let C_{D} be the set of $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in S_{\widehat{D}}$, $\mu_{D}\left(\pi_{J}(\widehat{a})\right) \leq a_{m} \leq \zeta(\widehat{a})\left(\right.$ resp. $\left.\mu_{D}\left(\pi_{J}(\widehat{a})\right) \leq a_{m} \leq \nu_{D}\left(\pi_{J}(\widehat{a})\right)\right)$ and $a_{m} \equiv$ $\rho\left[N_{m}\right]$.

Let us check that C_{D} is a largely continuous precell $\bmod N$. For every $x \in S_{\widehat{D}}$ we have $\pi_{\widehat{J}}(x) \in \widehat{D}$, because $\widehat{D}=F_{\widehat{J}}\left(S_{\widehat{D}}\right)$ by (Fac), and $F_{\widehat{J}}\left(S_{\widehat{D}}\right)=$ $\pi_{\widehat{J}}\left(S_{\widehat{D}}\right)$ by Proposition 3.3(1). So there is $b \in D$ such that $\widehat{b}=x, \mu_{D}\left(\pi_{\widehat{J}}(x)\right) \leq$
$b_{m} \leq \nu_{D}\left(\pi_{\widehat{J}}(x)\right)$ and $b_{m} \equiv \rho\left[N_{m}\right]$. We can (and do) require in addition that $b_{m} \leq \mu_{D}\left(\pi_{\widehat{J}}(x)\right)+N_{m}$, hence $b_{m} \leq \zeta_{D}\left(\pi_{\widehat{J}}(x)\right)$. Because $x \in S_{\widehat{D}}$ we also have $\Delta_{\widehat{J}}(x) \geq \eta_{2} \circ \pi_{\widehat{J}}(x)$ by (Sub), hence $\zeta_{D}\left(\pi_{\widehat{J}} x\right) \leq \zeta(x)$ by (10). Altogether this proves that $\left(x, b_{m}\right) \in C_{D}$, hence x belongs to the socle of C_{D}. So the socle of C_{D} is exactly $S_{\widehat{D}}$ and C_{D} is then a largely continuous precell $\bmod N$.

Now we turn to (Fac'). The presentation of $F_{J}\left(C_{D}\right)$ given by Proposition 3.11 is exactly $\left(\mu_{D}, \nu_{D}, \rho\right)$, hence $F_{J}\left(C_{D}\right)=D$ since $\rho_{D}=\rho$. In particular $\pi_{J}\left(C_{D}\right)=D$ by Proposition 3.3(1). More precisely, the above computations show that we have

$$
\begin{equation*}
C_{D}=\left\{a \in A^{\circ \circ}: \widehat{a} \in S_{\widehat{D}} \text { and } \pi_{J}(a) \in D\right\} \tag{11}
\end{equation*}
$$

Let $\mathcal{C}=\left\{C_{D}: D \in \mathcal{D}\right\}$ and $\mathcal{U}=\mathcal{U}_{1} \cup\{V\} \cup \mathcal{U}_{2}$. We already know that \mathcal{U} is a finite partition of $A \backslash A^{\circ \circ}$ in largely continuous precells $\bmod N$ whose proper faces are proper faces of A, and that each $C_{D} \in \mathcal{C}$ is a largely continuous precell $\bmod N$ contained in $A^{\circ \circ}$ with socle $S_{\widehat{D}}$ and $F_{J}\left(C_{D}\right)=\pi_{J}\left(C_{D}\right)=D$. Let us check that $\bigcup \mathcal{C}=A^{\circ \circ}$. In order to do so, we are claiming that

$$
\begin{equation*}
\forall a \in A^{\circ \circ}, \forall E \in \mathcal{D}, \pi_{J}(a) \in E \Rightarrow a \in C_{E} \tag{12}
\end{equation*}
$$

Assume the contrary and let $a \in A^{\circ \circ}, E \in \mathcal{E}$ be such that $\pi_{J}(a) \in E$ and $a \notin C_{E}$. By (11) this implies that $\widehat{a} \notin S_{\widehat{E}}$. But the socle of $A^{\circ \circ}$ is $\bigcup \mathcal{S}_{2}$, hence $\widehat{a} \in S_{\widehat{D}}$ for some $D \in \mathcal{D}$. Thus $\pi_{\widehat{J}}(\widehat{a})$ belongs to $\pi_{\widehat{J}}\left(S_{\widehat{D}} \backslash S_{\widehat{E}}\right)$. By the induction hypothesis the latter is contained in $\widehat{D} \backslash \widehat{E}$, hence $\pi_{\widehat{J}}(\widehat{a}) \notin \widehat{E}$. But $\pi_{\widehat{J}}(\widehat{a})$ is also the socle of $\pi_{J}(a)$. Since $\pi_{J}(a) \in E$ it follows that $\pi_{\widehat{J}}(\widehat{a}) \in \widehat{E}$, a contradiction.

That $A^{\circ \circ} \subseteq \bigcup \mathcal{C}$ then follows immediately from (12) and the fact that $\pi_{J}\left(A^{\circ \circ}\right) \subseteq \pi_{J}(A)=B \subseteq \bigcup \mathcal{D}$. So $A^{\circ \circ}=\bigcup \mathcal{C}$ and it only remains to check (Sub'), (Sup) and (Diff') for any fixed $D \in \mathcal{D}$.

