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Polytopes and simplexes in p-adic fields

Luck Darnière

March 10, 2016

Abstract

We introduce topological notions of polytopes and simplexes, the latter
being expected to play in p-adically closed fields the role played by real
simplexes in the classical results of triangulation of semi-algebraic sets over
real closed fields. We prove that the faces of every p-adic polytope are
polytopes and that they form a rooted tree with respect to specialisation.
Simplexes are then defined as polytopes whose faces tree is a chain. Our
main result is a construction allowing to divide every p-adic polytope in
a complex of p-adic simplexes with prescribed faces and shapes.

1 Introduction

Throughout all this paper we fix a p-adically closed field (K, v). The reader
unfamiliar with this notion may restrict to the special case when K = Qp or a
finite extension of it, and v its p-adic valuation. We let R denote the valuation
ring of v, and Γ = v(K) its valuation group (augmented with one element
+∞ = v(0)). In this introductory section we present informally what we are
aiming at. Precise definitions will be given in section 2 and at the beginning of
section 6.

Our long-term objective is to set a triangulation theorem which would be
an acceptable analogous over K of the classical triangulation of semi-algebraic
sets over the reals. Polytopes and simplexes in Rm are well known to have the
following properties, among others (see for example [BCR98] or [vdD98]).

(Sim) They are bounded subsets of Rm which can be described by a finite set
of linear inequalities of a specially simple sort.

(Fac) There is a notion of “faces” attached to them with good properties: every
face of a polytope S is itself a polytope; if S′′ is a face of S′ and S′ a face
of S then S′′ is a face of S; the union of the proper faces of S is a partition
of its frontier.

(Div) Last but not least, every polytope can be divided in simplexes by a cer-
tain uniform process of “Barycentric Division” which offers a good control
both on their shapes and their faces.

The goal of the present paper is to build a p-adic counterpart of real poly-
topes and simplexes having similar properties. Obviously we cannot transfer
directly linear inequalities and Barycentric Division to non-ordered fields, such
as the p-adic ones. Nevertheless we want our p-adic polytopes and simplexes to
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be defined by conditions as simple as possible, to have a notion of faces satisfy-
ing all the above properties, and most of all to come with a flexible and powerful
division tool.

This is achieved here by introducing and studying first certain subsets of Γm

called “largely continuous precells mod N”, for a fixed m-tuple N of strictly
positive integers. These sets will be defined by a very special triangular system
of linear inequalities and congruence relations mod N . In particular they are
defined simply by linear inequalities in the special case when N = (1, . . . , 1)
(again, see Section 2 for precise definitions and basic examples).

This paper, which is essentially self-contained, is organised as follows. The
general properties of subsets of Γm defined by conjunctions of linear inequalities
and congruence conditions are studied in section 3. Property (Fac) is proved
there to hold true for for largely continuous precells mod N (while property
(Sim) is a by-product of their definition). Section 4 is devoted to two technical
properties preparing the proof of our main result, a construction analogous to
(Div) in our context. We call it the “Monohedral Division” (see below). The
whole Section 5 is devoted to its proof.

We then return to the p-adic context in the final section 6. By taking inverse
images of largely continuous precells by the valuation v (which maps Km onto
Γm) and restricting them to certain subsets of Rm, we transport into Km all
the definitions and results built in Γm in the previous sections, specially the
Monohedral Division (which becomes in this context the “Monotopic Division”,
Theorem 6.3). This latter result paves the way toward a triangulation of semi-
algebraic p-adic sets, to appear in a further paper.

Monohedral division. In addition to (Sim) and (fac), every largely continu-
ous precell A mod N has one more remarkable property which real polytopes are
lacking: its proper faces, ordered by specialisation1, form a rooted tree (Propo-
sition 3.3(4). When this tree is a chain, we say that A is “monohedral”.

Among real polytopes of a given dimension, the simplexes are those whose
number of facets is minimal: a polytope A ⊆ Rm of dimension d has at least
d + 1 facets, and it is a simplex if and only if it has exactly d + 1 facets (see
Corollary 9.4 and Corollary 12.8 in [Brø83]). We expect largely continuous
precells mod N to play in Γm the role played by polytopes in Rm, and the
monohedral ones (whose ordered set of faces is in a sense the simplest possible
tree) to play the role of simplexes2

Indeed our main result, the “Monohedral Division” (Theorem 5.5), provides
in our context a powerful tool very similar to (Div), the Barycentric Division of
real polytopes. It provides in particular a “Monohedral Decomposition” (The-
orem 5.6) which says that every largely continuous precell mod N in Γm is the
disjoint union of a complex of monohedral largely continuous precells mod N .
The latter result is in analogy with the situation in the real case, where every
polytope can be divided in simplexes forming a simplicial complex.

But the Barycentric Division in Rm says much more than this. Roughly
speaking, given a polytopeA and a simplicial complexD partitioning the frontier

1The specialisation pre-order on the subsets of a topological space is defined as usually
by B ≤ A if and only if B is contained in the closure or A.

2This is specially true when N = (1, . . . , 1). However, since all the results in this paper
hold true for arbitrary N it would be pointless to restrict to this case in the present paper.



of A, it allows to build a simplicial complex C partitioning A and “lifting” D,
in the sense that for every C in C, the faces D of C which are outside A belong
to D. Moreover, given a strictly positive function ε : B → R (where B is any
proper face of A), the shapes of the elements of C can be required to satisfy the
following condition: for every D in D there is a unique C ∈ C such that D is the
largest proper face of C in C, and in that case the distance of any point x ∈ C
to its projection y onto B is smaller than ε(y) (see Figure 1, where the dotted
curve shows how the ε function controls the shapes of the elements of C whose
largest proper face outside A is contained in the given facet B).

Figure 1: Division with constraints along a facet.

Although all these properties come from the Barycentric Division in Rm,
none of them involves the notion of barycenter. The strength of our Monohedral
Division in Γm (Theorem 5.5) is to keep3 all of them, which are finally inherited
by the Monotopic Division in Km (Theorem 6.3).

2 Notation, definitions

We let N, Z, Q denote respectively the set of positive integers, of integers and
of rational numbers, and N∗ = N \ {0}.

Recall that a Z-group is a linearly ordered group G with a smallest > 0
element such that G/nG has n elements for every integer n ≥ 1. The reader
unfamiliar with Z-groups may restrict to the special but prominent case of Z
itself. Indeed a linearly ordered group is a Z-group if and only if it is elementarily
equivalent to Z (in the Presburger language LPres defined below).

(K, v) is a p-adically closed field in the sense of [PR84], that is a henselian
valued field of characteristic zero whose residue field is finite and whose value
group Z = Γ \ {+∞} = v(K∗) is a Z-group. A field is p-adically closed if and
only if it is elementarily equivalent (in the language of rings) to a finite extension
of Qp, so the reader unfamiliar with the formalism of model-theory may restrict
to this fundamental case.

Let Q be the divisible hull of Z. By identifying Z with the smallest non-
trivial convex subgroup of Z, we consider Z embedded into Z (and Q into Q).
For every a ∈ Q we let |a| = max(−a, a).

Ω = Q∪{+∞} is endowed the topology generated by the open intervals and
the intervals ]a,+∞] for a ∈ Q. Ωm is equipped with the product topology, and

3In addition, the Monohedral and Monotopic Divisions even ensure that every C in C has
no proper face inside A: either C has no proper face at all, or its unique facet is outside A
(hence so are all its proper faces) and belongs to D.



Γm with the induced topology. The topological closure of any set A in Ωm is
denoted A. Thus for example Ω = Q and Γ = Z. The frontier of a subset A
of Ωm is the closure of A \A. We denote it ∂A.

Whenever we take an element a ∈ Ωm it is understood that a1, . . . , am ∈ Ω
are its coordinates. We say that a is positive if all its coordinates are so. A
subset A of Ωm is positive if all its elements are so. If m ≥ 1 we let â (resp. Â)
denote the image of a (resp; A) by the coordinate projection of Ωm onto Ωm−1.
We call it the socle of a (resp. A). If A is a family of subsets of Γm we also

call Â = {Â :A ∈ A} the socle of A.
The support of a, denoted Supp a, is the set of indexes i such that ai 6= +∞.

When all the elements of A have the same support, we call it the support of
A and denote it SuppA. For every subset I = {i1, . . . , ir} of [[1,m]] we let:

FI(A) = Fi1,...,ir (A) = {a ∈ A : Supp a = I}.

When FI(A) 6= ∅ we call it the face of A of support I. It is an upward face
if moreover m ∈ I and FI\{m}(A) is non-empty. Note that if A is contained in
Γm then so are its faces, because Γm is closed Ωm. By construction, FI(A) =
A ∩ FI(Ωm) hence A is the disjoint union of all its faces. A complex in Γm

is a finite family A of two-by-two disjoint subsets of Γm such that for every
A,B ∈ A, A ∩ B is the union of the common faces of A and B. It is a closed
complex if moreover it contains all the faces of its members, or equivalently
if
⋃
A is closed. Note that a finite partition S of a subset of Γm is a closed

complex if and only if S contains the faces of all its members.
The specialisation pre-order is an order on the faces of A. The largest proper

faces of A with respect to this order are called its facets. We say that A is
monohedral if its faces are linearly ordered by specialisation. Note that every
subset of FI(Γm) is clopen in FI(Γm). In particular if A ⊆ FI(Γm) then ∂A
is the disjoint union of its proper faces. Note also that FJ(A) = ∅ whenever
J * I.

Example 2.1 Let A ⊆ Z3 be defined by a1 ≥ 0, a2 ≥ a1 and a3 = 2a2 − 2a1.
It has four non-empty faces: A itself, two facets F1(X) = N× {+∞} × {+∞}
and F3(A) = {+∞}× {+∞}× 2N, plus F∅(A) = {(+∞,+∞,+∞)}.

We let πm
I be the natural projection of Γm onto FI(Γm). When m is clear

from the context, πm
I is simply denoted πI . If a (resp. A) is any element (resp.

subset) of Γm we write â and Â instead of πm
I (a) and πm

I (A) with I = [[1,m−1]].

Remark 2.2 Given any A ⊆ Γm and b ∈ FI(A) it is easy to see that πI(a) = b
for every a ∈ A in a sufficiently small4 neighbourhood of b. Thus FJ(A) ⊆ πJ(A)

and F̂J(A) ⊆ FĴ(Â) (where Ĵ = J \ {m}).

For every J ⊆ [[1,m]] and a ∈ Ωm we let ∆m
J (a) = min{ai : i /∈ J} (if

J = [[1,m]] we use the convention that min ∅ = +∞ in this definition of ∆m
J (a)).

Again the superscript m is omitted whenever it is clear from the context. Note
that for every a, b ∈ Ωm

∆J(a+ b) ≥ ∆J(a) + ∆J(b).