We start with (Diff'). Pick any $E \in \mathcal{D}$, assume that there is a point b in $\pi_{J}\left(C_{D} \backslash C_{E}\right)$ which belongs to E. Then $b=\pi_{J}(a)$ for some $a \in C_{D} \backslash C_{E}$. We have $a \in A^{\circ \circ}$ and $a \notin C_{E}$, hence $\pi_{J}(a) \notin E$ by (12), that is $b \notin E$, a contradiction. Hence $\pi_{J}\left(C_{D} \backslash C_{E}\right)$ is disjoint from E.

Let us now turn to (Sup). For every $b \in B$, since $\bar{\zeta}=+\infty$ on $\partial X^{\circ}=\bar{Y}$ and $\widehat{b} \in Y$, we have $\zeta(x) \geq b_{m}$ whenever $x \in X^{\circ}$ is close enough to \widehat{b} (that is whenever $\pi_{\widehat{J}}(x)=\widehat{b}$ and $\Delta_{\widehat{J}}(x)$ is large enough). So there is a definable function $\eta_{3}: B \rightarrow \mathcal{Z}$ such that for every $a \in\left(X^{\circ} \times \mathcal{Z}\right) \cap A$

$$
\begin{equation*}
\Delta_{\widehat{J}}(\widehat{a}) \geq \eta_{3}\left(\pi_{J}(a)\right) \Rightarrow \zeta(\widehat{a}) \geq a_{m} \tag{13}
\end{equation*}
$$

Let $\delta: b \in B \mapsto \max \left(\varepsilon_{1}(\widehat{b}), \eta_{3}(b), \varepsilon_{2}(\widehat{b})\right)$. For every $a \in A$ such that $\pi_{J}(a) \in D$ and $\Delta_{J}(a) \geq \delta \circ \pi_{J}(a)$, since $\Delta_{J}(a)=\Delta_{\widehat{J}}(\widehat{a})$ by (7) we have in particular $\pi_{\widehat{J}}(\widehat{a}) \in Y$ and $\Delta_{\widehat{J}}(\widehat{a}) \geq \varepsilon_{1}\left(\pi_{\widehat{J}}(\widehat{a})\right)$, hence $\widehat{a} \in X^{\circ}$ by construction. So $a \in$ $\left(X^{\circ} \times \mathcal{Z}\right) \cap A$ and $\Delta_{\widehat{J}}(\widehat{a}) \geq \eta_{3}\left(\pi_{J}(a)\right)$, which implies that $a_{m} \leq \zeta(\widehat{a})$ by (13), hence $a \in A^{\circ}$ by construction. On the other hand, since $\widehat{a} \in X^{\circ}, \pi_{\widehat{J}}(\widehat{a}) \in \widehat{D}$ and $\Delta_{\widehat{J}}(\widehat{a}) \geq \varepsilon_{2}\left(\pi_{\widehat{J}}(\widehat{a})\right)$, we get that $\widehat{a} \in S_{\widehat{D}}$ by construction. In particular $\widehat{a} \in \bigcup \mathcal{S}_{2}$, hence $a \in A^{\circ \circ}$ since $A^{\circ \circ}=\left(\bigcup \mathcal{S}_{2} \times \mathcal{Z}\right) \cap A^{\circ}$. Altogether we have $a \in A^{\circ \circ}, \widehat{a} \in S_{\widehat{D}}$ and $\pi_{J}(a) \in D$ hence that $a \in C_{D}$ by (11), which proves (Sup).

It only remains to check (Sub'), that is $\Delta_{J} \geq f \circ \pi_{J}$ on C_{D}. This is the moment to recall (9), which says that $\alpha \lambda \leq \Delta_{\hat{J}}-g \circ \pi_{\widehat{J}}$ on X°. Recall also that $g(y) \geq f(y, 0)+\alpha\left(\bar{\mu}(y)+N_{m}\right)$ on Y by definition of g. Thus on X° we have

$$
\begin{equation*}
\alpha \lambda(x) \leq \Delta_{\widehat{J}}(x)-f\left(\pi_{\widehat{J}}(x), 0\right)-\alpha \bar{\mu}\left(\pi_{\widehat{J}}(x)\right)-\alpha N_{m} \tag{14}
\end{equation*}
$$

For every $a \in C_{D}, \widehat{a} \in X^{\circ}$ and $a \in A^{\circ}$ hence $a_{m} \leq \zeta(\widehat{a})=\mu(\widehat{a})+\lambda(\widehat{a})+N_{m}$. We also have $\mu(\widehat{a})=\bar{\mu}\left(\pi_{\widehat{J}}(\widehat{a})\right)$ by Proposition 3.5. Combining all this with (14) we get that

$$
\begin{equation*}
\alpha a_{m} \leq \alpha \bar{\mu}\left(\pi_{\widehat{J}}(x)\right)+\alpha \lambda(\widehat{a})+\alpha N_{m} \leq \Delta_{\widehat{J}}(\widehat{a})-f\left(\pi_{\widehat{J}}(\widehat{a}), 0\right) . \tag{15}
\end{equation*}
$$

Since $f\left(\pi_{J}(a)\right)=f\left(\pi_{\widehat{J}}(\widehat{a}), 0\right)+\alpha a_{m}$ by the definition of f, and $\Delta_{J}(a)=\Delta_{\widehat{J}}(\widehat{a})$ by (7), we finally get from (15) that $\Delta_{J}(a)=\Delta_{\widehat{J}}(\widehat{a}) \geq f\left(\pi_{J}(a)\right)$.

Sub-case 3.2: $\quad \nu=+\infty$.
This final case is easy: we simply divide A in two pieces, above and below a function λ to be defined, so that the previous sub-case 3.2 applies to the lower part of A. The upper part A doesn't require any special treatment: it will simply be incorporated in the family \mathcal{U}.

Let us check the details now. Proposition 4.1 gives a largely continuous integrally affine map λ on X such that $\bar{\lambda}=+\infty$ on ∂X and $\lambda \geq \mu+N_{m}$. Let $A^{-}\left(\right.$resp. $\left.A^{+}\right)$be the set of $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in X, \mu(\widehat{a}) \leq a_{m} \leq \lambda(\widehat{a})$ (resp. $\lambda(\widehat{a})+1 \leq a_{m}$) and $a_{m} \equiv \rho\left[N_{m}\right]$. Its socle is X (for A^{-}we use that $\left.\lambda \geq \mu+N_{m}\right)$ hence it is a largely continuous precell $\bmod N$. Since λ takes values in \mathcal{Z}, A^{-}and A^{+}form a partition of A. The presentation of the faces of A, A^{-} A^{+}given by Proposition 3.11 gives that every proper face of A^{-}and A^{+}is a proper face of A, and B is a face of A^{-}. The previous sub-case 3.1 applies to A^{-}, B, \mathcal{D} and f. It gives a pair $\left(\mathcal{C}^{-}, \mathcal{W}^{-}\right)$of families of largely continuous precells $\bmod N$ and an integrally affine map $\delta^{-}: B \rightarrow \mathcal{Z}$. Then $\left(\mathcal{C}^{-}, \mathcal{W}^{-} \cup\left\{A^{+}\right\}\right)$and δ^{-}have all the required properties for A, \mathcal{D} and f, except possibly (Sup). We remedy this by replacing δ^{-}by a larger function δ defined as follows.

For every $b \in B$, we have $\lambda(x) \geq b_{m}$ for every $x \in X$ close enough to \widehat{b} since $\bar{\lambda}=+\infty$ on Y. So there is a definable function $\eta: B \rightarrow \mathcal{Z}$ such that for every $a \in A$

$$
\begin{equation*}
\Delta_{J}(a) \geq \eta\left(\pi_{J}(a)\right) \Rightarrow \lambda(\widehat{a}) \geq a_{m} \tag{16}
\end{equation*}
$$

Let $\delta=\max \left(\eta, \delta^{-}\right)$, then for every $D \in \mathcal{D}$ and every $a \in A$ such that $\pi_{J}(a) \in D$ and $\Delta_{J}(a) \geq \delta\left(\pi_{J}(a)\right)$ we have in particular $\Delta_{J}(a) \geq \eta\left(\pi_{J}(a)\right)$ hence $a_{m} \leq \lambda(\widehat{a})$ by (16), that is $a \in A^{-}$. Moreover we have $\pi_{J}(a) \in D$ and $\Delta_{J}(a) \geq \delta^{-}\left(\pi_{J}(a)\right)$. Altogether this implies that a belongs to $C_{D} \in \mathcal{C}^{-}$, which in turn proves (Sup).

Theorem 5.5 (Monohedral Division) Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a largely continuous precell mod $N, f: \partial A \rightarrow \mathcal{Z}$ a definable function, and \mathcal{D} a complex of monohedral largely continuous precells mod N such that $\bigcup \mathcal{D}=\partial A$. Then there exists a finite partition \mathcal{C} of A in monohedral largely continuous precells mod N such that $\mathcal{C} \cup \mathcal{D}$ is a closed complex, \mathcal{C} contains for every $D \in \mathcal{D}$ a unique precell C with facet D, and moreover $\Delta_{J} \geq f \circ \pi_{J}$ on C where $J=\operatorname{Supp} D$.

Proof: The proof goes by induction on the number n of proper faces of A. If $n=0$ then $\mathcal{D}=\emptyset$ and A is monohedral, hence $\mathcal{C}=\{A\}$ gives the conclusion. So let us assume that $n \geq 1$ and the result is proved for smaller integers. Let B be a facet of A. Lemma 5.1 applied to A, B, \mathcal{D} and the restriction of f to B gives a pair $\left(\mathcal{C}_{B}, \mathcal{U}\right)$ of families of precells. For every $U \in \mathcal{U}$, the proper faces of U are proper faces of A. So the family $\mathcal{D}_{U}=\{D \in \mathcal{D}: D \subseteq \partial U\}$ is a complex
and $\bigcup \mathcal{D}_{U}=\partial U$. Since B is not a proper face of U by Claim 5.3, the induction hypothesis applies to U, \mathcal{D}_{U} and the restriction of f to ∂U. It gives a family \mathcal{C}_{U} of precells. Let \mathcal{C} be the union of \mathcal{C}_{B} and \mathcal{C}_{U} for $U \in \mathcal{U}$. This is a family of largely continuous precells mod N partitioning A. By construction \mathcal{C} contains for every $D \in \mathcal{D}$ a unique precell C with facet D, and $\Delta_{J} \geq f \circ \pi_{J}$ on C with $J=\operatorname{Supp} D$. In particular $\mathcal{C} \cup \mathcal{D}$ is a partition of \bar{A} which contains the faces of all its members, since \mathcal{D} is a closed complex (because \mathcal{D} is a complex and $\bigcup \mathcal{D}=\partial B$ is closed). So $\mathcal{C} \cup \mathcal{D}$ is a closed complex.