4A sufficient condition is that maxi∈I |ai − bi| < 1.



Remark 2.3 When Z = Z the topology on Ωm comes from the distance
d(a, b) = max1≤i≤m |2−ai − 2−bi |, with the convention that 2−∞ = 0. Thus
2−∆J (a) is just the distance from a to its projection πJ(a). In the general case
the topology on Ωm no longer comes from a distance. Nevertheless we will keep
in mind this geometric intuition, that ∆J(a) measures in a sense the distance
from a to FJ(Ωm): the bigger is ∆J(a), the closer is a to FJ(Ωm).

This intuition makes the following facts rather obvious.

Fact 2.4 For every function f : A ⊆ Γm → Ω every b ∈ Γm with support J we
have:

1. b ∈ FJ(A) iff ∀δ ∈ Z, ∃a ∈ A, πJ(a) = b and ∆J(a) ≥ δ.

2. If b ∈ FJ(A) then f has limit +∞ at b iff ∀ε ∈ Z, ∃δ ∈ Z, ∀a ∈ A,
[πJ(a) = b and ∆J(a) ≥ δ]⇒ f(a) ≥ ε.

Given a vector u ∈ Zm we let A + u = {x + u :x ∈ A}. We say that u is
pointing to some J ⊆ [[1,m]] if ui = 0 for i ∈ J and ui > 0 for i /∈ J .

Remark 2.5 Let J ⊆ I ⊆ [[1,m]] and S be any subset of FI(Γm). Using
Remark 2.2 and the above facts, one easily sees that if for every δ ∈ Z there is
u ∈ Zm pointing to J such that ∆J(u) ≥ δ and S+u ⊆ S then FJ(S) = πJ(S),
and in particular FJ(S) 6= ∅.

A function f : A ⊆ Γm → Ω is largely continuous on A if it can be
extended to a continuous function on A, which we will usually denote f̄ . If A
has support I, we say that f is a affine map (resp. linear map) if either
f is constantly equal to +∞, or for some α0 ∈ Q (resp. α0 = 0) and some
(αi)i∈I ∈ QI , we have

∀a ∈ A, f(a) = α0 +
∑
i∈I

αiai. (1)

We call α0 the “constant coefficient” in the above expression of f . If such an
expression exists for which α0 ∈ Z and αi ∈ Z for i ∈ I, we say that f is
integrally affine. A affine map which takes values in Γ will be called Γ-affine.
For example f(x) = x/2 is Γ-affine on 2Z but is not integrally affine.

Remark 2.6 Of course there is no uniqueness in a description of f as in (1).
Nevertheless, affinity and linearity are intrinsic because a function ϕ : A ⊆
FI(Γm) 7→ Q is a linear map if and only if for every a1, . . . , ak ∈ A and every
λ1, . . . , λk ∈ Qm :∑

1≤i≤k

λiai ∈ A =⇒ ϕ

( ∑
1≤i≤k

λiai

)
=
∑

1≤i≤k

λiϕ(ai)

The symbols of the Presburger language LPres = {0, 1,+,≤, (≡n)n∈N∗} are
interpreted as usually in Z: the binary relation a ≡n b says that a − b ∈ nZ,
and the other symbols have their obvious meanings. A subset X of Zd is
LPres-definable if there is a first order formula ϕ(ξ) in LPres, with parameters
in Z and a d-tuple ξ of free variables, such that X = {x ∈ Zd :Z |= ϕ(x)}. A
function f : X ⊆ Zd → Z is LPres-definable its graph is so.



Each FI(Γm) identifies to Zd with d = Card(I). We say that a subset A of
Γm is definable if for every I ⊆ [[1,m]] the set A ∩ FI(Γm) is LPres-definable
by means of this identification. We say that a function f : A ⊆ Γm → Ω
is definable if there is an integer N ≥ 1 such that Nf(X) ⊆ Γ and if the
restrictions of Nf to each FI(Γm) become, after this identification, either an
LPres-definable map from ZCard(I) to Z or the constant map +∞. Note that
every affine map is definable in this broader sense.

The next characterisation of definable maps and sets comes directly from
Theorem 1 in [Clu03].

Theorem 2.7 (Cluckers) For every definable function f : A ⊆ Γm → Γ on a
positive set A, there exists for some N a partition of A in finitely many definable
sets mod N , on each of which the restriction of f is an affine map.

It is well known that the theory of Z-groups has quantifier elimination and
definable Skolem functions. At many places, without mentioning, we will use
the latter property under the following form.

Theorem 2.8 (Skolem Functions) Let A ⊆ Zm and B ⊆ Zn be two
LPres-definable sets. Let ϕ(x, y) be a first order formula in LPres. If for ev-
ery a ∈ A there is b ∈ B such that Z |= ϕ(a, b) then there is a definable map
λ : A→ B such that Z |= ϕ(a, λ(a)) for every a ∈ A.

Since Z is elementarily equivalent to Z in the language LPres, every non-
empty LPres-definable subset of Z which is bounded above (resp. below) has a
maximum (resp. minimum) element. As a consequence for every a ∈ Ω there
is in Z a largest element bac (resp. dae) which is ≤ a (resp. ≥ a). Note
that if f : X ⊆ Zd → Q is definable and N ≥ 1 is an integer such that
Nf is LPres-definable, then for every integer 0 ≤ k < N the set Sk = {x ∈
X :Nf(x) ≡n k} is LPres-definable, and so is the map bfc(x) = (Nf(x)−k)/N
on Sk. Thus the map bfc : S → Z is LPres-definable, and so is dfe by a
symmetric argument. Obviously the same holds true for every definable map
from A ⊆ Γm to Ω.

Lemma 2.9 If f : A ⊆ Γm → Ω is a largely continuous definable map on a
positive set A, then it has a minimum in A.

Proof: It suffices to prove the result separately for each A ∩ FI(Γm) with
I ⊆ [[1,m]]. Every such piece identifies with a definable subset of ZCard I hence
we can assume that A ⊆ Zm. Multiplying f by some integer n ≥ 1 if necessary
we can assume that f takes values in Γ, and even in Z (otherwise f is constantly
+∞ and the result is trivial). Since Z ≡ Z, by instantiating the parameters
of a definition of f : A ⊆ Zm → Z we are reduced to prove the result for
every largely continuous definable function on a positive subset A of Zm. But
in that case the topology on Γm comes from a metric and every positive subset
of Γm is precompact (that is A is compact). So there is ā ∈ A such that
f̄(ā) = min{f̄(x) :x ∈ A}. For any a ∈ A close enough to ā we have f(a) = f̄(ā)
(because f(A) ⊆ Z) hence f(a) = min{f(x) :x ∈ A}.

Lemma 2.10 Let f : A ⊆ Γm → Ωn a continuous definable map. If A is
positive then f(A) is closed.



Proof: As for Lemma 2.9 we can reduce to the case when Z = Z. But then A
is compact, hence so is f(A) since f is continuous.

We extend the binary congruence relations of Z to Γ with the convention
that a ≡ +∞ [N ] for every a ∈ Γ and every N ∈ N. A subset A of FI(Γm)
is a basic Presburger set if it is the set of solutions of finitely many linear
inequalities and congruence relations. Although we will not use it, it is worth
mentioning that, by the quantifier elimination of the theory of Z in the language
LPres, the definable subsets of Zd, and more generally of Γm, are exactly the
finite unions of basic Presburger sets.

Cluckers has shown in [Clu03] that every definable subset of Zd is actually
the disjoint union of finitely many subsets of a much more restrictive sort, called
cells. The following definition of precells in Γm, more precisely of precells mod N
for a given N ∈ (N∗)m, is adapted from his (see Remark 2.11 below). Since we
only need to consider positive precells it is convenient to restrict the definition
to this case. If m = 0, Γ0 itself is the only precell mod N in Γ0. If m ≥ 1, for
every I ⊆ [[1,m]], a subset A of FI(Γm) is a precell mod N if: Â is a precell

mod N̂ , and there are positive affine maps µ, ν : Â → Ω and an integer ρ such
that 0 ≤ ρ < Nm and A is exactly the set of points a ∈ FI(Γm) such that â ∈ Â
and

µ(â) ≤ am ≤ ν(â) and am ≡ ρ [Nm]. (2)

We call µ, ν the boundaries of A, ρ a modulo for A, and such a triple (µ, ν, ρ)
a presentation of A. We call it a largely continuous presentation of A if
moreover µ, ν are largely continuous. A is a largely continuous precell mod
N if m = 0, or if Â is largely continuous precell mod N̂ and A is a precell mod
N having a largely continuous presentation.

Remark 2.11 Cells in [Clu03] are not supposed to have positive boundaries,
but to be of one of these two types : either µ−ν is not finitely bounded or µ = ν.
Unfortunately this condition seems to be too restrictive for our constructions,
we had to relax it. Thus our precells are not cells in the sense of [Clu03] but a
restriction (we require positive boundaries) of a slight generalisation (µ− ν can
be finitely bounded and non-zero) of them.

3 Faces and projections

In this section we consider a non-empty basic Presburger set A ⊆ FI(Γm) defined
by ∧∧

1≤l≤l0
ϕl(x) ≥ γl and

∧∧
1≤l≤l1

ψl(x) ≡ ρl[nl] (3)

where ϕl, ψl : FI(Γm) → Z are integrally linear maps, γl ∈ Z, ρl and nl are
integers such that 0 ≤ ρl < nl. We prove some basic properties on the faces of
A and the affine maps on A. Finally we derive from these facts that every face
of a largely continuous precell A mod N is a largely continuous precell mod N
and has a presentation inherited from A in a uniform way (Proposition 3.11).

Example 2.1 shows that precell mod N (here N = (1, 1, 1)) can have a facet
which is no longer a precell mod N . But even worse is possible: the next
example shows that a precell mod N can have a facet which is not even a basic
Presburger set.



Example 3.1 A ⊆ Z3 is defined by 0 ≤ x1 ≤ x2 and (x1 + 3x2)/3 ≤ z ≤
(x1 + 3x2 + 1)/3. Its unique facet F1(A) is defined by 0 ≤ x1 and either
x1 ≡ 0 [3] or x1 ≡ 2 [3].

Lemma 3.2 Let A ⊆ FI(Γm) be defined by (3). Let J be any subset of [[1,m]].
Then FJ(A) 6= 0 if and only if for every δ ∈ Z there is u ∈ Zm pointing to J
such that ∆J(u) ≥ δ and A+ u ⊆ A.

Proof: It suffices to prove the result when I = [[1,m]]. One direction is general
by Remark 2.5, so let us prove the converse. Assume that FJ(A) 6= ∅ and fix
any δ ∈ Z. W.l.o.g. we can assume that δ > 0. Pick y0 ∈ FJ(A) and let
A0 = {x ∈ A :πJ(x) = y0}. By Remark 2.2, FJ(A0) = {y0}.