Theorem 5.6 (Monohedral Decomposition) Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a largely continuous precell $\bmod N$. Then there exists a complex \mathcal{C} of monohedral largely continuous precells $\bmod N$ such that $A=\bigcup \mathcal{C}$.

Proof: We are going to show that given any closed complex \mathcal{A} of largely continuous precells $\bmod N$ in Γ^{m}, there is a closed complex \mathcal{C} of largely continuous monohedral precells $\bmod N$ such that $\bigcup \mathcal{C}=\bigcup \mathcal{A}$ and \mathcal{C} refines \mathcal{A} (that is every $C \in \mathcal{C}$ is contained in some $A \in \mathcal{A}$). The conclusion for A will follow, by applying this to the closed complex consisting of all the faces of A. The proof goes by induction on the cardinality n of \mathcal{A}. If $n=0$ then $\mathcal{C}=\mathcal{A}=\emptyset$ proves the result. Assume that $n \geq 1$ and the result is proved for smaller integers. Let A be a maximal element of \mathcal{A} with respect to specialisation, and $\mathcal{B}=\mathcal{A} \backslash\{A\}$. By maximality of A, \mathcal{B} is again a closed complex. The induction hypothesis gives a closed complex \mathcal{D} of largely continuous monohedral precells $\bmod N$ such that $\bigcup \mathcal{D}=\bigcup \mathcal{B}$ and \mathcal{D} refines \mathcal{B}. If A is closed then obviously $\mathcal{C}=\mathcal{D} \cup\{A\}$ proves the result for \mathcal{A}. Otherwise let $\mathcal{D}_{A}=\{D \in \mathcal{D}: D \subseteq \partial A\}$. The Monohedral Division Theorem 5.5 applied to A, \mathcal{D}_{A} and the constant function $f=0$ gives a finite partition \mathcal{C}_{A} of A in monohedral largely continuous precells $\bmod N$ such that the family $\mathcal{C}_{A} \cup \mathcal{D}_{A}$ is a closed complex. The family $\mathcal{C}=\mathcal{C}_{A} \cup \mathcal{D}$ is a partition of $A \cup \bigcup \mathcal{B}=\bigcup \mathcal{A}$. Since \mathcal{D} is a closed complex and every precell in \mathcal{C}_{A} has a unique facet which belongs to \mathcal{D}, it follows that \mathcal{C} is a complex.

We finish this section with another, much more elementary, division result. Contrary to the above ones, it is drastically different from what occurs in the real situation, where the polytopes are connected sets.

Proposition 5.7 Let $A \subseteq F_{I}\left(\Gamma^{m}\right)$ be a non-closed monohedral largely continuous precell $\bmod N$. For every integer $n \geq 1$ there exists for some $N^{\prime} \in\left(\mathbf{N}^{*}\right)^{m}$ a partition $\left(A_{i}\right)_{1 \leq i \leq n}$ of A in largely continuous precells mod N^{\prime} such that $\partial A_{i}=\partial A$ for $1 \leq i \leq n$.

Proof: The proof goes by induction on m. The result is trivially true for $m=0$ since there is no non-closed precell in Γ^{0}. Assume that $m \geq 1$ and the result is proved for smaller integers. Let (μ, ν, ρ) be a presentation of A. By induction hypothesis we can assume that $m \in \operatorname{Supp} A$ hence $\mu<+\infty$. If $\nu=+\infty$, for $1 \leq i \leq n$ let A_{i} be the set of $a \in F_{I}\left(\Gamma^{m}\right)$ such that $\widehat{a} \in \widehat{A}, \mu(\widehat{a}) \leq a_{m} \leq \nu(\widehat{a})$ and $a_{m} \equiv \rho+i N_{m}\left[n N_{m}\right]$. This is obviously a partition of A in largely continuous precells $\bmod N^{\prime}=\left(\widehat{N}, n N_{m}\right)$ having the same boundaries as A. On the other hand, if $\nu<+\infty$ then \widehat{A} is not closed (otherwise A would be closed) hence the induction hypothesis gives for some $P^{\prime} \in\left(\mathbf{N}^{*}\right)^{m}$ a partition $\left(X_{i}\right)_{1 \leq i \leq n}$
of \widehat{A} in largely continuous precells mod P^{\prime} such that $\partial X_{i}=\partial X$ for every i. Let $A_{i}=\left(X_{i} \times \mathcal{Z}\right) \cap A$ for every i. Then $\left(A_{i}\right)_{1 \leq i \leq n}$ is easily seen to give the conclusion, thanks to the description of the faces of A and A_{i} given by Proposition 3.11.

6 Polytopes in p-adic fields

Recall that K is a p-adically closed field, v its p-valuation, R its valuation ring and $\Gamma=v(K)$. We still denote by v the map (v, \ldots, v) from K^{m} to Γ^{m}.

We are going to define polytopes ${ }^{6} \bmod N$ in K^{m} by means of the inverse image by v of largely continuous precells $\bmod N$ in Γ^{m}. However, the p-adic triangulation theorem that we are aiming at requires a more versatile definition. It involves semi-algebraic subgroups $Q_{1, M}$ of the multiplicative group $K^{\times}=$ $K \backslash\{0\}$, where M is a positive integer. In the special case where K is a finite extension of \mathbf{Q}_{p}, we have

$$
Q_{1, M}=\bigcup_{k \in \mathbf{Z}} \pi^{k}\left(1+\pi^{M} R\right)
$$

where π is any generator of the maximal ideal of R. Since in this paper we will only use that $v\left(Q_{1, M}\right)=\mathcal{Z}$, we refer the reader to [CL12] for a general definition of $Q_{N, M}$ for every integers $N, M \geq 1$ in arbitrary p-adically closed fields.

We let $D^{M} R=\left(\{0\} \cup Q_{1, M}\right) \cap R$. Given an m-tuple $N \in\left(\mathbf{N}^{*}\right)^{m}$ we call a set $S \subseteq K^{m}$ a polytope $\bmod N$ in $D^{M} R^{m}$ if $v(S)$ is a largely continuous precell $\bmod N$ in Γ^{m} and $S=v^{-1}(v(S)) \cap D^{M} R^{m}$. The faces and facets $F_{J}(S)$ of a subset S of $D^{M} R^{m}$ are defined as the inverse images, by the restriction of v to $D^{M} R^{m}$, of the faces and facets of $v(S)$. The support of S (resp. of $x \in K^{m}$) is the support of $v(S)$ (resp. of $v(x)$, so that:

$$
\begin{aligned}
& \operatorname{Supp}(x)=\left\{i \in \llbracket 1, m \rrbracket: x_{i} \neq 0\right\} \\
& F_{J}(S)=\{x \in \bar{S}: \operatorname{Supp} x=J\}
\end{aligned}
$$

We say that S is monohedral if $v(S)$ is so, that is if the faces of S are linearly ordered by specialisation, in which case we call S a monotope $\bmod N$ in $D^{M} R^{m}$.

A family \mathcal{C} of polytopes $\bmod N$ in $D^{M} R^{m}$ is a complex if it is finite and for every $S, T \in \mathcal{C}, \bar{S} \cap \bar{T}$ is the union of the common faces of S and T. It is a closed complex if moreover it contains all the faces of its members. Every complex \mathcal{S} of polytopes $\bmod N$ is contained in a smallest closed complex, namely the family of all the faces of the members of \mathcal{S}. We call it the closure of \mathcal{S} and denote it $\overline{\mathcal{S}}$.

In order to ease the notation, we write $v S$ for $v(S)$, and $v \mathcal{C}$ for $\{v S: S \in \mathcal{C}\}$. Clearly \mathcal{C} is a (closed) complex if and only if $v C$ is.

Proposition 6.1 Let S be a polytope $\bmod N$ in $D^{M} R^{m}$, and let $T=F_{J}(S)$ be any of its faces. Then T is a polytope $\bmod N$ equal to $\pi_{J}(S)$.

[^6]Proof: Due to the correspondence between the faces of S and $v S$, this follows directly from Proposition 3.11 and Proposition 3.3(1).

More generally, all the points of Proposition 3.3, as well as Proposition 3.7, Corollary 3.10, the Monohedral Decomposition (Theorem 5.6) and Proposition 5.7 immediately transfer to polytopes $\bmod N$ in $D^{M} R^{m}$. Only the Monohedral Division (Theorem 5.5) requires a bit more of preparation.

For the sake of generality we want the p-adic analogon of the Monohedral Division Theorem in Γ^{m} to hold not only with a map $\varepsilon: \partial S \subseteq K^{m} \rightarrow K^{*}$ definable in the language of rings (i.e. semi-algebraic) but also with a map definable in various expansions (K, \mathcal{L}) of the ring structure of K. The proof of Theorem 6.3 below shows that it suffices to make the following assumptions on $(K, \mathcal{L}):$
(Ext) For every definable function $f: X \subseteq K^{m} \rightarrow K^{*}$, if f is continuous and X is closed and bounded, then $v(f(x))$ takes a maximum value at some point $x \in X$.
(Pres) The image by the valuation of every subset of K^{m} definable in (K, \mathcal{L}), is $\mathcal{L}_{\text {Pres }}$-definable.

Remark 6.2 If K is a finite extension of \mathbf{Q}_{p} then condition (Ext) holds for every continuous function by the Extreme Value Theorem. But this condition, when restricted to definable continuous functions, is preserved by elementary equivalence. Hence it will be satisfied whenever the complete theory of (K, \mathcal{L}) has a p-adic model (that is a model whose underlying field is a finite extension of \mathbf{Q}_{p}). On the other hand, if (K, \mathcal{L}) is P-minimal (see [HM97]), Theorem 6 in [Clu03] proves that condition (Pres) is satisfied. In particular Theorem 6.3 applies for example to every subanalytic map ε, and more generally to every map ε which is definable in a P-minimal structure (K, \mathcal{L}) which has a p-adic model.