Assume that for some k ∈ [[0, l0 − 1]] we have found a definable subset Ak

of A0 such that FJ(Ak) = {y0} and for every l ∈ [[1, k]], either ϕl is constant
on Ak or ϕl(x) tends to +∞ as x tends to y in Ak. If the same holds true for
ϕk, let Ak+1 = Ak. Otherwise, there is some α ∈ Z such that for every ω ∈ Z
there is x ∈ Ak such that ∆J(x) ≥ ω and ϕk(x) ≤ α. The set A of these α’s is
definable, non-empty, and bounded below since ϕk ≥ γk on Ak. Hence it has a
minimum, say β. By minimality of β there is ω0 ∈ Z such that for every x ∈ Ak

such that ∆J(x) ≥ ω0, ϕk(x) > β − 1. Thus, for every ω ∈ Z there is x ∈ A0

such that ∆J(x) ≥ ω and ϕk(x) = β (because β ∈ A). With other words, the
set Ak+1 defined by

Ak+1 =
{
x ∈ Ak :ϕk(x) = β

}
is such that FJ(Ak+1) 6= 0 (see fact 2.4). It obviously has all the other required
properties since it is contained in Ak.

By repeating the process until k = l0 we get a definable set Al0 as above.
Pick any a ∈ Al0 , by construction there is ω ∈ Z such that for every x ∈ Al0 if
∆J(x) ≥ ω then ϕl(x) ≥ ϕl(a) for every l ∈ [[1, l0]]. Pick any b ∈ Al0 such that
∆J(b) ≥ ω and ∆J(b) ≥ δ+ai for every i /∈ J . It remains to check that u = b−a
gives the conclusion. For every j ∈ J , aj = bj = y0,j because a, b ∈ Al0 ⊆ A0

and πJ(A0) = {y0}, hence uj = 0. For i /∈ J we have bi ≥ ∆J(b) ≥ δ + ai,
hence ui ≥ δ > 0. In particular u points to J and ∆J(u) ≥ δ. Finally let x be
any element of Al0 . For every l ≤ l0 we have ϕl(x) ≥ γl since x ∈ A, and by
linearity of ϕl

ϕl(x+ u) = ϕl(x) + ϕl(u) ≥ γl + ϕl(u). (4)

We also have ϕl(b) = ϕl(a) + ϕl(u) by linearity, and ϕl(b) ≥ ϕl(a) because
∆J(b) ≥ ω, hence ϕl(u) ≥ 0. It follows that ϕl(x+ u) ≥ 0 by (4). On the other
hand, for every l ∈ [[1, l1]] we have ψ(x) ≡ ρl [nl] because x ∈ A, ψ(a) ≡ ρl [nl]
and ψ(b) ≡ ρl [nl] for the same reason, hence ψl(x+u) = ψl(x)+ψl(a)−ψl(b) ≡
ρl [nl]. Thus x+ u ∈ A for every x ∈ A, which proves the result.

Proposition 3.3 Let A ⊆ FI(Γm) be a basic Presburger set, J and H be any
subsets of [[1,m]] such that FJ(A) and FH(A) are non-empty.

1. FJ(A) = πJ(A).

2. If H ⊆ J then FH(A) = FH(FJ(A)).



3. FH(A) ⊆ FJ(A) if and only if H ⊆ J . In particular the faces of A are
linearly ordered by specialisation if and only if their supports are linearly
ordered by inclusion.

4. FH∩J(A) is non-empty.

We will refer to the n-th point of Proposition 3.3 as to Proposition 3.3(n).

Remark 3.4 Proposition 3.3(4) shows that the set of faces of A ordered by
specialisation is a distributive lower semi-lattice with one smallest element. If
S is any monohedral subset of Γm, Proposition 3.3(3) implies that every basic
Presburger subset A of S is monohedral, and Proposition 3.3(2) that every face
of A is again monohedral.

Proof: The first point FJ(A) = πJ(A) follows from Lemma 3.2, by Remark 2.5
applied to S = A.

For the second point, H ⊆ J implies that πH(A) = πH(πJ(A)). Since
FH(A) = πH(A) and FJ(A) = πJ(A) by the first point, it suffices to prove that
FH(πJ(A)) = πH(πJ(A)). For every δ ∈ Z there is by Lemma 3.2 a vector
u ∈ Zm pointing to H such that ∆H(u) ≥ δ and A + u ⊆ A. Then obviously
πJ(A) + u = πJ(A + u) ⊆ πH(A), and the conclusion follows by Remark 2.5
applied to S = πJ(A).

For the third point, one direction follows from the second point and the other
direction is general since FH(A) ⊆ FH(Γm), FJ(A) ⊆ FJ(Γm), and FH(Γm) is
disjoint from FJ(A) if H is not contained in J .

It remains to prove the last point. For every δ ∈ Z, Lemma 3.2 gives uJ and
uH in Zm pointing to J and H respectively such that ∆J(uJ) ≥ δ, A+ uJ ⊆ A
and similarly for uH . W.l.o.g. we can assume that δ > 0 hence for every
i /∈ J ∩ H, uJ,i + uH,i ≥ δ > 0. In particular uJ + uH points to J ∩ H and
∆J∩H(uJ + uH) ≥ δ. Obviously A+ uJ + uH is contained in A. So FJ∩H(A) is
non-empty by Remark 2.5.

Proposition 3.5 Let A ⊆ FI(Γm) be a basic Presburger set defined by (3),
f : A → Ω be an affine map, J ⊆ I and B = FJ(A). Assume that B is not
empty and that f extends to a continuous map f∗ : A ∪ B → Ω. Then f∗ is
affine, and if f∗ 6= +∞ then f = f∗|B ◦ πJ |A. In particular if f∗ 6= +∞ then

f(A) = f∗(B).

If f is Γ-affine then so is f∗ of course. However, if f is integrally affine we
cannot conclude that f∗ will be integrally affine as well, even if f is largely
continuous, as the following example shows.

Example 3.6 Keep A ⊆ Z3 as in Example 2.1. The map f(x) = x2 − x1 is
integrally affine and largely continuous on A, with f(x) = x3/2 on ∂A. This is
no longer an integrally affine map on B = F3(A) = {+∞}× {+∞}× 2N.

Proof: It suffices to prove the result when I = [[1,m]], f < +∞ is an integrally
linear map and f∗ is not constantly equal to +∞. Let ϕ be an integrally linear
map on Zm extending f , and b ∈ B such that f∗(b) < +∞. Since f(A) ⊆ Z
and f(x) tends to f∗(b) at b, there exists δ ∈ Z such that for every x ∈ A,



if πJ(x) = b and ∆J(x) ≥ δ then f(x) = f∗(b). Pick any a ∈ A such that
πJ(a) = b and ∆J(a) ≥ ω, hence f(a) = f∗(b).

Now assume for a contradiction that f(x0) 6= f∗(πJ(x0)) for some x0 ∈ A.
Let y0 = πJ(x0), since f(x) tends to f∗(y0) at y0 and f∗(y0) 6= f(x0) there
exists ω ∈ Z such that for every x ∈ A, if πJ(x) = y0 and ∆J(x) ≥ ω then
f(x) 6= f(x0). Lemma 3.2 gives u ∈ Zm pointing to J such that ∆J(u) ≥
ω−∆J(x0) and A+ u ⊆ A. Then πJ(x0 + u) = πJ(x0) = y0 and ∆J(x0 + u) ≥
∆J(x0) + ∆J(u) ≥ ω, hence f(x0 + u) 6= f(x0). By linearity it follows that
ϕ(u) = f(x0 + u) − f(x0) 6= 0. On the other hand we have ∆J(a + u) ≥
∆J(a) + ∆J(u) ≥ δ and πJ(a+ u) = πJ(a) = b hence f(a+ u) = f∗(b) = f(a),
and thus by linearity ϕ(u) = f(a+ u)− f(a) = 0, a contradiction.

Proposition 3.7 Let A ⊆ FI(Γm) be a basic Presburger set with m ≥ 1, and

X = Â. Then for every face B = FJ(A), B̂ = FĴ(Â) is a face of Â. If moreover
A is positive, then conversely for every face Y of X there is a face B of A such
that B̂ = Y . In that case B = Y ×{+∞} if m /∈ SuppB, and B = (Y ×Z)∩A
if m ∈ SuppB.

Remark 3.8 The last assertion on B is general: for every subset S of FI(Γm)
and every face T = FJ(Γm) with socle Y , we have T = Y × {+∞} if m /∈ J ,
and T = (Y × Z) ∩ S if m ∈ J . Indeed T = FJ(Γm) ∩ S and FJ(Γm) is equal
to FĴ(Γm−1)× {+∞} if m /∈ J and to FĴ(Γm−1)×Z otherwise.

Example 3.9 Let A = {x ∈ Z3 :x1 − x2 − x3 = 0}, B = F3(A) its unique

proper face, J = {3}. Then Â = Z2 has two facets Z × {+∞} and {+∞} × Z
which are not the socle of any face of A.

This example shows that the assumption that A is positive is necessary for
the second part of Proposition 3.7 to hold. Note that B̂ = {(+∞,+∞)} is not

a facet of Â = Z2, which shows that the positivity of A is mandatory also in
Corollary 3.10.

Proof: Given that B = FJ(A) is a face of A, hence non-empty, let us prove

that FĴ(Â) = πĴ(Â). For every δ ∈ Z we can find a vector u ∈ Zm pointing to

J such that ∆J(u) ≥ δ and A+ u ⊆ A, in particular û points to Ĵ , ∆Ĵ(û) ≥ δ

and Â+ û ⊆ Â. Thus FĴ(Â) = πĴ(Â) by Remark 2.5 applied to S = Â. Since

B = πJ(A) by Proposition 3.3(1), and obviously π̂J(A) = πĴ(Â), it follows that

B̂ = FĴ(Â).

Now assume that A is positive. Then the socle of A is closed by Lemma 2.10.
It contains X, hence X. In particular it contains Y , which is non-empty. So
there is b ∈ A whose socle b̂ belongs to Y . Let J = Supp b and B = FJ(A).

Since B contains b it is non-empty, hence a face of A. Then B̂ is a face of X by
the first point. Since b̂ belongs both to Y and B̂, it follows that Y = B̂.

Corollary 3.10 Let A ⊆ FI(Γm) be a non-closed positive basic Presburger set
with socle X. Let B be a facet of A with socle Y . Then Y = X or Y is a facet
of X.