For every $x \in K^{m}$ we let $w(x)=\min _{1 \leq i \leq m} v\left(x_{i}\right)$. If $v(K)=\mathbf{Z}$ this is the valuative counterpart of the usual norm on \bar{K}^{m}, which measures the distance of x to the origin (see also Remark 2.4).

Theorem 6.3 (Monotopic Division) Let S be a polytope $\bmod N$ in $D^{M} R^{m}$, $\varepsilon: \partial S \rightarrow K^{*}$ a definable function (in some expansion (K, \mathcal{L}) of the ring structure of K satisfying previous conditions (Ext) and (Pres)). Let \mathcal{T} be a complex of monotopes mod N in $D^{M} R^{m}$ such that $\bigcup \mathcal{T}=\partial S$. Assume that the restriction of vo\& to every proper face of S is continuous. Then there exists a finite partition \mathcal{U} of S in monotopes $\bmod N$ in $D^{M} R^{m}$ such that $\mathcal{U} \cup \mathcal{T}$ is a closed complex, \mathcal{U} contains for every $T \in \mathcal{T}$ a unique monotope U with facet T, and moreover for every $u \in U$

$$
w\left(u-\pi_{J}(u)\right) \geq v\left(\varepsilon\left(\pi_{J}(u)\right)\right)
$$

where $J=\operatorname{Supp}(T)$.
Proof: For every proper face $F_{J}(S)$ of S, and every $s \in F_{J}(S)$, the function $t \mapsto v(\varepsilon(t))$ is continuous on $v^{-1}(\{v(s)\}) \cap F_{J}(S)$, which is a closed and bounded domain. Thus it attains a maximum value $e(s)$ (see Remark 6.2). So let

$$
G_{J}=\left\{(s, t) \in F_{J}(S) \times K: v(t)=e(s)\right\} .
$$

This is a definable set hence $v\left(G_{J}\right)$ is $\mathcal{L}_{\text {Pres }}$-definable (see Remark 6.2). Moreover by construction $v\left(G_{J}\right)$ is the graph of a function $g_{J}: v F_{J}(S)=F_{J}(v S) \rightarrow$ \mathcal{Z}, such that $v(\varepsilon(s)) \leq g_{J}(v(s))$ for every $s \in S$. Let $g: \partial(v S) \rightarrow \mathcal{Z}$ be the function whose restriction to each $F_{J}(v S)$ is g_{J}.

The Monotopic Division (Theorem 5.5) applies to $v S, g$ and $v T$. It gives a finite partition \mathcal{C} of $v S$ in monotopes $\bmod N$ such that $\mathcal{C} \cup v \mathcal{T}$ is a complex, every non-closed $C \in \mathcal{C}$ has a unique facet D which belongs to $v \mathcal{T}$ and $\Delta_{J} \geq g \circ \pi_{J}$ on C where $J=\operatorname{Supp} D$. Let \mathcal{U} be the family of $v^{-1}(C) \cap D^{M} R^{m}$ for $C \in \mathcal{C}$. This is clearly a finite partition of S in monotopes $\bmod N$ in $D^{M} R^{m}$. Every $U \in \mathcal{U}$ has a unique facet $T \in \mathcal{T}$, and $\Delta_{J} \geq g \circ \pi_{J}$ on $v T$ where $J=\operatorname{Supp} v T=\operatorname{Supp} T$. That is, for every $u \in U$ we have

$$
\begin{equation*}
w\left(u-\pi_{J}(u)\right)=\min _{i \notin J} v\left(u_{i}\right)=\Delta_{J}(v(u)) \geq g \circ \pi_{J}(v(u)) \tag{17}
\end{equation*}
$$

By construction $\pi_{J}(v(u))=v\left(\pi_{J}(u)\right)$ and $g(v(t)) \geq v(\varepsilon(t))$ for every $t \in T$, hence

$$
g \circ \pi_{J}(v(u))=g\left(v\left(\pi_{J}(u)\right)\right) \geq v\left(\varepsilon\left(\pi_{J}(u)\right)\right) .
$$

Together with (17), this proves the last point.

Finally, let us mention for further works the following generalisation of Proposition 5.7.

Proposition 6.4 Let $A \subseteq D^{M} R^{m}$ be a relatively open ${ }^{7}$ set. Assume that A is the union of a complex \mathcal{A} of monotopes mod N in $D^{M} R^{m}$. Then for every integer $n \geq 1$ there exists a finite partition of A in semi-algebraic sets A_{1}, \ldots, A_{n} such that $\partial A_{k}=\partial A$ for every k.
Proof: Thanks to the correspondence between the faces of the monotopes mod N in $D^{M} R^{m}$ and their faces, it suffices to prove the result for a relatively open set $A \subseteq \Gamma^{m}$ which is the union of a complex of monotopes $\bmod N$ in Γ^{m}.