Proof: By Proposition 3.7, Y is a face of X. If Y 6= X then there is a facet X ′

of X whose closure contains Y . It remains to show that Y = Y ′. Proposition 3.7
gives a face B′ of A with socle X ′. Let J , J ′, H, H ′ be the supports of A, A′,
B, B′ respectively. Obviously H = J \ {m} and H ′ = J ′ \ {m}. If B = B′ then
J = J ′ hence H = H ′ and thus Y = Y ′. Now assume that B 6= B′. Since B is
a facet of A it is not smaller than B′ (with respect to the specialisation order)
hence J * J ′ by Proposition 3.3(3). On the other hand Y ≤ Y ′ hence H ⊆ H ′

(otherwise FJ(Γm−1) is disjoint from the closure of FJ′(Γ
m−1)). Altogether this

implies that J = J ′ ∪ {m}. In particular H = J \ {m} = J ′ \ {m} = H ′ hence
Y = Y ′ is a facet of X.

Proposition 3.11 Let A ⊆ FI(Γm) be a largely continuous precell mod N with
m ≥ 1. Let (µ, ν, ρ) be a largely continuous presentation of A, J a subset of I,

Ĵ = J \ {m} and Y = FĴ(Â). Then FJ(A) 6= ∅ if and only if either m ∈ J and
µ̄ < +∞ on Y , or m /∈ J and ν̄ = +∞ on Y . In any case

FJ(A) =
{
b ∈ FJ(Γm) : b̂ ∈ Y, µ̄(̂b) ≤ bm ≤ ν̄ (̂b) and bm ≡ ρ [Nm]

}
.

In particular, if FJ(A) is non-empty then it is a largely continuous precell A
mod N and (µ̄|Y , ν̄|Y , ρ) is a presentation of FJ(A).

Remark 3.12 Combining the last point of the above result with Remark 3.4,
we get that if A is a monohedral largely continuous precell mod N in Γm then
every face of A is so.

Proof: Let X be the socle of A. Recall that Y = FĴ(X) is a face of X and the
socle of FJ(A) by Proposition 3.3(1). Let B be the set of a ∈ FJ(Γm) such that

â ∈ FĴ(Â) = Y , µ̄(â) ≤ am ≤ ν̄(â) and am ≡ ρ [Nm]. Large inequalities and
congruence relations valid on A pass to the limits, hence remain valid on FJ(A).
So B ⊆ FJ(A), and if FJ(A) 6= ∅ then necessarily one of the two alternatives of
the first point hold true.

Conversely, take any point a ∈ A and let b = πJ(a). Assume first that

m ∈ J and µ̄ < +∞. By Proposition 3.5, µ̄ ◦ πJ = µ on X hence µ̄(̂b) =

µ(â) ≤ am = bm. If ν̄ < +∞ then similarly bm ≤ ν̄ (̂b). Otherwise ν̄ = +∞
and bm ≤ ν̄ (̂b is obvious. Since bm = am ≡ ρ [N ] it follows in both cases
that b ∈ B. Now assume that m /∈ J and ν̄ = +∞. Then bm = +∞, hence
obviously µ̄(̂b) ≤ +∞ = bm = ν̄ (̂b) and bm = +∞ ≡ ρ [N ]. Thus b ∈ B, which
proves that πJ(A) ⊆ B. In particular B 6= ∅, hence FJ(A) 6= ∅ since it contains
B. This proves the first point. Moreover by Proposition 3.3(1) it follows that
FJ(A) = πJ(A) ⊆ B. Hence FJ(A) = B, which proves the second point. In
particular FJ(A) is a largely continuous precell if FĴ(Y ) is so. The remaining
of the conclusion then follows by a straightforward induction.

4 Bounding functions

Proposition 4.1 Let A ⊆ FI(Γm) be a definable set, and f1, . . . , fr be definable
maps from A to Q. Assume that the coordinates of all the points of A are



positive. Then there exists a largely continuous, strictly positive, integrally affine
map f : A → Z such that f(x) ≥ maxj fj(x) on A and f̄ = +∞ on ∂A. More
precisely f can be taken of the form f(x) = β+α

∑
i∈I xi on A, for some strictly

positive α ∈ Z and β ∈ Z.

Proof: W.l.o.g. we can assume that I = [[1,m]]. Theorem 2.7 reduces to the
case when the fj ’s are affine. Each fj then writes

fj(x) = α0,j +
∑

1≤i≤m

αi,jxi

for some αi,j ∈ Z for i ≥ 1 and some α0,j ∈ Z. Let α ≥ 1 be an integer greater
than αi,j for every i, j ≥ 1, and β ≥ 1 an element of Z greater the α0,j for every
j ≥ 1. For every x in A and every i, j ≥ 1, since xi ≥ 0 we have αxi ≥ αi,jxi.
So the function f(x) = β + α

∑
1≤i≤m xi has all the required properties.

Lemma 4.2 Let A ⊆ Zm be a largely continuous precell mod N , X its socle,
(µ, ν, ρ) a largely continuous presentation of A and f a largely continuous affine
map on A such that f̄ = +∞ on ∂A. Let (αi)1≤i≤m ∈ Qm and β ∈ Q be such
that f(a) = β+

∑
1≤i≤m αiai on A. Extend f to Qm by means of this expression.

For every x ∈ Â let f̂(x) = f(x, µ(x)) if αm ≥ 0, and f̂(x) = f(x, ν(x))

otherwise. Then f̂ is a well-defined largely continuous affine map on X with
limit +∞ at every point of ∂X, and min f(A) − |αm|Nm ≤ f̂(â) ≤ f(a) for
every a ∈ A.

Proof: The only possible problem in the definition of f̂ is when ν = +∞. But
then αm ≥ 0 because otherwise, given any x ∈ X we have (x,+∞) ∈ ∂A and

f has limit −∞ at (x,+∞), a contradiction. Thus f̂(x, µ(x)) is well-defined in
this case too.

Let λ = µ if αm ≥ 0 and λ = ν otherwise. Then f̂(x) = f(x, λ(x)) is an
affine map and αm(am − λ(â)) is positive on A by construction, hence

f(a) = f
(
â, λ(â)

)
+ αm

(
am − λ(â)

)
≥ f̂(â).

For every x ∈ X there is a point a ∈ A such that â = x and |am − λ(x)| ≤
Nm. So there is a definable function δ : X → Z such that (x, δ(x)) ∈ A and
|δ(x)− λ(x)| ≤ Nm for every x ∈ X. We have

f(x, λ(x)) = f
(
x, δ(x)

)
+ αm

(
λ(x)− δ(x)

)
≥ f

(
x, δ(x)

)
− |αm|Nm

In particular f̂(x) ≥ min f(A)− αmNm on X.
It only remains to check that, given any y ∈ ∂X, f(x, λ(x)) tends to +∞

when x ∈ A tends to y. By the above inequality it suffices to prove that
f(x, δ(x)) tends to +∞ when x ∈ A tends to y. Since (x, δ(x)) ∈ A for every
x ∈ X and f̄ = +∞ on ∂A, it is sufficient to show that δ(x) tends to a limit
l ∈ Γ as x ∈ X tends to y. Indeed, since y ∈ ∂X we will then have that (x, δ(x))
tends to (y, l) ∈ ∂A so the conclusion. We prove it only when αm ≥ 0, the case
when αm < 0 being similar.



If µ̄(y) = +∞, then obviously δ(x) tends to +∞ since µ(x) ≤ δ(x). If
µ̄(y) < +∞ then µ(x) = µ̄(y) for every x ∈ X close enough to y. Hence δ(x),
which is the smallest element t in Γ such that µ(x) ≤ t and t ≡ ρ [Nm], remains
constant too. In particular it has a limit in Z as x ∈ X tends to y.

Proposition 4.3 Let A ⊆ FI(Γm) be a largely continuous precell mod N , and
f1, . . . , fr be largely continuous affine maps on A such that fj = +∞ on ∂A
for every j. Then there exists a largely continuous affine map f on A such that
f = +∞ on ∂A and f(x) ≤ minj fj(x) for every x ∈ A. If, moreover, each fj
is strictly positive on A then f can be chosen strictly positive on A.

Proof: W.l.o.g. we can assume that A ⊆ Zm and fj < +∞ for every j. By
Lemma 2.9 there is γ ∈ Q such that γ = min

⋃
j fj(A). Given an arbitrary

γ′ < γ in Q we are going to show that there exists a largely continuous map
f : A → Q such that f̄ = +∞ on ∂A and γ′ ≤ f(x) ≤ minj fj(x) on A. This
will prove simultaneously the last statement, since if each fj is strictly positive
then γ > 0 hence taking for example γ′ = γ/2 will give that 0 < γ/2 ≤ f on A.

The proof goes, needless to say, by induction on m. If m = 0, and more
generally if A is closed, the constant function f = γ has the required properties.
So we can assume that A is not closed, m ≥ 1 and the result is proved for smaller
integers. Replacing each fj by fj − γ we can assume that γ = 0. Replacing
γ′ < 0 by a bigger one if necessary we can assume that γ′ ∈ Q.

Let αi,j ∈ Q and βj ∈ Q such that fj(x) = βj +
∑

1≤i≤m αi,jxi. Let

f̂j : X → Q be defined as in Lemma 4.2, and η = min
⋃

j f̂j(X). By Lemma 4.2
the induction hypothesis applies to these functions. Given any η′ < η, it gives
a largely continuous affine map g : X → Q such that ḡ = +∞ on ∂X and
η′ ≤ g(x) ≤ f̂j(x) onX for 1 ≤ j ≤ r. We do this for η′ = −(maxj |αm,j |Nm+1).

Indeed by Lemma 4.2, −|αm,j |Nm ≤ f̂j on X for 1 ≤ j ≤ r hence η′ ≤ η−1 < η.
Since η′ < 0, replacing γ′ by a bigger one if necessary we can assume that η′ ≤ γ′.

Case 1: νA = +∞. Then for 1 ≤ j ≤ r the coefficient αm,j of xm in the
above expression of fj is strictly positive (see the proof of lemma 4.2), hence

f̂j(x) = fj(x, µ(x)) and α = minj≤r αm,j is strictly positive. Let G(a) = g(â) +
α(am − µ(â)) on A. For 1 ≤ j ≤ r we have

G(a) ≤ f̂j(x) + αm,j

(
am − µ(â)

)
= fj

(
â, µ(â)

)
+ αm,j

(
am − µ(â)

)
= fj(a).

Every b ∈ ∂A either belongs to X × {+∞} or to ∂X × Γ. If b ∈ X × {+∞}
then G(a) = g(â) + α(am − µ(â)) tends to +∞ as a ∈ A tends to b, because â

then tends to b̂, am tends to +∞ and α > 0. If b ∈ ∂X × Γ then G(a) ≥ g(â)

tends to +∞ as a ∈ A tends to b, because â then tends to b̂. Hence G is largely
continuous and Ḡ = +∞ on ∂A.

Case 2: νA < +∞. Then every b ∈ ∂A belongs to ∂X × Γ hence g(â) tends

to +∞ as a ∈ A tends to b. Moreover g(â) ≤ f̂j(â) ≤ fj(a) for 1 ≤ j ≤ r.



Cases 1 and 2: In both cases, it remains to modify G so that its minimum
becomes greater than γ′. By construction G(a) ≥ g(â) ≥ η′ on A. Recall that
η′ = −(maxj |αm,j |Nm + 1) and γ′ ≥ η′ are strictly negative rational number.
Thus we can define f(a) = (γ′/η′)G(a) on A. Clearly f is a largely continuous
affine function on A with f̄ = +∞ on ∂A, and f ≥ (γ′/η′)η′ = γ′ since γ′/η′ ≥ 0
and G ≥ η′ on A. Moreover 0 ≤ γ′/η′ ≤ 1 hence for every a ∈ A:

f(a) =
γ′

η′
G(a) ≤ max(0, G(a)) ≤ min

1≤j≤r
fj(a)

5 Monohedral division

Lemma 5.1 Let A ⊆ FI(Γm) be a non-closed largely continuous precell mod
N . Let B be a facet of A, J its support, f : B → Z a definable map. Let D be
a family of largely continuous monohedral precells mod N such that

⋃
D = B.

Then there exists a pair (C,U) of families of largely continuous precells mod N
contained in A and an integrally affine map δ : B → Z such that U is a finite
partition of A \

⋃
C, the proper faces of every precell in U are proper faces of A,

and C is a family (CD)D∈D of precells with the following properties:

(Fac) CD has a unique facet which is D.

(Sub) CD ⊆ {a ∈ A :πJ(a) ∈ D and ∆J(a) ≥ f ◦ πJ(a)}.

(Sup) CD ⊇ {a ∈ A :πJ(a) ∈ D and ∆J(a) ≥ δ ◦ πJ(a)}.

(Diff) For every E ∈ D, πJ(CD \ CE) ⊆ D \ E.

Remark 5.2 In every application of Lemma 5.1, D will be a partition of B. So
the condition (Diff) simply says that the precells in C are two-by-two disjoint,
hence that C ∪ U is a partition of A. However we can not restrict to this case
because it may happen that D is a partition of B and D̂ is not a partition of B̂,
which will be crippling when proving the result by induction on m.

Before entering in the somewhat intricate proof of this lemma, let us make
a few preliminary observations.

Claim 5.3 With the notation of Lemma 5.1, B is not a face of any U ∈ U .

Proof: For every b ∈ B there is D ∈ D such that b ∈ CD. By (Sup) every point
in A such that πJ(a) = b and ∆J(a) ≥ δ ◦ πJ(a) belongs to CD, hence not to
U . Thus b ∈ U , that is B ∩ U = ∅.

Claim 5.4 Let A ⊆ FI(Γm) be a non-closed largely continuous precell mod N ,
B a facet of A, J = SuppA. Let CD, D be precells mod N contained in A, B
respectively. Let f, δ : B → Z be two definable maps such that properties (Sub)
and (Sup) of Lemma 5.1 hold true. If f is largely continuous and f̄ = +∞ on
∂B then (Fac) holds true.



Proof: For every b ∈ D and every ε ∈ Z, b ∈ A hence there exists a ∈ A such
that πJ(a) = b and ∆J(a) ≥ max(δ(b), ε). By (Sup) this point a belongs to CD,
hence b is in the closure of CD. So D ⊆ FJ(CD), and conversely (Sub) implies
that πJ(CD) ⊆ D, hence FJ(CD) = πJ(CD) = D by Proposition 3.3(1).

Assume for a contradiction that CD has a proper face FH(CD) not contained
in D. Pick any c in FH(CD). By Proposition 3.3(3), H is not contained in J
so pick any k ∈ H \ J . By Proposition 3.3(4), FJ∩H(CD) 6= 0 hence by the
remaining of Proposition 3.3, πJ∩H(CD) = FJ∩H(CD) = FJ∩H(FH(CD)) ⊆
FJ∩H(B) ⊆ ∂B. So πJ∩H(c) ∈ ∂B, hence f has limit +∞ at πJ∩H(c). In
particular there is δ ∈ Z such that for every b ∈ B[

πJ∩H(b) = πJ∩H(c) and ∆J∩H(b) ≥ δ
]
⇒ f(b) > ck (5)

On the other hand c ∈ FH(CD) hence there is a ∈ CD such that πH(a) = c and
∆H(a) ≥ δ. Let b = πJ(a), then πJ∩H(b) = πJ∩H(a) = c and

∆J∩H(b) = min
j /∈H

bj = min
j∈J\H

aj ≥ min
i/∈H

ai = ∆H(a) ≥ δ.

By (5) this implies that f(b) > ck, that is f ◦ πJ(a) > ck. By (Sub) it follows
that ∆J(a) > ck, a contradiction since ∆J(a) = minj /∈J aj ≤ ak (because k /∈ J)
and ak = ck (because k ∈ H and πH(a) = c.

Proof: Let (µ, ν, ρ) be a largely continuous presentation of A. Let X, Y be the

socles of A, B respectively, Î = SuppX and Ĵ = SuppY . Since B is a facet of
A, by Proposition 3.7 either Y = X and B = X × {+∞}, or Y is a facet of A
and either B = Y ×{+∞} or B = (Y ×Z)∩A. For each D ∈ D let (µD, νD, ρD)
be a largely continuous presentation of D.

If m = 0 the result is trivially true because there is no non-closed precell
contained in Γ0. So we can assume that m ≥ 1 and the result is proved for
smaller integers. If µ = +∞ then A = X × {+∞} identifies to X, to which the
induction hypothesis applies. So we can assume that µ < +∞. Proposition 4.1
gives strictly positive α ∈ Z and β ∈ Z such that f(x) ≤ β + α

∑
j∈J xj on B.

W.l.o.g. we can assume that equality holds on B, and we still denote by f the
corresponding extension of f to FJ(Ωm).

Thanks to Claim 5.4, (Fac) will automatically follow from (Sub) and (Sup).
We will only check that πJ(CD) = D, so that (Sub) and (Diff) boil down
respectively to the properties that ∆J ≥ f ◦ πJ on CD, and that πJ(D \ E)
is disjoint from E. Note also that it suffices to prove (Sup) with δ : B →
Q any definable map since it will then hold true for every larger map, and
Proposition 4.1 provides an integrally affine one.

Case 1: Y = X.
Then B = X × {+∞} hence ν = +∞ and J = I \ {m}, thus ∆J(a) = am and
πJ(a) = (â,+∞) for every a ∈ A. Proposition 4.1 gives a largely continuous
affine function λ : X → Z such that λ(x) ≥ max(f(x,+∞), µ(x) + Nm) on
X. Let U be the set of a ∈ FI(Γm) such that â ∈ X, µ(â) ≤ am ≤ λ(â) and
am ≡ ρ [Nm]. It is clearly a largely continuous precell mod N (with socle X
since λ ≥ µ+Nm). For each D ∈ D let CD be the set of a ∈ FI(Γm) such that

â ∈ Ĉ, λ(â)+1 ≤ am and am ≡ ρ [Nm]. This is a largely continuous precell mod



N with socle D̂. Let C = {CD :D ∈ D} and U = {U}. Obviously
⋃
C = A \ U ,

∂U = ∂B and for every D,E ∈ D, πJ(CD \ CE) = D \ E.
By construction, for every D ∈ D and every a ∈ CD we have

∆J(a) = am > λ(â) ≥ f(â,+∞) = f
(
πJ(a)

)
.

Conversely, for every a ∈ A such that πJ(a) ∈ D and ∆J(a) ≥ λ(â), we have

â ∈ D̂, am ≥ λ(â) and am ≡ ρ [Nm] hence a ∈ CD. This proves (Sub) and

(Sup), with δ(b) = λ(̂b) on B.

Case 2: Y is a facet of A and B = Y × {+∞}.
Then J = Ĵ , µ̄ = +∞ on Y (otherwise by Proposition 3.11, FJ∪{m}(A) 6= ∅ is a
proper face of A larger than B) and ν < +∞ (otherwise X ×{+∞} is a proper
face of A larger than B). In particular µ(x) ≥ f(y,+∞) for every y ∈ Y and
every x ∈ X close enough to y, so there is a definable map η : Y → Z such that
for every x ∈ X

∆Ĵ(x) ≥ η
(
πĴ(x)

)
⇒ µ(x) ≥ f

(
πĴ(x),+∞

)
. (6)

The induction hypothesis applies to X, Y , D̂ and g(y) = max(f(y,+∞), η(y))
on Y . It gives a definable map ε : Y → Z and a pair (S,W) of families of
precells. For each W ∈ W (resp. D ∈ D) let UW (resp. CD) be the set of
a ∈ FJ(Γm) such that â ∈ W (resp. â belongs to the unique precell SD̂ ∈ S
whose facet is D̂), µ(â) ≤ am ≤ ν(â) and am ≡ ρ [Nm]. This is obviously a
largely continuous precell mod N with socle W (resp. SD̂), and exactly the set
of a ∈ A such that â ∈W ) (resp. SD̂). In particular it is contained in A, and if
we let U = {UW :W ∈ W} and C = {CD :D ∈ D} then U is a partition A \

⋃
C

by induction hypothesis on (S,W).
For every W ∈ W, every proper face of W is a proper face Z of X. Let

H be its support. Then by Proposition 3.11, (µ̄|Z , ν̄|Z , ρ) is a presentation of
FH(UW ), but also of FH(A) hence FH(UW ) = FH(A) is a proper face of A.

For every D ∈ D, since µ̄ = +∞ on Y we have FJ(CD) = D̂ × {+∞} = D by
Proposition 3.11, hence πF (CD) = D by Proposition 3.3. Moreover for every

E ∈ E , πĴ(SD̂ \ SÊ) ⊆ D̂ \ Ê by induction hypothesis hence

πJ(CD \ CE) =
[
πĴ(SD̂) \ πĴ(SÊ)

]
× {+∞} ⊆ (D̂ \ Ê)× {+∞} = D \ E.

For every a ∈ CD, since J = Ĵ we have ∆J(a) = min(am,∆Ĵ(â)) and
πJ(a) = (πĴ(â),+∞). By induction hypothesis ∆Ĵ(â) ≥ η ◦ πĴ(â) and
∆Ĵ(â) ≥ f(πĴ(â),+∞) because â ∈ SD̂. The first inequality implies that
am ≥ µ(x) ≥ f(πĴ(â),+∞) by (6). Together with the second inequality this
gives that min(am,∆Ĵ(â)) ≥ f(πĴ(â),+∞). That is ∆J(a) ≥ f(πJ(a)), and
(Sub) follows.