Let $\mathcal{C}=\overline{\mathcal{A}} \backslash \mathcal{A}$ and $C=\bigcup \mathcal{C}=\bar{A} \backslash A$. By assumption A is relatively open hence C is closed, so \mathcal{C} is a closed complex. Let U_{1}, \ldots, U_{r} be the list of minimal elements of \mathcal{A}. Every $S \in \overline{\mathcal{A}}$ such that $U_{i} \leq S$ for some i belongs to \mathcal{A} (otherwise $S \in \overline{\mathcal{A}} \backslash \mathcal{A}=\mathcal{C}$ which is closed, hence $U_{i} \in \mathcal{C}$, a contradiction since $\left.U_{i} \in \mathcal{A}\right)$. Note further that every $T \in \overline{\mathcal{A}} \backslash \mathcal{A}$ is a proper face of some U_{i} (because T is a face of some $S \in \mathcal{A}$ and $U_{i} \leq S$ for some i, hence $T<U_{i}$ or $U_{i} \leq T$ because S is a monotope, and the second case is excluded because $T \notin \mathcal{A}$). In particular $\partial A=\bar{A} \backslash A$ is the union of the sets $T \in \overline{\mathcal{A}}$ such $T<U_{i}$ for some i, that is $\partial A=\bigcup_{i \leq r} \partial U_{i}$.

For each $i \leq r$ let \mathcal{B}_{i} be the family of $S \in \mathcal{A}$ such that $S \geq U_{i}$, and $B_{i}=\bigcup \mathcal{B}_{i}$. The families \mathcal{B}_{i} are pairwise disjoint, and so are the sets B_{i} since \mathcal{A} is a complex. By the same argument as above (replacing \mathcal{A} by $\left.\mathcal{B}_{i}\right) \bar{B}_{i} \backslash B_{i}=\bigcup\left(\overline{\mathcal{B}}_{i} \backslash \mathcal{B}_{i}\right)=\partial U_{i}$, hence B_{i} is relatively open and $\partial B_{i}=\partial U_{i}$. It suffices to prove the result separately for each B_{i}. Indeed, assume that for each $i \leq r$ we have found a partition $\left(B_{i, j}\right)_{1 \leq j \leq n}$ of B_{i} in definable sets such that $\partial \bar{B}_{i, j}=\partial B_{i}$. Then let $A_{j}=\bigcup_{i \leq r} B_{i, j}$ for each j. By construction these sets form a partition of A and

$$
\bar{A}_{j} \backslash A_{j}=\bar{A}_{j} \backslash A=\bigcup_{i \leq r} \bar{B}_{i, j} \backslash A=\bigcup_{i \leq r} \bar{B}_{i} \backslash A=\bigcup_{i \leq r} \partial B_{i}=\partial A .
$$

[^7]Thus replacing A and \mathcal{A} by B_{i} and \mathcal{B}_{i} if necessary, we can assume that \mathcal{A} has a unique smallest element U_{0}. If U_{0} is closed, then $\partial A=\partial U_{0}=\emptyset$ (by minimality of U_{0}), and it suffices to take $A_{1}=A$ and $A_{k}=\emptyset$ for $k \geq 2$. So from now on we assume that U_{0} is not closed. Proposition 6.4 then applies to U_{0} and gives for some N^{\prime} a partition $A_{1}\left(U_{0}\right), \ldots, A_{n}\left(U_{0}\right)$ of U_{0} in largely continuous monotopic cells mod N^{\prime} such that $\partial A_{i}\left(U_{0}\right)=\partial U_{0}$ for every i. In particular each $A_{i}\left(U_{0}\right)$ is a basic Presburger set. Let $H=\operatorname{Supp} U_{0}$, and for every $S \in \mathcal{S}$ and $i \in \llbracket 1, n \rrbracket$ let $A_{i}(S)=\pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right) \cap S$. Note that this is a basic Presburger set. Indeed, S itself is a basic Presburger set, and $\pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right) \cap F_{I}\left(\Gamma^{m}\right)$ with $I=\operatorname{Supp} S$ is a basic Presburger set because $A_{i}\left(U_{0}\right)$ is so (replace every condition $f(x) \geq 0$ defining $A_{i}\left(U_{0}\right)$ by $\left.f \circ \pi_{H}(x) \geq 0\right)$. Hence their intersection $A_{i}(S)$ is a basic Presburger set too. For every $i \leq n$ let $A_{i}=\bigcup\left\{A_{i}(S): S \in \mathcal{A}\right\}$. This defines a partition of A. In order to conclude it only remains to show that $\overline{A_{i}}=A_{i} \cup \partial U_{0}$ for each i, so that $\partial A_{i}=\partial U_{0}=\partial A$. Since $\overline{A_{i}}=\bigcup\left\{\overline{A_{i}(S)}: S \in \mathcal{A}\right\}$, it suffices to check that for every $S \in \mathcal{A}$

$$
\begin{equation*}
\overline{A_{i}(S)}=\bigcup\left\{A_{i}(T): T \in \mathcal{A}, U_{0} \leq T \leq S\right\} \cup \partial U_{0} \tag{18}
\end{equation*}
$$

Let $I=\operatorname{Supp} A_{i}(S)=\operatorname{Supp} S$, and $J \subseteq I$ be the support of any face of $A_{i}(S)$. Note that $F_{J}\left(A_{i}(S)\right) \neq \emptyset$ implies that $F_{J}(S) \neq \emptyset$, thus J is the support of a face $T=F_{J}(S)$ of S. This face T belongs to $\overline{\mathcal{A}}$, hence to \mathcal{S} if $U_{0} \leq T$. We are claiming that $F_{J}\left(A_{i}(S)\right)=A_{i}(T)$ in that case, and that $F_{J}(T)=T=F_{J}\left(U_{0}\right)$ if $T<U_{0}$. This will finish the proof since $\overline{A_{i}(S)}$ is the union of its faces, and (18) then follows immediately.