Conversely, since CD is clearly the set of a ∈ A such that â ∈ SD̂, for every

a ∈ A such that πJ(a) ∈ D (hence πĴ(â) ∈ D̂) and ∆J(a) ≥ ε ◦ πĴ(â) we have

â ∈ SD̂ by induction hypothesis on ε and D̂ hence a ∈ CD. This proves (Sup)

with δ(b) = ε(̂b) on B.



Case 3: Y is a facet of X and B = (Y ×Z) ∩A.
Then m ∈ SuppB = J , hence µ̄ < +∞ on Y , µD < +∞ for every D ∈ D, and
for every a ∈ A:

∆J(a) = ∆Ĵ(â) and πJ(a) = (πĴ(â), am) (7)

Note that ρ = ρD for every D ∈ D because, given any b ∈ D ⊆ B, we have
bm 6= +∞ and on one hand bm ≡ ρD [Nm], on the other hand bm ≡ ρ [Nm]
(using the presentation of B = FJ(A) given by Proposition 3.11).

Sub-case 3.1: ν <∞.
Let g : Y → Z be a strictly positive affine map given by Proposition 4.1 such that
g(y) ≥ f(y, 0)+α(µ̄(y)+Nm) on Y and ḡ = +∞ on ∂Y . Given any y ∈ Y , since
g(y) < +∞ and ν−µ has limit +∞ at y, we have ν(x)−µ(x) > 2Nm +1 +g(y)
for every x ∈ X close enough to ŷ. So there is a definable function η1 : Y → Z
such that for every x ∈ X

∆Ĵ(x) ≥ η1

(
πĴ(x)

)
⇒ ν(x)− µ(x) > 2Nm + 1 + g

(
πĴ(x)

)
. (8)

The induction hypothesis applies to X, Y , {Y } and max(η1, 2g). It gives a
definable map ε1 : Y → Z and a pair (S1,W1) of families of precells. In
the present case S1 consists of a single largely continuous precell X◦ mod N
contained in X, such that ∆Ĵ ≥ max(η1 ◦ πĴ , 2g ◦ πĴ) on X◦, and every x ∈ X
such that πĴ(x) ∈ Y and ∆Ĵ(x) ≥ ε1(πĴ(x)) belongs to X◦. The family W1

is a finite partition of X \X◦ in largely continuous precells mod N . Let U1 =
{UW :W ∈ W1} where UW = (W × Z) ∩ A for every W ∈ W. Since ν < +∞,
the proper faces of UW are proper faces of A by Claim 5.3.

For every k /∈ Ĵ and every x ∈ X◦, we have xk ≥ ∆Ĵ(x) because k /∈ Ĵ , and
∆Ĵ ≥ 2g ◦ πĴ(x) on X◦ by induction hypothesis. Thus on one hand xk − g ◦
πĴ(x) ≥ g◦πĴ(x) ≥ 1, and on the other hand xk−g◦πĴ(x) ≥ xk/2. In particular
x 7→ xk − g ◦ πĴ(x) is a largely continuous strictly positive affine function on
X◦ with limit +∞ at every point of ∂X◦. We also have ∆Ĵ(x) ≥ η1(πĴ(x))
by induction hypothesis, hence ν(x) − µ(x) > 2Nm + 1 + g(πĴ(x)) by (8). In
particular the restriction of ν − µ − 2Nm − 1 to X◦ is a strictly positive affine
function with limit +∞ at every point of ∂X◦. Proposition 4.3 then gives
a largely continuous strictly positive affine function λ : X◦ → Q such that
λ̄ = +∞ on ∂X◦, λ ≤ ν − µ − 2Nm − 1 on X◦ and λ(x) ≤ (xk − g ◦ πĴ(x))/α

for every k /∈ Ĵ . Let us quote for further use that in particular

αλ(x) ≤ min
k/∈Ĵ

(
xk − g(πĴ(x))

)
= ∆Ĵ(x)− g(πĴ(x)). (9)

Note that ∂X◦ = Y because X◦ has a unique facet which is Y by Claim 5.4,
hence λ̄ = +∞ on Ȳ . Let n ≥ 1 an integer such that nλ is integrally affine,
so that λ(x) > t if and only if λ(x) ≥ t + 1/n for every (x, t) ∈ X◦ × Z. Let
ζ = µ + λ + Nm on X◦, and V (resp. A◦) be the set of a ∈ FI(Γm) such that
â ∈ X◦, ζ(â) + 1/n ≤ am ≤ ν(â) (resp. µ(â) ≤ am ≤ ζ(â)) and am ≡ ρ [Nm].
By construction ζ is a largely continuous affine map on X◦ with ζ̄ = +∞ on
∂X◦. Moreover on X◦ we have

ζ + 1/n+Nm = µ+ λ+ 2Nm + 1/n ≤ ν



(because that λ ≤ ν−µ− 2Nm− 1 by construction) hence the socle of V is X◦.
Obviously µ + Nm ≤ µ + λ + Nm = ζ (because λ > 0 by construction) hence
the socle of A◦ is X◦. Thus both V and A◦ are largely continuous precells mod
N contained in (X◦ × Z) ∩ A. Moreover am > ζ(â) = µ(â) + λ(xâ) + Nm if
and only if am ≥ µ(â) + λ(xâ) + 1/n+Nm = ζ(â) + 1/n. Thus V and A◦ form
a partition of (X◦ × Z) ∩ A, or equivalently U1 ∪ {V } is a partition of A \ A◦.
Since ζ̄ = +∞ on ∂X◦ = Y , by Proposition 3.11 every proper face V ′ of V is
of type Z × {+∞} for Z a face of Y . In particular V ′ is a proper face of A.

For every D ∈ D let ζD = νD if νD < +∞ and ζD = µD + Nm otherwise.
Since ζ̄ = +∞ on Y there is a definable function η2 : Y → Z such that for every
x ∈ X◦ and every D ∈ D such that πĴ(x) ∈ D̂ we have

∆Ĵ(x) ≥ η2

(
πĴ(x)

)
⇒ ζ(x) ≥ ζD

(
πĴ(x)

)
. (10)

The induction hypothesis applies to X◦, Y , D̂ and η2. It gives a definable
map ε2 : Y → Z and a pair (S2,W2) of families of precells. For each W ∈ W2

let UW = (W × Z) ∩ A◦. Clearly the family U2 = {UW :W ∈ W2} is a finite
partition in largely continuous precells mod N of the complement in A◦ of the
set A◦◦ = (

⋃
S2 × Z) ∩ A◦. Equivalently, U1 ∪ {V } ∪ U2 is a finite partition of

A \ A◦◦. Since ν < +∞, by Claim 5.3 the proper faces of UW are proper faces
of A for every W ∈ W2.

For each D ∈ D let SD̂ be the precell in S given by induction hypothesis,
so that conditions (Fac), (Sub), (Sup), (diff) apply to SD̂, η2 and ε2. If νD =
+∞ (resp. νD < +∞) let CD be the set of a ∈ FI(Γm) such that â ∈ SD̂,
µD(πJ(â)) ≤ am ≤ ζ(â) (resp. µD(πJ(â)) ≤ am ≤ νD(πJ(â))) and am ≡
ρ [Nm]. For every x ∈ SD̂ we have πĴ(x) ∈ D̂, because D̂ = FĴ(SD̂) by (Fac),

and FĴ(SD̂) = πĴ(SD̂) by Proposition 3.3(1). So there is b ∈ D such that b̂ = x,
µD(πĴ(x)) ≤ bm ≤ νD(πĴ(x)) and bm ≡ ρ [Nm]. We can (and do) require in
addition that bm ≤ µD(πĴ(x))+Nm, hence bm ≤ ζD(πĴ(x)). Because x ∈ SD̂ we
also have ∆Ĵ(x) ≥ η2 ◦πĴ(x) by (Sub), hence ζD(x) ≤ ζ(x) by (10). Altogether
this proves that (x, bm) ∈ CD, hence x belongs to the socle of CD. So the socle
of CD is exactly SD̂ and CD is then a largely continuous precell mod N . The
presentation of FJ(CD) given by Proposition 3.11 is exactly (µD, νD, ρ), hence
FJ(CD) = D since ρD = ρ. In particular πJ(CD) = D by Proposition 3.3(1).
More precisely, the above computations show that we have

CD =
{
a ∈ A◦◦ : â ∈ SD̂ and πJ(a) ∈ D

}
. (11)

Let C = {CD :D ∈ D} and U = U1 ∪ {V } ∪ U2. We already know that U is
a finite partition of A \A◦◦ in largely continuous precells mod N whose proper
faces are proper faces of A, and that each CD ∈ C is a largely continuous precell
mod N contained in A◦◦ with socle SD̂ and FJ(CD) = πJ(CD) = D. Let us
check that

⋃
C = A◦◦. In order to do so, we are claiming that

∀a ∈ A◦◦,∀E ∈ D, πJ(a) ∈ E ⇒ a ∈ CE . (12)

Assume the contrary and let a ∈ A◦◦, E ∈ E be such that πJ(a) ∈ E and
a /∈ CE . By (11) this implies that â /∈ SÊ . But the socle of A◦◦ is

⋃
S, hence

â ∈ SD̂ for some D ∈ D. Thus πĴ(â) belongs to πĴ(SD̂ \ SÊ). By induction

hypothesis the latter is contained in D̂ \ Ê, hence πĴ(â) /∈ Ê. But πĴ(â) is also

the socle of πJ(a). Since πJ(a) ∈ E it follows that πĴ(â) ∈ Ê, a contradiction.



That A◦◦ ⊆
⋃
C then follows immediately from (12) and the fact that

πJ(A◦◦) ⊆ πJ(A) = B ⊆
⋃
D. So A◦◦ =

⋃
C and it only remains to check

(Sub), (Sup) and (Diff) for any fixed D ∈ D.
We start with (Diff). Pick any E ∈ D, assume that there is a point b in

πJ(CD \ CE) which belongs to E. Then b = πJ(a) for some a ∈ CD \ CE .
We have a ∈ A◦◦ and a /∈ CE , hence πJ(a) ∈ E by (12). In particular a /∈ E,
henceπJ(CD\CE) is disjoint from E. Property (Diff) follows since πJ(CD) = D.

Let us turn now to (Sup). For every b ∈ B, since ζ̄ = +∞ on ∂X◦ = Y

and b̂ = Y we have ζ(x) ≥ bm whenever x ∈ X◦ is close enough to b̂ (that is

whenever πĴ(x) = b̂ and ∆Ĵ is large enough). So there is a definable function
η3 : B → Z such that for every a ∈ (X◦ ×Z) ∩A

∆Ĵ(â) ≥ η3

(
πJ(a)

)
⇒ ζ(â) ≥ am. (13)

Let δ : b ∈ B 7→ max(ε1(̂b), η3(b), ε2(̂b)). For every a ∈ A such that πJ(a) ∈ D
and ∆J(a) ≥ δ ◦ πJ(a), since ∆J(a) = ∆Ĵ(â) by (7) we have in particular
πĴ(â) ∈ Y and ∆Ĵ(â) ≥ ε1(πĴ(â)), hence â ∈ X◦ by construction. So a ∈
(X◦ × Z) ∩ A and ∆Ĵ(â) ≥ η3

(
πJ(a)

)
, which implies that am ≤ ζ(â) by (13),

hence a ∈ A◦ by construction. On the other hand, since â ∈ X◦, πĴ(â) ∈ D̂ and
∆Ĵ(â) ≥ ε2(πĴ(â)), we get that â ∈ SD̂ by construction. In particular â ∈

⋃
S,

hence a ∈ A◦◦ since A◦◦ = (
⋃
S2 × Z) ∩ A◦. Altogether we have a ∈ A◦◦,

â ∈ SD̂ and πJ(a) ∈ D hence that a ∈ CD by (11), which proves (Sup).
In order to get (Sub), it only remains to check that ∆J ≥ f ◦πJ on CD. This

is the moment to recall (9), which says that αλ ≤ ∆Ĵ − g ◦ πĴ on X◦. Recall
also that g(y) ≥ f(y, 0) + α(µ̄(y) + Nm) on Y by definition of g. Thus on X◦

we have
αλ(x) ≤ ∆Ĵ(x)− f

(
πĴ(x), 0

)
− αµ̄

(
πĴ(x)

)
− αNm. (14)

For every a ∈ CD, â ∈ X◦ and a ∈ A◦ hence am ≤ ζ(â) = µ(â) + λ(â) + Nm.
We also have µ(â) = µ̄

(
πĴ(â)

)
by Proposition 3.5. Combining all this with (14)

we get that
αam ≤ αλ(â) ≤ ∆Ĵ(â)− f

(
πĴ(â), 0

)
. (15)

Since f(πJ(a)) = f
(
πĴ(â), 0

)
+ αam by definition of f , and ∆J(a) = ∆Ĵ(â) by

(7), we finally get from (15) that ∆J(a) = ∆Ĵ(â) ≥ f(πJ(a)).

Sub-case 3.2: ν = +∞.
Proposition 4.1 gives a largely continuous integrally affine map λ on X such

that λ̄ = +∞ on ∂X and λ ≥ µ + Nm. Let A− (resp. A+) be the set of
a ∈ FI(Γm) such that â ∈ X, µ(â) ≤ am ≤ λ(â) (resp. λ(â) + 1 ≤ am) and
am ≡ ρ [Nm]. Its socle is X (for A− we use that λ ≥ µ + Nm) hence it is
a largely continuous precell mod N . Since λ takes values in Z, A− and A+

form a partition of A. The presentation of the faces of A, A− A+ given by
Proposition 3.11 gives that every proper face of A− and A+ is a proper faces of
A, and B is a face of A−. The previous sub-case 2.1 applies to A−, B, D and f .
It gives a pair (C−,W−) of families of largely continuous precells mod N and
an integrally affine map δ− : B →;Z. Then (C−,W− ∪ {A+}) and δ− have all
the required properties for A, D and f , except possibly (Sup). We remedy this
by replacing δ− by a larger function δ defined as follows.

For every b ∈ B, we have λ(x) ≥ bm for every x ∈ X close enough to b̂ since
λ̄ = +∞ on Y . So there is a definable function η : B → Z such that for every



a ∈ A
∆J(a) ≥ η

(
πJ(a)

)
⇒ λ(â) ≥ am. (16)

Let δ = max(η, δ−, then for every D ∈ D and every a ∈ A such that πJ(a) ∈ D
and ∆J(a) ≥ δ(πJ(a)) we have in particular ∆J(a) ≥ η(πJ(a)) hence am ≤ λ(â)
by (16), that is a ∈ A−. On the other hand we have πJ(a) ∈ D and ∆J(a) ≥
δ−(πJ(a)). Altogether this implies that a belongs to CD ∈ C−, which in turn
proves (Sup).

Theorem 5.5 (Monohedral Division) Let A ⊆ FI(Γm) be a largely contin-
uous precell mod N , f : ∂A → Z a definable function, and D a complex of
monohedral largely continuous precells mod N such that

⋃
D = ∂A. Then there

exists a finite partition C of A in monohedral largely continuous precells mod N
such that C ∪D is a closed complex, C contains for every D ∈ D a unique precell
C with facet D, and moreover ∆J ≥ f ◦ πJ on C where J = SuppD.

Proof: The proof goes by induction on the number n of proper faces of A. If
n = 0 then D = ∅ and A is monohedral, hence C = {A} gives the conclusion.
So let us assume that n ≥ 1 and the result is proved for smaller integers. Let
B be a facet of A. Lemma 5.1 applied to A, B, D and the restriction of f to B
gives a pair (U , CB) of families of precells. For every U ∈ U , the proper faces of
U are proper faces of A. So the family DU = {D ∈ D :D ⊆ ∂U} is a complex
and

⋃
DU = ∂U . Since B is not a proper face of U by Claim 5.3, the induction

hypothesis applies to U , DU and the restriction of f to ∂U . It gives a family
CU of precells. Let C be the union of CB and CU for U ∈ U . This is a family of
largely continuous precells mod N partitioning A. By construction C contains
for every D ∈ D a unique precell C with facet D, and ∆J ≥ f ◦ πJ on C with
J = SuppD. In particular C ∪ D is a partition of A which contains the faces
of all its members, since D is a closed complex (because D is a complex and⋃
D = ∂B is closed). So C ∪ D is a closed complex.

Theorem 5.6 (Monohedral Decomposition) Let A ⊆ FI(Γm) be a largely
continuous precell mod N . Then there exists a complex U of monohedral largely
continuous precells mod N such that such that A =

⋃
U .

Proof: We are going to show that given any closed complex A of largely con-
tinuous precells mod N in Γm, there is a closed complex C of largely continuous
monohedral precells mod N such that

⋃
C =

⋃
A and C refines A (that is every

C ∈ C is contained in some A ∈ A). The conclusion for A will follow, by apply-
ing this to the closed complex consisting of all the faces of A. The proof goes
by induction on the cardinality n of A. If n = 0 then C = A = ∅ proves the
result. Assume that n ≥ 1 and the result is proved for smaller integers. Let A
be a maximal element of A with respect to specialisation, and B = A\{A}. By
maximality of A, B is again a closed complex. The induction hypothesis gives
a closed complex D of largely continuous monohedral precells mod N such that⋃
D =

⋃
B and D refines B. If A is closed then obviously C = D ∪ {A} proves

the result for A. Otherwise let DA = {D ∈ D :D ⊆ ∂A}. The Monohedral
Division Theorem 5.5 applied to A, DA and the constant function f = 0 gives a
finite partition CA of A in monohedral largely continuous precells mod N such



that the family CA ∪ DA is a closed complex. The family C = CA ∪ D is a
partition of A ∪

⋃
B =

⋃
A. Since D is a closed complex and every precell in

CA has a unique facet which belongs to D, it follows that C is a complex.

We finish this section with another, much more elementary, division result.
Contrary to the above ones, it is drastically different from what occurs in the
real situation, where the polytopes are connected sets.

Proposition 5.7 Let A ⊆ FI(Γm) be a non-closed monohedral largely contin-
uous precell mod N . For every integer n ≥ 1 there exists for some N ′ ∈ (N∗)m

a partition (Ai)1≤i≤n of A in largely continuous precells mod N ′ such that
∂Ai = ∂A for 1 ≤ i ≤ n.

Proof: The proof goes by induction on m. The result is trivially true for
m = 0 since there is no non-closed precell in Γ0. Assume that m ≥ 1 and
the result is proved for smaller integers. Let (µ, ν, ρ) be a presentation of A.
By induction hypothesis we can assume that m ∈ SuppA hence µ < +∞. If
ν = +∞, for 1 ≤ i ≤ n let Ai be the set of a ∈ FI(Γm) such that â ∈ Â,
µ(â) ≤ am ≤ ν(â) and am ≡ ρ+ iNm [nNm]. This is obviously a partition of A

in largely continuous precells mod N ′ = (N̂ , nNm) having the same boundaries

as A. On the other hand, if ν < +∞ then Â is not closed (otherwise A would be
closed) hence the induction hypothesis gives for some P ′ ∈ (N∗)m a partition

(Xi)1≤i≤n of Â in largely continuous precells mod P ′ such that ∂Xi = ∂X for
every i. Let Ai = (Xi × Z) ∩ A for every i. Then (Ai)1≤i≤n is easily seen to
give the conclusion, thanks to the description of the faces of A and Ai given by
Proposition 3.11.

6 Polytopes in p-adic fields

Recall that K is a p-adically closed field, v its p-valuation, R its valuation ring
and Γ = v(K). We still denote by v the map (v, . . . , v) from Km to Γm.

We are going to define polytopes5 mod N in Km by means of the inverse
image by v of largely continuous precells mod N in Γm. However, the p-adic
triangulation theorem that we are aiming at requires a more versatile definition.
It involves semi-algebraic subgroups Q1,M of multiplicative group K× = K\{0},
where M is a positive integer. In the special case when K is a finite extension
of Qp, we have

Q1,M =
⋃
k∈Z

πk(1 + πMR).

where π is any generator of the maximal ideal of R. Since in this paper we will
only use that v(Q1,M ) = Z, we refer the reader to [CL12] for a general definition
of QN,M for every integers N,M ≥ 1 in arbitrary p-adically closed fields.

We let DMR = ({0}∪Q1,M )∩R. Given an m-tuple N ∈ (N∗)m we call a set
S ⊆ Km a polytope mod N in DMRm if v(S) is a largely continuous precell
mod N in Γm and S = v−1(v(S)) ∩DMRm. The faces and facets FJ(S) of a

5We don’t call them largely continuous precells because they are much more special than
the usual p-adic cells as defined in [Den86].



subset S of DMRm are defined as the inverse images, by the restriction of v to
DMRm, of the faces and facets of v(S). The support of S (resp. of x ∈ Km)
is the support of v(S) (resp. of v(x), so that:

Supp(x) =
{
i ∈ [[1,m]] :xi 6= 0

}
FJ(S) =

{
x ∈ S : Suppx = J

}
We say that S is monohedral if v(S) is so, that is if the faces of S are linearly
ordered by specialisation, in which case we call S a monotope mod N in
DMRm.

A family C of polytopes mod N in DMRm is a complex if it is finite and for
every S, T ∈ C, S∩T is the union of the common faces of S and T . It is a closed
complex if moreover it contains all the faces of its members. Every complex
S of polytopes mod N is contained in a smallest closed complex, namely the
family of all the faces of the members of S. We call it the closure of S and
denote it S.