Assume first that $U_{0} \leq T$. Since $A_{i}(S)$ and S are basic Presburger set, we know by Proposition $3.3(1)$ that $F_{J}\left(A_{i}(S)\right)=\pi_{J}\left(A_{i}(S)\right)$ and $F_{J}(S)=\pi_{J}(S)$, that is $T=\pi_{J}(S)$. Since $U_{0} \leq T$ we have $H \subseteq J$ hence $\pi_{J}\left(\pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right)\right)=$ $\pi_{J}^{-1}\left(A_{i}\left(U_{0}\right)\right)$. It follows that

$$
\pi_{J}\left(\pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right) \cap S\right) \subseteq \pi_{J}\left(\pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right)\right) \cap \pi_{J}(S)=\pi_{J}^{-1}\left(A_{i}\left(U_{0}\right)\right) \cap T
$$

that is $\pi_{J}\left(A_{i}(S)\right) \subseteq A_{i}(T)$.
Conversely, for every $y \in A_{i}(T)$ we have on one hand $y \in T=\pi_{J}(S)$ so there is $x \in S$ such that $\pi_{J}(x)=y$, and on the other hand $y \in \pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right)$ so $\pi_{H}(x)=\pi_{H}\left(\pi_{J}(x)\right)=\pi_{H}(y) \in A_{i}\left(U_{0}\right)$. Thus $x \in \pi_{H}^{-1}\left(A_{i}\left(U_{0}\right)\right) \cap S=A_{i}(S)$, and since $y=\pi_{J}(x)$ this proves that $A_{i}(T) \subseteq \pi_{J}\left(A_{i}(S)\right)$. This proves our claim in this case.

Now assume that $T<U_{0}$. Then $J \subset H$ hence $\pi_{J}\left(A_{i}(S)\right)=\pi_{J}\left(\pi_{H}\left(A_{i}(S)\right)\right.$. We already know that $\pi_{H}\left(A_{i}(S)\right)=A_{i}\left(U_{0}\right)$ be the previous case, and that $\partial A_{i}\left(U_{0}\right)=\partial U_{0}$ by construction. In particular $F_{J}\left(A_{i}\left(U_{0}\right)\right)=F_{J}\left(U_{0}\right)$. But $F_{J}\left(U_{0}\right)=T$ since \mathcal{A} is a complex and $T<U_{0}$. Altogether, using Proposition 3.3(1) for $A_{i}(S)$ and $A_{i}\left(U_{0}\right)$ we get

$$
F_{J}\left(A_{i}(S)\right)=\pi_{J}\left(A_{i}(S)\right)=\pi_{J}\left(A_{i}\left(U_{0}\right)\right)=F_{J}\left(A_{i}\left(U_{0}\right)\right)=T
$$

References

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1998.
[Brø83] Arne Brøndsted. An introduction to convex polytopes, volume 90 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1983.
[CL12] Raf Cluckers and Eva Leenknegt. A version of p-adic minimality. J. Symbolic Logic, 77(2):621-630, 2012.
[Clu03] Raf Cluckers. Presburger sets and P-minimal fields. J. Symbolic Logic, 68(1):153-162, 2003.
[Den86] Jan Denef. p-adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math., 369:154-166, 1986.
[HM97] Deirdre Haskell and Dugald Macpherson. A version of o-minimality for the p-adics. J. Symbolic Logic, 62(4):1075-1092, 1997.
[PR84] A. Prestel and P. Roquette. Formally p-adic fields, volume 1050 of Lecture Notes in Math. Springer-Verlag, 1984.
[vdD98] Lou van den Dries. Tame topology and o-minimal structures, volume 248 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.

[^0]: *Département de mathématiques, Faculté des sciences, 2 bd Lavoisier, 49045 Angers, France.

[^1]: ${ }^{1}$ The specialisation pre-order of the subsets of a topological space is defined as usually by $B \leq A$ if and only if B is contained in the closure or A.

[^2]: ${ }^{2}$ In addition, the Monohedral and Monotopic Divisions even ensure that every C in \mathcal{C} has no proper face inside A : either C has no proper face at all, or its unique facet is outside A (hence so are all its proper faces) and belongs to \mathcal{D}.

[^3]: ${ }^{3}$ The restriction of our topology to \mathbf{Q}^{m} agrees with the usual one, induced by the Euclidian distance.

[^4]: ${ }^{4}$ As already mentioned in Section $2, A \subseteq F_{I}\left(\Gamma^{m}\right)$ and $F_{J}(A) \neq \emptyset$ imply that $J \subseteq I$.

[^5]: ${ }^{5}$ The reader may imagine that this lower edge of the square is actually Γ^{m-1} in the induction steps, while the left edge is Γ.

[^6]: ${ }^{6}$ We don't call them largely continuous precells because they are much more special than the usual p-adic cells as defined in [Den86].

[^7]: ${ }^{7}$ A subset A of a toplogical set is called relatively open if it is open in its closure, that is $\bar{A} \backslash A$ is closed.