In order to ease the notation, we write vS for v(S), and vC for {vS :S ∈ C}.
Clearly C is a (closed) complex if and only if vC is so.

Proposition 6.1 Let S be a polytope mod N in DMRm, and T = FJ(S) be
any of its faces. Then T is a polytope mod N equal to πJ(S).

Proof: Due to the correspondence between the faces of S and vS, this follows
directly from Proposition 3.11 and Proposition 3.3(1).

More generally, all the points of Proposition 3.3, as well as Proposition 3.7,
Corollary 3.10, the Monohedral Decomposition (Theorem 5.6) and Proposi-
tion 5.7 immediately transfer to polytopes mod N in DMRm. Only the Mono-
hedral Division (Theorem 5.5) requires a bit more of preparation.

For seek of generality we want the p-adic analogous of the Monohedral Di-
vision Theorem in Γm to hold true not only with a map ε : ∂S ⊆ Km → K∗

definable in the language of rings (i.e. semi-algebraic) but also with a map
definable in various expansions (K,L) of the ring structure of K. The proof
of Theorem 6.3 below shows that it is sufficient for this to make the following
assumptions on (K,L):

1. For every definable function f : X ⊆ Km → K∗, if f is continuous and
X is closed and bounded, then v(f(x)) takes a maximum value at some
point x ∈ X.

2. The image by the valuation of every subset of Km definable in (K,L), is
LPres-definable.

Remark 6.2 If K is a finite extension of Qp then condition (1) holds true for
every continuous function by the Extreme Value Theorem. But this condition,
when restricted to definable continuous functions, is preserved by elementary
equivalence. Hence it will be satisfied whenever the complete theory of (K,L)
has a p-adic model (that is a model whose underlying field is a finite extension
of Qp). On the other hand, if (K,L) is strongly p-minimal (a.k.a P -minimal
in [HM97]), Theorem 6 in [Clu03] proves that condition (2) is satisfied. In par-
ticular Theorem 6.3 applies for example to every subanalytic map ε, and more
generally to every map ε which is definable in a strongly p-minimal structure
(K,L) which has a p-adic model.



For every x ∈ Km we let w(x) = min1≤i≤m v(xi). If v(K) = Z this is the
valuative counterpart of the usual norm on Km, which measures the distance
of x to the origin (see also Remark 2.3).

Theorem 6.3 (Monotopic Division) Let S be a polytope mod N in DMRm,
ε : ∂S → K∗ a definable function, and T a complex of monotopes mod N in
DMRm such that

⋃
T = ∂S. Assume that the restriction of v◦ε to every proper

face of S is continuous. Then there exists a finite partition U of S in monotopes
mod N in DMRm such that U ∪ T is a closed complex, U contains for every
T ∈ T a unique cell U with facet T , and moreover for every u ∈ U

w
(
u− πJ(u)

)
≥ v
(
ε(πJ(u))

)
where J = Supp(T ).

Proof: For every proper face FJ(S) of S, and every s ∈ FJ(S), the function
t 7→ v(ε(t)) is continuous on v−1({v(s)})∩FJ(S), which is a closed and bounded
domain. Thus it attains a maximum value e(s) (see Remark 6.2). So let

GJ =
{

(s, t) ∈ FJ(S)×K : v(t) = e(s)
}
.

This is a definable set hence v(GJ) is LPres-definable (see Remark 6.2). More-
over by construction v(GJ) is the graph of a function gJ : vFJ(S) = FJ(vS)→
Z, such that v(ε(s)) ≤ gJ(v(s)) for every s ∈ S. Let g : ∂(vS) → Z be the
function whose restriction to each FJ(vS) is gJ .

The Monotopic Division (Theorem 5.5) applies to vS, g and vT . It gives a
finite partition C of vS in monotopes mod N such that C∪vT is a complex, every
non-closed C ∈ C has a unique facet D which belongs to vT and ∆J ≥ f ◦πJ on
C where J = SuppD. Let U be the family of v−1(C)∩DMRm for C ∈ C. This
is clearly a finite partition of S in monotopes mod N in DMRm. Every U ∈ U
has a unique facet T ∈ T , and ∆J ≥ g◦πJ on vT where J = Supp vT = SuppT .
That is, for every u ∈ U we have

w
(
u− πJ(u)

)
= min

i/∈J
v(ui) = ∆J(v(u)) ≥ g ◦ πJ(v(u)) (17)

By construction πJ(v(u)) = v(πJ(u)) and g(v(t)) ≥ v(ε(t)) for every t ∈ T ,
hence

g ◦ πJ
(
v(u)

)
= g
(
v(πJ(u))

)
≥ v
(
ε(πJ(u))

)
.

Together with (17), this proves the last point.

Finally, let us mention for further works the following generalisation of
Proposition 5.7.

Proposition 6.4 Let A ⊆ DMRm be a relatively open6 set. Assume that A
is the union of a complex A of monotopes mod N in DMRm. Then for every
integer n ≥ 1 there exists a finite partition of A in semi-algebraic sets A1, . . . , An

such that ∂Ak = ∂A for every k.

6A subset A of a toplogical set is called relatively open if it is open in its closure, that
is A \A is closed.



Proof: Thanks to the correspondence between the faces of the monotopes mod
N in DMRm and their faces, it suffices to prove the result for a relatively open
set A ⊆ Γm which is the union of a complex of monotopes mod N in Γm.

Let C = A \ A and C =
⋃
C = A \ A. By assumption A is relatively open

hence C is closed, so C is a closed complex. Let U1, . . . , Ur be the list of minimal
elements of A. Every S ∈ A such that Ui ≤ S for some i belongs to A (otherwise
S ∈ A \ A = C which is closed, hence Ui ∈ C, a contradiction since Ui ∈ A).
At the contrary every T ∈ A \ A is a proper face of some Ui (because T is a
face of some S ∈ A and Ui ≤ S for some i, hence T < Ui or Ui ≤ T because S
is a monotope, and the second case is excluded because T /∈ A). In particular
∂A = A \ A is the union of the sets T ∈ A such T < Ui for some i, that is
∂A =

⋃
i≤r ∂Ui.

For each i ≤ r let Bi be the family of S ∈ S such that S ≥ Ui, and
Bi =

⋃
Bi. The families Bi are two-by-two disjoint, and so are the sets Bi

since A is a complex. By the same argument as above (replacing A by Bi)
Bi \ Bi =

⋃
(Bi \ Bi) = ∂Ui, hence Bi is relatively open and ∂Bi = ∂Ui. It

suffices to prove the result separately for each Bi. Indeed, assume that for each
i ≤ r we have found a partition (Bi,j)1≤j≤n of Bi in definable sets such that
∂Bi,j = ∂Bi. Then let Aj =

⋃
i≤r Bi,j for each j. By construction these sets

form a partition of A and

Aj \Aj = Aj \A =
⋃
i≤r

Bi,j \A =
⋃
i≤r

Bi \A =
⋃
i≤r

∂Bi = ∂A.

Thus replacing A and A by Bi and Bi if necessary, we can assume that A has
a unique smallest element U0. If U0 is closed, then ∂A = ∂U0 = ∅ (by minimality
of U0), and it suffices to take A1 = A and Ak = ∅ for k ≥ 2. So from now we
assume that U0 is not closed. Proposition 6.4 then applies to U0 and gives for
some N ′ a partition A1(U0), . . . , An(U0) of U0 in largely continuous monotopic
cells mod N ′ such that ∂Ai(U0) = ∂U0 for every i. In particular each Ai(U0) is
a basic Presburger set. Let H = SuppU0, and for every S ∈ S and i ∈ [[1, n]]
let Ai(S) = π−1

H (Ai(U0)) ∩ S. Note that this is a basic Presburger set. Indeed,
S itself is a basic Presburger set, and π−1

H (Ai(U0)) ∩ FI(Γm) with I = SuppS
is a basic Presburger set because Ai(U0) is so (replace every condition f(x) ≥ 0
defining Ai(U0) by f ◦ πH(x) ≥ 0). Hence their intersection Ai(S) is a basic
Presburger set too. For every i ≤ n let Ai =

⋃
{Ai(S) :S ∈ A}. This defines a

partition of A. In order to conclude it only remains to show that Ai = Ai∪∂U0

for each i, so that ∂Ai = ∂U0 = ∂A. Since Ai =
⋃
{Ai(S) :S ∈ A}, it suffices

to check that for every S ∈ A

Ai(S) =
⋃
{Ai(T ) :T ∈ A, U0 ≤ T ≤ S} ∪ ∂U0. (18)

Let I = SuppAi(S) = SuppS, and J ⊆ I be the support of any face of Ai(S).
Note that FJ(Ai(S)) 6= ∅ implies that FJ(S) 6= ∅, thus J is the support of a
face T = FJ(S) of S. This face T belongs to A, hence to S if U0 ≤ T . We are
claiming that FJ(Ai(S)) = Ai(T ) in that case, and that FJ(T ) = T = FJ(U0)
if T < U0. This will finish the proof since Ai(S) is the union of its faces, and
(18) then follows immediately.

Assume first that U0 ≤ T . Since Ai(S) and S are basic Presburger set, we
know by Proposition 3.3(1) that FJ(Ai(S)) = πJ(Ai(S)) and FJ(S) = πJ(S),



that is T = πJ(S). Since U0 ≤ T we have H ⊆ J hence πJ(π−1
H (Ai(U0))) =

π−1
J (Ai(U0)). It follows that

πJ
(
π−1
H (Ai(U0)) ∩ S

)
⊆ πJ

(
π−1
H (Ai(U0))

)
∩ πJ(S) = π−1

J (Ai(U0)) ∩ T

that is πJ
(
Ai(S)

)
⊆ Ai(T ).

Conversely, for every y ∈ Ai(T ) we have on one hand y ∈ T = πJ(S) so
there is x ∈ S such that πJ(x) = y, and on the other hand y ∈ π−1

H (Ai(U0)) so
πH(x) = πH(πJ(x)) = πH(y) ∈ Ai(U0). Thus x ∈ π−1

H (Ai(U0)) ∩ S = Ai(S),
and since y = πJ(x) this proves that Ai(T ) ⊆ πJ(Ai(S)). The first case our the
claim follows.

Now assume that T < U0. Then J ⊂ H hence πJ(Ai(S)) = πJ(πH(Ai(S)).
We already know that πH(Ai(S)) = Ai(U0) be the previous case, and that
∂Ai(U0) = ∂U0 by construction. In particular FJ(Ai(U0)) = FJ(U0). But
FJ(U0) = T since A is a complex and T < U0. Altogether, using Proposi-
tion 3.3(1) for Ai(S) and Ai(U0) we get

FJ(Ai(S)) = πJ(Ai(S)) = πJ(Ai(U0)) = FJ(Ai(U0)) = T.
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